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Use of Matrix-Pencil Method for Efficient
Islanding Detection in Static DG and a
Parallel Comparison With DWT Method

Sanjay Agrawal , Sandipan Patra , Student Member, IEEE,
Soumya R. Mohanty , Senior Member, IEEE, Vineeta Agarwal , Senior Member, IEEE,

and Malabika Basu , Member, IEEE

Abstract—Islanding or nonislanding events in grid-
connected distributed generation bring along a typical dis-
tinguishable transient signature in its frequency profile.
This demarcation leads to the development of a new island-
ing protection approach, which is based on the estimation
of frequency waveform parameter (transient’s frequency) by
Matrix pencil (MP) method. To demonstrate the efficacy of
the proposed MP method, four critical scenarios are con-
sidered in this paper for covering all possible disturbance
events. These events are also compared along with a dis-
crete wavelet transform (DWT) based islanding detection
method in simulations as well as in RT-LAB-based real-time
environment. It is noteworthy to mention that the proposed
MP method has been found to have a positive edge over the
DWT-based method in terms of robustness and chances of
misidentification.

Index Terms—Discrete wavelet transform (DWT), dis-
tributed generation, islanding, Matrix pencil (MP), tran-
sient’s frequency.

I. INTRODUCTION

I SLANDING occurs when a part of the system is discon-
nected from the grid and remains energized by the distributed

generator (DG) [1], [2]. According to the IEEE Std. 1547 [2], the
unintentional island should be exposed and isolated within two
seconds for small voltage and frequency signal variation. Gener-
ally, frequency and voltage of point of common coupling (PCC)
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waveform cross the prespecified limit when power mismatch is
large and can be easily detected by under/over frequency and
voltage relay within the specified period. Islanding detection be-
comes difficult when power mismatch is small, and frequency
and voltage of PCC remain within a specified limit. Several
islanding detection techniques have been proposed in the liter-
ature. These methods are broadly classified into two categories:
Centralized (remote) method and local method [3].

Centralized method is very efficient in island detection, but its
implementation cost is very high and requires regular updates
about the change in the system configuration. Thus, for small-
scale distributed generation local (active and passive) method is
more preferred than the central method. Both active and passive
methods have their own advantages and disadvantages. The ef-
ficacy of islanding detection scheme is measured regarding the
smaller nondetection zone (NDZ) and faster time of detection.
NDZ in P–Q plane indicates the range of active and reactive
power mismatch between DG and local load for which island-
ing remains undetected [4].

Active methods [5]–[8] have relatively smaller NDZ as com-
pared to passive techniques; but it has some limitations like the
deterioration of power quality during the normal power system
operation and can also result in the false detection when in-
jected external disturbance is nullified in the multi-DG system
[9]–[13]. Passive islanding detection techniques, on the other
hand, do not have any negative impact on grid power quality, but
depends on the measurement of local system parameters at the
PCC. It is often not easy to determine the significant parameter
and its threshold value to detect islanding event because many
other nonislanding disturbances have transients that resemble
very closely to an islanding event. Thus, thresholds on the mea-
sured parameters (for example, frequency or voltage) are set
sufficiently large enough to avoid maloperation, which in turn
results in the formation of significant NDZ. Under voltage/over
voltage, under/over frequency [14], [15], the rate of change of
frequency [16], phase jump detection [17], the rate of change
of phase angle difference [18], and voltage harmonic detection
[19], [20] are the most popular passive islanding techniques.
These methods exhibit large NDZ. To reduce the NDZ, power
system researchers devised signal processing based on passive
islanding techniques [21]. It extracts a hidden characteristic of
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the measured signal, which plays an important role in islanding
detection. Fourier transform, DWT [21]–[26], S-transform [27],
empirical mode decomposition [28], time–time transform [29],
total least square estimation of the signal parameter by rotational
invariance techniques [30], Tufts–Kumaresan signal estimation
method [31], and frequency oscillation estimation based island-
ing detection [32] are several useful signal processing tools ap-
plied for the islanding detection. Out of these signal-processing
algorithms, discrete wavelet transform (DWT) is a strong can-
didate for the implementation of the islanding detection scheme
[26], [33]–[36]. In this paper, a proposed Matrix pencil (MP)
method based signal processing technique is compared with the
standard DWT signal processing technique.

