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Abstract
The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal 
forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the 
fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers 
from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. 
The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed 
to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging con-
nections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and 
motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiol-
ogy of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of 
the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function 
and development.

Keywords  Dorsal diencephalic conduction system · Stria medullaris · Habenula · Fasciculus retroflexus

Introduction

The dorsal diencephalic conduction system (DDCS) is 
a highly conserved integrative and modulatory pathway 
present in all vertebrates (Sutherland 1982). This bilat-
eral assembly consists of two white matter tracts with an 

intervening nucleus and is a key conduit connecting the cog-
nitive-emotional basal forebrain to the modulatory monoam-
ine areas of the brainstem (Sutherland 1982; Gardon et al. 
2014). It is often overlooked in favor of its more ventral 
and larger companion, the medial forebrain bundle, which 
also connects the fore- and hindbrain regions. The similar-
ity in connections (forebrain limbic–striatal to monoamin-
ergic brainstem) and the fact that they converge upon each 
other anteriorly and posteriorly despite straddling either the 
dorsal (epithalamic route) or ventral (hypothalamic route) 
thalamus (Fig. 1) led Nauta to suggest that they may have 
similar functions with respect to reward behaviors (Nauta 
1958). The DDCS first revealed a role in reward in 1970 
(Boyd and Celso 1970) and subsequently also showed func-
tionality in the ‘top-down’ modulation of motivation, mood 
and pain. Highly conserved amongst vertebrates, (Beretta 
et al. 2012; Concha and Wilson 2001) this system, unlike 
the singular component of the medial forebrain that forms 
direct connections (Coenen et al. 2018), is composed of 
three structures: the white matter stria medullaris, the inter-
vening habenular nucleus and the white matter fasciculus 
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retroflexus. Gathering inputs from diverse frontal areas 
including the septal nuclei (pleasure and motivation), 
hypothalamus (arousal and pain), fronto-cortical regions 
(decision-making), and basal ganglia (motor and behavio-
ral control), the stria medullaris funnels information from 
these regions into the habenula, situated at the dorso-caudal 
end of the thalamus (Parent et al. 1981; Geisler and Trim-
ble 2008). Information flow in the SM is almost entirely 
unidirectional (forebrain to habenula), apart from some 
reciprocal fibers arising from the lateral preoptic and lateral 
hypothalamic areas (Yamadori 1969; Champney 2015; Pat-
estas and Gartner 2016). After integrating these inputs and 
relaying in the habenula, output fibers project down through 
the fasciculus retroflexus to synapse among brainstem mono-
amine areas including the midbrain ventral tegmental area 
and hindbrain raphe nuclei. Through this system, distinct 
frontolimbic areas can modulate monoaminergic release in 
the brainstem and consequently influence whole brain mono-
aminergic tone.

In recent years, the DDCS has received increasing atten-
tion (Gardon et al. 2014; Fakhoury et al. 2016b; Roddy et al. 
2018; Fore and Yaksi 2019; Ichijo and Toyama 2015), with 
research suggesting a particular role in neuropsychiatric 
disorders due to its function in monoamine regulation (Fak-
houry 2017). This is the first review to collate the literature 
on the known anatomy, function and development of the 

human DDCS as a whole, as opposed to reviews which have 
focused exclusively on the habenula alone (Hikosaka et al. 
2008; Hikosaka 2010; Fakhoury 2017; Bianco and Wilson 
2009). Although initially aimed as a review of the human 
DDCS, due to the relative dearth of human studies, the 
review will be complemented by other vertebrate studies 
throughout.

Methods

A comprehensive literature search to investigate the 
range and destination (medial/lateral) of habenular inputs 
was undertaken for the purpose of this review. Online 
sources including PubMed/MEDLINE, Google Scholar, 
EMBASE, OVID, and PsycINFO were systematically 
searched by the primary and senior authors (ER and DWR) 
using the terms “HABENULA”/”DORSAL DEINCE-
PHALIC CONDUCTION SYSTEM”/”FASCICULUS 
RETROFLEXUS”/”HABENULOPEDUNCULAR 
T R AC T ” / ” H A B E N U L O I N T E R P E D U N C U L A R 
TRACT” + “INPUT”/“EFFERENT”/“TRACING”/“C
ONNECTIONS”/”MIDBRAIN”/HINDBRAIN”. No 
time limit was imposed on search results. Once areas 
were identified, the search was rerun for each area sepa-
rately, e.g., “HABENULA” + “HYPOTHALAMUS”, 
“HABENULA” + “AMYGDALA”. All vertebrate species 
were included in the search. For each article, references were 
checked and accessed if considered potentially relevant. A 
physical search of older literature and books archived in the 
Department of Anatomy, Trinity College Dublin was also 
undertaken. All studies were collated, and the data extracted 
and crosschecked by two researchers (ER and JW).

To determine the mean volume of the habenula, we ana-
lyzed data from 14 studies examining normal habenulae (i.e., 
studies examining habenulae volumes in normal individu-
als, or control data from clinical studies) in a total of 356 
subjects (excluding data from repeated studies). Data were 
extracted from the results of these studies, and the authors 
contacted if the raw data was unavailable from published 
sources. Many study data sets were unavailable and, there-
fore, mean habenular volumes could not be calculated. As 
such using the SPSS 24 “compute” command, the MEAN 
function was used to generate an available analysis (AIA) 
scale for the missing data (Parent 2013).

Stria medullaris

(Latin; inner strip/furrow) The stria medullaris (SM), also 
known as stria medullaris thalami or habenular stria, is a dis-
crete bilateral white matter tract forming the first part of the 
dorsal diencephalic conduction system (Sutherland 1982). 

Fig. 1   The dorsal diencephalic conduction system, with the stria 
medullaris, habenula and fasciculus retroflexus highlighted. The SM 
can be seen arching over the thalamus and terminating in the Hb. 
The larger more wedged-shaped LHb is labeled and can be distin-
guished from the smaller MHb. The FR can also be identified with 
fibers arising from the MHb running through the core of the FR and 
fibers arising from the LHb traveling in the mantle of the FR. Brain 
photography courtesy of Professor Paul Tierney, Head of Discipline, 
Department of Anatomy, Trinity College Dublin. SM Stria Medulla-
ris, Hb habenula, FR Fasciculus Retroflexus, LHb Lateral Habenula, 
MHb Medial Habenula
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An unlabeled drawing of the SM can be clearly seen in Vesa-
lius’ texts (Vesalius 1543), but was first designated as the 
medullary stria by Wenzel and Wenzel (1812). Other terms 
over the years include the columna medullaris (Tarin 1750), 
the markiger Streisen (von Soemmerring 1791) and rené 
(reins) (Cruveilhier 1836). Previously considered part of the 
olfactory system due to its origins around the basal forebrain 
regions (Ramon y Cajal 1911), it is now well established that 
the SM is the primary afferent of the behavior modifying 
DDCS (Fakhoury et al. 2016a).

Anatomy

The stria medullaris first appears as a bilateral compact fas-
cicle just posterior to the anterior commissure (Buchanan 
and Newton 1948). At this point, it is in contact with the 
fornix and stria terminalis as all three tracts converge around 
the anterior commissure. The SM runs caudally along the 
roof of the third ventricle, attached to the tela chordae 
(Faucette 1969) and arches dorsally over the thalamus. 
Coursing along the dorsomedial border of the thalamus, it 
forms a distinct horizontal ridge. In the 80% of individu-
als where an interthalamic adhesion is present (Allen and 
Gorski 1991; Carpenter 1991), it arches superior to this. 
The SM then descends caudally, its lateral fibers terminat-
ing in the habenula (Buchanan and Frazer 1937; Díaz et al. 
2011). Cadaveric measurements place the diameter of the 
stria medullaris at between 1.5 and 2.5 mm across its length 
(Roddy et al. 2018), being widest caudally where it merges 
with the habenula. Both the SM and habenula can be seen 
as a combined rod-like structure on the posteromedial aspect 
of the thalamus, protruding into the lateral ventricle with 
an expansion towards the caudal thalamus. The SM white 
matter tract occupies 30% of the cross-sectional area of the 
habenula in humans. This SM–habenular interface is greatly 
enlarged in humans compared to that in rodents, with the 
SM taking up only 12% of the cross-sectional area in rats 
(Díaz et al. 2011).

In contrast to the lateral fibers, the medial SM fibers flex 
inwards towards the base of the pineal gland and cross to the 
opposite side. These terminate in the contralateral habenula 
(Buchanan and Frazer 1937; Naidich and Duvernoy 2009; 
Diaz et al. 2011). This decussation is known as the habenular 
commissure (Strotmann et al. 2014). Note that the nearby 
posterior commissure found in the inferior part of the pineal 
stalk is not anatomically or functionally part of the DDCS. 
The habenular commissure lying across the superior part of 
the pineal stalk together with the SM and habenulae form 
what is anatomically known as the habenular trigone (Strot-
mann et al. 2014). The lateral habenula also contributes to 
the habenular commissure in rats (Kim 2009); however, in 
humans, it is unclear what proportion of these commissural 
fibers derive from the SM, medial or lateral habenulae.

