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Abstract 

It was expected that index of the ideality of correlation (IIC) and correlation intensity index 

(CII) could be used as possible tools to improve the predictive power of the quantitative model for 

zeta potential of nanoparticles. In this paper, we test how the statistical quality of quantitative 

structure-activity models for zeta potentials (ζ, a common measurement that reflects surface charge 
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and stability of nanomaterial) could be improved with the use of these two indexes. Our hypothesis 

was tested using the benchmark data set that consists of 87 measurements of zeta potentials in 

water. We used quasi-SMILES molecular representation to take into consideration the size of 

nanoparticles in water and calculated optimal descriptors and predictive models based on the 

Monte Carlo method. We observed that the models developed with utilization of CII are 

statistically more reliable than models obtained with the IIC. However, the described approach 

gives an improvement of the statistical quality of these models for the external validation sets to 

the detriment for the training sets. Nevertheless, this circumstance is rather an advantage than a 

disadvantage. 

Keywords: zeta potential; nano-QSPR; metal oxide nanoparticles; quasi-SMILES; Index of 

Ideality of Correlation; Correlation Intensity Index 

 

*) Corresponding author 

Alla P. Toropova 

Laboratory of Environmental Chemistry and Toxicology,  

Istituto di Ricerche Farmacologiche Mario Negri IRCCS 

Via Mario Negri 2, 20156 Milano, Italy 

Tel: +39 02 3901 4595  

Fax: +39 02 3901 4735  

Email: alla.toropova@marionegri.it 

  



3 

 

1.Introduction 

Zeta potential can serve a measure of surface charge of the nanoparticle as well as to be the 

measure of the stability of nanoparticle. Under such circumstances, the data on zeta potential 

becomes the basis of physicochemical and biochemical analysis [1-3]. Nanoparticles have several 

advantages as medical materials for various human diseases including brain and retinal diseases 

[1]. The central nervous system remains an area where drug access and delivery are difficult 

clinically due to the blood-brain barrier. By means of nanotechnology, many researchers have 

designed and produced nanoparticle-based systems to solve this problem. Data on the zeta 

potentials is an important component of these studies [1,2]. Besides, the zeta potential of 

nanoparticles is an indicator of the ability of nanoparticle to interact with cell membranes [2,3]. 

Unfortunately, the repetitive experimental and theoretical endpoints studies are often time-

consuming and inefficient. Significant progress tends to require a combination of large databases 

with the knowledge of how to combine available facts in order to reach progress [4-9]. The 

databases are a relatively new paradigm of applying and developing knowledge. Quantitative 

structure-property/activity relationships (QSPRs/QSARs) are the majority of applying of 

databases for chemistry, biochemistry, and medicinal chemistry. The current period of evolution 

of natural sciences characterized also by the development of databases on nanomaterials, which 

however remain far from to be perfect [10]. QSPR/QSAR analysis is a tool of interpretation and 

prognosis of phenomena in the above fields of natural sciences. Hence, most likely, the impact of 

the QSPR/QSAR on the natural sciences as a whole will be increasing.  

Predictive modeling of zeta potential values for untested nanoparticles comes handy, as a 

massive synthesis and experimental evaluation of every possible nanomaterial is an expensive and 

time-consuming process. For this purpose, QSPR modeling is a convenient way to estimate the 
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data on zeta potentials [4,5]. However, there is not a direct translation of traditional QSPR into 

methods appropriate for nanomaterials (so-called nano-QSPR). Many attempts to develop nano-

descriptors similarly to traditional descriptors faced the major problem: the molecular structure of 

nanomaterials is complex. Therefore, the applications of the molecular graph [6-8] or utilization 

of a simplified molecular input-line entry system (SMILES) [9] to build up the nano-descriptors 

are impossible or at least extremely limited. Nonetheless, so-called quasi-SMILES [11-18] address 

this limitation, and such techniques can be applied to develop the nano descriptors [4]. 

The key component of the traditional QSPR is a predictive potential. There are established 

criteria for the development of predictive potential for QSPR. Apparently, such criteria are also 

necessary for the nano-QSPR.  