The proposed technique is based on the estimation of the tran-
sient frequency of the disturbed frequency waveform at the PCC.
The disturbance effect on frequency waveform for nonisland-
ing event and islanding event are different. This demarcation
happens due to the fact that synchronizing power becomes zero
in case of islanding event. The MP method is used for esti-
mation of this transient’s frequency because it works directly
on the input data matrix and calculates the poles in a single
process by solving generalized eigen value equations. These
features make it computationally efficient for the estimation of
frequency. Although the computational burden is a bit higher
than that of DWT-based islanding, the efficacy of the proposed
scheme is superior when the grid is polluted with higher-order
harmonics. As a matter of fact, the accuracy and elegance of
the proposed MP method can make a compromise with slight
more computational time, keeping in mind the criteria of IEEE
1547 in order to detect the islanding phenomena within two sec-
onds. The following Sections II, III, and IV discuss the theory
and application of these two techniques, and performances are
compared in Sections V and VI where four different critical sce-
narios are considered to evaluate the algorithm more critically
for NDZ, quality factor (QF) of the load, effect of nonlinear
load current harmonics, detection time, and possible failure or
misidentification.

II. PROPOSED MP METHOD AND ITS APPLICATION

MP method is a class of mathematical approach to estimate
signal parameters of a signal consisting of multiple damped
sinusoids. In the context of identification of islanding events,
the estimation of real-time frequency components is of interest,
and a formulation of MP approach is presented in the following.

In general, the waveform to be analyzed from an islanding
event can be expressed as

y(n) =
M∑

k=1

ake(−dk +j2πfk )nTs + η(n) n = 0, 1, . . . ., N−1

(1)
where ak , fk , and dk are the complex amplitude, transient fre-
quency, and damping factor of the kth sinusoidal component; M
represents the number of the sinusoids present in the signal, η
accounts for the noise in the signal (assumed to be white), N is
the total number of samples, and Ts is sampling time.

The estimation of transient frequencies fk related to the esti-
mation of the poles −dk + j2πfk of the signal, can be obtained
by different approaches and is a nontrivial matter. MP method
is followed to estimate fk as outlined briefly by the following
derivation.

MP method uses certain properties of the underlying signal.
Let us define.

Data matrix of order (N − L)x(L + 1) is directly obtained
from the data sequence y(n) as

Y =

⎛

⎜⎜⎜⎜⎜⎝

y(0) y(1) . . . y(L)

y(1) y(2) . . . y(L + 1)
...

...
. . .

...

y(N − L − 1) y(N) · · · y(N − 1)

⎞

⎟⎟⎟⎟⎟⎠
(2)

where, L is called the pencil parameter. Some results from [37]
and [38] are used for transient frequency estimation in this paper.
To use some results from Theorem 2.1 in [37] two new matrices
are formed. These two matrices Y1 and Y2 are derived from Y
by deleting its last and first row, respectively.

According to Cramer–Rao bound, L is chosen between N/3
and 2N/3 for the optimum estimator and efficient data filtering
[38]–[41].

In this paper, prior to applying the MP approach, singular
value decomposition (SVD) is proposed to be performed on the
matrix Y for denoising

Y = U
∑

V H and UH Y V =
∑

. (3)

Here, (.)H is a hermitian operator, U = Y Y H and V = Y H Y
are the unitary matrices, and main diagonal elements of

∑

represent the individual singular value σi of the matrix Y. These
eigenvalues are arranged in descending order σ1 ≥ σ2 ≥ · · · ≥
σi ≥ · · · ≥ σmin. If the data is free from noise, M = max(i) for
which σi > 0.

If noise is also present in the signal, the singular values smaller
than a certain value (α) are considered as noise and are filtered
out by choosing a signal component number (M) such that M =
max(i) for which σi

σm a x
> α.