Three distinct groups of fibers are found in the human 
stria medullaris. Within the dorsolateral cross section of the 
tract travel fibers originating from the amygdala and striatal 
regions (Marburg 1944). Fibers from the basal forebrain 
areas lie dorsomedial and centrally within the SM; whereas, 
fibers that originate from the thalamus and hypothalamus are 
found ventrally. The course and relative position of these fib-
ers remain unchanged through the SM as far as the habenula 
(Marburg 1944) and correspond with the general trend of 
lateral habenula fibers being more striatal in origin, and 
medial fibers being more basal forebrain/septal in origin.

The stria medullaris is also reported to have its own 
nucleus. A small compact group of cells thought to be the 
bed nucleus of the stria medullaris (BSM) was first reported 
in mice by Ramon y Cajal (1911). The nucleus, embedded 
among myelinated axons of the stria medullaris, is found 
caudally to the bed nucleus of the anterior commissure 
and between the stria medullaris and the fornix in rodents 
(Risold and Swanson 1995; Ramon y Cajal 1911). As a 
caudal extension of the septal region (Risold and Swanson 
1995), the BSM is reported to contain small multipolar neu-
rons and dense collaterals thought to arise from the fornix 
(Ramon y Cajal 1911). It has also been alluded to by oth-
ers (Gurdjian 1927; Watson and Paxinos 1986; Jacobowitz 
and Palkovits 1974); however, borders have been difficult 
to identify (Risold and Swanson 1995) and connections of 
BSM itself have been difficult to establish, with only projec-
tions to the medial habenula identified thus far (Shinoda and 
Tohyama 1987).

Due to the thinness of the tract, the SM is often missed 
on standard resolution clinical MR imaging. As this tract 
has been identified as a potential therapeutic target for deep 
brain stimulation in depression and other neuropsychiatric 
diseases (Sartorius and Henn 2007), recent efforts have 
focused in localizing the trajectory of the tract for stereotac-
tic neurosurgery using diffusion-weighted imaging (Kochan-
ski et al. 2016; Roddy et al. 2018).

Function

In general, the SM gathers fibers from frontal, septal, stri-
atal and hypothalamic areas and relays information from 
these areas through a single tract to the lateral and medial 
habenulae. Information is transmitted through the tract in 
a mostly unidirectional manner from the forebrain regions 
to the habenula. To date, however, there have been no fiber 
tracing or staining studies of the human SM.

The first-order inputs to the lateral habenula through the 
stria medullaris include the lateral preoptic area, the lateral 
hypothalamus, anterior hypothalamic nucleus, bed nucleus 
of the stria terminalis, the internal segment of the globus 
pallidus, substantia innominata and septum (Klemm 2004; 
Hikosaka et al. 2008). Second- and further-order inputs 
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arise from medial, lateral and preoptic hypothalamic areas 
(Klemm 2004). The SM also inputs information from the 
nucleus of the diagonal band of Broca, lateral hypothalamus, 
lateral preoptic area and medial septal nuclei into the medial 
habenula (Akagi and Powell 1968; Klemm 2004). SM affer-
ents are primarily cholinergic, glutamatergic and GABAer-
gic, with primary GABAergic and cholinergic input into the 
habenula being supplied by the nucleus of the diagonal band 
of Broca via the SM (Viswanath et al. 2013; Klemm 2004). 
This was supported when bilateral transection of the SM in 
rodents induced a 50% decrease in choline acetyltransferase, 
an enzyme responsible for acetylcholine synthesis, in the 
habenulae and the downstream interpeduncular nucleus, as 
well as a 65% decrease of glutamate decarboxylase in the 
habenula (Contestabile and Fonnum 1983).

The stria medullaris has recently been suggested as a 
therapeutic target for the treatment of depression and other 
neuropsychiatry diseases using deep brain stimulation (Sar-
torius and Henn 2007). Even though modulation of the lat-
eral habenula is the proposed mechanism of this technique, 
electrode placement occurs at the caudal end of the SM, just 
beside the habenula. To date, two patients with intractable 
depression have shown marked improvement with modula-
tion of the DDCS through SM stimulation (Sartorius et al. 
2010; Kiening and Sartorius 2013).

The SM and habenula, although discrete structures, are 
essentially a functional unit and defining a function for the 
SM independent of the habenula is impossible. As such, the 
function of the SM will be integrated in the below section.

Habenula

(Latin; little reign) The trigonum habenulae is a small trian-
gular eminence encompassed by the pineal gland, the poste-
rior part of the stria medullaris and the adjacent part of the 
thalamus (Buchanan and Frazer 1937; Naidich and Duver-
noy 2009). A slight swelling in this trigone indicates the 
position of the evolutionary conserved gray matter structure 
called the habenula (also known as the habenular complex, 
due to being composed of multiple nuclei) (Nolte 2002). It 
was first named by Meynert who described a small mass 
of gray matter on the posteromedial aspect of the thalamus 
(Meynert 1872). Originally considered anatomically and 
functionally the stalk of the adjacent pineal gland, it refers 
to two distinct groups of nuclei at the caudal end of the stria 
medullaris.

The habenula is the central component of the DDCS and 
has been well conserved throughout vertebrate evolution 
(Loonen et al. 2017). It acts as a hub, with limbic path-
ways traversing the stria medullaris to relay to the habenula 
prior to transmitting signals to brainstem modulatory areas 
(Carpenter 1991). As such, it is vital for integrating motor, 

cognitive, emotional and sensory processing within a single 
locus to influence motivational processes and value-based 
decision-making (Gardon et al. 2014). Recent studies high-
lighting the function of the habenula in encoding reward 
and aversive behavior have renewed the interest into this 
small structure.

Anatomy

The habenula, like many limbic structures, was initially 
believed to have primarily olfactory connections (Ramon 
y Cajal 1911); however, repeated studies have revealed its 
connections with a wide variety of regions across the brain 
(Rausch and Long 1971; Powell et al. 1965; Greatrex and 
Phillipson 1982; Gamble 1952). The habenula has both 
medial and lateral nuclei (see below). The literature strat-
egy revealed that 135 studies have investigated habenular 
connections in diverse vertebrates from lizards to primates. 
Only one study to date has traced the connections of the 
human habenular complex (Marburg 1944). The results are 
presented in Table 1. Although some overlap, broadly speak-
ing, motor, frontal, thalamic, hypothalamic, basal ganglia 
and associated areas (e.g., ventral tegmental area) project to 
the lateral habenula; whereas, septal and limbic associated 
areas (e.g., hippocampus) project to the medial habenula.

Although easily distinguishable as the thick caudal expan-
sion of the combined SM–habenula rod-like structure that 
protrudes into the lateral ventricle, defining the rostral most 
boundaries of the habenula is challenging in gross dissec-
tions. This is because the SM tapers caudally and dorsally 
into the habenula. Regional microscopic differences in cel-
lular distribution, however, allow the habenula to be dis-
tinguished from the white matter fibers of the SM and the 
multipolar cells of the adjacent thalamus (Marburg 1944; 
Díaz et al. 2011). The habenular width is approximately 
5–9 mm across (Strotmann et al. 2014), as such the struc-
ture is difficult to visualize accurately using standard clinical 
MRI. However, using high-resolution magnetic resonance 
imaging (resolution < 1.5mm3), it has recently been possible 
to determine the mean habenular volumes in a number of 
studies (Table 2a). Extrapolated mean values for left and 
right habenular complex volumes were found to be 21.9 
mm3 (SD ± 6.5 mm3) and 20.6 mm3 (SD ± 6.7 mm3), respec-
tively. A single post-mortem study has investigated habenu-
lar volumes (Ranft et al. 2010). This study suggested larger 
habenular volumes revealing lateral volumes of 27.57 mm 
(SD ± 5.05  mm) and 29.59  mm (SD ± 4.83  mm) and 
medial volumes of 3.35 mm (SD ± 1.33 mm) and 3.64 mm 
(SD ± 0.97 mm) for left and right sides, respectively. MRI 
resolution limitations, age variation and differences in meas-
urement techniques between post-mortem and MRI studies 
could potentially account for the difference between the two 
methods of volume estimation.
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Table 1   Habenular inputs collated from previous tracing studies

Area of input Nucleus References

Cortical regions
 Piriform cortex Medial/lateral (Gurdjian 1925) (rat), (Carl Huber and Crosby 1929) (bird), 

