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REVIEW

Pre-clinical models of small cell lung cancer and the validation of therapeutic
targets
Jane S. Y. Suia,b, Petra Martina and Steven G. Gray a,c,d

aThoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, Dublin,
Ireland; bDepartment of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland; cLabmed Directorate, St. James’s Hospital,
Dublin, Ireland; dSchool of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland

ABSTRACT
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal
prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not
surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have
been made by investigators to develop pre-clinical models of SCLC allowing for downstream target
identification in this difficult to treat cancer.
Areas covered: In this review, we describe the current pre-clinical models that have been developed to
interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show
how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate
potential therapeutic targets that (iii) are currently under development and testing within the clinic.
Expert opinion: The large numbers of preclinical models that have been developed have dramatically
improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The
newer models are rapidly providing novel avenues for the design and testing of new therapeutics.
Despite this many of these models have inherent flaws that limit the possibility of their use for
individualized therapy decision-making for SCLC.
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1. Introduction

Small-cell lung cancer (SCLC) is an aggressive poorly differen-
tiated neuroendocrine tumor accounts for 13% of all lung
cancer cases [1]. It is one of the poorest survival rates of
lung cancer, with median overall survival of approximately
10 months. At diagnosis, patients tend to present with widely
metastatic disease due to rapid growth and doubling time of
tumor proliferation [2–4]. SCLC occurs almost exclusively in
smokers especially in heavy smokers [5], and in the Western
world, the incidence of SCLC has decreased due to smoking
pattern and smoking cessation programs [5].

The first staging system for SCLC was introduced by the
Veterans’ Administration Lung Study Group (VALSG) [6].
Staging was divided into two disease subgroups termed ‘lim-
ited-stage’ characterized by tumors confined to one radiation
portal although local extension into ipsilateral, supraclavicular
nodes could be present and ‘extensive-stage’ for extrathoracic
metastases. In 2007, the International Association for the
Study of Lung Cancer (IASLC) recommended that the seventh
edition of the American Joint Committee on Cancer Staging
(AJCC) and the Union Internationale Contre le Cancer (UICC)
tumor, node, metastasis (TNM) staging should replace the
VALSG staging system [7]. Now superseded by the 8th edition,
the IASLC Lung Cancer Staging Project allows an accurate
staging of SCLC with TNM, which carries important prognostic
outcomes and implications for treatment in SCLC [8].

Whilst this staging system is critical to patient care,
other attempts to stratify SCLC into different subgroups
based on our molecular understanding of SCLC have
been attempted, and were most recently discussed in
depth and synthesized into a working nomenclature for
SCLC based upon the expression of four key transcriptional
regulators [9].

SCLC is highly responsive to cytotoxic chemotherapy in
early lines of therapy [9,10]. One third of SCLC presents
with early-stage disease which can be cured with surgery
or concomitant cytotoxic chemotherapy with radiotherapy
[10]. However, the majority of SCLC has short duration of
response to therapy due to acquired therapeutic resistance
with 5-year survival rates less than 7% [11].

Pre-clinical models with SCLC often show promising
therapeutic possibilities. However, most often these fail to
translate into clinical benefits in phase II/III clinical trials,
and a salutary reminder of this in SCLC has been the
discontinuation of Rova-T [12] a drug that showed exciting
potential in pre-clinical models of SCLC (discussed in more
detail in section 3.2). Over the last four decades, the stan-
dard treatment for SCLC has not changed with regimen
consistent with platinum-based agent (cisplatin or carbo-
platin) in combination with etoposide [13]. Most recently,
a breakthrough for treatment of SCLC involved the incor-
poration of the immune checkpoint inhibitor atezolizumab,
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targeting programmed cell death ligand-1 (PD-L1), into
standard first-line therapy with carboplatin and etoposide
for initial treatment for extensive-stage SCLC which show-
ing a median improvement of overall survival by 2 months
[14], leading to Food and Drug Administration (FDA)
approval of this combination for extensive-disease-small-
cell lung cancer (ED-SCLC) in March 2019 [15], but cost-
benefit analysis suggests that such a treatment regimen is
not cost-effective choice in the first-line setting [16].
However, a more recent analysis of the IMpower133
study with respect to adverse events (AEs) and patient-
reported outcomes suggest that a positive benefit-risk
profile of first-line atezolizumab plus carboplatin/etoposide
in extensive-stage SCLC does exist and further support this
regimen as a new standard of care is warranted [17].

Other therapies approved by the FDA for the treatment of
SCLC include topotecan (a topoisomerase I poison, approved
for the second-line setting with response rate of 24% [15]),
while in the third-line setting, nivolumab and pembrolizumab,
both programmed cell death-1 (PD-1) inhibitors have been
approved [15].

Numerous attempts have been made to identify novel
therapeutic targets for the treatment of SCLC.

2. What are the current pre-clinical models?

Several models to interrogate SCLC pre-clinically have been
developed and are summarized in Box 1. In the following
sections, we describe the current available models and the
limitations associated with each.

2.1. Established cell lines

In 1971, the first established SCLC cell line was described [24].
Since then, many SCLC cell lines have been established and
earlier estimates suggest that at least 300–400 lung cancer cell
lines (encompassing both SCLC & NSCLC) exist [25], and the
most commonly used are provided in Table 1

Cell lines established from SCLC tumors have traditionally
been seen as a basic research tool, useful for hypothesis and
pre-clinical drug testing (Table 2). In general, all established
cell lines (including SCLC) have significant issues as regards

their use in pre-clinical models. This problem with established
cell lines was exemplified recently by a study demonstrating
the significant issue of clonal evolution in breast cancer cell
lines during long-term culture, resulting in significant cell line
heterogeneity which can result in drastically different drug
responses between clones [26,27]. Studies in other tumor
types have shown that the epigenetic makeup of established
cell lines show a distinct subset of genes which acquire de
novo DNA methylation in cell lines which is not present in
primary tumors [28], which may affect interpretation of cellular
responses to new therapeutic agents tested in these cell lines.

SCLC tumor cell lines are no exception and some of the issues
that have emerged over the years include the fact that (a) they
exhibit genetic instability or drift during long-term passage, and
(b) there is lack of interaction with other non-tumor components
such as stromal, vascular, or inflammatory cells [25].

While pharmacogenomics profiling involving large collec-
tions of cancer cell lines have proven to be mostly reproduci-
ble, some discrepancies regarding drug sensitivity emerge
[27], as exemplified by the study of Ben-David et al. [27],

Article Highlights

● Small-cell Lung Cancer (SCLC) is an aggressive tumor with poor
prognosis, characterized by the development of rapid resistance to
chemotherapy.