The value of α is chosen depending on the application. In this
paper, since high-frequency noises are to be eliminated, a low
value (e.g., 10–3) is to be chosen.

After getting the value of M, M-dominant singular value vec-
tor of matrix V is selected to form new signal matrices Vs and
the rest M + 1 to L are discarded.∑

s is obtained from the M columns of
∑

corresponding to
the M-dominant singular values, Y1 and Y2 for signal part only
become

Y1 = Us

∑

s

V H
1s (4)

Y2 = Us

∑

s

V H
2s . (5)

Here, matrices V1s and V2s are formed from Vs by deleting
its last and first rows, respectively. The diagonal matrix

∑
s is

formed from M-dominant values of
∑

after doing SVD.
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Fig. 1. Behaviour of frequency at PCC.

Eigen valuesλk are the signal poles and can be found by using
the concept of Moore–Penrose or pseudoinverse as follows:

(
Y H

1 Y1
)−1

Y2 = λIM ×M . (6)

Frequencyfk and damping coefficients dk of the signal com-
ponents are estimated by using (10) and (11), respectively

fk =
∠λk

2π
(7)

dk = Re (log(λk )). (8)

Any kind of disturbances manifest transients in the system
and the nature of these transients depend upon the type of dis-
turbances. Frequency pattern at PCC is different for islanding
and nonislanding events. The frequency waveform at PCC is
shown in Fig. 1. For islanding events, the disturbance transients
in the frequency waveform is growing or decaying for positive
and negative power mismatch, respectively [31], [37] whereas
for nonislanding events, the disturbance transient is damped
sinusoid. For nonislanding events, there is participation from
the grid toward damping these oscillations by sharing of active
and/or reactive power appropriately. In this paper, this unique
feature has been utilized to develop a new anti-islanding protec-
tion scheme based on the estimation of disturbance “transient’s
frequency.”

As power mismatch increases, steepness of the frequency de-
viation curve also increases and this results in less number of
cycles/ revolution within the particular time. Thus, the distur-
bance “transient’s frequency” for islanding event increases as
power mismatch decreases, and it reaches up to its maximum
value (Th2) when power mismatch is zero, and it will depend
on the system configuration.

This disturbance “transient’s frequency” for the nonislanding
event (load switching, capacitor bank switching, distribution
line faults, etc.) is much higher than Th2. The threshold value
(Th2) of disturbance transient’s frequency is determined by per-
forming a series of simulations with different possible case study
scenario. Thus, it has been determined that islanding event oc-
curs when the disturbance “transient’s frequency” lies between
zero to Th2.

Fig. 2. Flow chart of proposed islanding detection with MP method.

A flowchart of the proposed algorithm is shown in Fig. 2.
In this case, the frequency of the PCC voltage signal is
measured using phase-locked loop (PLL) and sampled with
a sampling rate of 10 kHz. Then the difference between the
measured and nominal frequency (50 Hz) is compared with a
threshold (Th1) to discriminate whether the system is in normal
operating condition or not. If the difference between the mea-
sured and nominal frequency crosses the threshold limit (Th1);
it means the system is subjected to noticeable disturbance, and
subsequently, it initiates data buffering. When buffered data
samples are equal to 1000 samples, it goes to the transient fre-
quency estimation block. In the transient frequency estimation
block, MP function is embedded into MATLAB Simulink to
estimate the transient frequency. Estimated transient frequency
is compared with a threshold (Th2) in order to discriminate the
islanding and nonislanding events. When estimated transient
frequency lies between zero and Th2 (indicative of islanding
event), the islanding detection block disables the PWM signals
to stop further DG generation. If transient frequency lies out-
side the upper and Th2 (indicating nonislanding event); PWM
signal remains enabled and DG generation continues until fur-
ther detection of disturbances. The algorithm continues to check
the frequency difference to distinguish between islanding and
nonislanding events.

