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Abstract— Balancing the energy demand and generation 
using the latest load management technologies is considered as 
an immediate requirement for peak demand management and 
to improve the operation of electrical distribution networks. 
However, load management technologies depriving consumers 
of utilizing their personal resources could be perceived as a 
consumer right violation by many consumers, and thus, the 
success of the program is significantly dependent on consumer 
satisfaction. This paper probes consumer engagement plans 
through an algorithm to minimize the consumer inconvenience 
caused by the load management/ demand response (DR) 
program. Four different consumer engagement plans are 
proposed for consumers with different tolerance levels, starting 
from most tolerant to the least. Based on the engagement plans 
chosen, the reduction requests are generated by the algorithm. 
The second stage of the algorithm will schedule devices to meet 
the consumer demand and demand reduction request. The 
mixed integer linear programming (MILP-DR) algorithm, is 
implemented on a distribution network model. The uniqueness 
of the algorithm is the consumer tolerance (comfort) levels are 
given due consideration, based on a fairness of participation 
basis in the scheme. The is weight updating factor updates the 
tolerance of the consumer based on their participation (load 
reduction and duration of reduction). 

Keywords— Consumer Comfort, Demand response, demand 
side management, Integer linear programming, Load 
management 

NOMENCLATURE 

m  Number of devices, ∈ 	 , , , ……  
n Number of consumers, ∈ 	 , , , ……  
A Array of consumer device demand 
D Device status in household ∈ 	 ,  
B Array of allowed devices  
R Array of denied devices 
P Active Power ∝ Consumer tolerance 

 Device inconvenience ∆  Load reduction 
 Peak demand 
 Total load 

 

I. INTRODUCTION  

A. Motivation and Background 

In recent years, the electrical power distribution sector has 
been focused on the prospects of optimizing their distribution 
to micromanage the load curve, which would enable them to 
reap benefits from the energy markets. The remarkable 
development of information and communication technologies 
has enabled the opportunity for managing demand side 
resources to benefit its participants. The technique of 
micromanaging the load curve by manipulating the demand 
side resources with active participation from consumers is 
termed as demand response (DR). Demand response is a series 
of activities that respond to the peak demand or electricity 

price by regulating or restricting the operation of consumer 
equipment resulting in benefit for all parties involved. 
However, such a DR program has to contend with different 
passive quantities in the system increasing the complexity of 
such programs. Along with the different ranges of devices 
involved, the challenges faced by DR programs are an 
ongoing concern [1]. One such challenge, consumer comfort 
violation, has been a major bottleneck for the success of any 
DR programs [2]. This is because the deviation of the end 
users normal consumption will lead to consumer discomfort 
or inconvenience. Generally, incentives for bearing this 
inconvenience are not attractive and hence, the load 
management programs are not appreciated in the consumer 
market. This, when considered as an EU opportunity to reduce 
peak demand by 60GW (approximately 10%), introduces a 
moral dilemma to investors and network operators whether 
they should invest in these kinds of load management 
techniques. 

B. Relevant Literature 

Naeem et.al [1] investigate the dependencies of DR 
programs on social and economic factors. In [3], Hassan et. al, 
indicate a relationship with consumer inconvenience and DR 
and how the inconvenience to consumers increases with the 
magnitude of load increases. This influences the participation 
of consumers in a DR program as consumer inconvenience 
can be considered as the direct measure of consumer comfort. 
Further, the importance of consumer awareness and clarity of 
information to consumers are discussed in [4]. The same paper 
proposes a consumer engagement DR plan to control a central 
heating thermostat. Also, the European Commission [5], 
contends that consumers should be  given the right incentives 
to encourage more active engagement and contribution to 
system performance and stability. 