(Hines 1929) (platypus), (Loo 1931) (Opossum), (Young 
1936) (rabbit), (Humphrey 1936) (bat), (Marburg 1944) 
(human), (Herrick 1948) (tiger salamander), (Gamble 1952) 
(lizard), (Gamble 1956) (tortoise), (Ban 1962) (rat), (Powell 
et al. 1965) (rat), (Millhouse 1969) (mouse), (Parent et al. 
1981) (rat, cat and monkey), (Kim and Lee 2012) (rat)

 Hippocampus Medial (Hines 1929) (platypus), (Young 1936) (rabbit), (Humphrey 
1936) (bat), (Marburg 1944) (human)

 Amygdala Medial/lateral “Nucleus Taenia” (Carl Huber and Crosby 1929) (bird), 
(Young 1936) (rabbit), (Humphrey 1936) (bat), (Marburg 
1944) ( human), (Herrick 1948) (tiger salamander), (Gamble 
1952) (lizard), (Laursen 1955) (monkey), (Kusama and 
Hagino 1961) (rabbit), (Mitchell 1963) (cats), (Cowan et al. 
1965) (rat), (Johnson 1965) (cat), (Millhouse 1969) (mouse), 
(Leonard and Scott 1971) (rats), (Iwahori 1977) (cat), (Par-
ent et al. 1981) (rat, cat and monkey), (Li et al. 1993) (rat), 
(Yetnikoff et al. 2015) (rat)

 Prelimbic cortex Lateral (Gamble 1952) (lizard), (Kim and Lee 2012) (rat)
 Infralimbic cortex Lateral (Kim and Lee 2012) (rat)
 Anterior cingulate cortex Lateral (Kim and Lee 2012) (rat)
 Anterior insular cortex Lateral (Vertes 2002) (rat), (Vertes 2004) (rat), (Kim and Lee 2012) 

(rat)
Basal forebrain
 Septum undifferentiated Medial/lateral (Gurdjian 1925) (rat), (Carl Huber and Crosby 1929) (bird), 

(Humphrey 1936) (bat), (Nauta 1956) (Rat), (Nauta 1958) 
(cat), (Valenstein and Nauta 1959) (Rat, guinea pig, cat and 
monkey), (Guillery 1959) (Cat), (Cragg 1961) (rabbit, rat and 
cat), (Ban 1962) (rat), (Powell 1963) (rat), (Zyo 1963) (rab-
bit), (Mitchell 1963) (cats), (Johnson 1965) (cat), (Raisman 
1966) (rat), (Powell 1966) (cat), (Powell 1968) (Rat, cat and 
monkey), (Mizuno et al. 1969) (cat), (Genton 1969) (mouse), 
(Price and Powell 1970) (Rat), (Smaha and Kaelber 1973) 
(opossum and cat), (Herkenham and Nauta 1977) (rat), (Iwa-
hori 1977) (cat), (Meibach and Siegel 1977) (rat), (Swanson 
and Cowan 1979) (rat), (Gottesfeld and Jacobowitz 1979) 
(rat), (Parent et al. 1981) (rat, cat and monkey), (Hoogland 
1982) (lizard), (Shinoda and Tohyama 1987) (rat),(Kawaja 
et al. 1990) (rat), “septal nucleus impar” (Díaz and Puelles 
1992) (Lizard), (Li et al. 1993) (rat), (Felton et al. 1999) 
(rat), (Yetnikoff et al. 2015) (rat)

 Medial septum Medial/lateral (Powell 1966) (cat), (Qin and Luo 2009) (mouse)
 Lateral septum Medial/lateral (Marburg 1944) (human), (Powell 1963) (rat), (Powell 1966) 

(cat), (Powell 1968) (Rat, cat and monkey), (Herkenham and 
Nauta 1977) (rat), (Gottesfeld and Jacobowitz 1979) (rat), 
(Sim and Joseph 1991) (rats), (Li et al. 1993) (rat), (Risold 
and Swanson 1997) (rat), (Yetnikoff et al. 2015) (rat)

 Posterior septum Medial (Powell 1966) (cat), (Powell 1968) (Rat, cat and monkey)
 Septofibrial nucleus Medial (Loo 1931) (Opossum), (Young 1936) (rabbit), (Herkenham 

and Nauta 1977) (rat), (Parent et al. 1981) (rat, cat and mon-
key), (Staines et al. 1988) (Rat), (Kawaja et al. 1990) (rat), 
(Li et al. 1993) (rat)

 Triangular nucleus of septum Medial (Herkenham and Nauta 1977) (rat), (Staines et al. 1988) (Rat), 
(Kawaja et al. 1990) (rat), (Qin and Luo 2009) (mouse)

 Precommissural septum Medial/lateral/unspecified (Zyo 1963) (rabbit), (Johnson 1965) (cat), “rostral septum” 
(Powell 1966) (cat), “rostral septum” (Powell 1968) (Rat, cat 
and monkey)



1442	 Brain Structure and Function (2020) 225:1437–1458

1 3

Table 1   (continued)

Area of input Nucleus References

 Supracommissural septum Medial (Nauta 1956) (Rat), (Herkenham and Nauta 1977) (rat), (Yañez 
and Anadón 1996) (rainbow trout)

 Postcommissural septum Medial (Cragg 1961) (rabbit, rat and cat), (Ban 1962) (rat), (Johnson 
1965) (cat), (Herkenham and Nauta 1977) (rat), (Parent et al. 
1981) (rat, cat and monkey), (Staines et al. 1988) (Rat)

 Diagonal band of Broca Medial/lateral (Loo 1931) (Opossum), (Marburg 1944) (human), (Guillery 
1959) (Cat), (Powell 1966) (cat), (Price and Powell 1970) 
(Rat), (Conrad and Pfaff 1976b) (rat), (Herkenham and Nauta 
1977) (rat), (Meibach and Siegel 1977) (rat), (Gottesfeld 
and Jacobowitz 1979) (rat), (Parent et al. 1981) (rat, cat and 
monkey), (Staines et al. 1988) (Rat), (Díaz and Puelles 1992) 
(Lizard), (Li et al. 1993) (rat), (Qin and Luo 2009) (mouse), 
(Yetnikoff et al. 2015) (rat)

 Susbtantia innominata Lateral (Cragg 1961) (rabbit, rat and cat), (Kim et al. 1976) (mon-
key), “nucleus basalis” (Herkenham and Nauta 1977) (rat), 
(Troiano and Siegel 1978a) (cat), (Parent et al. 1981) (rat, cat 
and monkey)

 Nucleus accumbens Unspecified “pars medialis of nucleus accumbens” (Loo 1931) (Opossum), 
(Powell 1966) (cat), (Powell and Leman 1976) (monkey), 
(Conrad and Pfaff 1976b) (Rat), (Herkenham and Nauta 
1977) (rat), (Troiano and Siegel 1978a) (cat), (Li et al. 1993) 
(rat), (Felton et al. 1999) (rat), (Yetnikoff et al. 2015) (rat)

 Anterior olfactory nucleus Unspecified (Gurdjian 1925) (rat), (Humphrey 1936) (bat), (Gamble 
1952) (lizard), (Gamble 1956) (tortoise), (Millhouse 1969) 
(mouse), (Ferrer 1969) (hamster, (Heimer 1972) (rat)

 Olfactory tubercle Unspecified (Loo 1931) (Opossum), (Morin 1950) (Guinea Pig), (Kusama 
and Hagino 1961) (rabbit), (Ban 1962) (rat), (Millhouse 
1969) (mouse), (Heimer 1972) (rat), (Iwahori 1977) (cat), 
(Parent et al. 1981) (rat, cat and monkey)

 Olfactory bulb Unspecified (Ramon y Cajal 1911) (vertebrates), (Herrick 1948) (tiger 
salamander)

Central white matter nuclei
 Nucleus of posterior pallial commissure Medial (Díaz and Puelles 1992) (Lizard)
 Bed nucleus of anterior commissure Medial/lateral (Carl Huber and Crosby 1929) (bird), Herrick 1948 (tiger 

salamander), (Staines et al. 1988) (Rat), (Díaz and Puelles 
1992) (Lizard)

 Bed nucleus of stria terminalis Medial/lateral (Marburg 1944) (human), (Cragg 1961) (Rabbit), (Conrad 
and Pfaff 1976b) (Albino Rats), (Swanson and Cowan 1979) 
(rat), (Parent et al. 1981) (rat, cat and monkey), (Weller and 
Smith 1982) (rat), (Staines et al. 1988) (Rat), (Díaz and 
Puelles 1992) (Lizard), (Li et al. 1993) (rat), (Dong and 
Swanson 2006) (rats), (Yetnikoff et al. 2015) (rat)

Basal Ganglia
 Globus pallidus externa Lateral/unspecified (Ranson and Ranson 1941) (monkey), (Mitchell 1963) (cats), 