At the same time, there is room to improve the predictive potential for previously delivered 

nano-QSPR models [4].  To reach this aim, we suggested applying additional predictive potential 

criteria: index of the ideality of correlation (IIC) [19,20], and Correlation Contradictions Index 

(CCI) [21,22]. In addition, the new Correlation Intensity Index (CII) is applying here. 

2.Method  

2.1 Data 

Data on zeta potentials measurements for 87 metal oxide nanoparticles in water, along with 

quasi-SMILES representation were taken from our previous publication [4]. As was discussed, 

quasi-SMILES descriptors describe nanoparticles using available eclectic data, encoding the type 

of metal oxide, and discrete representations of nominal size and size in H2O. Table 1 contains the 

definition of the quasi-SMILES elements.  

[Table 1 around here] 
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The data set was split randomly into four subsets of equal size (%25): active training set, passive 

training set, calibration set, and validation set [23]. Each set has aimed to solve its' task. The task 

of the active training set is building up the model (i.e. the definition of correlation weights for 

molecular features extracted from quasi-SMILES). The task of the passive training set is 

inspection: whether the current model is satisfactory for quasi-SMILES which are not involved to 

building up model? The task of the calibration set is to detect starting of the overfitting. The task 

of the validation set is the final checkup of the predictive potential of the model. 

 

2.2 Model 

The model of zeta-potential suggested here is the following: 

ζ=C0+C1×DCW(T*,N*) (1) 

In other words, the model is one variable correlation of the descriptor of correlation weights 

(DCW). The correlation weights are calculated with the Monte Carlo method. The C0 and C1 are 

regression coefficients. The T and N are parameters of the Monte Carlo optimization (described 

below). 

 

2.3 Optimal descriptor 

The optimal descriptor calculated as the following: 

���(�∗, �∗) = ∑ ��(����� ��) + ∑ ��(������� ���)  (2) 

The Sk is a quasi-SMILES atom; SSk is a pair of connected quasi-SMILES atoms. In other words, 

if a quasi-SMILES is the sequence of quasi-SMILES atoms: “ABCD”, the Sk are [A,B,C,D]; and 

the SSk are [AB,BC,CD]. The NA is the number of quasi-SMILES atoms. 
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2.4 Monte Carlo optimization 

Each quasi-SMILES attribute Ak (i.e. Sk or SSk) is characterized by the correlation weight 

CW(Ak). The numerical data on the CW(Ak) is calculated by the Monte Carlo optimization.  

Three target functions of the optimization are compared in this work. The Monte Carlo 

calculations are aimed to provide maximal value for the target functions.  

The first target function is defined as the following: 

���=R+R'-"R-R'"×0.1 (3) 

where the R and R’ are correlation coefficients for the active training set and the passive training 

set, respectively.  

The second target function is calculated as the following: 

��$=���+IIC×0.2 (4) 

where the IIC is the index of ideality of correlation [19,20] that is calculated with data on 

observed and calculated values of endpoint for the calibration set: 

''�()* = +()*
min ( 012 ()* , 012 ()*) 3 �

456 ( 012 ()*, 012 ()*) 3 �  

012 ()* � = �
� 7 ∑ | 9�|,� 7

���      � :; <ℎ> ?@4A>+ BC 9� < 0 �  

012 ()* 3 = �
� E ∑ | 9�|� E

��� ,     � :; <ℎ> ?@4A>+ BC 9� ≥ 0 3  

9� = BA;>+G>H� − J5KJ@K5<>H� 

  

 

(5) 

 

The third target function is defined as the following: 

��L=���+CII×0.2 (6) 

where the CII is the correlation intensity index calculated as follows: 
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CII=1- M ∆Rj2>0 

where ∆Rj2=Rj2-R2 

(7) 

An example of the calculation of CII is presented in Table 2. The CII can be calculated with the 

correlation contradiction index (CCI) as follows [21,22]: 

�'' = 1 − ��'           (8) 

[Table 2 around here] 

The T is an integer to divide the quasi-SMILES atoms into two classes: (i) rare, if the frequency 

of the quasi-SMILES in the active training set is less than T; and (ii) non-rare if the frequency of 

the quasi-SMILES in the active training set is larger or equal to T. The N is the number of epochs 

of the Monte Carlo optimization. The T=T* and N=N* are values of the above parameters which 

provide the best statistical quality for the calibration set.  

