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Abstract—With the increase of multimorbidity due to pop-
ulation ageing, managing multiple chronic health conditions
is a rising challenge. Machine-learning can contribute to a
better understanding of persons with multimorbidity (PwMs)
and how to design an effective framework of care and support
for them. We present a risk model of older PwMs that was
derived from the TILDA dataset, a longitudinal study of the
ageing Irish population. This model is based on a 26-nodes
Bayesian network that represents patients possibly having one
or more chronic conditions among diabetes, chronic obstructive
pulmonary disease and arthritis, through a joint probability
distribution of demographic, symptomatic and behavioral dimen-
sions. We describe our method, give an exploratory analysis of
the risk model, and assess its prediction accuracy in a cross-
validation experiment. Finally we discuss its use in supporting
management of care for PwMs, drawing on comments from
health practitioners on the model.

Index Terms—multimorbidity, Bayesian network, care man-
agement, risk model

I. INTRODUCTION

Advances in modern healthcare and medicine has lead to

an increase in longevity, but living older is also positively

correlated with managing multimorbidity, i.e., two or more

chronic conditions [1]. A cross-sectional study of 1.8M Scot-

tish patients found that 65% of patients older than 65 had

two chronic conditions or more (81.5% for patients older

than 85) [1]. The most frequent conditions include: chronic

obstructive pulmonary disease (COPD), diabetes, chronic heart

failure (CHF), pain, depression and anxiety [2]. However,

the medical literature stresses the lack of studies focused on

multimorbidity. One key finding is that the more physical

conditions a patient has, the more likely they are to suffer

from mental health problems as well. In addition, multimor-

bidity has a multiplicative effect on the negative outcomes

of the chronic diseases. Hence, addressing multimorbidity

has potential in crucially increasing the quality-of-life for

PwMs and decrease avoidable hospital admissions and re-

admissions, saving social and financial costs to society [3].

Finally, a review of randomized controlled trials involving

The research work is funded within ProACT by the H2020 program under
grant agreement No. 689996. We thank all ProACT partners for productive
discussions about this work.

multimorbidity showed that “interventions are likely to be

more effective if targeted at risk factors or specific functional

difficulties” [4].

Considering the importance of risk and the potential overlap

of risk factors and symptoms in a situation of multimorbidity,

we propose to build a risk model that encompasses several

dimensions, from demographics and clinical to social and

behavioural aspects. We aim at representing older persons

with several chronic diseases, including diabetes, COPD, CHF

and coronary heart disease (CHD). This model was developed

in the context of ProACT, a European funded project set

to design a home-based, digital integrated care system for

persons with multimorbidity (PwMs in the following). The

system is aimed at daily self-management of multimorbidity.

The project gathers researchers in behavioural change, in risk

analysis, in IoT as well as a network of informal carers, formal

carers and healthcare professionals to carry trial studies on

120 patients from Ireland, Belgium and Italy. The PwMs are

using wearable connected devices such as a blood-pressure and

activity tracker watch and use a care application that records

measurements, collects self-assessment reports and provides

other functionalities such as an education recommender (see

Doyle et al. for an overview of the project [5]). We present

the risk model that was developed to support the project,

and was learnt from the TILDA dataset, socio-economic and

health data collected in a longitudinal study of the older Irish

population. The risk model is a Bayesian network representing

the joint probabilities of variables from the demographic,

clinical and behavioural domain that were collected in TILDA.

A preliminary risk model based on TILDA was presented in

Deparis et al. 2018, that featured 10 variables [6]. The new

risk model presented features 26 variables and we explore the

clinical effects that can be seen in the model.

The paper is divided as follows: the next section presents

our methodology. In the 2nd section, we present the developed

risk model and review some of the observed dependences (e.g.,

“Arthritis (of any type) is a risk factor for abnormal heart

rhythm”) and how they concur with the clinical literature.