III. DWT-BASED ISLANDING DETECTION METHOD

DWT has the ability to analyze signals in both time and fre-
quency domains, simultaneously. DWT decomposes the signal
into different frequency bands. This helps in reducing the com-
putational burden, extracting the features and eliminating the
noise. The energy of the DWT coefficients depends upon the

Authorized licensed use limited to: Technological University Dublin. Downloaded on November 30,2021 at 09:46:33 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Flow chart of DWT-based islanding detection method.

number of frequency components and their strength that lies
within the frequency band of DWT coefficients. DWT-based is-
landing detection employs the concept of change in frequency
components from grid connected to islanded mode. According
to that change, it sets up thresholds to detect islanding events.
This feature makes it powerful in the detection of islanding
events, but it can also mal-operate when frequency change for
other disturbance is analogous to islanding events.

Authors in [26], [33]–[36] presented a DWT-based passive
island detection technique. In this paper, PCC voltage signal
is acquired with sampling frequency of 5 kHz. Daubechies
4 (DB4) is used as mother wavelet to evaluate DWT coefficients
of the PCC voltage signal. PCC voltage signal is decomposed
up to four levels d1 (1250–2500 Hz), d2 (625–1250 Hz), d3
(312.5–625 Hz), and d4 (156.25–312.5 Hz) using the multires-
olution analysis.

The characteristic of different DWT coefficient for normal
and islanding condition are analyzed when the grid is free from
harmonics. It is found that the difference in energy of d2 level
coefficient for grid-connected and the islanded mode is maxi-
mum as compared to other levels. Thus, the d2 level is selected
for islanding and nonislanding discrimination. Discrimination
based on a change in the magnitude of the wavelet coefficient
may lead to nuisance tripping to other transients (load change,
capacitor switching, etc.). Thus, to avoid such situation, root
mean absolute of second level wavelet coefficient (RMAC) [26]
is used to develop DWT-based islanding algorithm, and its flow
chart is shown in Fig 3.

IV. SYSTEM UNDER INVESTIGATION

To test the effectiveness of the proposed algorithm, the system
is shown in Fig. 4(a). The control topology adopted to generate

Fig. 4. (a) Block diagram of system setup. (b) Control scheme for PWM
generation.

the PWM signal is shown in Fig. 4(b). MATLAB /Simulink plat-
form is used to simulate the system. Further, the same system
has been realized in OPAL-RT platform to demonstrate the ef-
fectiveness of the proposed algorithm in real-time environment.
The system consists of an inverter-based DG, a three-phase
RLC load, transformer, and the grid. The DG unit contains a
three-phase PWM inverter, dc voltage source of 400 V, and
LCL filter. The islanding is created with the opening of the grid
circuit breaker (CB1).

In this system, the voltage signal is sensed at the PCC. RMS
and peak value of the voltage signal is continuously calculated
to normalize it to 1-V peak–peak such that any distortion can
be reflected in this normalized signal. PLL is used to measure
the frequency and phase of normalized voltage. Synchroniza-
tion and PWM control estimates required peak inverter voltage
(Vinv peak) and load angle (δ) using standard power flow theory
and generate a sinusoidal reference signal for PWM pulse gen-
eration to control the inverter output. Table I in the Appendix
gives the full system parameters for this study.

V. SIMULATED RESULTS WITH DISCUSSION

In this section, DWT and proposed MP method performance
are tested based on simulation results under various scenarios.
Table II in the appendix gives a summary of the power mismatch
considered and the estimated transient’s frequency. Individual
cases are elaborated here. Due to page limitation, only critical
case studies have been shown in the manuscript as both the
techniques are efficiently detecting islanding in extreme case
studies like close to zero power mismatch (DG source generation
and load demand is almost same) and large power mismatch.
However, the most crucial real-time result of close to zero power
mismatch is presented in the subsequent section.
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Fig. 5. Simulation result of nonlinear load switching with (a) proposed
MP method and (b) DWT method.

A. Nonlinear Load Switching

In this section, the reliability of the proposed MP method
and DWT-based islanding detection method is tested when a
nonlinear load is added at the instant 0.4 s. MP method and
DWT in the context of comparative performance are shown in
Fig. 5(a) and (b), respectively. From the results, it is clear that
the proposed MP technique outperforms and accurately detects

it as a nonislanding event even if the switched load is nonlinear
in nature. Whereas, in the case of the DWT method, RMAC
value crosses the threshold level, which leads to mal-operation
as shown in Fig. 5(b). To avoid mal-operation, the threshold
value of RMAC must be set at a higher level. It is undesirable to
increase the threshold level because it will result in larger NDZ.