(Nauta and Mehler 1966) (monkey), (Kim et al. 1976) 
(monkey), (Gottesfeld et al. 1977) (rat), (Herkenham and 
Nauta 1977) (Rat), (Parent et al. 1981) (rat, cat and monkey), 
(Hoogland 1982) (lizard), (Araki et al. 1984) (rat), (Li et al. 
1993) (rat), (Felton et al. 1999) (rat)
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Table 1   (continued)

Area of input Nucleus References

 Globus Pallidus interna (Entopeduncular Nucleus) Lateral/unspecified (Mitchell 1963) (cat), (Herrick 1948) (tiger salamander), 
(Nauta and Mehler 1966) (Monkey), (Kim et al. 1976) 
(monkey), (Iwahori 1977) (cat), (Herkenham and Nauta 
1977) (rat), (Gottesfeld et al. 1977) (rat), (Nagy et al. 1978) 
(rat), (Filion and Harnois 1978) (cat), (Carter and Fibiger 
1978) (rat), (Larsen and Sutin 1978) (cat), (Parent 1979) 
(squirrel monkey), (Larsen and McBride 1979) (cat), (Parent 
et al. 1981) (rat, cat and monkey), (Van Der Kooy and Carter 
1981) (rat), (McBride 1981) (cat), (Hoogland 1982) (lizard), 
(Vincent et al. 1982) (rat), (Garland and Mogenson 1983) 
(rats), (Araki et al. 1984) (Rat), (Vincent and Brown 1986) 
(Rat), (Shinoda and Tohyama 1987) (rat), (Hazrati and Par-
ent 1991) (squirrel monkey), (Moriizumi and Hattori 1992) 
(rat), “lobus subhippocampus” (Yañez and Anadon 1994) 
(Lamprey), “rostral thalamus” (Yañez and Anadón 1996) 
(rainbow trout), (Kha et al. 2000) (rats), (Parent et al. 2001) 
(monkey), (Folgueira et al. 2004) (rainbow trout), (Wallace 
et al. 2017) (mice)

 Ventral Pallidum Unspecified (Kim et al. 1976) (monkey), (Herkenham and Nauta 1977) 
(rat), (Troiano and Siegel 1978b) (cat), (Parent 1979) (squir-
rel monkey), (Groenewegen et al. 1993) (rat), (Li et al. 1993) 
(rat), (Haber et al. 1993) (monkey), (Zahm et al. 1996) (rats), 
(Hendricks and Jesuthasan 2007) (Zebrafish), (Tripathi et al. 
2013) (rat)

Thalamic nuclei
 Thalamus undifferentiated Medial/lateral (Hines 1929) (platypus), “dorsal thalamus” (Herrick 1948) 

(tiger salamander), (Mitchell 1963) (cats), (Smaha and 
Kaelber 1973) (opossum and cat), “dorsal thalamus” (Díaz 
and Puelles 1992) (Lizard), “thalamic eminence” (Krug et al. 
1993) (Axolotl—fish), “thalamic eminence” (Hendricks and 
Jesuthasan 2007) (Zebrafish)

 Anterior Group Lateral (Cragg 1961) (rabbit), (Smaha and Kaelber 1973) (opossum 
and cat)

 Anterodorsal nucleus Unspecified (Yañez and Anadon 1994) (Lamprey)
 Anteroventral nucleus Lateral (Yetnikoff et al. 2015) (rat)
 Paramedian thalamus Medial (Cragg 1961) (rabbit), (Hoogland 1982) (lizard)
 Reticular nucleus Lateral (Felton et al. 1999) (rat)
 Epithalamus Unspecified “Pineal gland” (Yañez and Anadón 1996) (rainbow trout) 

Hypothalamus
 Hypothalamus undifferentiated Medial/lateral (Carl Huber and Crosby 1929) (bird), (Humphrey 1936) (bat), 

(Marburg 1944) (human), (Mitchell 1963) (cats), (Zyo 1963) 
(rabbit), (Parent et al. 1981) (rat, cat and monkey), (Li et al. 
1993) (rat), (Yañez and Anadón 1996) (rainbow trout), (Fel-
ton et al. 1999) (rat), (Yetnikoff et al. 2015) (rat)

 Lateral nucleus Medial/lateral (Nauta 1958) (cat), (Kusama and Hagino 1961) (rabbit), (Zyo 
1963) (rabbit), (Wolf and Sutin 1966) (Rat), (Mizuno et al. 
1969) (cat), (Smaha and Kaelber 1973) (opossum and cat), 
(Troiano and Siegel 1975) (cat), (Swanson 1976) (rat), (Iwa-
hori 1977) (cat), (Herkenham and Nauta 1977) (Rat), (Parent 
1979) monkey), (Saper et al. 1979) (rat), (McBride 1981) 
(cat), (Parent et al. 1981) (rat, cat and monkey), (Berk and 
Finkelstein 1982) (Rat), (Araki et al. 1984) (Rat), (Shinoda 
and Tohyama 1987) (rat), (Díaz and Puelles 1992) (Lizard), 
(Li et al. 1993) (rat), (Yañez and Anadón 1996) (rainbow 
trout), (Felton et al. 1999) (rat), (Kowski et al. 2008) (rat), 
(Hahn and Swanson 2010) (rat), (Hahn and Swanson 2012) 
(rat), (Yetnikoff et al. 2015) (rat)

 Dorsomedial nucleus Lateral (Li et al. 1993) (rat)
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Table 1   (continued)

Area of input Nucleus References

 Paraventricular nucleus Unspecified “magnocellular nucleus” (Loo 1931) (Opossum), (Smaha and 
Kaelber 1973) (opossum and cat), (von Bartheld and Meyer 
1990) (lungfish), (Li et al. 1993) (rat)

 Suprachiasmatic nucleus Lateral (Buijs 1978) (rats), (Sofroniew et al. 1981) (rats)
 Ventromedial nucleus Lateral (Li et al. 1993) (rat), (Yetnikoff et al. 2015) (rat)
 Anterior nucleus Lateral (Conrad and Pfaff 1976b) (Albino Rats), (McBride 1981) (cat), 

(Parent et al. 1981) (rat, cat and monkey), (Li et al. 1993) 
(rat), (Risold et al. 1994) (rat)

 Supraoptic nucleus Unspecified (Humphrey 1936) (bat)
 Posterior nucleus Lateral (McBride 1981) (cat)
 Preoptic hypothalamus undifferentiated Medial/lateral (Gurdjian 1925) (rat), (Gurdjian 1927) (rat), (Hines 1929) 

(platypus), (Carl Huber and Crosby 1929) (bird), (Loo 
1931) (Opossum), (Humphrey 1936) (bat), (Marburg 1944) 
(human), (Herrick 1948) (tiger salamander), (Zyo 1963) (rab-
bit), (Smaha and Kaelber 1973) (opossum and cat), (Herken-
ham and Nauta 1977) (Rat), (McBride 1981) (cat), (Li et al. 
1993) (rat), (Yañez and Anadón 1996) (rainbow trout)

 Medial preoptic nucleus Lateral (Gurdjian 1925) (rat), (Young 1936) (rabbit), (Marburg 1944) 
(human), (Conrad and Pfaff 1976a) (Albino Rat), (Anderson 
and Shen 1980) (guinea pig), (Li et al. 1993) (rat), (Yetnikoff 
et al. 2015) (rat)

 Lateral preoptic nucleus Lateral (Young 1936) (rabbit), (Nauta 1958) (cat), (Cragg 1961) (Rab-
bit), (Kusama and Hagino 1961) (rabbit), (Zyo 1963) (rab-
bit), (Cowan et al. 1965) (rat), (Wolf and Sutin 1966) (rat), 
(Mizuno et al. 1969) (cat), (Troiano and Siegel 1975) (cat), 
(Swanson 1976) (rat), (Iwahori 1977) (cat), (Herkenham and 
Nauta 1977) (rat), (Troiano and Siegel 1978b) (cat), (Parent 
et al. 1981) (rat, cat and monkey), (Garland and Mogenson 
1983) (rats), (Díaz and Puelles 1992) (Lizard), (Li et al. 
1993) (rat), (Felton et al. 1999) (rat), (Kowski et al. 2008) 
(Rat), (Yetnikoff et al. 2015) (rat)

 Mammillary bodies Lateral (Parent et al. 1981) (rat, cat and monkey), (Díaz and Puelles 
1992) (Lizard)

 Premammillary nucleus Lateral (Li et al. 1993) (rat)
Brainstem
 Tectum Unspecified (Marburg 1944) (human), (Herrick 1948) (tiger salamander)
 Tegmentum undifferentiated Unspecified (Hoogland 1982) (lizard)
 Laterodorsal tegmental nucleus Medial/lateral/unspecified “Nucleus isthmi” (Hoogland 1982) (lizard), (Cornwall et al. 