In the 3rd section we assess the prediction accuracy of the

model, comparing it to a naive uniform prediction, in a cross-

validation experiment using the Brier score. Finally, we discuss

the use and relevance of the model in the last section.978-1-7281-1867-3/19/$31.00 ©2019 IEEE
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II. METHODOLOGY

A. Dataset, data selection and processing

Prior to the availability of trials data, we identified the

TILDA (The Irish LongituDinal Study on Ageing) dataset,

wave 1, as representative of the trial population. It holds data

for 8504 individuals, representative of the Irish population

aged 50 and over, through a self-filled form, a computer-

assisted interview and a health assessment. It is available

at http://www.ucd.ie/issda/data/tilda/. We further identified a

subset of 26 variables that were related to multimorbid persons

suffering from the target conditions: COPD, CHD, CHF,

diabetes (see Table I). The time needed to run the learning

algorithm (see subsection II-B) constrained the number of

variables, and also lead us to choose for a categorical Bayesian

network (BN in the following). When variables had continuous

numeric values, they were discretized using categorical limits.

These limits were defined using clinical guidelines (e.g. Blood
pressure, BMI) or by binning the values to have groups
with a sufficient size (e.g., Age, Years smoking). The variable
Blood pressure was built out of diastolic BP and systolic BP,
using logical disjunctions. Assets indicates to which quintile
of the Gross Total Assets (GTA: sum value of main residence,

savings, financial assets, etc.) distribution the person belongs

to. Physical activity is measured through the IPAQ score,

a standardized assessment of the level of physical activity

[7]. Mental health problem refers to any clinically diagnosed

mental condition, with anxiety and depression being the most

largely represented conditions in the population. Social par-

ticipation indicates if the person takes part in “any groups

such as a sports or social group or club, a church connected

group, a self-help or charitable body”. Finally, Substance
abuse indicates if a doctor ever diagnosed the participant with
alcohol or substance abuse. When relevant, the number of

missing values is different from the TILDA codebook because

a legitimate skip of answer was considered as a False or No.

We assigned each variable to one of the following types:

Demographics describe basic information on the PwM like

age, gender and socio-economic status.

Behaviours pertain to activities undertaken by the PwM, or
describe aspects of their lifestyle, e.g. physical activity

level or smoking habit.

Conditions are clinically diagnosed diseases that the PwM
has to manage.

Vitals/Symptoms are vital readings, symptoms provided in
self-reports, or related to conditions.

These types were used for adding constraints in order to

speed the search for the structure of the model. They are also

outlined by different colours in the user interface (UI) and

graph for ease of reading, as iterations of the model were

discussed frequently with ProACT partners, as well as clinical

researchers (see V).

The mean age of the TILDA population is 63 years old,

and out of the 8504 participants, a total of 2287 have arthritis

and 3088 have hypertension. 641 have Diabetes, 337 have

COPD, and only 89 persons have CHF. We observed that there

is a frequent association between diabetes and hypertension.

Finally, 725 participants have mental health problems.

We checked that the missingness for BMI and Blood pres-
sure was not influenced by other variables of the model. To im-
pute the missing data prior to learning, we ran experiments to

compare k-nearest neighbours and random hot deck imputation

methods. The former was the most accurate, especially when

using k close to the squareroot of the dataset size. However, it
was also much slower, which lead us to use random hot-deck

imputation for this work.

B. Learning

To learn a structure from the processed data, we applied the

A∗ algorithm. It is a scoring method based on the Minimum
description length of the structure [8]. The TILDA dataset

contains more than 1500 variables [9], however, the size of our

risk model is constrained by the time needed to train it. For a

structure search using only 22 variables, it takes on average 65

min 47 seconds to compute a directed acyclic graph (DAG)

that represents the joint probability distribution of the data.

To accelerate the search, we used a constraint graph [10] that

restricts the search space. Using the types that we defined (see

Table I), we enforced the following constraints: Demographics

→ all other types, Behaviours → Conditions and Vitals, and

Conditions → Vitals.

III. EXPLORING THE RISK MODEL

Figure 1 represents the DAG resulting from learning using

the constraints on domains. A Bayesian network structure is

characterized by the Markov condition: any node is indepen-

dent of its non-descendants, given its parents. Having that in

mind, let us observe the learnt structure. All variables are

connected, except for the small isolated subgraph formed by

Assets and Social participation. Age and Gender are parents of
a significant proportion of nodes, across the different types. We

can easily distinguish some logical subgraphs which indicate

the relevancy of specific conditions to associated symptoms or

lifestyles. The subtree starting with Substance abuse, which
appears linked to Mental health problem (essentially depres-

sion and anxiety in TILDA), themselves linked to chronic pain

and problems in sleeping. The path going from Age to Receiv-
ing oxygen represents the increasing risk of requiring oxygen
assistance with the duration of a smoking habit, through the

increased risk of COPD. Interestingly, the subgraphs related to
a condition can intertwine, like the tree for Substance abuse,
and the one for Arthritis. They indicate that a prediction for
chronic pain will depend on the risk of arthritis, and/or mental

health. Finally, we see that Hypertension and Diabetes are both
parents of BMI and Number of daily medication.
In this subsection we give a non-exhaustive review of

clinical effects observed in the TILDA constrained model, and

how they corroborate or not clinical findings in the medical

literature. We give the marginal effect of the parents going

from the one state to the other (e.g. Gender observed being

male to being female) while all other variables are kept in

unobserved state.