  Finally, we calculated a set of statistical metrics to assess the predictive potential of developed 

nano-QSPR models (Table 3). In addition to that, we calculated commonly used statistical metrics 

(R2, CCC, RMSE, and MAE).  

[Table 3 around here] 

 

3. Results and Discussion 

To provide reliable results, we developed three models for each type of target function. Three 

models calculated with three random splits are the following: 

The Monte Carlo optimization target function with TF1 resulted in following QSPR equations:  

ζ = -8.95(± 0.74)    +      8.20(± 0.11) * DCW(1,3)                                      (9) 

ζ =   48.22 (± 1.50) +   13.38 (± 0.47) * DCW(1,5)                                      (10) 

ζ = -14.45(± 0.70) +   27.54(± 0.61) * DCW(1,6)                                         (11) 
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The Monte Carlo optimization with target function TF2 

ζ = -22.92(± 0.93) +    8.56(± 0.18) * DCW(1,15)                                        (12) 

ζ = -25.04(± 0.92) +    8.07(± 0.23) * DCW(1,15)                                        (13) 

ζ = -61.18(± 2.16) +   13.63(± 0.54) * DCW(1,15)                                        (14) 

 

The Monte Carlo optimization with target function TF3 

ζ = 11.51(± 0.62) +   16.61(± 0.34) * DCW(1,15)                                         (15) 

ζ = 33.72(± 1.50) +   12.86(± 0.37) * DCW(1,15)                                          (16) 

ζ = 31.92(± 1.02) +    9.82 (± 0.18) * DCW(1,15)                                          (17) 

 

Table 4 contains the information about used splits of the dataset: active training set (denoted as 

+), passive training set (denoted as -), calibration set (denoted as #), and validation set (denoted as 

*) as well as experimental and calculated (with Eqs. 14-16) values of zeta potentials.  

[Table 4 around here] 

Table 5 provides the details of the statistical quality of models calculated with Eqs. 8-16. 

[Table 5 around here] 

 

For the validation set (a set that reflects the predictive power of model) we observed the R2 in 

a range of 0.6793 - 0.9336 and RMSE variated from 6.6 to 28.0. Based on these two parameters 

we can conclude that models with TF1 (Eqs. 6-9) had the worst predictive power (Table 4). 

Moreover, these three models were less robust compared to models reported in the original paper 

[4]. Values of RMSE and R2 for models optimized with target function TF2 were comparable to the 

values of these parameters in models reported in the original paper [4]. 
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 However, models with TF2 have lower stability (predictive power in the training set) comparing 

to models from the original paper. Finally, models optimized with TF3 have statistically 

overperformed all other models, which makes them the most reliable source for future predictions. 

The same observation about TF1, TF2, and TF3 models could be done based on Monte Carlo 

optimizations progression through epochs (Figure 1). One can see from Table 4 and Figure 1 that 

the optimization with target function TF1 delivers models with a defined number of epochs, and 

further optimization results in the overtraining (i.e. reduction of the statistical quality for the 

calibration and validation set). At the same time, the optimization with TF2 or TF3 has blocked the 

overtraining. As discussed above, optimization with TF3 resulted in increased reliability of models. 

This directly correlates with the fact, the progression through epochs for TF3 models is smoother 

than progression for TF2 models. As a result, we can conclude that the correlation intensity index 

(TF3 derives from CII) improves the predictive potential of models for metal oxide nanoparticles’ 

zeta potentials. 