● As surgical intervention is rare for SCLC, hypothesis testing has been
hampered by a lack of available material.

● The development of pre-clinical models has allowed the identification
and pre-clinical testing of novel new agents and therapeutic targets.

● Limitations exist for many of these models which preclude testing
patients for individualized therapy although advances in this area
suggest that this barrier may be overcome.

● Blood-based pre-clinical models may hold the key to this strategy
allowing for ex vivo expansion of patients' tumor cells allowing for
testing of samples for personalized therapy.

This box summarizes key points contained in the article.

Box 1. Brief descriptions of the currently existing SCLC models.

1 Established Cell Lines. A cell line is an immortalized permanently established
cell culture derived from patients that will proliferate indefinitely given
appropriate fresh medium and space [18].

2 Primary Cell Lines. Primary cells are taken directly from the tissue and
processed to establish them under optimized culture conditions. Some
primary cells will spontaneously immortalize at which point they become an
established cell line [19]. Others however will not and because they have not
been immortalized they will eventually senesce or stop dividing.

3 Spheroids. Multicellular spheroids are three-dimensional spherical cellular
aggregates that can be generated using either established cell lines or
primary cell lines [38].

4 Organoids. These are three-dimensional cell clusters with near-native
microanatomy that arise from self-organizing mammalian pluripotent or adult
stem cells grown in vitro [20,21,35].

5 Ex Vivo Lung Models. An acellular lung model in which all cells are removed
from a rat heart and lung block, and then tumor cells are reintroduced and
maintained using perfusion in a bioreactor [44].

6 Cell Reprogramming. SCLC like tumors have been generated from either lung
progenitor cells derived from human embryonic stem cells, or by forced
overexpression of critical transcription factors in primary normal human
bronchial epithelial cells.

7 Standard Xenografts. There are various models but all involve the injection of
human cancer cells into immunocompromised mice, either subcutaneously,
orthotopically, or systemically [67].

8 Distant Organ Metastasis models. These models often involve orthotopic
transplantation of cell lines, which subsequently develop metastases to
distant organs [22].

9 Syngeneic models. Such models are essentially homografts derived from
immortalized mouse cancer cell lines which originated from the same inbred
strain of mice. A classic example in lung cancer is the Lewis lung cancer model
[23]

10 Genetically Engineered Mouse Models (GEMMs). In these models,
manipulating the genomes of mice to have genetic alterations that
characterize human tumors such as those found in SCLC, de novo tumors are
formed in vivo [89].

11 Patient Derived Xenografts (PDXs). In these models resected human tumors
are directly engrafted into immune-deficient mice, and subsequently by serial
transplantation between mice [89].

12 Circulating Tumor cell derived explants (CDX). In these models circulating
tumor cells (CTCs) isolated from a patient’s blood form tumors when
engrafted into immune-deficient mice and like PDXs can be maintained by
serial transplantation [98].

188 J. S. Y. SUI ET AL.



which demonstrated that drastically different drug responses
can occur between cell line clones. Such a situation has also
been observed in SCLC in a recent in vitro study using n = 63
SCLC cell lines which found that there was no correlation
between patient treatment histories and sensitivities to FDA
approved SCLC treatments (Etoposide and topotecan) [29].

As such studies involving SCLC cell lines while useful, should
take into account the issues raised above and potentially include
some of the other pre-clinical models discussed below.

2.2. Primary cell lines

As surgical resection of SCLC is rare, the majority of early
information regarding cytogenetics abnormalities in SCLC
was derived using short-term culture of primary cells and cell
lines [30]. This has now of course been superseded by recent
genome sequencing of primary tumors isolated at surgery
[31], but is important in the historical context.

One of the advantages of primary cells is that they can be
used to derive patient-derived xenografts (discussed in depth
in a later section) (Table 2). However, one major limitation of
the use of primary cells cultured in dishes is that if you gen-
erate and propagate these SCLC primary cells in standard 2D
culture (involving standard growth conditions such as serum)

a group of tumor-specific genes that are found to be
expressed in both primary SCLC and xenografts is lost during
this transition to tissue culture and cannot be regained when
the tumors are reestablished as secondary xenografts [32].
More recently, Drapkin et al. [33] determined that short-term
cultures may overcome this limitation and found that treat-
ments of short-term cultures (STCs) of primary cells from
established PDX models correlated with patient responses to
experimental therapy [33,34].

2.3. Moving cell culture from two dimensions (2D) to
three dimensions (3D)

One significant issue with the common culture of SCLC cell
lines and primary cells is that often they are grown on a flat
surface, such as the bottom of a petri dish or flask, and whilst
convenient cells in the body do not naturally grow in a 2D
fashion. Methods to grow cells in 3D have been developed
such as spheroids and organoids (Table 2). The terminology
spheroid and organoid are often used interchangeably yet
there are distinct differences between them.

At their simplest spheroids can be viewed as consisting of
cell aggregates generated from a single cell type or from
a multicellular mixture of cells. Organoids on the other are

Table 1. SCLC cell lines frequently used in pre-clinical studies. Most frequently used SCLC cell lines stratified based on the new proposed molecular subtyping [9]
incorporating neuroendocrine features and differential gene expression. This table is derived from data provided in [9,129].

Neuroendocrine Non-Neuroendocrine

Classification SCLC-A
‘Classic’

SCLC-N
‘Variant’

SCLC-Y
‘YAP1’

SCLC-P
‘POU2F3’

Genomic Profile TP53mut/RB1mut TP53mut/RB1mut TP53mut/RB1 wt-enriched TP53mut/RB1mut

Transcriptional Profile ASCL1high

NEUROD1low

INSM1high

L-MYChigh

DLL3high

ASCL1variable

NEUROD1high

INSM1high

C-MYChigh

ASCL1low

NEUROD1low

INSM1low

YAP1high

ASCL1low

NEUROD1low

INSM1low

POU2F3high

Protein Expression (IHC) TTF-1high/C-MYClow TTF-1low/C-MYChigh

Cell Lines associated with each subtype NCI-H1930
NCI-H1963
COR-L47
NCI-H1436
NCI-H2196
SHP-77
NCI-H1105
NCI-H2029
CORL-51
NCI-H510
COR-L95
NCI-H146
COR-L88
NCI-H660
NCI-H889
NCI-H1618
NCI-H2141
DMS-454
NCI-H1184
NCI-H1876
DMS-153
NCI-H69
COLO-668
NCI-H1836
NCI-H209
DMS-79
NCI-1092
NCI-H2081
DMS-53