Authorized licensed use limited to: Technological University Dublin. Downloaded on December 01,2021 at 10:58:00 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I: Variables in our Risk model. ADL stands for Activities of Daily Living, which include bathing, dressing, eating or

climbing stairs.

.

Index Variable Possible Values #missing Type Brier Skill Score
(BN vs naive)

0 Abnormal heart rhythm False, True - Condition 0.73
1 Age below 60, 60 to 70, above 70 12(0.14%) Demographics 0.13
2 Arthritis none, other, rheumatoid - Condition 0.45
3 Assets lvl1, lvl2, lvl3, lvl4, lvl5 4381 (51.52%) Demographics -
4 Physical activity (IPAQ) lvl0, lvl1, lvl2 81 (0.95%) Behaviour 0.03
5 Blood pressure normal, prehigh, high 2393 (28.14%) Vitals/Symptoms -
6 Body Mass Index (BMI) not obese, obese 2377 (27.95%) Vitals/Symptoms -
7 CHF False, True - Condition 0.96
8 COPD False, True - Condition 0.87
9 Diabetes False, True - Condition 0.75
10 Falls No, Yes 2 (0.02%) Vitals/Symptoms 0.36
11 Fear of falling No, Yes 3 (0.04%) Vitals/Symptoms 0.37
12 Gender F, M - Demographics 0.14
13 Hypertension False, True - Condition 0.26
14 Mental health problem False, True - Condition 0.68
15 Nb cigarettes per day 0, 1-9, 10-19, 20-39, 40+ - Behaviour 0.13
16 Pain False, True 4 (0.05%) Vitals/Symptoms 0.20
17 Pain medication No, Yes 1 (0.01%) Vitals/Symptoms 0.48
18 Receiving Oxygen False, True - Vitals/Symptoms 0.98
19 Restless sleep always, no, sometimes 6 (0.07%) Vitals/Symptoms 0.22
20 Smoker currently, never, stopped 1 (0.01%) Behaviour 0.07
21 Years smoking None, 1-9, 10-19, 20-29, 30-39, 40+ 51 (0.60%) Behaviour 0.13
22 Social participation No, Yes - Behaviour 0.01
23 Substance abuse False, True - Condition 0.94
24 Nb of daily medications lvl0 to lvl3 - Vitals/Symptoms 0.13
25 Nb of ADL impairments lvl0 to lvl5 - Vitals/Symptoms 0.82

Fig. 1: DAG structure of the Bayesian Network learnt with constraints.

• Age increases Rheumatoid arthritis (below 60 vs above
70: 5.2% to 12.5%). “The prevalence of RA was generally

greater in the following groups: women, Mexican Amer-

icans, respondents with less education, and respondents

who were 70 years of age and older.” [11]

• Rheumatoid arthritis (RA) increases pain (25.8% to

63.1%). “Preferences for improved health examined in

1,024 patients with RA: Pain has highest priority.” [12]

• Any arthritis increases abnormal heart rhythm (6.7% to

8.1%).

• Any arthritis increases ADL impairment, daily number of
medication, fear of falling and falls. “we found increased
odds of two or more falls for persons who had [. . . ]

arthritis” [13] “Fifty percent reported fear of falling, and

38% modified activities due to fear of falling.” [14]

• Arthritis and Fear of falling decrease Physical activity
“Independent risk factors for nonparticipation in physical

activity were fear of falling (odds ratio (OR) = 0.70, p =
.006)” [15] “Severity of arthritis is inversely associated

with frequency of activity participation.” [16]

• female gender increases the probability of mental health
problems (male vs female: 6.6% to 10.1%) “Women have
consistently higher prevalence rates of anxiety disorders”

[17]