   [Figure 1 around here] 

 

4. Conclusions 

In this article, we have demonstrated that weighting quasi-SMILES parameters (descriptors that 

take into account size-dependent behavior of nanoparticles) with correlation intensity index (CII) 

or index of the ideality of correlation (IIC) improves the quality of structure-property models for 

zeta potentials in metal oxide nanoparticles. We have demonstrated that the inclusion of either CII 

and IIC into model blocks overtraining in the Monte Carlo simulations. Developed models had 

reasonable statistical characteristics, and CII overperformed previously reported models for the 

same dataset. The presented approach does not require complex calculations and noticeably 

improves the quality of nano-QSPR models for zeta potentials. We suggest that this approach could 
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be successfully transferred to predictive modeling of other physicochemical properties and 

biological activities of nanomaterials.  
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Table 1.  

The definition of quasi-SMILES elements. 

Definition of the attribute of quasi-SMILES for nominal size 

 

Range (in nm) Number of samples in range Quasi-SMILES element 

From To 

3.590 17.470 33 %11 

17.470 31.351 18 %12 

31.351 45.231 9 %13 

45.231 59.111 7 %14 

59.111 72.992 9 %15 

72.992 86.872 1 %16 

86.872 100.752 1 %17 

100.752 114.633 3 %18 

114.633 128.513 2 %19 

128.513 142.393 1 %20 

142.393 156.274 1 %21 

156.274 170.154 0 %22 

170.154 184.034 0 %23 

184.034 197.915 1 %24 

197.915 211.795 0 %25 

211.795 225.675 0 %26 

225.675 239.556 0 %27 

239.556 253.436 0 %28 

253.436 267.316 0 %29 

267.316 281.197 0 %30 

281.197 295.077 0 %31 

295.077 308.957 0 %32 

308.957 322.838 0 %33 

322.838 336.718 0 %34 

336.718 350.598 0 %35 

350.598 364.479 0 %36 

364.479 378.359 0 %37 

378.359 392.239 0 %38 

392.239 406.120 0 %39 

406.120 420.000 1 %40 

 

Definition of the attribute of quasi-SMILES for size in H2O 

 

Range (in nm) Number of samples in range Quasi-SMILES element 

From From 

28.900 227.937 37 %51 

227.937 426.973 23 %52 
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426.973 626.010 7 %53 

626.010 825.047 5 %54 

825.047 1024.083 1 %55 

1024.083 1223.120 0 %56 

1223.120 1422.157 1 %57 

1422.157 1621.193 5 %58 

1621.193 1820.230 1 %59 

1820.230 2019.267 1 %60 

2019.267 2218.303 0 %61 

2218.303 2417.340 1 %62 

2417.340 2616.377 1 %63 

2616.377 2815.413 1 %64 

2815.413 3014.450 0 %65 

3014.450 3213.487 0 %66 

3213.487 3412.523 0 %67 

3412.523 3611.560 0 %68 

3611.560 3810.597 0 %69 

3810.597 4009.633 1 %70 

4009.633 4208.670 1 %71 

4208.670 4407.707 0 %72 

4407.707 4606.743 0 %73 

4606.743 4805.780 0 %74 

4805.780 5004.817 0 %75 

5004.817 5203.853 0 %76 

5203.853 5402.890 0 %77 

5402.890 5601.927 0 %78 

5601.927 5800.963 0 %79 

5800.963 6000.000 1 %80 
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Table 2.  

An example of calculation of the CII (R2= 0.8290; CII= 0.8956) 

 

Numbers  
 

Rj2 
 
∆QR$ 

 
M ∆Rj2>0 

  1 0.8157 -0.0133 0.0000 

  2 0.8155 -0.0135 0.0000 

  3 0.8278 -0.0012 0.0000 

  4 0.8244 -0.0045 0.0000 

  5 0.8455 0.0165 0.0165 

  6 0.8842 0.0552 0.0717 

  7 0.8277 -0.0013 0.0717 

  8 0.8288 -0.0001 0.0717 

  9 0.8160 -0.0130 0.0717 

 10 0.8246 -0.0044 0.0717 

 11 0.8236 -0.0053 0.0717 

 12 0.8212 -0.0078 0.0717 

 13 0.8191 -0.0099 0.0717 

 14 0.8428 0.0138 0.0855 

 15 0.8355 0.0065 0.0921 

 16 0.8390 0.0100 0.1021 

 17 0.8291 0.0001 0.1022 

 18 0.8030 -0.0260 0.1022 

 19 0.8305 0.0015 0.1037 

 20 0.8296 0.0007 0.1044 

 21 0.8280 -0.0010 0.1044 
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Table 3.  