CORL-24
NCI-H524
NCI-H1694
DMS-273
HCC-33
NCI-H446
CPC-N
NCI-H82
NCI-H2171
SCLC-21 H
NCI-H2227
COR-L279
NCI-H2066

NCI-H196
NCI-H2286
NCI-H1341
SW-1271
NCI-H1339
DMS-114
NCI-H841
SBC-5

NCI-H211
NCI-H526
COR-L311
NCI-H1048

EXPERT OPINION ON THERAPEUTIC TARGETS 189
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established or derived from stem cells [35], and reflect a very
accurate microanatomy to the organ that they represent.
There are two critical differences between the two, namely
(a) internal developmental processes drive organoid forma-
tion, spheroids develop primarily via cell-to-cell adhesion;
and (b) long-term culture/expansion of cells requires an imma-
ture stem cell population to replenish dying cells. As such,
organoids maintain a population of stem cells during in vitro
culture, which guarantees their long-term viability.

The culture of SCLC as spheroids was originally used with
established SCLC cell lines, as they were thought to mimic in
some degree SCLC micro-metastases [36]. Since then,
a subpopulation of cells with cancer-stem like properties
(such as tumorsphere formation) was identified in primary
cells isolated from SCLC tumors [37]. It has now been shown
that circulating tumor cells (CTCs) isolated from the blood of
patients with recurrent SCLC can be cultured as tumorspheres
[38,39]. Compared to the same cells grown as single-cell sus-
pensions, these tumorspheres showed enhanced resistance to
topotecan and epirubicin [38]. One potential limitation of
deriving tumorspheres this way is that the multicellular spher-
oids formed from CTCs rely on the assumption that they
remain largely identical to the original tumors, but this has
not been fully validated [38]. Nevertheless, given the fidelity
observed for patient-derived xenografts generated using CTCs
(called CDXs – please see Section 2.11) it would appear that
tumorspheres derived from SCLC CTCs would indeed be simi-
lar to the primary tumor.

Tumor organoids represent a novel new technique as
a pre-clinical model (Table 2), particularly when primary cells
derived from the patient’s tumor are used to generate what is
called a patient-derived organoid or PDO [40]. PDO models
have several advantages over preexisting models, including
conserving the molecular and cellular composition of the
original tumor [41]. Moreover, there is some evidence that
PDOs can better maintain the primary and tumor cell char-
acteristics such as gene stability, heterogeneity, and the
pathological features of the primary tumors in long-term
culture than established cell lines and PDXs [32,40]. Thus,
organoids have advantages over the traditional model and
in vitro tumor model. These advantages highlight the tremen-
dous potential of tumor organoids in personalized cancer
therapy, particularly preclinical drug screening, and predict-
ing patient responses to selected treatment regimens
[35,40,41].

Organoids studies of SCLC are not very common. Initial
development of organoid cultures from lung cancer were
first described in abstract form in 2017, when 13 lung cancer
patient tissue organoids were described [42] and included
some from SCLC. The organoids were compared with their
human tumors histological and genetic profiles. In this regard,
the SCLC organoids showed a typical neuroendocrine mor-
phology, and maintained the genetic characteristics of the
original tumors including TP53 and RB mutation. Moreover,
the cancer organoids showed stronger tumor-forming capa-
city than direct graft of tumor tissue, and when grown as
organoids had resistance to various anticancer treatments
[42]. The same group recently published a more detailed
protocol for growing SCLC organoids on a microfluidic-based

platform for drug sensitivity testing [43]. In this matrigel-based
droplet system, SCLC cultures assemble after 72 h into 3D
organoid structures ranging from thin-walled cystic structures
to compact spherical masses [43]. Targeted exome sequencing
between the organoids and parent tissue showed shared
mutations [43]. The potential clinical utility of this system
was demonstrated by using these organoids to test drug
sensitivity, in this instance using the standard first-line agents’
cisplatin and etoposide [43]. This would appear to be the first
easy to use, cost-effective, and clinically relevant organoid-
based system for direct drug sensitivity testing in SCLC [43].

2.4. Ex vivo lung 4D model

Basically, this is an ex vivo acellular lung model, created by
removing all of the cells from a rat heart and lung block
(Table 2). It therefore retains a natural lung matrix maintain-
ing its three-dimensional architecture, including perfusable
vascular beds and preserved airways, including the basement
membranes of the alveolar septa. When tumor cells are
placed into the trachea, they form nodules in the lung matrix
[44]. While this technology has been shown to be suitable for
studies of SCLC [45], no data currently exists on the use of
this pre-clinical model to validate any potential SCLC thera-
peutic targets.

2.5. Cellular reprogramming/transdifferentiation models

Two recent papers have shown how SCLC can be generated by
forced reprogramming of cells. In the past conditions have been
established for differentiating human embryonic stem cells
(hESCs) into lung progenitor cells [46] (Table 2). Using this meth-
odology, and taking advantage of the current knowledge regard-
ing key proteins in SCLC, Chen et al. [47] found that by inhibiting
Notch, RB1, and TP53, they could generate significant numbers
of Pulmonary neuroendocrine cells (PNECs), the cells suspected
of being the putative precursors to SCLC cells. Furthermore,
these PNECs when transplanted into immunocompromised
mice formed tumors with SCLC characteristics [47].

Prior to this, Park et al. [48] had used lentivirus-based
transformation of normal human bronchial epithelial cells
(NHBEs) to generate cells which when xenografted into immu-
nocompromised mice formed tumors with SCLC features. The
methodology involved five targets and utilized a dominant-
negative TP53 (P); expression of myristoylated AKT to inhibit
PTEN (A); knockdown of RB1 (R); and overexpression of c-MYC
(C) and Bcl2 (B) (called PARCB) [48,49]. One limitation of this
particular methodology is that all 5 genetic manipulations
were required in order to achieve SCLC development, whereas
it is well established that only subsets of SCLC contain these
particular mutations/alterations [48,49].

2.6. Standard xenograft models

The most commonly used tumor xenograft model in cancer
research involves subcutaneous flank injection into immuno-
compromised mice [50], and xenografts of SCLC have been
used since the 1980 s [51,52], and continue to be used exten-
sively to the present [53] (Table 2).
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2.7. Standard orthotopic models

Some of the first orthotopic models for SCLC were described
in the 1990 s [54,55]. More recently orthotopic models com-
bining luciferase tags have been developed [56,57]; and in one
instance several xenograft models (subcutaneous cell line vs
orthotopic cell line vs subcutaneous PDX vs distant organ
metastasis) have been interrogated simultaneously [58]
(Table 2).