1990) (rat), (Li et al. 1993) (rat), (Yetnikoff et al. 2015) (rat)
 Dorsal tegmental area Lateral (Goto et al. 2001) (rat), (Olucha‐Bordonau et al. 2003) (rat)
 Ventral tegmental area Medial/lateral (Lindvall and Björklund 1974) (rat), (Kizer et al. 1976) (rat),), 

(Herkenham and Nauta 1977) (rat), “ventral tegmental pars 
lateralis” (Simon et al. 1979) (rat), (Beckstead et al. 1979) 
(rat), “ventral tegmental interfascicular nucleus” and “ventral 
tegmental median paranigral” (Phillipson and Griffith 1980) 
(rat), (Parent et al. 1981) (rat, cat and monkey), (Phillipson 
and Pycock 1982) (rat), (Swanson 1982) (rat), (Skagerberg 
et al. 1984) (rat), (Díaz and Puelles 1992) (Lizard), (Li et al. 
1993) (rat), (Gruber et al. 2007) (rat), (Yetnikoff et al. 2015) 
(rat)

 Pretectal area Unspecified (Herrick 1948) (tiger salamander)
 Periaqueductal gray Lateral (Li et al. 1993) (rat), (Yetnikoff et al. 2015) (rat)
 Locus coeruleus Unspecified (Hoogland 1982) (lizard), (Gottesfeld 1983) (rat), (Yañez and 

Anadón 1996) (rainbow trout), (Gruber et al. 2007) (rat), 
(Yetnikoff et al. 2015) (rat)

 Substantia nigra compacta Lateral (Kizer et al. 1976) (rat), (Li et al. 1993) (rat), (Yetnikoff et al. 
2015) (rat)
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In mammals, the habenula comprises of two functionally 
segregated nuclei, the medial habenula (MHb) and lateral 
habenula (LHb). The lateral is the larger of the two and is 

further divided into medial and lateral portions in humans 
and other mammals (Torrisi et al. 2017; Fore et al. 2017; 
Carpenter 1991). These nuclei share many similar sources of 

Table 1   (continued)

Area of input Nucleus References

 Interpeduncular nucleus Lateral (Massopust Jr and Thompson 1962) (rats and cats), (Mitchell 
1963) (cats)

 Raphe Nuclei undifferentiated Lateral (Herkenham and Nauta 1977) (rat), (Moore et al. 1978) (rat), 
(McBride 1981) (cat), (Li et al. 1993) (rat),(Morin and 
Meyer-Bernstein 1999) (hamster), (Felton et al. 1999) (rat), 
(Yetnikoff et al. 2015) (rat), (Muzerelle et al. 2016) (mouse)

 Raphe nuclei dorsal Medial/lateral (Conrad et al. 1974) (rat), (Pierce et al. 1976) (cat), (Azmitia 
and Segal 1978) (rat), (Li et al. 1993) (rat)

 Raphe nuclei median Medial/lateral (Conrad et al. 1974) (rat), “superior raphe” (Bobillier et al. 
1975) (cat), “superior raphe” (Bobillier et al. 1976) (cat), 
(Herkenham and Nauta 1977) (rat), (Azmitia and Segal 
1978) (rat), “superior raphe” (Bobillier et al. 1979) (rat), 
“superior raphe” (Hoogland 1982) (lizard), (Hallanger et al. 
1987) (rat), (Vertes and Martin 1988) (rat), (Vertes et al. 
1999) (rat), (Li et al. 1993) (rat), (Yetnikoff et al. 2015) (rat)

 Interfascicular nucleus Lateral (Li et al. 1993) (rat)
 Superior Cervical ganglion Medial (Björklund et al. 1972) (rat), (Lindvall and Björklund 1974) 

(rat), (Gottesfeld 1983) (rat)

Literature review methods detailed in the text

Table 2   (A and B) Summary of habenular volumes given in mm3 in the current literature

(A) Whole, lateral and medial mean habenular volumes extrapolated from 14 high resolution magnetic resonance imaging studies with a total 
of 356 subjects. See text for further details. (B) Postmortem medial and lateral habenular volumes in 13 participants are reported. SD, standard 
deviation.

Name Participants Total volume SD Left volume SD Right volume SD

(A) Magnetic resonance imaging
 Kim et al. (2016) 50 – – 21.1 5.2 21.3 4.5
 Kim et al. (2016) 6 – – 18.3 2.3 17.9 2.1
 Lawson et al. (2013) 24 – – 29.4 4.7 29.3 3.7
 Hétu et al. (2016) 34 – – 27.88 8.49 28.03 8.18
 Carceller-Sindreu et al. (2015) 34 42.99 9.4 – – – –
 Furman and Gotlib (2016) 13 – – 28.7 2.5 27.3 7
 Lawson et al. (2017) 25 22.31 9.29 – – – –
 Savitz et al. (2011a) 75 36.9 8.5 19.8 5.1 17.1 4.6
 Savitz et al. (2011b) 74 36.5 8.7 19.5 5.2 17 4.7
 Schmidt et al. (2017) 20 34.92 11.34 17.63 5.49 17.29 6.12
 Zhang et al. (2017) 16 – – 24.02 3.2 20.42 3.46
 Bocchetta et al. (2016) 15 – – 23.6 2.2 23.3 2.2
 Torrisi et al. (2017) 32 – – 18.8 6 14.9 4
 Hennigan et al. (2015) 18 35.35 13.3 – – – –
 Extrapolated mean values 36.3 10.98 21.89 6.47 20.62 6.71

Name Participants Left habenula volume Right habenula volume

Medial SD Lateral SD Medial SD Lateral SD

(B) Postmortem 13 3.35 1.33 27.57 5.05 3.64 0.97 29.59 4.83
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afferent inputs and efferent nuclei but have distinct anatomy 
and connectivity within brain networks (Fakhoury 2017; 
Bianco and Wilson 2009; Gardon et al. 2014).

Medial habenula

The medial habenula is the smaller and least studied of the 
two nuclei (Viswanath et al. 2013; Iwahori 1977; Ramon y 
Cajal 1911). It borders the wall of the third ventricle and 
contains a more homogeneously densely packed array of 
cells when compared to the LHb. MHb volumes in human 
postmortem studies are reported in Table 2b. The human 
MHb can be subdivided into five subnuclei, which can be 
most easily distinguished from each other in terms of cell 
packing density, as opposed to cell type. This is because 

most cells in each of the five nuclei are small round cells 
(Table 3) (Diaz et al. 2011). These cells have a soma diam-
eter of 8.85.

The medial habenula is richly innervated from multi-
ple neuronal types. In animals, the predominant innerva-
tions to the MHb come from septal regions and are largely 
inhibitory through the action of GABAergic neurons (Torrisi 
et al. 2017; Benarroch 2015; Batalla et al. 2017). Indeed, 
the medial habenula contains some of the highest concen-
tration of GABA-B receptors in the rat brain (Wang et al. 
2006; Bischoff et al. 1999; Durkin et al. 1999; Charles et al. 
2001). However, other afferents terminate as cholinergic 
(Contestabile and Fonnum 1983), substance P (Contesta-
bile et al. 1987) and glutamate (Qin and Luo 2009). Addi-
tionally, the medial habenula abundantly expresses nicotinic 

Table 3   Summary of reported sub-nucleic histological characteristics of the human habenula

Subnuclei Cell shape and size Cellular distribution Fiber distribution Cell packing References

Undifferentiated Habenula
 Ventromedial Very small celled, spindle 

shaped
- - Densely packed Marburg (1944)

 Medial Small celled, larger and 
fewer cells, spindle 
shaped,

- - Loosely packed Marburg (1944)

 Dorsomedial Small celled, larger and 
fewer cells, spindle 
shaped

- - Loosely packed Marburg (1944)

 Dorsolateral Small spindle shaped and 
medium sized cells, 
polygonal, containing 
well-developed nuclei 
and trigoid bodies

- - - Marburg (1944)

 Lateral Large celled - - - Marburg (1944)
Medial habenula
 Dorsal Small round Heterogenous with myeli-

nated fibers
Few fibers, forming 

bundles
Intermediately packed Diaz et al. (2011)

 Medial Small round Homogenous Few fibers and very thin Loosely packed Diaz et al. (2011)
 Intermediate Small round Homogenous Few fibers, forming a 

loose network
Densely packed Diaz et al. (2011)

 Lateral Small round Homogenous Few fibers and very thin Densely packed Diaz et al. (2011)
 Ventral Small round, medium 

round
Homogenous Thin, with fibers emerging 

as fasciculus retroflexus
Densely packed Diaz et al. (2011)

Lateral habenula
 Dorsal All cell types Heterogenous with myeli-

nated fibers
Many fibers, forming thick 

bundles
Loosely packed Diaz et al. (2011)

 Medial Small round, medium 
round

Heterogenous, with occa-
sional clumping

Very thin, reticulated 
pattern

Loosely packed Diaz et al. (2011)

 Intermediate Small round, medium 
elongated, medium 
multipolar

Heterogenous Few fibers and very thin, 
forming reticulated 
pattern

Loosely packed Diaz et al. (2011)

 Lateral Small round, small large 
multipolar

Heterogenous with clump-
ing

Many fibers, forming a 
reticulated pattern

Intermediately packed Diaz et al. (2011)

 Ventral Small round, medium 
round and a few medium 
elongated

Heterogenous Many fibers, thin, with 
fibers emerging as fas-
ciculus retroflexus

Intermediately packed (Diaz et al. 2011)
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acetylcholine receptors (Sheffield et al. 2000). Monoamine 
inputs such as serotonin (Herkenham and Nauta 1977), 
noradrenaline (Gottesfeld 1983) and dopamine (Phillipson 
and Pycock 1982) also target the MHb through feedback 
projections from the midbrain.