A collection of criteria of predictive potential of models 

The criterion of the predictive potential 

 

Reference 

S$ = 1 − ∑(T� − ý�) $
∑(T� − TV� ) $ 

 

 SW�$ = 1 − X∑ (T́Z − TZ)�[\]
Z��  $^/�`ab

X∑ (TZ − T bc)�[\]
Z��  $^/�`ab

 

 

[24] 

 SW$$ = 1 − X∑ (T́Z − TZ)�[\]
Z��  $^/�`ab

X∑ (TZ − T `ab)�[\]
Z��  $^/�`ab

 

 

 

 SWL$ = 1 − X∑ (T́Z − TZ)�[\]
Z��  $^/�`ab

X∑ (TZ − T bc)�]d
Z��  $^/�bc

 

 

 

Qe$VVVV = Qe$ (6, T) + Qe$ (T, 6)
2  

 
 

 

[25] 

��� = 2 ∑  (x − xV)(y − yV)
∑(x − xV) $ + ∑(y − yV) $ + n(xV − yV) $ 

 

[26] 
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Table 4.  

Experimental and calculated values of zeta potential and quasi-SMILES used for the 

representation of corresponding nanoparticles [4]  

ID Set* Set Set Quasi-SMILES                                    Experiment Eq. 14 Eq. 15 Eq. 16 

1. * # # O=[Al]O[Al]=O%11%51                       39.2 59.5854 55.4805 39.7962 

2. - # * O=[Al]O[Al]=O%15%54                       33.1 12.9653 30.5613 23.0576 

3. + + + O=[Al]O[Al]=O%11%52                       38.0 27.2658 19.7513 17.0003 

4. # - * O=[Al]O[Al]=O%12%51                       43.0 61.5090 54.0057 52.3818 

5. + + # O=[Al]O[Al]=O%13%52                       36.2 36.6891 41.2958 47.4311 

6. * * - O=[Al]O[Al]=O%14%52                       30.3 31.7833 7.9330 5.7311 

7. * * * O=[Bi]O[Bi]=O%21%71                       -16.5 -21.2014 -4.7394 -16.2568 

8. + - + O=[Ce][Ce]=O%11%51                        41.2 28.3292 31.5044 25.0026 

9. # # * O=[Ce][Ce]=O%11%51                        26.5 28.3292 31.5044 25.0026 

10. + # + O=[Ce][Ce]=O%12%51                        21.4 30.2527 30.0296 37.5882 

11. # * * O=[Ce][Ce]=O%11%63                        15.0 19.4829 4.2426 14.0535 

12. # + - [Co]=O^O=[Co]O[Co]=O%11%51                23.0 30.8860 22.5773 2.7684 

13. + - + [Co]=O^O=[Co]O[Co]=O%11%51                24.6 30.8860 22.5773 2.7684 

14. + * # [Co]=O%15%51                               21.6 4.8870 43.0765 18.0431 

15. # + - [Co]=O%14%52                               17.5 -3.5979 11.1079 -1.4868 

16. - # + O=[Cr]O[Cr]=O%24%52                       -32.6 -24.3981 -12.0014 -32.7718 

17. # # + O=[Cr]O[Cr]=O%14%52                       -12.0 -29.7866 -9.4556 -10.8888 

18. - + * [Cu]=O%12%51                               37.4 18.4691 39.6837 40.9596 

19. * * # [Cu]=O%11%51                               17.0 16.5456 41.1586 28.3740 

20. * + * [Cu]=O%11%52                               7.6 -15.7740 5.4294 5.5781 

21. # * - [Cu]=O%12%52                               24.4 10.6026 37.0502 0.0540 

22. + - - O=[Dy]O[Dy]=O%11%53                       50.6 50.6458 38.7161 11.2430 

23. # - # O=[Fe]O[Fe]=O%12%55                       -22.8 -26.1493 -15.1870 -10.2410 