In literature, various DR models are proposed [6][7][8], 
with DR programs mainly classified into two categories: 
Price-based methods and Incentive-based methods. However, 
based on the cost incurred, technology utilised, the 
implementation level, etc., DR can again be classified into 
various categories [9]. Furthermore, DR has been proposed as 
a solution for not only the peak management problem, but also 
as a solution for maximizing PV consumption, optimizing 
battery storage, exploiting the electric vehicle flexibility, 
manage reliability issues, manage emission and much more 
[9] [10] [11]. In spite of these added benefits, the main 
objective of a DR program has always been load curve 
smoothing. The recent trend technologies used for 
implementing DR in the literature suggest an increased 
interest in applying machine learning to DR [12][13]. Other 
general techniques include, model predictive control [14], 
heuristic optimization based [15], agent-based modelling [16], 
mixed integer programming [17] etc. However, the choice of 
tool usually depends on the objective/application of DR and is 
chosen by the programmer based on the specific requirements 
and intuition. In the presented work a mixed integer linear 
programming (MILP) based technique is utilized based on the 
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literature reports on similar problems and its ease of 
modelling. 

C. Contributions 

This paper investigates the idea of introducing a consumer 
tolerance based consumer engagement plan to minimize the 
consumer inconvenience associated with a DR program.  The 
MILP-DR algorithm responds to the change in consumer 
tolerance while maintaining fairness between different 
consumers. The algorithm is able to reschedule the load rather 
than only curtailing it, which further enhances consumer 
acceptances of DR programs. The following section discusses 
the engagement plans and MILP-DR modelling. 

II. METHODOLOGY 

The DR program presented here is executed at two levels: 
aggregator level and consumer level. At aggregator level, the 
DR program is initiated with the load reduction request from 
the utility, which is subsequently divided among the 
participating consumers based on their (current) tolerance 
value. This forms individual house demand reduction 
requests. The second stage of the program is executed at the 
consumer level which schedules the different domestic 
appliances. The schedule is based on the individual 
device/appliance inconvenience values dictated by the 
consumer. The objective is to minimize the overall 
inconvenience in order to achieve the required load reduction. 

In order to distribute the demand reduction request in the 
first stage, a consumer engagement plan is initiated and 
presented based on tolerance. 

A. Consumer engagement plans 

The proposed techniques require the consumer to be 
facilitated with consumer engagement plans at different levels 
so as to recruit the consumer to take part in the energy 
management opportunities provided by DR. The engagement 
plan can be devised considering various factors, however, to 
simplify the concept here, only one major factor is considered: 
consumer inconvenience. When considered as a factor, 
consumer inconvenience can directly co-relate with the 
incentive offering and can be thus utilized to formulate the 
incentive program as well (not considered in the scope of this 
paper). Yet again, the engagement of a domestic consumer in 
the load reduction plans are not very well motivated by the 
monetary benefits offered by it, rather, from literature, it has 
been observed that a persistent motivation for the DR schema 
can be reaped by correlating the benefits to non-tangible gains 
such as environmental factors. From these understandings, 
four type of consumers are identified: 

Super Green Savvy: users that tolerate a higher amount of 
inconvenience as they are aware of the social benefits of DR 
program and are also highly motivated. . 

Green Savvy: users are motivated to join the program due 
to its benefits but are only moderately tolerant of load change. 

Green Aware: users who are willing to participate with the 
DR program but, do not tolerate high inconvenience and 
obviously are afforded a lower incentive. 

Reluctant: users who are sceptical and are not willing to 
participate in the program and thus will not contribute to the 
load reduction desired by the grid operator. 

For each type of consumers, a tolerance factor is defined 
given by ( 	 	(0,1)). The value of  can be anywhere from 0 
to 1 being a fraction. The tolerance factor has an inverse 
relation with the consumer inconvenience and direct relation 
to the amount of load reduction possible. The value of 

tolerance will increase/decrease with the selection of a 
consumer in an interval depending on the activity in the 
previous intervals. This ensures that consumers having high 
tolerance will not be chosen repeatedly to manage load 
reduction. This tolerance change associated with the 
consumer, will be calculated in two parts. The first part 
depends on the time period for which the operation of a device 
is restricted. The second part accounts for the kilowatt 
reduction imposed. The first part is the major component in 
updating the weight ( ), but, the second part would have 
higher influence if incentives are calculated. 