2.8. Distant organ metastasis models

The ability of SCLC cells to leave the primary tumor and
establish inoperable metastases is a major cause of death
and a serious impediment to successful therapy [13]. As
such, distant organ metastasis models of SCLC have been
developed to allow for pre-clinical interrogation of the efficacy
of drugs in this situation (Table 2). The first models used tail-
vein injection leading to metastases to the liver, kidneys,
lymph nodes, and bone marrow [59,60]. A follow-up study of
several cell SCLC lines found that although all cell lines tested
(SBC-5, SBC-3, SBC-3/ADM, H69, H69/VP) formed metastatic
nodules in multiple organs (liver, kidney, and lymph nodes),
only SBC-5 cells reproducibly developed bone metastases
[61–64].

One disadvantage of the methodology used in the previous
studies is that that simple use of intravenous tail-vein injection
of SCLC cells is not a true model of metastasis per se, but is
merely a model of multiple primary tumors. As such, orthoto-
pic implantation of the primary tumor followed by the sub-
sequent development of metastases would be a more relevant
pre-clinical model of SCLC. In this regard, distant metastases
were observed when orthotopic intra-pleural injection of SCLC
was conducted in athymic nude mice [65]. A similar approach
was also used by Nomoto and colleagues, where orthotopic
implantation of a GFP-tagged (green fluorescent protein) SCLC
cell line (DMS273-GFP) into the lung, resulted in distant metas-
tases to bone, brain, and lymph node (metastases common to
SCLC patients) [66]. Likewise, Taromi et al. also used intrathor-
acic injection of H69-Luc-GFP cells to develop a metastatic
model of SCLC with metastases to the liver, bone, brain,
adrenal glands, and kidney [57]. In a different approach,
another distant metastasis model described involving intra-
cardiac injection of a luciferase (luc) tagged SCLC cell line (luc-
H82) into NSG (NOD-scid gamma) mice also led to metastasis
to the liver, ovaries, head, and bone [58].

2.9. Syngeneic models

Syngeneic murine models entail the injection of immunologi-
cally compatible cancer cells into immunocompetent mice
(Table 2). The availability of syngeneic models to study lung
cancer is very limited, and the best known in lung cancer is
the Lewis lung carcinoma (LLC) model [67]. To our knowledge,
there have been very few reports of syngeneic SCLC mouse
models. The earliest was developed using HPV-E6/E7 trans-
genic mice, where two mouse SCLC cell lines PPAP-9 and
PPAP 10, reform tumors when injected into syngeneic mice
[68]. More recently a syngeneic model of SCLC in genetically

engineered mice (GEMM) was described [69] (and are dis-
cussed in greater detail in the next section)

Early experiments sacrificed the animals after a set period
(usually 5 weeks post inoculation) and used macroscopic dis-
section or X-Ray radiography to detect overt metastases.

Subsequently, most studies have utilized either GFP-
tagged or Luciferase-tagged SCLC cells to monitor for the
presence of metastases. Such studies use either
Bioluminescence imaging (BLI) or optical tomography to
assess for metastases. Studies such as those by Herbst and
colleagues [65] have attempted to determine if these manip-
ulations affect the growth, metastatic spread, and testing the
efficacy of chemotherapeutic agents of these SCLC metas-
tases models. Their conclusions were that such models had
close correlation between the existing clinical data suggest-
ing that these models could be predictive of results in the
clinical setting, and that the manipulations used to generate
and monitor the models did not affect the results in any
meaningful way [65].

2.10. Genetically Engineered Mice Models (GEMM)

GEMMs are non-patient-derived cancer models often achieved
by manipulating one or more genes (Table 2). Until recently,
progress in this area was limited, but more recent technologi-
cal developments have led to advanced mouse models that
closely recapitulate the human cancer in terms of genetic
composition, interactions with the tumor microenvironment,
metastasis, drug response, and drug resistance [70]. With the
establishment that loss of Rb and p53 are almost universally
inactivated in SCLC [9], the first GEMM for SCLC was derived
using a strategy to inactivate both genes and established in
2003 [71]. Two additional models were then developed incor-
porating triple-knockouts, the first involving Rb/p53 and p130
[9,72,73], the second involving knockout of Pten [73,74].

The Rb/p53/p130 knockout GEMM (also known as the TCKO
model) has been used to further investigate the roles that two
other transcription factors associated with SCLC (NEUROD1
and ASCL1) play in this cancer revealing discrete genomic
landscapes and gene expression programs that underpin the
heterogeneity seen in SCLC [75].

GEMM models have been used to show that MYC family
members are key driver gene in SCLC. The first described was
a model derived by Anton Berns group using re-derived
embryonic stem cells (GEMM-ESCs) in the Rb/p53 GEMM [76].

Having identified that MYC-L is an important element in
SCLC, studies using the TCKO model revealed a population of
long-term tumor-propagating cells (TPCs) with high expression
of EpCAM and CD24, and elevated MYC activity which could be
targeted using Bromo- and Extra- Terminal domain (BET) inhi-
bitors [77]. Other studies have also used an Rb/p53/Pten knock-
out GEMM, to conduct long-time longitudinal study of CTCs in
animals undergoing over 4 days of treatment with a BET inhi-
bitor [78]. Support for the critical role-played by MYC family
members and in particular Mycl has come from other GEMM
derived Mycl models such as the pRblox/lox,p53lox/lox,p130lox/lox,
Mycllox/lox derived by Kim et al. [79], and the pRbfl/fl, p53fl/fl,
MycT58ALSL/LSL strain [80,81].
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The importance of these models is that their use has identified
novel candidate targets such as Aurora Kinase [80], and that Mycl-
driven tumors are susceptible to arginine depletion [53].

Another transcription factor commonly altered in SCLC is
NFIB. Originally identified in an analysis of the pRbfl/fl, p53fl/fl

model by Tyler Jacks and colleagues [82], subsequent studies
in a pRbfl/fl, p53fl/fl p130 f l/fl GEMM demonstrated that NFIB
promotes metastasis via changes in the chromatin landscape
of these tumors [83]. GEMMs designed to overexpress NFIB
have been developed confirming the oncogenic role of NFIB
in SCLC [84,85].