B. Capacitor Switching

In this case, before the capacitive load switching, DG feeds
power to 1.4-kW local load; thus power exchange from the
grid is almost negligible (grid current is zero). In the event of
capacitive load switching, power has been drawn from the grid
(grid current value increases from zero) to meet the additional
power requirement of the capacitive load. To study the efficacy
of islanding detection algorithm under such scenario, a 450 VAR
of capacitive load is added at the instance 0.4 s, which results in
a switching type nonislanding event. Result in Fig. 6(a) shows
that the frequency of PCC voltage signal starts oscillating from
the instant 0.4 s and estimated transient frequency is greater than
the Th2. Thus, DG supply remains enabled.

In the case of the DWT-based method, RMAC value increases
from the preset threshold value of 0.05, as shown in Fig. 6(b),
recognizes it as islanding event and disables the DG power
supply. This is a practical case example where the proposed MP
method is more reliable than that of the DWT method for proper
discrimination between islanding and nonislanding events. It
is noteworthy to mention that 450 VAR capacitive load acts
as a threshold, below which the wavelet-based relay, operate
perfectly, but exhibits mal-operation for 450 VAR and above
capacitive load switching. This situation occurs because the
energy of the wavelet coefficients are found to be too low to
reach the threshold 0.05 for cases lower than 450 VAR capacitive
load switching. Proposed MP method has also been tested for
different ratings higher and lower than the 450 VAR, but does
not show any malfunction.

C. Effect of Grid-Voltage Harmonics on Islanding
Detection

To demonstrate the effect of grid harmonics effect on the per-
formance of the proposed MP and DWT-based technique, an
analysis has been presented in this section (see Fig. 7). Grid
harmonics can also sometime affect DWT-based technique per-
formance. This is due to the fact that DWT decomposes the
signal in frequency bands as mentioned in section III. In the
present study, the d2 level band is used for the islanding de-
tection. Variation in harmonic component that lies within this
frequency band may lead to malfunctioning of DWT-based is-
land detection algorithm. Thus, to check the performance of
DWT and proposed MP method, harmonics of order 13 and
17 are added to grid voltage at the instance 0.4 s. The magni-
tude of added harmonics is quite small. It is equal to 0.58 % and
0.68% of the fundamental for harmonics order 13 and 17, respec-
tively, which is much lower than the permissible limit of IEEE
Std. 519.

It is found from Fig. 7(b) that RMAC values crosses the set
threshold and interpret it as islanding event. This situation occurs
because the energy of d2 level is increased due to the addition of
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Fig. 6. Capacitor switching (nonislanding event) with (a) proposed MP
method and (b) DWT method.

harmonics of order 13 and 17. To avoid the malfunction of DWT-
based islanding detection technique, it needs a measurement of
grid voltage harmonics, and the threshold has to be appropriately
adjusted. It also introduces a remarkable delay for the regular
update of thresholds, which is not a feasible solution. Proposed
MP technique performance is not affected by the harmonics
variation. The simulation results are shown in Fig. 7(a) and (b)

Fig. 7. Effect of 13 and 17 order harmonics on (a) proposed MP method
and (b) DWT method.

that confirm the superiority of the proposed MP technique over
DWT in the presence of grid harmonics.

D. Effect of Load QF on Islanding Detection

Load QF also affects the islanding detection. Islanding detec-
tion becomes difficult for the RLC load having QF greater than
the 2.5 [26]. Proposed MP and DWT based islanding detection
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Fig. 8. Effect of load quality on (a) proposed MP method and (b) DWT
method.

method are tested for three different values of load QF. It can
be seen from Fig. 8 that for all the three cases, the proposed MP
method and DWT method exhibit accurate islanding detection.
It is clear, from Fig. 8(b), that as the load QF increases, the
estimated transient’s frequency by MP method decreases. Thus,
load QF does not affect the islanding detection property of the
proposed MP method. DWT method also detects the islanding
condition correctly as shown in Fig. 8(b).