B. Mixed integer programming for DR 

The objective of a DR program is to produce a control signal 
to restrict the use of electrical loads to obtain the required 
reduction/increase in the total electric demand. This objective 
is constrained by a set of operation and security conditions 
and hence is to be modelled in an elaborate manner. The 
implementation will be executed in CVX using a MOSEK 
solver in a MATLAB environment. 
Now, let there be ‘n’ number of consumers. So the total 
power consumed at a given time‘t’ is given by ( ) = ( )	 (1)
Where, ( ) is the power consumed by the consumer. The 
time dependency factor is dropped from here on as it will not 
impact the analysis once the time interval is defined. Further, 
each consumer may have ‘m’ number of devices in their 
dwelling. Now the total power consumed is given by at a 
given time ‘t’ is given by =  (2) 

Where, 	 ∈ 	 1, 2, 3, …… , ∈ 	 1, 2, 3, ……  and   is 
the power consumed by the ith device of the jth consumer. The 
domestic loads are categorized broadly as dispatchable and 
non dispatchable loads. Dispatchable loads are those that can 
be denied operation and are also known as non-critical loads. 
Non-dispatchable loads, however, are those that cannot be 
regulated or denied operation when demanded by the 
consumer and are also known as critical/emergency loads. 
The total power demand of the house at a given time is 
contributed by the non-dispatchable and dispatchable 
devices. So the total power consumed can be re-written as, = + 	  (3) 

is an array of power consumed by the individual non-

dispatchable devices and   represents the array of power 
consumed by the individual dispatchable devices.  
At an instance, the total demand status can be given by a 
demand status array which represents the status of the 
devices. 

A = AAA……A  (4) 
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= 					… …  (5)

Where, ∈ 	 0, 1 , which is the status of the devices 'D' at 
the house and indicate ‘ON’ if it is ‘1’ and ‘OFF’ if it is ‘0’. 
The array A gives the status of all devices in the house and 
hence the critical devices will have a status 1 when demanded 
and would not be changed by the DR management algorithm. 
In effect,  gives the status of the ith device of the jth 
consumer. Now, the total power consumed equation can be 
re-written as =	 + 	  (6) 

The demand status array,  is time dependent and changes 
with time, thus providing the operator the requirement of a 
consumer at any given time.  To perform DR or energy 
management, the grid operator issues a load reduction request 
or may define a peak load ( ). In either case, the DR 
management scheme is supposed to perform load reduction, 
which is given by ∆ = 	 −	  (7)

The first stage of the DR scheme is to distribute this load 
reduction to different consumers throughout the grid based on 
the consumer tolerance factor ∝  or engagement plan. 
Consequently, the objective is to ∝ ∆  (8) 

Where, ∆  is the individual power reduction demanded from 
the consumers. The reduction should not be excessively 
burdensome for a consumer, hence, a maximum possible 
reduction constraint of 50% is imposed to individual 
consumers. Other constraints the objective is subject to are, ∆ = 	 −	  (9) ∆ 	≤ 0.5	  (10) 

∆ 	 ≤ 	 ∆  (11) 

0 ≤∝ ≤ 1 (12) 

This forms the first stage of optimization where the load 
reduction required is distributed to the consumers based on 
their tolerance limit. However, while this objective is 
achieved in subsequent time intervals the algorithm needs to 
account for the fairness in how consumers for DR 
management are selected, and hence requires a consideration 
of the following factor,  

• The same consumer should not be given the burden 
of reducing demand in every time. 

• There should be fairness between consumers 
choosing same engagement plans for overall 
participation. 