The MHb outputs extend through the core of the fascicu-
lus retroflexus to the midbrain and hindbrain. MHb neurons 
are predominantly excitatory, releasing the neurotransmit-
ters acetylcholine, substance P and glutamate (Aizawa et al. 
2012; Viswanath et al. 2013). These neurons primarily target 
the serotonergic neurons of the median raphe nuclei directly 
or indirectly via interpeduncular nucleus (IPN) (Koppen-
steiner et al. 2016; Contestabile et al. 1987) and noradren-
ergic inputs from the locus coeruleus (Benarroch 2015; Díaz 
et al. 2011; Fakhoury 2017; Bianco and Wilson 2009). The 
IPN also provides feedback projections to brain areas that 
target the MHb such as the septal regions through the medial 
forebrain bundle (Hayakawa et al. 1981) as well as the MHb 
itself (Benarroch 2015). Of note, there are two principal sub-
nuclei that can be identified using the transmitter acetylcho-
line in the ventral MHb and the expression of substance P in 
the dorsal MHb (Contestabile et al. 1987; Hsu et al. 2016). 
While they both project to the IPN, they innervate distinct 
structures within it (Hsu et al. 2014).

Lateral habenula

The lateral habenula lies between the medial habenula and 
the thalamus. It is considerably larger than the MHb in most 
species and can be distinguished from the smaller structure 
microscopically by having a much less compacted and more 
heterogeneous cell population overall (Díaz et al. 2011). The 
human LHb is greatly expanded compared to the MHb, with 
the LHb being about 8 times bigger than the MHb (Table 2). 
This suggests an increased influence of limbic and striatal 
afferents upon the DCSS in humans. The LHb can be further 
subdivided into medial LHb and lateral LHb subdomains. 
Five separate nuclei are observed in the LHb and these can 
be distinguished from each other in terms of the heterog-
enous cell shapes and sizes seen in the LHb as opposed to 
the packing density distinctions seen in the MHb (Table 3) 
(Diaz et al. 2011). The cellular organization within the LHb 
shows a larger degree of variability among individuals than 
the MHb and the distinction between nuclei is less precise; 
however, the broad overall cellular organization within 
the LHb is medial parvocellular and lateral magnocellular 
regions (Marburg 1944).

The LHb innervations are generally more dispersed and 
heterogeneous than MHb afferents. Primary excitatory 
glutamatergic innervations originate from the prefrontal 
cortex, basal ganglia and lateral hypothalamus (Baker 
et al. 2016; Batalla et al. 2017). The majority of the fast-
mediating excitatory transmission identified in the LHb is 

through the AMPA-type glutamate receptors (Meye et al. 
2013; Li et al. 2013). The LHb receives strong inhibitory 
GABAergic inputs arising through long-range projections 
from areas such as the nucleus accumbens, diagonal band 
of Broca, the lateral preoptic area, substantia innominate 
and the ventral pallidum (Meye et al. 2013; Benarroch 
2015). The medial globus pallidus GABA projections pref-
erentially innervate the lateral portion of the LHb, whilst 
the diagonal band of Broca and lateral preoptic areas pri-
marily target the medial portion (Herkenham and Nauta 
1977). Additionally, midbrain and hindbrain targets of 
the LHb provide dopaminergic (ventral tegmental area), 
noradrenergic (locus coeruleus) and serotonergic (median 
raphe nucleus) feedback projections, suggesting that dopa-
mine, noradrenaline and serotonin have modulatory effects 
on the LHb (Meye et al. 2013; Benarroch 2015). Other 
inputs arise from the suprachiasmatic nucleus, providing 
GABA/vasopressinergic innervations into the LHb (Benar-
roch 2015).

In spite of sharing a singular output tract, there appears 
to be little overlap between efferents and function of the 
MHb and LHb (Quina et al. 2015). Through the external 
mantle of the FR, the LHb projects to multiple monoamin-
ergic mesencephalic areas such as the ventral tegmental area 
(VTA) and periaqueductal gray and rhombencephalic areas 
such as raphe nucleus and locus coeruleus. In rodents, there 
exists a structure called the rostromedial tegmental nucleus 
(RMTg) which is essentially an inhibitory tail (Kaufling 
et al. 2009) of the VTA (Holstege 2009). It has been shown 
that most glutamatergic axons from the LHb primarily target 
the GABAergic neurons of the VTA and RMTg, leading to 
an overall inhibitory effect (Brinschwitz et al. 2010). RMTg 
in particular exhibits a high density of habenular efferents, 
despite only accounting for less than 20% of the total outputs 
of the LHb to the hindbrain (Quina et al. 2015). The RMTg 
inhibits the nearby dopaminergic neurons of the VTA and 
substantia nigra pars compacta (SNc) directly and the sero-
tonergic neurons of the raphe nuclei indirectly (Díaz et al. 
2011; Fakhoury 2017). This intermediary structure has not 
been isolated as yet in human post-mortem studies (Hétu 
et al. 2016). There are also direct bilateral innervations of 
the LHb to the VTA, with electrical stimulation of the LHb 
causing direct orthodromic reduction of dopaminergic tone 
in the VTA and its axons to the nucleus accumbens (Ji and 
Shepard 2007; Christoph et al. 1986). Similarly, lesioning 
the LHb causes an increase in serotoninergic activity in the 
dorsal raphe by activating the local GABAergic neurons 
(Varga et al. 2003; Amat et al. 2001) Retrograde studies 
have also identified the median raphe, caudal dorsal raphe, 
and pontine central gray as LHb targets (Quina et al. 2015). 
LHb efferents also feedback to the lateral hypothalamic 
area, septum and several thalamus nuclei (Benarroch 2015; 
Batalla et al. 2017).
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Function

Despite overlapping sources of connectivity, the medial and 
lateral habenula appear to represent largely distinct func-
tional subcircuits within the DDCS. The MHb regulates 
inhibitory controls, cognition-dependent executive functions 
and place aversion learning (Gardon et al. 2014). The MHb 
also has a role with respect to misery-fleeing behavior, stress 
responses, neural control of sleep and analgesia (Loonen 
et al. 2017; Díaz et al. 2011). These functions correspond 
with the inputs from the pleasure and motivational centers 
of the forebrain.

Although the MHb has remained largely unstudied, it is 
proposed that two subnuclei, the ventral and dorsal subnu-
clei, are largely responsible for its functions. The ventral 
MHb, containing cholinergic neurons, has been associated 
with the somatic symptoms of nicotine withdrawal by inhib-
iting serotonin and dopamine within the IPN (Zhao-Shea 
et al. 2013; Lee et al. 2019). Whereas, the substance P con-
taining dorsal MHb is implicated in fear responses (Lee et al. 
2019). A study in rodents demonstrated a reduction in activ-
ity of the dorsal medial habenula with fear conditioning. The 
authors suggested that diminished MHb may result due to 
interference with medial raphe nucleus activity, including 
hippocampal ripple activity and fear memory consolidation 
(Koppensteiner et al. 2016).

The LHb is involved in rewards signals, aversion and 
behavioral avoidance (Gardon et al. 2014). These functions 
were first suggested following studies which revealed that 
the habenula was involved in reward through brain stimula-
tion (Boyd and Celso 1970). With the LHb long considered 
as the ‘missing link’ in the mechanisms of reward pathways 
(Brinschwitz et al. 2010), efforts have been made to further 
uncover its exact functionality and underlying mechanisms. 
Studies in the lamprey show that when there is rewarding 
behavior, the LHb promotes the behaviour by intensify-
ing stimulation of the phylogenetic homolog of the VTA 
(Loonen et al. 2017). However, when the reward is smaller 
than expected or absent, the behavior is inhibited by affect-
ing the VTA equivalent. Furthermore, the habenula has been 
implicated in circadian behaviour due to its connections with 
the nearby pineal and suprachiasmatic nucleus, with both 
MHb and in particular LHb cells showing increased firing 
during the day than night (Zhao and Rusak 2005).