Most recently, a GEMM involving Crebbp deletion in the
pRb/p53 background was shown to be a potent tumor sup-
pressor in SCLC, and inactivation of CREBBP enhances
responses to histone deacetylase inhibitors [86], a finding vali-
dated in SCLC cells, where CREBBP-mutated but not wild-type
cells showed significantly lower IC50 values after treatment
with a histone deacetylase inhibitor (HDACi) [87].

One of the advantages associated with GEMM models is that
they can closely mimic the tumoral heterogeneity that is often
observed in SCLC. In this regard, this can lead to the identification
of novel therapeutic avenues such as the identification of the
potential to target MYC overexpressing SCLC with either BET
inhibitors [77], Aurora kinase inhibitors [80], or through arginine
depletion [53]. In addition, these models have also been used to
examine the differential sensitivity SCLC has to cisplatin [88].

A major limitation of GEMMs in particular for germline
GEMMs is that the development of these models is ‘time con-
suming, laborious, and expensive’ [70]. Another disadvantage
lies in the fact that in order to maintain these expensive models
they require continuous breeding. This comes with an asso-
ciated risk for genomic diversification or genomic evolution. It
has been estimated that on the basis of spontaneous mutation
rates, in the wild-type setting 0.96 deleterious germline muta-
tions should arise each generation. This number will obviously
be much higher in genomically unstable mice, and as colony
maintenance of GEMMs relies on inbreeding, it is estimated that
there is a 25% chance for a new mutation to consequently
become homozygous and thus fixed in the population [89].

2.11. Patient-derived xenografts

PDX models from resected SCLC have been well established. In
these models, tumors are directly engrafted into immune-
deficient mice, and subsequently by serial transplantation
between mice [89] (Table 2). The importance of these models is
that they showboth genomic and functional fidelity to the original
tumors particularly with respect to sensitivity to standard therapy
regimens such as etoposide and platinum (EP) [33] and to identify
biomarkers predictive of chemoresistance [90]. In the study by
Drapkin et al., upregulation of an MYC expression signature was
associated with resistance to EP [33]. Moreover, such models have
been used in a Phase II clinical trial setting in SCLC [91].

In addition to PDX models, CTC derived xenografts called
CDX have been established [92]. These models have been
shown to closely resemble the donor’s original tumor, and
mirror patient response to therapy (Table 2). Moreover, the
ability to derive CDX models from blood samples opens up

the approach to allowing the generation of serial longitudinal
models from the same patient throughout the course of their
treatment [34,93]. Such a strategy has been successfully used
by Drapkin et al., to recapitulate the evolving drug sensitivities
in a patient [33], and also to identify novel potential therapeu-
tic approaches in both chemo-naïve and chemo-refractory
SCLC patients [93–95].

Given the current potential for the use of CDXs and
PDXs in SCLC therapy in the clinical setting [91], how
might this impact or affect our attempts to follow the
3 R initiative? Proposed 60 years ago, this initiative
attempts to Replace, Reduce, and Refine the way that
animals are used in research [96]. In this regard, the sug-
gestion that for SCLC, the one mouse, one patient para-
digm is worth exploring. First proposed by Malaney et al.
[97], this model envisages the implantation of patient
tumor samples in mice for subsequent use in drug efficacy
studies. This would then allow for identification of
a personalized therapeutic regimen for each patient, elim-
inating the cost and toxicity associated with non-targeted
chemotherapeutic measures [97]. This would appear to be
ideal for SCLC, yet one of the problems that may prevent
this in a real-life setting is that often ‘the time frame for
the generation of these models often exceeds the life span
of the donor patient making the “one mouse, one patient”
paradigm incompatible for SCLC’ [98]. In this regard, an
alternative may therefore be the short-term culture of CTCs
for ex vivo analyses of clinical therapeutic responses [99].
Such a strategy has recently been demonstrated by
Caroline Dive and colleagues, where short-term ex vivo
culture of CDX cells was utilized to develop a platform
capable of screening for novel treatments [34]. Because
of the limited utility of CDX models for direct patient
therapy assessments, the direct culture of CTCs is being
evaluated for this purpose [34]. However, the technical
issue of the low numbers of CTCs in a blood draw has
yet to be resolved. Moreover, such a strategy may skew
toward patients with a high burden of disease.

2.12. Chicken embryo chorioallantoic (CAM) assay

The chick chorioallantoic membrane (CAM) assay has been
suggested as a cost-effective versatile platform to conduct
rapid PDX preclinical studies [100], with the potential to test
multiple targeted therapies within 5–10 days of engraftment
(Table 2). Successful engraftment of patient tumor tissue
has been reported for several tumor types with take rates
of up to 100% reported in some instances [100]. Very early
initial studies have shown that lung cancer tissues can be
successfully implanted in the CAM assay [101,102]. The
tissues transplanted were described as either lung undiffer-
entiated carcinoma [101], or squamous cell carcinoma [102].
Whilst to our knowledge no PDX studies of SCLC in the
CAM assay have currently been described, there has been
one SCLC study examining angiogenesis utilizing the NCI-
H446 cell line [103]. This suggests that the CAM assay may
therefore have utility within the SCLC setting particularly
regarding rapid analysis of PDX-based studies.
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3. Validation of therapeutic targets

It has been discussed in the previous sections novel potential
therapies have been identified from the development of new
preclinical models of SCLC. In the following sections, we will
discuss how pre-clinical models have helped to identify some
of these new therapeutic vistas for the treatment of SCLC.

3.1. MYC

Of the several recurrent genetic aberrations identified in SCLC,
the MYC family genes (MYC, MYCL, and MYCN) have emerged
as oncogenic drivers that may constitute novel therapeutically
tractable targets [104]. Using the pre-clinical models discussed
above various studies have identified that alterations to the
MYC family may render SCLC sensitive to either Aurora Kinase
inhibitors [104,105], or to BET inhibitors [106–110] (Figure 1,
Table 3). Subgroup analysis of c-MYC by IHC in archival tumor
biopsies from a Phase II trial (NCT02038647) of the Aurora
Kinase inhibitor Alisertib ± paclitaxel in SCLC suggests that
tumors with high c-MYC expression may indeed be suscepti-
ble to this compound [111], but caution is indicated as the
number of samples in this subgroup analysis was restricted to
n = 33 and further studies are therefore warranted) (Table 3).
In a more recent development, a Crispr-based approach in

SCLC cell lines and xenografts has identified that loss of pRb
in SCLC renders them hyperdependent on Aurora B kinase,
and as such amenable to Aurora B kinase-specific inhibitors
[112]. In the same issue, Buchanan and colleagues identified
a synthetic lethal interaction with RB1 and Aurora Kinase
A [113]. Identifying which patients will respond to Aurora
Kinase inhibitors is therefore becoming increasingly important.
In this regard, a proteomic-based approach of SCLC identified
two major subgroups characterized as either high TTF-1/low
cMYC, or low TTF-1/high cMYC. This low TTF-1/high cMYC
subgroup was confirmed as being predictive of responsive-
ness to Aurora Kinase inhibitors [114] (Table 3).