• Substance abuse increases the probability of mental
health problems (8.1% to 35.6%). “Associations between

most substance use disorders and independent mood and

anxiety disorders were positive and significant.” [18]

• Mental health problems increase restless sleep and pain
“Significant positive associations were found between

chronic pain and individual 12-month mood and anxiety

disorders” [19]

A review of the clinical literature shows that the BN

structure that was learnt represents many effects observed

in clinical trials. Observing demographics information can

significantly impact the probability estimates of conditions and

symptoms. In addition, we observed that variables who have

several conditions as parents in the DAG have very different

risk distributions depending on the conjunction of states of the

parents. For instance, the probability for complaints about pain

Authorized licensed use limited to: Technological University Dublin. Downloaded on December 01,2021 at 10:58:00 UTC from IEEE Xplore.  Restrictions apply. 
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varies from 24.4% to 62.4% to 69.9% when respectively none,

rheumatoid arthritis, or a combination of rheumatoid arthritis

and mental health problems are present. These effects indicate

that the BN risk model is particularly relevant to assess risks

for PwMs.

IV. ACCURACY OF THE RISK MODEL

In the following, we evaluate the accuracy of the risk model.

We run an experiment to observe, for many outcome variables,

how well the BN predicts the real observed state of the

variable. To evaluate accuracy, we use a cross validation on

the TILDA dataset, using the Brier skill score as the measure

of accuracy. The Brier score [20] is widely used to evaluate

forecasts, in the meteorological domain for example. It is

defined as the mean squared error between predictions and

observations: Br = 1
N

∑N
n=1

∑L
k=1(pnk − onk)

2, where N is

the number of predicted instances and L the number of levels
the variable can take, pnk is the probability estimate of level k
for instance n, and onk is the boolean outcome of level k for
instance n. Br ranges from 0, for a perfect prediction model
to L, for a model that is always wrong. We compare our risk
model to the baseline of a naive predictor who always assigns

a uniform distribution for the predicted variable. To compare

the BN model to the baseline, we computed the Brier skill

score, relative to the naive baseline:

BSS(BN vs naive) = 1− BrBN

Brnaive

where BrBN is the Brier score of the BN and Brnaive
is the Brier score of the naive method. The Brier skill score

measures the improvement of the BN forecast, relative to the

naive forecast. It ranges from −∞ to 1 (perfect skill compared

to the reference). Negative values indicate that the BN is less

accurate than the naive method, and 0 would mean that there

is no improvement.

Variables with more than 1% of missing values (BMI,
Blood pressure, Assets) were excluded to keep the folds
size consistent. Each value is the average of a 10-fold cross

validation, where 10% of the test fold is used. The results

are presented in Table I, last column. The BN improves for

all predictions over a naive guess (no negative score), but the

improvements varies depending on the variable. It is highest

for variables with less levels, and we observe a substantial

improvement for many variables, including most Condition
variables. The BN prediction accuracy is particularly high for

Nb of ADL impairments, even though this variable has a high
number of levels. These results indicate that the BN model

is able to make good predictions even if it was learnt with

minimal domain knowledge (the constraint graph) and with

relatively little data given that it features 26 variables.

V. DISCUSSION

The work presented in this paper aims at building a BN risk

model of PwMs. It represents the joint probability distribution

of several variables describing a PwM, from demographic

factors to the chronic conditions they may suffer from, and

related symptoms or impairments. This model was learnt with

minimal domain knowledge, using a scoring structure search

algorithm on the TILDA data. Many probabilistic dependences

represented corroborate the clinical literature. However, the

high learning time lead us to limit the number of variables and

to use categorical variables to describe a patient. Improvements

could be gained by working more closely with healthcare

professionals to use domain knowledge. In the following we

discuss how the model can be used as part of a decision-

support tool for care management of PwMs, how the model

can be improved, and we present some feedback collected

from healthcare professionals.

Possible uses of the risk model: The model was built prior
to collecting trials data from the ProACT project. Future work

will aim at learning a risk model based both on the TILDA

data, and the trials data. A challenge lies in integrating these

heterogeneous sources of data: the TILDA data is static and

describes thousands of participants while the ProACT data is

historical, with a huge proportion of missing data and covers

120 PwMS. The initial model that was built is encouraging in

that it allows us to represent clinical effects, and the specific

risks associated with a given combination of risk factors.