VI. REAL-TIME RESULTS WITH DISCUSSION

The proposed system is implemented in RT-LAB simulator
(OP5600), which uses field programmable gate array (FPGA)
architecture with Xilinx system generator toolbox to realize
the virtual prototype of the system as shown in Fig. 9. The
virtual prototype of the system, which is in “software in the loop
(SIL)” is almost similar to the “hardware in the loop (HIL)” as
it is implemented with the proper delay management of actual
signals and control signals through actual analog-digital/digital-
analog (AD/DA) devices. The communication between CPUs
(PC & OPAL-RT) is controlled by the FPGA architecture and
the console PC. All the real-time results obtained from OPAL-
RT are scaled down by 10 in magnitude.

In this section, real-time validation of proposed MP method
and its comparison with wavelet transform is presented for the
critical cases, such as zero power mismatch (see Fig. 10). Effect
of nonlinear load variation and presence of grid harmonics are
presented in the Figs. 11 and 12, respectively.

Fig. 9. Opal-RT laboratory setup.

Fig. 10. Real-time result of close to zero power mismatch with
(a) proposed MP method and (b) DWT method.

It has been observed from the Fig. 10(a) that islanding detec-
tion time of proposed MP method is reduced to 0.1 s in compar-
ison to the detection time of 0.2 s in a simulated environment.
It means the computational burden of the proposed method is
not very significant in the OPAL-RT environment. Thus, it is
well suited for the real-time islanding detection. Wavelet-based
method detection time (0.03 s) in real time was also reduced
as compared to the detection time (0.07 s) in a simulated case.
From the result shown in Fig. 10, it is clear that both the methods
are capable of detecting islanding accurately.
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Fig. 11. Real-time result of the effect of nonlinear load (nonislanding
event) with (a) proposed MP method and (b) DWT method.

Fig. 12. Real-time result of effect of 13 and 17 order harmonics on
(a) proposed MP method and (b) DWT method.

From the results shown in Fig. 11(a) (similar to case study in
section V-A nonlinear load switching) and Fig. 12(a) (similar to
case study in section V-C presence of voltage harmonics in grid),
it is clear that in real time environment, proposed MP method
can clearly discriminate these events as nonislanding distur-
bances and continues the DG supply. Whereas, DWT method
malfunctions in these events as are shown in Figs. 11(b) and
12(b) and stops the DG supply.

VII. CONCLUSION

In this paper, disturbance transient’s frequency estimation was
treated as the dominant criteria to discriminate islanding and
nonislanding events. In the case of islanding events, frequency
variation will monotonically increase or decrease. On the other
hand, in the case of nonislanding events, the frequency will be
oscillating in nature. This basic difference is exploited with the
MP algorithm to address the discrimination between two events.
To position the new algorithm in the context of popular passive
methods used, the proposed MP method has been compared
with DWT-based technique. In the unusual event of only ex-
act zero power mismatch, it is acknowledged that this passive
MP method may not work alone, but that will be an extremely
rare event. Even for minimal power mismatch (0.2% difference)
the decomposition of signal subspace and noise subspace in the
context of frequency estimation concept is being exploited as
the estimation objective, which is also suitable for real-time
implementation with the less computational burden. From the
presented four different case studies, it was concluded that the
proposed MP technique in comparison to the DWT-based tech-
nique is more robust and does not trigger any mal-operation
in the event of grid harmonic pollution and other nonislanding
switching transient cases where it can affect the grid voltage
harmonics. However, detection time (0.2 s in case of simulated
and close to 0.1 s in real time) was large as compared with
DWT-based technique, but then, again, it was much lower than
the IEEE std. 1547 permissible limit of 2 s.

APPENDIX

TABLE. I
PARAMETERS OF THE STUDIED SYSTEM
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TABLE II
POWER MISMATCH AND ESTIMATED PARAMETERS
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