3.2. NOTCH/DLL3

The comprehensive profiling of tumors by George et al. iden-
tified the Notch pathway as being significantly affected in
SCLC [31]. DLL3 is a Notch inhibitory ligand whose expression
is found in ~85% of SCLCs, with minimal to absent surface
expression in normal lungs and has led to the development of
several DLL3 targeting approaches [115] (Figure 1, Table 3).
Studies in preclinical models up to and including PDXs all
suggest that DLL3 could be both an excellent biomarker and
therapeutic target in SCLC [58,116–118]. However, in a recent
Phase II study of one of these agents Rova-T (Rovalpituzumab

Figure 1. Targets currently under investigation in SCLC.
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Teserine) (Figure 1), n = 339 patients were assessed for DLL3
by IHC, and DLL3-high and DLL3-positive tumors were seen in
238 (70%) and 287 (85%) patients, respectively [119].
Unfortunately, the results of this trial were mostly unpromising
with modest clinical activity that was associated with grade
3–5 adverse events seen in 213 (63%) patients [119]. A second
Phase III trial comparing this agent with Topotecan (TAHOE)
for the second-line treatment of patients with high DLL3
(≥75%) extensive-stage SCLC was put on hold as shorter over-
all survival (OS) was reported for the Rovalpituzumab arm
compared with the control arm of topotecan therapy.
A further phase III study which was evaluating Rova-T as
a first-line maintenance therapy for advanced SCLC, compared
to placebo (MERU) also recently failed, as interim data from
the study demonstrated no survival benefit for patients trea-
ted with Rova-T. On the basis of all these negative trial data
Rova-T development has subsequently been discontin-
ued [12].

DLL3 expression was also recently assessed in a CTC-driven
biomarker study of SCLC patient responses to etoposide/plati-
num [120]. Remarkably it emerged that in this study of n = 108
treatment-naïve patients, baseline samples were taken from all
patients, after one chemotherapy cycle (n = 68 patients; post-fir
st cycle sample) and at the time of disease progression, before
the initiation of second-line treatment (n = 48 patients; disease
progression sample). The expression of DLL3, cytokeratins (CK),
CD45, and vimentin (Vim) was characterized on the isolated
CTCs from these samples. The most important finding was
that prior to treatment, 74.1% of patients had detectable
DLL3+/CD45− CTCs. One-treatment cycle significantly decreased
both the detection rate (p < 0.001) and the absolute number
(p < 0.001) of the DLL3+/CD45− CTCs and were associated with
(a) significantly decreased progression-free survival at baseline
and (b) with significantly decreased overall survival on disease
progression [120]. Despite the apparent set-backs with DLL3
targeting agents, a recent study using cell lines and patient PDX
models identified an LSD1-NOTCH-ASCL1 axis that was sensitive
to LSD1 inhibitors [121] (Figure 1, Table 3), confirming an earlier
study in SCLC cell lines and xenografts that had identified LSD1
as a therapeutic target in SCLC [122]. As such, the use of DLL3
as a biomarker may allow the stratification of patients into trials
involving LSD1/NOTCH inhibitors moving forward (Table 3).

3.3. Onco-immunotherapy (checkpoint inhibitors)

At some point, tumors manage to evade our immune system
often by expressing signals that inhibit the anti-tumor
immune response [123]. ‘The scientific turning point for cancer
immunotherapy came with the understanding that T cell
immune responses are controlled through on and off switches,
so-called immune checkpoints that protect the body from
possibly damaging immune responses’ [124]. Blockade of
these checkpoints has emerged as a new paradigm for the
treatment of cancer, including SCLC [125]. The most advanced
inhibitors target the following checkpoints: CTLA4 (Cytotoxic
T Lymphocyte-Associated 4); PD-1 (programmed death 1
receptor) and its ligand programmed death-ligand 1 (PD-L1)
(Figure 1, Table 3).

As previously mentioned in the introduction, the results of
the IMpower133 study of Atezolizumab (an anti-PD-L1 ther-
apy) have been approved by the FDA for first-line therapy in
extensive-stage SCLC [14]. Similar encouraging results have
also been observed in the first-line setting for the anti-PD-1
checkpoint inhibitor Durvalumab as part of the CASPIAN
Phase III trial evaluating the efficacy of this agent in combina-
tion with platinum-etoposide, with or without tremelimumab
(an anti-CTLA4) in treatment-naïve extensive-stage SCLC [126].

Checkpoint inhibitors are also showing promise within
the second-line setting that has come from data arising from
the Phase Ib KEYNOTE-028 basket trial of Pembrolizumab
(anti-PD1), which demonstrated a tolerable safety profile
with an OS of 9.8 months at median follow-up [127]. More
recently, a pooled analysis of two trials KEYNOTE-028 and
KEYNOTE-158 of patients with previously treated recurrent/
metastatic small-cell lung cancer (SCLC) treated with two-or-
more therapies found that the median duration of response
was not reached (range, 4.1‒35.8+ months), and that 61% of
responders had responses lasting ≥18 months [128], which
supports the potential use of pembrolizumab within the third-
line or salvage therapy setting, and has resulted in a priority
review designation by the FDA for SCLC patients following
progression after ≥2 prior lines of therapy [129].

It must be noted that other trials of checkpoint inhibitors in
SCLC have not had the same success rate as the ones
described above, and the potential confounding factors have
been comprehensively reviewed recently by Reguart et al.
[129]. For example, compared with non-small cell lung cancer
(NSCLC), levels of PD-L1 are generally low in SCLC [15]. In
a recent development, DNA-damaging agents have now
been shown to enhance the expression of the checkpoint
inhibitor target PD-L1 and enhance anti-tumorigenic CD8
+ cytotoxic T-cells, dendritic cells, and M1 macrophage popu-
lations in an SCLC model suggesting novel new therapeutic
approach and regimens to treat SCLC [130,131].

3.4. SLFN11 and the DNA damage response

High expression of SLFN11 has been linked with the response to
DNA-damage-inducing chemotherapies in many cancers [2,111].