Initially, the tolerance associated with each consumer is by 
default set to the same value for a consumer choosing a 
particular consumer engagement plan. However, in any 
interval, if a particular consumer is chosen for load reduction, 
the tolerance value increases for the next iteration. This 
ensures that the same consumer, having the lowest tolerance 
value, will not be given the burden to reduce the demand in 

the subsequent intervals or the amount of reduction requested 
will at least be reduced. This increase in the weighting of 
tolerance will be influenced by two factors. One, the time for 
which the consumer is imposed restriction, and two, the 
amount of power reduction imposed. Further, the maximum 
reduction per consumer is also restricted to 50% of total 
demand to ensure that a particular consumer will not be 
penalized for having lower value of tolerance factor ( ). 
Once this stage is completed, the second stage of optimization 
with the objective of deciding the devices that need to alter 
its state of operation is to be identified. This total reduction 
contribution from each house was proposed by the previous 
stage. The output of the second stage is to produce a device 
operation status array B,	which provides the information of a 
list of devices operating after DR engagement. 

B = ……  (13) 

= 					… …  (14)

Where again, ∈ 	 0, 1 ,	which is the status of the devices 
'D' at the house and indicate ‘ON’ if it is ‘1’ and ‘OFF’ if it is 
‘0’. In effect, gives the status of ith device of jth consumer. The 
devices denied operation can be given by = − 	∀		 	 ∈ , 	 ∈  (15) 

The amount of load reduction achieved can be given by, ∆P = 	  (16) 

Corresponding to the consumer tolerance, there is an 
inconvenience associated with each device. The 
inconvenience is different if a consumer is being denied the 
use of washing machine to being denied the use of television. 
Thus, different devices will have a different inconvenience 
factor and given by,  , which is the inconvenience 
associated with altering the operation of ith device of jth 
consumer. This value forms a priority list of devices in a 
domestic environment. Further, the consumer will always 
have an option to set different priorities for the devices in 
their household.  The objective function is to 

 (15) 

Subject to constraints, ∆P ≤ ,
,  (16) 

0 ≤ ≤ 1 (17) 

∆ ≤ ∆  (18) 

The sum of load reduction by individual houses will be equal 
to or less than the total reduction required by the operator. 
Cases may occur where total reduction is not achieved due to 
a limitation imposed by constraints. Under these 
circumstances the algorithm is set to scale down the reduction 
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request by 20% and proceed to solve. The process continues 
until an optimal solution is obtained. 

III. RESULTS AND DISCUSSION 

To perform an alteration in consumer demand, an estimate 
of consumer demand is required ahead of time. In this 
research, a domestic device power consumption dataset for a 
single house is utilized as a demand array. The dataset 
contains individual power consumption of different devices 
(12 devices) in the domestic environment with a resolution of 
1sec. An average load consumption data model was derived 
from the measured data to provide the demand for every 15 
minutes. For each house, the same data set is used to constitute 
74 domestic houses, which serves the same load profile for 
each individual consumer for the day. This provides an 
accurate view of the performance of the algorithm towards the 
consumer inconvenience as the only varying factor.  

To begin with, the DR program is expecting a reduction 
request from the operator at a given time. Random reduction 
requests were generated for load reduction. The stage one 
(aggregator level) of the program, dictates the individual 
reduction demanded from each consumer based on the 
tolerance value. The tolerance level of the consumers are 
initiated as per their engagement plans and later updated using 
the weight update algorithm. The distribution of consumers 
into the four engagement plans and their corresponding 
tolerance level is provided in TABLE I. The section also 
calculates the total demand in the network and checks the 
feasibility of the demand reduction request. In the presented 
case, if the overall demand reduction request is more than 40% 
the algorithm fails to find an optimal solution and thus will 
return an infeasibility error.  This occurs due to the maximum 
limit bounding of the algorithm which ensures a feasible 
solution without overburdening the consumers. This limit is 
influenced by the total load, the number of consumers, 
demand of each consumer, the engagement plan, and the 
amount of dispatchable load. Hence, this limit is variable 
depending on the scenario 

TABLE I. DISTRIBUTION OF CONSUMERS BASED ON 

ENGAGEMENT PLANS 

Consumer 
Engagement 
Plans 

Tolerance (α) Percentage of 
Consumers 

Super Green 
Savvy [0.2 – 0.5) 30% 

Green Savvy [0.5 – 0.7) 27% 
Green aware [0.7 – 1) 35% 
Reluctant 1 8% 

 