In the context of ProACT, the risk model is integrated as a

backend that feeds other analytics: an education recommender

and a physical activity goal recommender. The first one

displays education tips based on the risk profile of the PwM.

The second analytics suggests a weekly physical activity goal,

in number of steps. Similar BN risk models representing PwM

could be used to help for other tasks, e.g., identifying profiles

of PwMs more prone to specific risks. Such a task would

focus on observing what groups of risk factors are linked to

a specific risk that requires attention from the care team, e.g.

anxiety, or pain management.

In order to explore the model and discuss it with partners,

we developed an interactive UI comprising a display of the

graph as well as a table to explore all marginal probabilities.

The marginals table is interactive: the user can select any

state of any variable as observed, which updates all marginal
probabilities in the table [6], [21].

The model represents probabilities for a given PwM, but

the model output can also be interpreted as a description

of a cohort of patients defined by the observations. For

example, if the observations chosen are “gender: female”, and
“diabetes: true”, the output of the model can be understood as
a description of this specific subpopulation, where probabilities

are a percentage of this population. A possible use of the

model could be in risk stratification, and help in designing

healthcare policies.

Feedback from health practitioners: The risk model and
the explorer UI were presented during a workshop at the

Trinity Biomedical Sciences Institute in Dublin, Ireland, in

order to get feedback and discuss the clinical effects and the

possible uses of the risk model. It was attended by 12 partic-

ipants, mainly nurses and physiotherapists. We discuss some

comments collected from the participants in the following.

The DAG shown on Figure 1 show that the variable Gross

Authorized licensed use limited to: Technological University Dublin. Downloaded on December 01,2021 at 10:58:00 UTC from IEEE Xplore.  Restrictions apply. 
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Total Assets is not a very useful information to predict other
variables in the model. Other variables should be identified

to appreciate the socio-economic status of patients, as rec-

ommended by the clinical professionals. They suggest to add

more precise variables, e.g. income or health policy access.

Income helps in understanding if the patient can provide for

their self-care or if they need to receive assistance. Ethnicity,

as it influences prevalence and symptoms for some conditions,

and level of education were also suggested.

Nurses suggested to add characteristics of the accommoda-

tion as a valuable context, e.g., ’includes stairs or not’ can

help in assessing ease in mobility, physical activity, and fear

of falling. The PwM living alone or not was considered a

valuable variable as well, to understand if the patient’s health

and well-being are supported within their home, or at least by

a close care network.

One of the main topics that emerged during the discussion

on a support tool representing a PwM was the importance of

contextualizing information. For instance, some participants

stressed that “seeing numbers” or levels is not enough and that

if a UI provides a patient profile, it would be “hugely helpful”

if a baseline was provided, to make sense of each reading for

a given patient. Providing context is an interesting challenge.

Our models and associated UI already process data in order

to provide meaningful categorical levels instead of numeric

continuous measurements only (for example, “obese” instead

of a specific value of the BMI). However, the participants

agreed that even more context would be very valuable. Partic-

ipants stated that “Context is queen” and that they prioritize

questions like “What is normal for the patient?” and “Is last

year better than this year?”. Research aimed at representing

PwMs should thus consider representing : a comparison of

the PwM to a standard baseline (of a person that would be

considered “normal”) or a comparison between the current

state of the PwM and a previous state considered as the status

quo for this PwM. For example, in assessing the values for

blood pressure or heart rate, the practitioners said they would

want to know “what is high or low for the patient” in addition

to the objective measurement and the self-report scores. These

ideas indicate an interesting direction for future research.

CONCLUSION

A risk model representing persons with multimorbidity

(PwMs) was built using the TILDA dataset, representative

of the older Irish population. The risk model is a categori-

cal Bayesian network containing 26 variables, that can take

between two and six possible levels. They were chosen to

represent PwMs across several dimensions including demo-

graphics, behaviours, symptoms, and the chronic conditions

that the person has to manage, including diabetes and COPD.

We presented the structure obtained running the A∗ algorithm
with a constraints graph on the types of variables to speed

the search. We reviewed clinical effects that are represented

in the model, and assessed its prediction accuracy relative to

a naive predictor. Results show that the BN model is efficient

for predicting the state of the variables but it can be improved

by adding socio-economic variables. We discuss the use of the

developed risk model as a back-end analytics for applications

designed for technology-enabled patient self-care.
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