An in-depth DNA methylation analysis of SCLC identified that
dense clustering of high-level methylation occurred in CpG
islands which was correlated with high expression of the histone
methyltransferase gene EZH2. Moreover, pharmacological inhibi-
tion of EZH2 in a patient PDX was found to inhibit tumor growth
[132]. Building on this observation, Poirier and colleagues then
used paired SCLC chemo-naïve and chemo-resistant PDX models
to identify that in the resistant tumors, EZH2 had epigenetically
downregulated SLFN11 [133] (Figure 1). Combining standard
cytotoxic therapies with an EZH2 inhibitor subsequently pre-
vented both the emergence of acquired resistance and augmen-
ted chemotherapeutic efficacy in both the chemo-sensitive and
chemo-resistant models of SCLC [133] (Table 3). Expression of
SLFN11 has since been shown to correlate with response to poly
ADP ribose polymerase (PARP) inhibitors such as Talazoparib,
and IHC expression levels of SLFN11 could be used as
a predictor of Talazoparib response [134]. Additional studies of
PARP inhibitors using preclinical PDX and CDX models have

EXPERT OPINION ON THERAPEUTIC TARGETS 197



confirmed their potential utility in combination with either radio-
therapy [135], or via WEE1 inhibitors [93] (Table 3).

In this regard, in a Phase II clinical trial of SCLC which
examined the combination of the alkylating agent
Temozolomide in combination with the PARP inhibitor
Veliparib found that no significant difference in PFS was
observed in unstratified patients, but ORR was significantly
higher in patients receiving TMZ/veliparib compared with
TMZ/placebo (39% v 14%; P =.016). Critically, however, if
patients were examined for SLFN11 expression, significantly
prolonged PFS (5.7 v 3.6 months; P =.009) and OS (12.2 v
7.5 months; P =.014) were observed in patients treated with
TMZ/veliparib who had SLFN11-positive tumors [136]. These
results suggest that SLFN11 could potentially be used to stratify
SCLC into appropriate treatment arms for therapy with either
PARPi or epigenetic targeting using EZH2 inhibition (Table 3).

3.5. CD56

CD56 (also known as neural cell adhesion molecule 1, NCAM1)
is a membrane glycoprotein that was initially shown to be
useful in the diagnosis of SCLC [137,138]. More recently, how-
ever, both antibody–drug conjugates (ADC) and chimeric anti-
gen T cell (CAR-T) approach to target CD56 have been
assessed in SCLC (Table 3, Figure 1).

The first agent developed to target CD56 was Lorvotuzumab
mertansine an ADC comprising an anti-CD56 antibody linked via
a cleavable disulfide linker to the tubulin-binding maytansinoid
DM1 (Figure 1), which showed good pre-clinical activity in animal
models of SCLC [139]. However, a Phase I/II clinical trial in combi-
nation with carboplatin/etoposide for patients with extensive-
stage SCLC was associated with only modest improvements in
patient tumor responses, but with significant additional toxicities
most notably a higher incidence of serious infections with fatal
outcomes, and it was recommended that this combination should
not be considered for further development [140] (Table 3). Two
additional ADCs have been developed utilizing the anti-CD56
antibody Promiximab coupled either with Duocarmycin (a DNA
alkylating agent) [141], or Monomethyl auristatin E (a highly toxic
antimitotic drug) [142] (Figure 1), both of which showed pre-
clinical activity in animal xenograft models (Table 3). At present,
there do not appear to be any clinical trials running for either of
these ADCs in SCLC.

A CAR-T approach has recently been reported in which the
engineered CD56 R-CAR+ T cells were found to be capable of
SCLC tumor cells in in vitro co-cultures and inhibit tumor
growth in vivo when tested against CD56+ human xenograft
models [143] (Figure 1, Table 3).

3.6. Trop-2

Trop-2, also known as epithelial glycoprotein-1, gastrointest-
inal antigen 733–1, membrane component surface marker-1,
and tumor-associated calcium signal transducer-2 is
a transmembrane glycoprotein that is generally upregulated
across all tumors (including SCLC) compared to normal cells
[144], and is essential for anchorage-independent cell
growth and tumorigenesis [145,146]. Subsequently,

antibodies targeting Trop-2 were been developed and sub-
sequently Trop-2-targeted ADC (Figure 1). Of these, the most
studied is sacituzumab govitecan (IMMU-132) an ADC target-
ing Trop-2 coupled with SN-38 (a 1000 fold more active
metabolite of irinotecan) [147–149] (Table 3). It has recently
achieved FDA breakthrough therapy status for the treatment
of metastatic triple-negative breast cancer (mTNBC)
[150,151]. Sacituzumab govitecan has also been examined
in a Phase II clinical trial of (n = 53) patients with metastatic
SCLC, showing a safe and effective therapeutic profile, and
the ORR was 14%, with a median OS of 7.5 months [152]
(Table 3), and it will interesting to see if future studies of this
agent in SCLC patients continue to show clinical benefit.

4. Conclusion

We have come a long way in the development of pre-clinical
models in SCLC. A major barrier to the lack of progress in SCLC
continues to be an incomplete understanding of the hetero-
geneity displayed by SCLC patients’ tumors, and the absence
of biomarkers that could guide selection of personalized ther-
apeutic strategies [114]. Despite this, whilst identification of
novel biomarkers and candidate therapeutic targets have
indeed been identified, the resulting clinical trials of these
agents have not yet made any major breakthroughs in treat-
ment options for patients with SCLC. Continued development
of the novel pre-clinical models discussed in the previous
sections coupled with new syntheses based on large-scale re-
analysis of SCLC data will provide new vistas and avenues of
patient stratification which will ultimately result in definite
breakthroughs for therapy [9,99,111,153].

5. Expert opinion

Huge strides have been made in the past two decades in our
understanding of SCLC based in no small part on the devel-
opment of the pre-clinical models discussed in the previous
sections. Despite this, the treatment options available to SCLC
patients remain limited, and overall survival remains dismal.

Moving forward, how can we improve on this? Are there
any alternatives that we could use? For example, do we need
pre-clinical models? In a recent analysis of RNA-Seq data from
small-cell neuroendocrine cancers (SCNCs) of which SCLC
belongs, it was found that (a) SCNCs have a strongly conver-
gent expression signature; and (b) As these tumors progress
from adenocarcinoma to SCNCs the tumors become increas-
ingly independent of their tissue of origin, becoming more
similar to each other than to adenocarcinomas of different
tissues [154]. Moreover, from a drug screening perspective, it
was subsequently shown that SCNCs demonstrated common
sensitivity profiles that overlap with hematological cancers,
which may allow or guide treatment options beyond tissue-
specific-targeted therapies [154].