Peptidomic analysis has identified a total of 262 and 177 
neuropeptides in the medial and lateral habenula, respec-
tively, with 126 present in both regions (Yang et al. 2018). 
One of the peptides identified was somatostatin, often asso-
ciated with chronic stress. Previously, stressed rats were 
reported to have significantly upregulated somatostatin 
receptors on the medial habenula (Faron-Górecka et al. 
2016). Additionally, multiple pain-related peptides (nocicep-
tion, pro-enkephalin-A, pro-dynorphin-related prohormones) 

were also detected (Yang et al. 2018). These peptides are 
involved in pain signaling mechanisms through the binding 
of opioid and nociception receptors. Such findings are con-
sistent with current literature on habenular involvement in 
pain and analgesia (Shelton et al. 2012a; Levins et al. 2019).

Significant findings from these extensive studies con-
ducted in animals have led to investigations of the habenula 
in humans. All studies investigating the function of the 
human habenula have taken place using magnetic reso-
nance imaging. Imaging the habenula suffers from resolu-
tion issues due to the size and shape of the structure and 
the resolution of standard functional MRI imaging. Also, 
due to position and shape, imaging this structure is further 
complicated as a result of its proximity to the third ventricle 
and subsequent partial volume effects. As such functional 
imaging studies of this structure are small in number and 
limited in scope. However, the habenula has been implicated 
in processing aversive stimuli (Lawson et al. 2014; Hennigan 
et al. 2015)and error detection (Ullsperger and von Cramon 
2003; Li et al. 2008; Salas et al. 2010; Ide and Li 2011). The 
human habenula has been found to be functionally coupled 
with the insula, septum, thalamus, striatum, pons, substan-
tia nigra/ventral tegmental area, periaqueductal gray, stria 
terminalis and parahippocampal regions (Hétu et al. 2016; 
Torrisi et al. 2017). The structure has also been functionally 
linked with pain responses (Shelton et al. 2012b) subclinical 
depressive symptoms (Ely et al. 2016), and anxious thoughts 
(Najafi et al. 2017) in normal individuals. A promising new 
field of clinical research examining the habenula is under-
way with many studies implicating this diminutive structure 
in depression (Lawson et al. 2017; Schmidt et al. 2017), 
anxiety (Savitz et al. 2011a), schizophrenia (Shepard et al. 
2006), frontotemporal dementia (Bocchetta et al. 2016), 
addictions (Curtis et al. 2017; Rose et al. 2017) and chronic 
pain (Erpelding et al. 2014), cancer-associated weight loss 
(Maldonado et al. 2018) and Parkinson’s disease (Markovic 
et al. 2017).

Habenular asymmetry

Many species exhibit asymmetries in size, anatomical 
organization and function (Schmidt and Pasterkamp 2017; 
Bianco and Wilson 2009; Concha and Ahumada-Galleguil-
los 2016; Dreosti et al. 2014; Ichijo et al. 2015). The sig-
nificance of this is unknown; however, an intriguing func-
tional impact of left–right habenular differences has been 
found in zebrafish (Dreosti et al. 2014; Krishnan et al. 2014; 
Ichijo et al. 2017; Halpern et al. 2003) and in mice (Ichijo 
et al. 2015, 2017). In Zebrafish, lateralization appears more 
structurally fixed (Ichijo et al. 2017), with habenular neu-
rons shown to respond to light more frequently on the left; 
whereas, responses to odor were more likely to be found 
in the right habenula (Dreosti et al. 2014). Meanwhile, in 
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mice LHb lateralization appears more functionally flexible 
and occurs during postnatal development and in response to 
water-immersion restraint stress (Ichijo et al. 2015, 2017). 
However, small volume differences have also been described 
in mammals, including small asymmetries in the LHb in 
mice (Zilles et al. 1976) and the MHb in rats (Wree et al. 
1981). Interestingly, a unique clump of cells has also been 
described on the left habenula only in the macrosomatic 
mole (Kemali 1984).

In primates and humans, the study of subtle habenular 
volume asymmetry is more difficult due to the small relative 
size of the habenula and its internal position deep within the 
brain. However, left–right asymmetry appears to occur in the 
lateral habenula in humans (independent of age, brain weight 
and total habenular size) and is more prominent in women 
(Ahumada-Galleguillos et al. 2017). There also appears to be 
a functional asymmetry in the human habenula as evidenced 
by apparent differences in connectivity between left and 
right habenulae with the left habenula more coupled with 
the right parahippocampal regions and the right habenula 
more coupled with the substantia nigra/ventral tegmental 
regions (Hétu et al. 2016). Additionally, a high-resolution 
volumetric MR study found a trend (but not of significance) 
towards a larger left habenula volume in both healthy con-
trols and patients with depression and bipolar affective dis-
order (Savitz et al. 2011b).

Fasciculus retroflexus

(Lt; backwards turning bunch/bundle) The fasciculus retro-
flexus, also known as the fasciculus retroflexus of Meynert, 
habenulointerpeduncular tract, habenulopeduncular tract 
or retroflex tract, is the final component of the DDCS and 
principal efferent of the habenula, running ventrally from 
the habenula to the ventral midbrain and hindbrain (Aizawa 
et al. 2011). Although originally described in 1872 as a 
tract originating from the habenula by Meynert (1872), Van 
Gehuchten was the first to define its distal end as joining the 
IPN (Van Gehuchten 1894). Similar to the SM, the FR is 
also bidirectional tract and contains fibers originating from 
both the lateral and medial habenula (Herkenham 1981).

Anatomy

Although described since 1892 by Meynert, specific anatom-
ical information regarding the precise trajectory of this tract 
in humans is sparse. This is due to the bending nature of the 
tract as well as the fact that it traverses a particularly struc-
turally dense white matter region of the midbrain. Overall, 
the FR appears to take a lyre shape as it descends from the 
habenula to the IPN (Naidich and Duvernoy 2009). In con-
trast to rats, where MHb fibers directly join the FR, human 

MHb fibers initially travel along the ventral part of the LHb 
before descending to unite with the FR (Díaz et al. 2011). 
From the ventral aspect of the LHb, the FR travels down 
through the caudal thalamus, remaining medial to the centro-
medial nuclei (Naidich and Duvernoy 2009). It then curves 
medially, continuing ventrally in front of the pretectal area 
along the rostromedial border of the red nucleus, penetrat-
ing the nucleus near its rostral pole. At the level of the basal 
plate, it subsequently turns at 90° caudally, to enter the IPN 
beneath the red nucleus. The abrupt change in direction is 
what gives this tract its name (retroflexus meaning recurve) 
Note that the FR enters the IPN from its rostral and dorsal 
borders (Naidich and Duvernoy 2009). The fibers here cross 
and recross the midline IPN several times forming a figure 
eight pattern (Morley 1986). Here they generate synapsis 
and appear to innervate both the ipsilatral and contralateral 
IPN (Contestabile and Flumerfelt 1981; Moreno-Bravo et al. 
2016). An ill-defined nucleus of the interpeduncular tract 
has been documented in both animals (Rioch 1931) and 
humans (Marburg 1944). This nucleus consists of scattered 
neurons that lie between the medial and lateral parts of the 
tract and is of unknown function or significance.

Structurally, the FR consists of two concentric regions. A 
bundle of very thin unmyelinated axons originating exclu-
sively from the MHb travel through its core, and terminate 
after criss-crossing in both the contra and ipsilateral inter-
peduncular nuclei (Benarroch 2015; Herkenham and Nauta 
1979; Moreno-Bravo et al. 2016). Axons arising from the 
individual MHb subnuclei project down to specific regions 
of the IPN; dorsal MHb axons project to the lateral IPN, 
medial MHb axons to the ventral IPN, and lateral MHb 
axons to the dorsal IPN (Herkenham and Nauta 1979; Ichijo 
and Toyama 2015; Koppensteiner et al. 2016). Projections 
from MHb to IPN decrease caudally, with no afferents of 
the MHb reaching the caudal pole of the IPN (Contestabile 
and Flumerfelt 1981). The ventral MHb contains cholinergic 
neurons (Aizawa et al. 2012) and the dorsal MHb contain 
Substance P neurons of the dorsal MHb (Contestabile et al. 
1987). The thicker myelinated fibers on the outer (mantle) 
FR emerge from the LHb (Benarroch 2015; Herkenham 
1981), and to terminate directly in multiple monoaminergic 
nuclei including the ventral tegmental area, raphe nuclei, 
ventral periaqueductal gray and reticular formation. Note 
that the FR does not just consist of habenular efferents. Simi-
lar to other animals, the human FR also contains thalamic 
(pulvinar/midline nuclear group) fibers as well as ascending 
tectum fibers (Marburg 1944).

Function

Information relayed from the SM through the habenula is 
ultimately transmitted through the FR (Batalla et al. 2017) 
to the brainstem. Little specific information is available from 
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human studies on the exact connectivity and function of the 
FR and as such most of its function is inferred from animal 
studies. Broadly speaking, the FR participates in inhibitory 
control of monoaminergic regions (Ellison 2002).