The input to the second part of  DR optimization is the load 
reduction request for individual consumers based on which 
device operation schedule is generated. This optimizes the 
device operation in the house based on the inconvenience 
value defined for each device. The inconvenience value can 
be defined by consumers. However, in the presented research, 
this value is assumed based on a general idea about the device 
as well as allowing enough breathing space for the algorithm. 
Certain devices are categorized as non-dispatchable devices 
and hence would not be altered during the optimization. The 
list of devices considered in a domestic environment are given 
in TABLE II along with their corresponding inconvenience 
factor and category. The list is in accordance with the 
domestic load data set used in the first part of the algorithm. 
In the presented scenario, the assumed inconvenience value is 

considered common for all 74 consumers. The inconvenience 
factor can always be input and altered by the user. A consumer 
who has a larger load to control with lower inconvenience 
factor may automatically qualify to be in the highest tolerance 
plan. From TABLE II, the inconvenience factor is 1 (the 
highest inconvenience) for non-dispatchable devices and 
different values (0, 1] for dispatchable devices. The 
inconvenience value directly represents the inconvenience 
faced by the consumer if the device is not allowed to operate 
during its demand. 

 

TABLE II. DEVICE LIST AND THEIR INCONVENIENCE 

Device Inconvenience (β) Category
1 Cooker 1 

N
on

 
D

is
pa

tc
ha

bl
e 

2 Toaster 1 
3 Television 1 
4 Socket (Wi-fi) 1 
5 Microwave 1 
6 Laptop 

Computer 0.45 

D
is

pa
tc

ha
bl

e 

7 Electric 
Heating 
Element

0.1 

8 Oven 0.45 
9 Fan 0.2 
10 Fridge 0.4 
11 Socket 

(Mobile) 0.35 

12 Washing 
Machine

0.2 
 

The simulation is performed for every 15 minutes forming 
96 intervals representing a 24-hour period (one day). The 
demand for each period is updated using the previous allowed 
load and the new requirement. The tolerance of each consumer 
is updated in each interval based on their participation.  

 The major focus is set forth for the algorithm to 
capably manage consumer load reduction between consumers 
while causing minimal impact to consumer comfort. Hence, if 
the demanded load reduction is not achievable the algorithm 
steps the demand reduction down to a lower value and keeps 
on doing so until a feasible solution is obtained. Further, if a 
device is denied operation, it is recorded and subsequently 
requested to operate by the algorithm during the off-peak time 
which forms the time shifting of device operation. This 
ensures the consumer requirements are met during the day. 
However, certain devices such as the heater and fridge are not 
brought back for total intervals for which it was denied 
operation as they are able to retain its stable operation for 2-3 
intervals without compromising its performance. This in 
effect reduces the load consumption while improving energy 
efficiency. The DR is performed only during the peak period 
which is isolated to be Morning (7:30AM to 10:30AM), mid-
day (12:30PM to 02:30PM) and evening (7PM to 10:30PM). 
These timings have been selected based on intuition and can 
be altered whenever required, but they represent peak demand 
periods with respect to a general demand profile under 
consideration.  

The aggregated load and DR load is presented in the 
TABLE III and is plotted in Fig 1. As stated before, all 74 
consumers are assigned the same load demand which affords 
a better understanding of the sensitivity of the DR program to 
the consumer engagement plans. Figure 1 illustrates that 
during the off-peak intervals, the total load is increased when 
compared to the actual demand, depicting the load rebound 
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which makes sure that all the necessary loads of the consumer 
are time-shifted and not deprived. From TABLE III, it can be 
observed that the total load reduction is less than the load 
reduction achieved by DR without considering consumer 
inconvenience. However, as observed in various pilot studies 
in the literature, the success of DR greatly depends on the 
consumer acceptance which has a direct correlation to the load 
rejection. The presented algorithm not only considers the load 
reduction at peak times but also accounts for consumer 
inconvenience. The necessary loads which are turned off 
during the peak are also returned which enhances the 
consumer conviction towards the program. 