Given the difficulties that researchers face regarding the
development and heterogeneity seen in SCLC, can we cor-
rectly mimic SCLC? Rather than developing even more GEMMs
or PDX/CDX models is there an opportunity to take the new
knowledge gained from these and instead develop integrated
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cancer tissue engineering models of SCLC to enable precision
medicine treatments [155].

Synthetic lethality describes a situation whereby for two
genes that interact, disruption of either gene alone is viable
but when both genes are simultaneously disrupted the net
result is a loss of cell viability [156]. Synthetic lethality screen-
ing aims to identify novel therapeutic targets and increased
genetic interaction networks for targeting cancer [157].
Recently a synthetic lethal screen in SCLC identified that
HDAC6 and its corresponding inhibitor ricolinostat elicited
synergistic effects with BET inhibitors in SCLC [158]. In addi-
tion, it was found that Natural Killer (NK) cells are critical to
this response, suggesting that these innate immune lymphoid
cells play a role in SCLC tumor treatment response [158], and
the suggestion that immunoepigenetic combination therapies
may become a new paradigm for the treatment of cancer
including SCLC [159]. Critically the first major breakthrough
in the treatment of SCLC would appear to be in the oncoim-
munology setting where checkpoint inhibitors have been
shown to have clinical benefit and may yet be approved in
the first-line setting in combination with chemotherapy
[14,129]. From analyses, it would appear that Tumor
Mutational Burden (TMB) may have the ability to predict
patient response for checkpoint inhibitors [160,161].
Intriguingly, neoantigen-directed immune escape in NSCLC
was recently shown to involve an epigenetic mechanism
(hypermethylation of genes that contain neoantigenic muta-
tions) [162], suggesting that immunoepigenetic strategies may
become important moving forward in both the selection and
treatment of patients with SCLC.

Novel technologies such as clustered regularly interspaced
short palindromic repeats (CRISPR) based screening strategies for
synthetic lethality are now beginning to identify new subsets of
tumors sensitive to targeting agents such as the approach used
by Oser et al. [112] to identify that SCLC with loss of Rb1 are
hyperdependent on Aurora Kinase B. In a similar strategy, using
a CRISPR-based activation model, Sos and colleagues demon-
strated that MYC (but not MYCL or MYCN) repressed BCL2 tran-
scription via interaction with MIZ1 and DNMT3a [163]. As
a consequence of this loss of BCL2, cells were found to have
elevated apoptotic priming, intrinsic genotoxic stress, and sus-
ceptibility to DNA damage checkpoint inhibitors. Moreover,
a combination of combined AURK and CHK1 inhibition substan-
tially prolonged the survival of mice bearing MYC-driven SCLC
beyond that of combination chemotherapy, confirming the
potential role of MYC as a candidate that may allow for geno-
type-based selection of targeted therapeutics in SCLC [163].

Can we identify better biomarkers to predict patients who
will respond to novel therapeutics? One emerging biomarker
that may be useful to assist in stratification may be to include
TTF immunohistochemistry in SCLC patient workup along with
actionable targets such as DLL3 and c-MYC which may aid in
the correct stratification of patients for treatment [114,164].
Moreover, low-TTF expression may also indicate sensitivity to
additional targets such as DNA Damage Repair agents, PLK
inhibitors, etc. [114]. Cells that were TTF-high were found to
be sensitive to Bcl-2 inhibitors which have been shown to
have activity in pre-clinical PDX models of SCLC, when com-
bined with rapamycin [165]. High TTF expression has also

been shown to be a potential surrogate marker for DLL3
expression, and could potentially be used to additionally stra-
tify patients with DLL3-positive tumors [114], and this obser-
vation was recently validated in a separate cohort of
SCLC [164].

One of the significant barriers to individualized therapy for
SCLC remains the lack of biological material to allow for
detailed analysis. In this regard, the length of time for devel-
oping PDX or CDX models is a rate-limiting step. The emer-
gence of ex vivo cultures of CTCs may prove to be a critical
element in the treatment paradigm of SCLC [99], and the
development of new technologies such as microfluidic chip-
based growth of patient organoids [43] may allow for a more
nuanced analysis of patient response to therapy and/or iden-
tification of individualized personalized therapeutic treatment
regimens. Another potential area where advances may occur
involves the use of conditional reprogramming to generate
stable PDX derived cell lines [166] suitable for organoid devel-
opment and the establishment of patient-derived organoid
biobanks [167,168].

What therefore would be the ideal model for SCLC therapy
testing or is there one? Despite being described as small-cell,
one size does not fit all in the case of this difficult to treat
cancer. As discussed in previous sections the development of
PDX or CDX models in mice is costly and time-consuming and
does not make them easily accessible to personalized patient
therapeutic testing. In this regard, it may be useful to develop
organoid-based testing strategies using CTCs or alternatively,
CAM assay strategies could be considered as an alternative for
personalized approaches to therapy.

Given the potential breakthroughs emerging for the use of
onco-immunological targeting of SCLC, the current pre-clinical
models (including PDXs and CDXs) have limitations. In this
instance, pre-clinical models that involve humanized mice
that recapitulate the human immune system may yet prove
to be an essential development to come [169–171]. In this
regard, such models have been used to test onco-
immunological agents such as checkpoint inhibitors in
NSCLC [172–174], but we are currently unaware of any such
studies in SCLC. However, whilst such a strategy looks promis-
ing it is not without limitations as the immune system gener-
ated in these models is not the same as the cancer patients
(that is, whilst the PDX/CDX itself may be similar to the cancer
patient, unless the humanized mouse system utilizes PBMCs
from the patient, then the immune component will not truly
match that of the patient). Nevertheless, we look forward to
seeing studies in SCLC utilizing such approaches for pre-
clinical analysis of onco-immunological therapies to treat this
cancer.

Blood-based analysis of SCLC may yet prove to be critical to
allow clinicians treat patients with SCLC. Recent analyses of
circulating free DNA (cfDNA) longitudinally in patients with
SCLC [175] raises the possibility that both strategies (cfDNA
and isolation of CTCs for ex vivo expansion and testing) could
be combined to enhance the treatment options for patients
with SCLC. Moreover, the recent development of a blood-
based methodology to assess TMB in NSCLC (bTMB) [176]
suggests that the age of the so-called liquid biopsy is about
to emerge in our treatment of SCLC.
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