24. - # * O=[Fe]O[Fe]=O%12%58                       -11.2 -14.6342 12.4539 -10.2410 

25. - # + O=[Fe]O[Fe]=O%11%51                       -2.1 -1.9844 13.0566 1.5650 

26. * # # O=[Fe]O[Fe]=O%15%80                       -6.3 -48.6045 -5.5220 -15.1736 

27. - - - O=[Fe]^O=[Fe]O[Fe]=O%11%51                22.1 2.0586 11.9652 0.4439 

28. * + # O=[Fe]^O=[Fe]O[Fe]=O%12%54                -17.7 -22.1063 -15.8117 -11.3621 

29. - + + O=[Fe]^O=[Fe]O[Fe]=O%19%51                8.3300 -3.5935 1.9282 -4.5212 

30. # - * O=[Fe]^O=[Fe]O[Fe]=O%11%51                -2.1 2.0586 11.9652 0.4439 

31. # # # O=[Gd]O[Gd]=O%13%51                       6.5 4.6263 38.6164 16.8080 

32. + - + O=[Hf]=O%12%52                             33.5 33.7313 13.0555 33.2282 

33. + - + O=[In]O[In]=O%13%51                       57.2 48.1012 45.0083 44.6085 

34. - + - O=[In]O[In]=O%15%51                       61.9 22.1732 28.9050 12.3294 

35. - - + O=[In]O[In]=O%15%52                       22.6 5.0341 18.6433 21.4170 

36. + + + O=[In]O[In]=O%11%52                       -31.6 9.1709 8.7545 4.0686 

37. + - - O=[La]O[La]=O%12%51                       54.3 44.2685 36.6170 11.6497 

38. - * - O=[La]O[La]=O%15%53                       -3.6 -8.7750 22.0952 -12.3970 

39. * # * O=[Mg]%11%60                               6.9 8.3151 21.3346 13.6341 

40. + + - O=[Mn]O[Mn]=O%14%52                       -46.1 -35.2464 -37.3765 -35.0010 

41. # + - O=[Mn]O[Mn]O[Mn]=O%11%52                  -14.4 -41.0522 -18.5907 -16.4719 

42. * - - O=[Ni]O[Ni]=O%20%52                       32.2 44.4924 23.2079 3.5890 

43. + * + [Ni]=O%11%51                               48.9 50.9909 71.6341 41.8253 

44. # # # [Ni]=O%12%59                               13.3 26.8260 43.3905 30.0193 

45. * + * [Ni]=O%11%52                               27.6 18.6713 35.9049 19.0294 

46. * * * [Ni]=O%11%52                               26.0 18.6713 35.9049 19.0294 



20 

 

47. - * + O=[Sb]O[Sb]=O%12%51                       -24.2 -23.7448 -28.5352 -18.9018 

48. + - # O=[Sb]O[Sb]=O%11%51                       -35.3 -25.6684 -27.0604 -31.4874 

49. + + # O=[Sb]O[Sb]=O%16%53                       -20.7 -20.5144 -21.0619 -41.5308 

50. + + + O=[Si]=O%11%52                             -29.2 -54.8367 -53.9468 -49.9792 

51. # + # O=[Si]=O%11%51                             -33.5 -22.5171 -18.2176 -27.1833 

52. # * * O=[Si]=O%18%51                             -43.0 -28.1692 -50.4802 -40.3008 

53. - # # O=[Si]=O%11%51                             -31.8 -22.5171 -18.2176 -27.1833 

54. + - + O=[Si]=O%13%51                             -23.1 -15.9064 -17.6930 -9.4394 

55. - * * O=[Si]=O%14%51                             -30.1 -20.8726 -38.8681 -39.8353 

56. - * # O=[Si]=O%18%51                             -33.1 -28.1692 -50.4802 -40.3008 

57. * # * O=[Si]=O%40%54                             -39.0 -41.7341 -67.3896 -42.5042 

