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Abstract 

While the etiology of moderate and severe TBI is readily visible on current medical imaging 

paradigms (MRI and CT scanning), a far greater challenge is associated with the diagnosis and 

subsequent management of mild TBI (mTBI), especially concussion which by definition is 

characterized by a normal CT. 

To investigate whether the integrity of the blood-brain barrier (BBB) is altered in a high risk 

population for concussions, we studied professional mixed martial arts (MMA) fighters and 

adolescent rugby players.  Additionally, we correlated the BBB disruption defined by increased 

gadolinium contrast extravasation on dynamic contrast-enhanced (DCE-MRI) imaging on MRI 

with the severity and number of impacts recorded using instrumented mouthguards in 

professional MMA fighters.  MMA fighters were examined pre-fight for a baseline and again 

within 120 hours post competitive fight, while rugby players were examined pre-season and 

again post-season or post-match in a sub-set of cases.  DCE-MRI, serological analysis of BBB 

biomarkers, and an analysis of instrumented mouthguard data was performed. 

Here, we provide pilot data that demonstrates disruption of the BBB occurs commonly in both 

professional MMA and adolescent rugby, dependent on the level of exposure.  Our data suggest 

that biomechanical forces in professional MMA and adolescent rugby can lead to BBB 

disruption. These changes on imaging may serve as a biomarker of exposure of the brain to 

repetitive sub-concussive forces and mTBI. 
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Introduction 

Traumatic brain injury (TBI) is the leading cause of death in children and young adults globally.  

Indeed, the incidence of TBI can be considered to have reached epidemic proportions and there 

have been few recent advances for the treatment of malignant brain swelling that may evolve 

after severe TBI (1, 2).  If brain swelling persists, the risks of permanent brain damage or 

mortality are greatly increased (3). While head injury is a relative risk in modern contact sports, 

the number of deaths and major disabilities originating from sports related severe TBI are 

small. A far greater challenge is the occurrence of repetitive mild TBI (mTBI), commonly 

referred to as concussive or sub-concussive injuries (4). 

Generally, mTBI can be classified as injury to the brain resulting from blunt trauma or 

acceleration/deceleration of the head and neck with one or more of the following conditions 

attributable to the head injury during the post-traumatic surveillance period: 1) Any period of 

observed or self-reported transient confusion, disorientation, or impaired consciousness; 2) 

Any period of observed or self-reported dysfunction of memory (amnesia) around the time of 

injury; 3) Observed signs of other neurological or neuropsychological dysfunction, such as 

seizures in the immediate aftermath of head injury, headache, dizziness, irritability, fatigue, or 

poor concentration (5).   

In the context of participation in contact sports, there are frequently challenges in getting an 

accurate diagnosis and appropriate treatment post-concussion, especially when there is no 

documented or observed loss of consciousness or symptom complex that is easily recognised. 

Additionally, it must be recognized that there does not need to be any subjective clinical signs 

or symptoms for a brain injury to have occurred. In that regard, the nature of certain sports such 

as American football, rugby and boxing are such that repetitive exposure of the head to what 

is termed, sub-concussive forces, may lead to an accumulation of silent damage to distinct brain 

regions (6, 7, 8). However, current acute standard of care imaging with MRI is often not 

sensitive enough to pick up any damage and the underlying pathophysiology of these sub-

concussive forces is far from established in human mTBI. Similarly, imaging paradigms 

following chronic exposure to mTBI is faced with similar challenges.  

The exposure of children and young adults to sports that involve an increased risk of head 

trauma is controversial. We do know that boxing fighters suffer repeated mTBI episodes and 

are at risk of permanent brain damage and chronic traumatic encephalopathy (CTE) (9, 10). 

Although CTE is well known to be present in fighters and other professional contact athletes, 

there is far less data on the risks for children in contact sports (11). 