The core of the FR (i.e., originating from the MHb) is the 
principal cholinergic input of the interpeduncular nucleus 
(Hattori et al. 1977). The IPN is well known for its wide-
spread connections including ascending projections to the 
limbic system (hippocampus, entorhinal cortex and septal 
areas) and descending projections to the brainstem mono-
aminergic regions (VTA, raphe and periaqueductal gray) 
(Morley 1986). The IPN outputs that synapse with these 
modulatory regions are GABAergic (Lima et al. 2017). As 
such the MHb through the FR core exerts tonic inhibitory 
control on ascending monoaminergic neurons (Nishikawa 
et al. 1986). Blocking muscarinic cholinergic transmission in 
the IPN results in increased levels of dopamine metabolism 
in more frontal areas such as the medial prefrontal cortex 
and nucleus accumbens (Nishikawa et al. 1986). Bilateral 
lesioning of the FR in mice demonstrated a chronic increase 
in serotonin, noradrenaline and dopamine in the IPN (Tak-
ishita et al. 1990). Following lesioning, there was evidence 
of hyperinnervation of the IPN by the afferent fibers from 
the locus coeruleus (NA) (Battisti et al. 1987), raphe nucleus 
(serotonin) and other central areas (Takishita et al. 1990). 
This progressive alteration in monoamines within the IPN 
is suggested to be implicated in cognitive processes, spe-
cifically the deterioration of choice accuracy (Bianco and 
Wilson 2009).

The FR mediates most of the negative feedback between 
the dopamine-receiving forebrain and the dopamine-releas-
ing brainstem through the lateral habenula (Ellison 2002). 
Continuous injections of dopaminergics, such as cocaine, 
MDMA, cathinone and amphetamine, in animals induced 
degeneration of the FR, particularly the outer sheath (Ellison 
2002). The disintegration of the FR may also underlie the 
development of progressive neuropsychiatric effects associ-
ated with repeated binges in addiction disorders, including 
paranoia (Carlson et al. 2000; Ellison 1994).

Studies have demonstrated that the fasciculus retroflexus 
also has reciprocal ascending monoaminergic axons target-
ing the habenula (Smaha and Kaelber 1973; Skagerberg 
et al. 1984; Li et al. 1993). These axons are confined to 
the outer sheath of the FR and as such specifically connect 
with the lateral habenula (Skagerberg et al. 1984). The FR 
provides dense DA innervations to the LHb, particularly 
its medial region, from the VTA and substantia nigra pars 
compacts (Skagerberg et al. 1984; Li et al. 1993; Shen et al. 
2012). Previous literature suggest that DA has an inhibi-
tory role in LHb and potentially is involved in the regulation 
of the habenular response to aversive and painful stimuli 
(Brown and Shepard 2013; Shen et al. 2012). Lesions of the 
FR weakened the density of dopaminergic nerve terminals 

in the LHb in rats (Shen et al. 2012; Skagerberg et al. 1984), 
indicating that the FR must be intact to transmit positive 
reward signals from the brainstem dopaminergic system to 
the LHb.

Development

As the name suggests, the DDCS is embryologically part 
of the diencephalon, a prosencephalic (forebrain) structure 
between the telencephalon and mesen- and rhombencepha-
lon. Indeed, the main function of the DDCS components are 
as processing conduits to relay information between telen-
cephalic and mesen/rhombencephalic structures. Similar to 
the development of other epithalamic gray matter structures, 
initially the habenular nuclei form early on, closely followed 
by their efferent and then followed by their afferent connec-
tions (Cho et al. 2014; Altman and Bayer 1979).

The diencephalon is formed of distinct segments, 
prosomeres (p1, p2 and p3) and neuromeres (D1, D2, D3, 
and D4), with circumferential axonal tracts forming around 
the neuromere boundaries (Funato et al. 2000). The habenula 
forms from the alar plate of p2 (Schmidt and Pasterkamp 
2017), the SM is formed along D2 (Lim and Golden 2007) 
and the FR is formed along the p1/p2 boundary (Funato 
et al. 2000). Axon guidance molecules are expressed in adja-
cent neuromeres guiding the axonal growth (Funato et al. 
2000). Among these molecules is the repulsive axon guid-
ance molecule Sema3F. This is found in the diencephalon 
and is expressed in p1, leading to repulsion from habenular 
explants. Whereas Netrin-1, an attractant, is expressed from 
the caudal to the ventral regions of the diencephalon (Funato 
et al. 2000).

The larger neurons of the lateral nucleus develop before 
the smaller neurons of the medial nucleus in rodents 
(Angevine 1970), resulting in the establishment of a clear 
latero-medial or “outside-in” progression. This gradient 
appears to exist both across the whole habenula and within 
each lateral and medial habenular nuclei (Altman and Bayer 
1979). In humans, habenular cytogenesis starts around the 
fifth week and is completed by approximately weeks 7–8 
(Muller and O’Rahilly 1997) with the habenular commissure 
also present in most embryos by the start of the eighth week 
(Muller and O’Rahilly 1990).

The efferent white matter FR is characterized by immedi-
ate growth of axons from the developing habenula, with the 
FR extending towards the mesen/rhombencephalon and rap-
idly reaching the interpeduncular nucleus around the end of 
week 6. The relationship of the FR and the parvocellular red 
nucleus is variable during development (Cho et al. 2014); 
however, the newly formed tract appears to migrate gradu-
ally towards the red nucleus to lodge into a deep groove on 
the medial aspect of the red nucleus sometime after week 
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12 (Yamaguchi and Goto 2008). Embryologically, the FR 
appears to develop its complex trajectory along three deci-
sion points: (1) repulsive signals Sema3F and Sema5A com-
plement the attractive signal Netrin1 to funnel the develop-
ing FR along a corridor in front of the pretectum allowing 
dorsoventral extension from the habenula, (2) sudden retro-
flexion caudally due to Slit1 repulsion from the floor plate, 
and (3) finally criss-crossing across the IPN complexes 
(Moreno-Bravo et al. 2016). Myelination of the FR occurs 
much later in development, with completion sometime after 
35 weeks (Yamaguchi and Goto 2008). Similar to other 
epithalamic structures, the afferent tract develops slightly 
later, with the SM forming from the telencephalic nuclei and 
eventually reaching the habenula around week 8 (Muller and 
O’Rahilly 1990).

Conclusion

This is the first review to describe in-depth all the com-
ponents of the dorsal diencephalic conduction system: the 
stria medullaris, habenula and fasciculus retroflexus. The 
anatomy and connections of the DDCS reflect its func-
tion as an integrator of reward, motivational, cognitive and 
emotional information from diffuse basal forebrain regions 
within the habenular relay. From this hub, habenular out-
puts can modulate the regulatory brainstem regions. Despite 
the potential importance of this circuit in neuropsychiatric 
disorders, this review highlights the clear lack of human 
studies into the DDCS and its components in humans. What 
is known of the human DDCS appears inconsistent, particu-
larly the specific networks of the habenular afferents and 
efferents. While there is an abundance of animal studies on 
the DDCS connections, there has been just one study that 
has physically traced the connections in humans (Marburg 
1944), as such it is not clear whether many of these animal 
networks map accurately onto the larger human forebrain 
(Herculano-Houzel 2009). Furthermore, habenular function 
in humans has not been clearly defined, specifically with 
regards to the functional importance of known habenular 
laterality (Hétu et al. 2016), which appears to be of particu-
lar significance in other vertebrates (Ahumada-Galleguillos 
et al. 2017; Concha and Ahumada-Galleguillos 2016). The 
difficulty of studying such small anatomical structures in 
humans is without a doubt a contributor to the lack of repli-
cable research of this system. This is particularly relevant for 
human in vivo studies, where imaging techniques struggle to 
capture the structures at current resolutions. New advances 
in neuroimaging such as increased scanner strengths, image 
acquisition improvements, and higher-order diffusion trac-
tography (Tournier et al. 2011), functional imaging (Crad-
dock et al. 2015) and magnetic resonance spectroscopy 
protocol refinements (Drago et al. 2018) may aid future 

investigations into the structure and function of the DDCS 
in humans in vivo. Additionally, more human post-mortem 
studies using established (e.g., DiI, horseradish peroxidase) 
(Von Bartheld et al. 1990; Schmued 1994; Tardif and Clarke 
2001) and pioneering neurotracing methods (e.g., viral trac-
ers) (Schmued 2016; Lai et al. 2018) to determine the diffuse 
basal forebrain connections of the DDCS neurocircuitry are 
needed to reveal the complicated habenular connectome. 
Further exploration of this pivotal system may progress our 
insight into the pathophysiology of many neuropsychiatric 
disorders, particularly major depressive disorders, anxiety 
disorders, addiction and pain disorders, and open novel 
therapeutics targets for investigation.
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