58. * * # O=[Si]=O%12%57                             -29.8 -46.6820 -46.4612 -38.9893 

59. - - - O=[Sn]=O%15%51                             -38.8 -22.7432 1.5851 -22.7310 

60. * - # O=[Sn]=O%11%70                             -21.1 -12.2722 -10.0979 -19.1449 

61. # + # O=[Ti]=O%12%52                             -16.5 -9.3689 3.7231 -23.4008 

62. * - + O=[Ti]=O%19%51                             -13.5 -9.0780 -2.2055 -0.0459 

63. - * * O=[Ti]=O%14%53                             -18.9 -19.8463 -20.8059 -4.6588 

64. - + - O=[Ti]=O%11%51                             47.0 -3.4259 7.8315 4.9191 

65. # * # O=[Ti]=O%18%51                             -4.64 -9.0780 -24.4311 -8.1984 

66. - + + O=[Ti]=O%11%51                             -19.4 -3.4259 7.8315 4.9191 

67. * # * O=[Ti]=O%11%51                             15.0 -3.4259 7.8315 4.9191 

68. - * - O=[Ti]=O%11%58                             7.09 -0.7571 8.2106 -6.0299 

69. # # - O=[Ti]=O%17%58                             4.07 -11.1278 -7.3588 -10.4018 

70. # # - O=[Ti]=O%14%58                             1.77 -3.8313 4.2533 -9.9363 

71. * # * O=[Ti]=O%11%64                             -3.75 -12.2722 -19.4303 -6.0299 

72. # * # O=[Ti]=O%13%54                             -10.7 0.2244 -8.5534 -4.3130 

73. * # # O=[W](=O)=O%11%51                         -45.2 -61.6097 -49.5739 -64.7132 

74. + - + O=[W](=O)=O%11%51                         -61.3 -61.6097 -49.5739 -64.7132 

75. * + + O=[W](=O)=O%11%53                         -54.4 -49.2022 -48.9497 -52.5343 

76. - - - O=[Y]O[Y]=O%13%52                         42.7 15.5184 23.9072 6.6991 

77. + - # O=[Y]O[Y]=O%13%52                         16.3 15.5184 23.9072 6.6991 

78. + # - O=[Yb]O[Yb]=O%15%52                       9.9 9.1256 12.2514 -6.3834 

79. * * * [Zn]=O%12%51                               16.4 5.6240 25.9991 15.2806 

80. # + + [Zn]=O%12%53                               -46.8 -24.9644 -45.5657 -47.0129 

81. # # - [Zn]=O%12%54                               0.017 -20.4645 -0.3030 -9.1111 

82. - - - [Zn]=O%13%53                               20.3 2.8509 20.0115 -1.2596 

83. - # + [Zn]=O%12%51                               28.8 5.6240 25.9991 15.2806 

84. # * * [Zn]=O%11%52                               -15.0 -28.6191 -8.2553 -20.1010 

85. + + * [Zn]=O%15%58                               -20.9 -20.5075 -21.8737 -14.0437 

86. * * + O=[Zr]=O%13%52                             -12.8 -25.3938 2.9793 3.0667 

87. + - - O=[Zr]=O%12%62                             -6.9 -6.9728 -11.0796 -16.3743 

 

*) Active training set (+), passive training set (-), calibration set (#), validation set (*). 
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Table 5. The statistical characteristics for developed models 

The Monte Carlo optimization with target function TF1 
split Set* n R2 CCC IIC CII Q2 Q2

F1 Q2
F2 Q2

F3 hijVVVV RMSE MAE 

1 

(Eq. 9) 

AT 22 0.8757 0.9337 0.6479 0.9109 0.8537     12.8 8.28 

PT 22 0.8618 0.6677 0.6776 0.8787 0.8454     19.1 15.8 

C 22 0.4830 0.6886 0.6585 0.7701 0.3851 0.3915 0.3115 0.6789 0.4401 19.0 15.2 

V 21 0.7999         15.4 12.5 

2 

(Eq. 10) 