We and others recently reported for the first time that blood-brain barrier (BBB) dysfunction 

is associated with pathology of CTE (12, 13). The BBB plays a critical role in maintaining 

central nervous system (CNS) homeostasis (14). Such is the impact of the BBB on neural 

integrity that it can be estimated that each neuron is perfused by its own capillary, with no 

neuron being further than ~25 µm from a capillary. Indeed, the combined surface area of 

cerebral microvessels is 150-200 cm2 /g of brain tissue which equates to approximately 15-20 
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m2 per adult human brain (15, 16, 17, 18).  

Given that BBB integrity is readily assessed in human subjects, we have sought to understand 

the character, mechanism, and structural/functional consequences of exposure to head impacts 

in two age groups. We prospectively followed professional mixed martial arts (MMA) fighters 

and adolescent rugby union players. 

Surprisingly, we found evidence of dynamic BBB disruption in a sub-set of adolescents 

exposed to a season (6 months) of rugby union in the absence of diagnosed concussion. This 

disruption was measured with enhanced gadolinium signal and occurred in tandem with a 

distinct set of serological, readouts that may allow for an objective measure of neural damage 

to be assessed. In five professional MMA fighters who were all diagnosed with a concussion, 

we observed a wide spectrum of BBB integrity. Using well-established instrumented 

mouthguard technology in the fighters, the linear regression between the mechanical 

parameters indicating the severity of the impacts and the resultant BBB disruption were 

performed. Some of the parameters show good correlations, which suggested a potential means 

of assessing damage to the concussed brain.  

Results 

BBB disruption is linked to repetitive head trauma 
Using instrumented mouthguard technology (outlined in full in methods section), we 

established a link between single and repetitive head impacts and BBB disruption (Fig 1). We 

recruited five professional MMA fighters to undergo pre-fight and post-fight testing and 

imaging (Fig1c, d). In combination, we instrumented the participants to measure head impact 

severity and exposure during fights (Fig 1a). The number of impacts and the kinematics of 

these impacts were found to be in linear correlation to the volume fraction (Fig.1f, g, h). We 

also used finite element (FE) modelling to estimate brain tissue deformation produced by the 

head impacts (Fig 1c). To find the most sensitive mechanical parameters to BBB disruption, 

the 1st principal strain (ε), 1st principal strain rate (𝜀̇), 1st principal stress (σ) and the power 

absorbed (ω) were extracted from the simulation results. Considering the amplitude, the 

duration and the repeatability of the strike may contribute to BBB disruption. Various methods, 

detailed in the Methods section, were used to calculate parameters to indicate the severity of 

all impacts. The results were correlated to the average slopes of contrast intensity and the 

fraction of volume where the BBB was disrupted, as shown in Table 1. Some of the linear 

regressions were plotted in Fig.1 i-q. For our cohort,𝜀Σ
𝐼 , 𝜀Σ̇

𝐼 , 𝜎Σ
𝐼,  were in good correlation with 

both the average slope and the BBB disruption volume fraction, and the 𝜀Σ
𝑃, 𝜀Σ̇

𝑃, were only in 

good correlation with the BBB disruption volume fraction (R2 > 0.80). However, considering 

only 6 data points were used in regression, these correlations need to be validated in the future. 

All parameters relating to the power/energy were found to be poorly correlated to disruption of 

BBB. The maps of εP were compared with the maps of BBB disruption locally (Fig.1c), 

however, the increased deformation was not locally associated with the increased changes of 

BBB.  
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Table 1: R2 of the linear regression between brain deformation and BBB disruption. (The color 
indicates the R2 , white is corresponding to R2 = 0 and red is corresponding to R2 > 0.8) 
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Figure 1:   a) Head kinematics measured using the Stanford instrumented mouthguard (MiG 2.0) in 
professional mixed martial arts (MMA) fights.  Plots show the distribution of peak linear acceleration 
and angular acceleration for that match. b) Green-Lagrange max principal strain maps from FE 
simulations of head kinematics.  Deformation is plotted from 0 % (blue) to 40 % (red). c) Changes in 
blood-brain barrier (BBB) function observed after injury (18 to 120 h) using dynamic contrast 
enhanced MRI (DCE-MRI). d) Linear regression between the volume of BBB disruption (in %) and the 
total number of head impacts sustained during the fights. e) Linear regression between the average 
BBB disruption (expressed as slope) and the peak Green-Lagrange maximum principal strain from FE 
simulations. f) Linear regression between the average BBB disruption (expressed as slope) and the 
peak angular acceleration measured using the instrumented mouthguard during fights. g) Linear 
regression between the average BBB disruption (expressed as slope) and the peak linear 
acceleration measured using the instrumented mouthguard during fights. h) Linear regression 
between the local BBB disruption (expressed as slope) and local Green-Lagrange maximum principal 
strain. To locally matched brain deformation and BBB disruption, the volumes were aligned using 
affine registration. 
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BBB disruption is evident in rugby players post-season  