Fig 1.  Total Load and DR load change for 74 consumer aggregate

Four representative consumers engaged in four different 
consumer engagement plans are chosen as an example. Figure 
2 represents a Super Green Savvy consumer that is willing to 
endeavour in a high amount of load reduction if demanded, 
and hence starts with a very low value of tolerance. Essentially 
the lowest value α can have is 0. However, considering a 
practical point of view, this works assumes the lowest value 
possible to be 0.2. This was also supported by testing of the 
algorithm with various value and 0.2 provided a better 
convergence rate. The value of α for consumer in Fig 1. who 
chose the Super Green Savvy engagement plan increases for 
the next interval when they participate in the load reduction in 
the particular interval. When the consumer is not participating 
in the reduction the value of α decreases in fixed steps for each 
iteration until it reaches the default value set by the 
engagement plan. Compared to the consumer considered in 
Fig 2. , the consumer in Fig 3.  who has chosen a  Green Savvy 
engagement plan has a higher tolerance value and participates 
less in load reduction. Similarly, the consumer (in Fig 4.  using 
the  Green aware engagement plan participates less than Green 
Savvy consumer and facilitates a lesser load reduction. Figure 
5 presents the amount of load management achieved for 
consumer participating in each engagement plan. The 
magnitude of reduction is based on the engagement plan 
which is proportional to the tolerance (consumer comfort). 
The load rebound after the peak period is also shown in the 
Fig 5. which ensure that most of the necessary loads of a 
consumer will be fulfilled during the off-peak period if 
deprived by DR during peak period. 

Form these figures the capability of the algorithm to 
choose consumers based on their engagement plan can be 
observed. The MILP-DR can thus introduce fairness between 
consumers engaged with different engagement plans and also 
establish fairness to consumers by not choosing consumers 
with low value of tolerance repeatedly. The algorithm can be 
further modified in a similar way to include fairness between 
different consumer devices. 

From TABLE III, it can be observed that the total 
reduction considered in this scenario was only 7%. However, 
during the operation, the algorithm was able to reduce up to 
40% of total load (instantaneous) in certain intervals. As 
discussed earlier, this value depends greatly on a number of 
factors. Further, the table also compares the reduction 
achievable with MILP-DR with and without considering 
consumer inconvenience. The reduction achieved while 
considering consumer inconvenience is lower, yet the 
algorithm can attract more consumers and which would 
increase consumer participation leading to higher reduction 
possibilities.  

Fig 2.  MILP-DR for Super Green savvy engagement plans 

Fig 3.  MILP-DR for Green savvy engagement plans 

 

Fig 4.  MILP-DR for Green Aware engagement plan 
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Fig 5.  Load reduction/rebound for consumers with 3 engagement 
plans 

TABLE III. TOTAL LOAD AND DR LOAD WITH AND WITHOUT 

MILP-DR 

Method/Load MILP-DR with 
consumer 
tolerance factor 

MILP-DR without 
consumer tolerance 
factor 

Tot. load 
demand 

5090kWh 5090 kWh

Tot. Load 
Allowed using DR 

4871 kWh 4797 kWh

Load Reduction 
during DR 

356 kWh 431 kWh 

Load reduction 
after time shifting 
Loads 

219 kWh 293 kWh 

 

IV. CONCLUSION 

The presented work investigates the impact of consumer 
tolerance towards the performance of a DR program. Four 
tolerance-based consumer engagement plans are defined, 
according to which the load reduction request is distributed. 
The two stage algorithm was effectively able to regulate the 
load reduction distribution without overburdening the 
consumers to achieve it. It was also able to account for the 
demand redistribution to off-peak periods to fulfil consumer 
demand. Compared to MILP-DR with consumer tolerance 
minimization, the normal load reduction algorithm was able 
to reduce a higher amount of load, which directly showcases 
the capability of the proposed algorithm when considering 
consumer inconvenience over the economic benefits of load 
reduction alone. The proposed algorithm, in conjunction with 
fast and reliable communication channel, can work in tandem 
with a home automation system, thereby increasing the energy 
efficiency within a domestic environment. 
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