AT 22 0.5709 0.7269 0.7556 0.7556 0.4994     22.2 16.8 

PT 22 0.6603 0.7221 0.3788 0.8377 0.6031     23.1 17.5 

C 22 0.6453 0.6569 0.2970 0.7781 0.5849 0.2134 0.1968 0.6426 0.2783 20.7 17.3 

V 21 0.5770         17.6 14.0 

3 

(Eq. 11) 

AT 23 0.8475 0.9175 0.7082 0.9010 0.8229     13.5 10.4 

PT 22 0.9416 0.5530 0.9704 0.9622 0.9250     30.6 28.5 

C 21 0.6779 0.7498 0.6298 0.7788 0.6299 0.3936 0.1505 0.5195 0.5769 22.7 18.6 

V 21 0.7267         28.0 22.7 

The Monte Carlo optimization with target function TF2 

split Set n R2 CCC IIC CII Q2 Q2
F1 Q2

F2 Q2
F3 hijVVVV RMSE MAE 

1 

(Eq. 12) 

 

AT 22 0.7868 0.8807 0.7392 0.8618 0.7522     18.4 14.3 

PT 22 0.7872 0.5787 0.3631 0.8949 0.7258     24.6 21.9 

C 22 0.7961 0.8536 0.8918 0.9007 0.7530 0.6657 0.6077 0.8043 0.6954 15.0 12.3 

V 21 0.8005         15.6 11.8 

2 

(Eq. 13) 

 

AT 22 0.6256 0.7697 0.6591 0.7741 0.5666     20.7 15.4 

PT 22 0.6258 0.7118 0.3369 0.8410 0.5713     23.6 17.8 

C 22 0.7339 0.7728 0.8562 0.8488 0.6696 0.5620 0.5528 0.8010 0.4245 15.4 13.1 

V 21 0.6793         14.2 10.9 

3 

(Eq. 14) 

 

AT 23 0.5631 0.7205 0.6879 0.7485 0.4832     22.7 18.5 

PT 22 0.4909 0.2470 0.0703 0.7236 0.3528     45.7 41.8 

C 21 0.6874 0.7303 0.8282 0.7753 0.6238 0.4011 0.3304 0.5893 0.3929 20.1 15.9 

V 21 0.7973         15.7 12.1 

The Monte Carlo optimization with target function TF3 

split set n R2 CCC IIC CII Q2 Q2
F1 Q2

F2 Q2
F3 hijVVVV RMSE MAE 

1 

(Eq. 15) 

AT 22 0.8751 0.9334 0.7796 0.9023 0.8479     12.8 7.91 

PT 22 0.8493 0.6860 0.3925 0.8783 0.8289     19.8 14.9 

C 22 0.6937 0.8281 0.6720 0.8596 0.6364 0.6647 0.6206 0.8230 0.6665 14.1 11.8 

V 21 0.8290         14.9 11.0 

2 

(Eq. 16) 

 

AT 22 0.7138 0.8330 0.8449 0.8274 0.6617     18.1 12.4 

PT 22 0.8595 0.8877 0.7240 0.8919 0.8348     14.2 11.3 

C 22 0.7536 0.8263 0.5884 0.8665 0.6990 0.5448 0.5352 0.7932 0.6336 15.7 11.8 

V 21 0.8396         15.4 13.0 

3 

(Eq. 17) 

 

AT 23 0.8098 0.8949 0.6922 0.8642 0.7807     15.0 11.4 

PT 22 0.9598 0.4951 0.5854 0.9809 0.9427     25.8 21.9 

C 21 0.8920 0.9278 0.7321 0.9417 0.8687 0.8731 0.8222 0.8995 0.8373 10.4 8.64 

V  21 0.9336         6.6 5.2 

Previously reported modes, validation sets [4]  
 V  19 0.6707         17.2 14.7 

V 16 0.8213         15.8 11.6 

V 21 0.7268         13.1 11.7 

 

*)AT – active training set, PT – passive training set, C – calibration set, V – validation set. 
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Figure 1.  

The comparison of histories of the Monte Carlo optimization with target functions TF1, TF2, 

and TF3 
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