Using a weight-based bolus injection of Gadolinium and a dynamic contrast enhanced MRI 

(DCE-MRI) paradigm (18, 19), we were able to measure BBB integrity in subjects examined 

pre-season (before regular full contact training and competition) and again at a return imaging 

session following conclusion of the rugby season (Fig 2a).  With a sample size of 17, there 

were no overall differences in gadolinium signal when pre-season scans were compared to 

post-season scans across the entire group (Fig 2b). However, increases in signal post-season 

when compared to pre-season were observed in the periventricular regions of the brain in 9 of 

17 subjects who completed the study (Fig 2c).  Indeed, when the BBB disrupted voxels across 

the entire groups were examined at pre-season compared to post-season, it was evident that a 

sub-group of individuals displayed increased BBB disruption post-season compared to their 

pre-season scan (Fig 2d).  This BBB disruption was significantly increased in this sub-group 

of players (Fig 2e). 

 
 
Figure 2: a) Enhanced gadolinium contrast agent (red) observed post-season in a youth rugby player 
(linear method). b) Linear regression between BBB disruption volume (in % voxels) at baseline vs 
post-season. c) Relative to baseline changes in volume of BBB disruption post-season.  d) 
Distribution frequency of volume of BBB disruption (in % voxels)  in players pre-season and post-
season to. e) Increased BBB disruption volume (in % voxels) in players post-season compared to 
matched pre-season (**P< 0.001). f) Brain derived neurotrophic factor (BDNF) levels are significantly 
increased in players plasma post-season compared to pre-season (**P = 0.004). g) Monocyte 
chemoattractant protein-1 (MCP-1) levels are significantly increased in players plasma post-season 
compared to pre-season (*P = 0.01). h) Decreased levels of S100B detectable post-season compared 
to pre-season (P < 0.05).  
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Systemic biomarkers of BBB damage and brain trauma have been purported to have utility in 

determining prognosis post TBI.  In this regard, we screened plasma samples from participants 

pre- and post-season in an effort to examine the differential expression of 14 common "TBI 

biomarkers".  Of these (outlined in full in methods section), only 2 were detectable at 

sufficiently high levels to be quantified.  Levels of brain derived neurotrophic factor (BDNF) 

(Fig 2f) were significantly increased in subjects post-season compared to plasma levels pre-

season (**P = 0.004).  No differences were observed in levels of monocyte chemotactic protein 

(MCP-1) (Fig 2g).  Levels of the commonly used BBB disruption biomarker, S100B, 

surprisingly decreased in plasma samples post-season compared to pre-season (*P < 0.05) (Fig 

2h). There was only a very weak correlation of S100B levels with the % disrupted voxels, but 

this was a negative correlation (Fig S1). 

 

BBB disruption in the acute stages post-match 

While BBB disruption and differential levels of biomarkers were evident in analyses of pre-

season versus post-season schoolboy rugby players, we wished to ascertain whether this BBB 

disruption was occurring in the acute phases post exposure to repetitive head trauma.  In this 

regard, we recruited a sub-group of university-based rugby union players (aged 18-23).  In this 

group, we enrolled 8 participants to undergo pre-season testing and imaging. Using the linear 

method of DCE-MRI analysis, 2 out of 8 subjects had an increased signal intensity post match 

compared to their pre-season scan (Fig 3a) one of which returned to baseline at the end of the 

season (Fig 3c), showing reversibility of the BBB disruption, while the other manifested a 

higher signal post season.   

Unlike the pre-season/post-season analyses, examining levels of BDNF in participants did not 

show any difference in plasma levels post-match compared to pre-season (Fig 3c), however, 

levels of MCP-1 were significantly increased post-match in this group (*P = 0.012) (Fig 3d). 

Interestingly, and as has been reported previously, S100B levels were also shown to increase 

significantly post-match (*P = 0.01) (Fig 3e). There was weak positive correlation between 

S100B levels and % disrupted voxel increases (Fig S1). The demographic of rugby players and 

MMA fighters who participated in our study is outlined in Fig. S2. 
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Figure 3: a) Enhanced gadolinium contrast agent (red) observed post-match and post-season in a 
university level rugby player (linear method). b) Linear regression between BBB disruption volume 
(in % voxels) at baseline vs post-match. c) Relative to baseline changes in volume of BBB disruption 
post-match and post-season. d) Non-significant changes in BBB disruption volume (in % voxels) post-
match compared to baseline. e) Brain derived neurotrophic factor (BDNF) levels pre-season 
compared to post-match. f) Increased levels of monocyte chemoattractant protein-1 (MCP-1) post-
match compared to pre-season (*P = 0.012). g) Increased levels of S100B observed post-match 
compared to pre-season (*P = 0.01).  

 

Discussion 

Our pilot study provides the first analysis of BBB function in a group of MMA fighters and 

rugby players exposed to varying levels of repetitive head trauma in the context of playing 

competitive contact sports. Taken together, our data suggest that dynamic changes to the BBB 

may occur after a full season of contact sport with these changes manifesting in up to 52 % of 

adolescents. While there were slight modifications to the MRI scanning parameters between 

the schoolboy rugby study and the university rugby study/MMA study, we observed no 

significant differences between the values generated. Additionally, the pattern of BDNF, MCP-

1 and S100B, biomarkers detected post-season and post-match, suggest that these markers may 

aid in the indication of sub-concussive trauma, and possibly also inform in return to baseline 

assessments. Importantly however, it appears that these biomarkers may have limited utility as 

“stand-alone” readouts as we observed decreased levels of S100B in bloods of players after a 

full season of rugby. The elusive temporal profile of these biomarkers after trauma also make 

it challenging to use solely as a biomarker of brain injury.  
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From animal TBI models, it is suggested that TBI may cause primary damage to the brain 

parenchyma leading to BBB pathophysiology and CTE (13, 20). From the field of ultrasound 

assisted drug delivery, it is well known that mechanical forces open the BBB complex in 

humans and result in inflammation. However, animal studies do not necessarily recapitulate 

the tissue level biomechanical forces experienced by humans in sports, so it is unknown if BBB 

disruption and inflammation occur in child or adult athletes. In this regard, in our study we 

measured the kinematics and the severity of head hits sustained by five professional MMA 

fighters who also underwent pre-fight and post-fight testing and imaging in six fights (Fig 1). 

Although all five fighters were concussed, we found a wide spectrum of BBB integrity. Based 

on this pilot data, we found , 𝜀Σ
𝐼 , 𝜀Σ̇

𝐼 , 𝜎Σ
𝐼  , 𝜀Σ

𝑃, 𝜀Σ̇
𝑃, 𝜀95

𝑃 , 𝜎95
𝐼  were correlated to the disruption of 

the BBB well, indicating these parameters could be potential candidates to induce the 

dysfunction. However, owing to the different geometry and the low resolution of FE head 

model, the maps of the mechanical parameter could not be associated with the BBB disruption 

locally. In the subject who was knocked out within the first 2 minutes of the fight (Fig 1c, Fight 

3), we found little evidence of BBB disruption even after a transient loss of consciousness. 

However, upon inspecting the mouthguard data, we found relatively low accelerations (four 

impacts all less than 50g’s and 5000 rad/s2) and small brain strains from FE modelling (less 

than 10% maximum principal strain). Although the study sample is too small for conclusive 

findings, and cumulative effect of the multiple impact is not considered, this research supports 

the hypothesis that repetitive head impacts may cause BBB disruption. The simultaneous 

correlation of severity of hits we observed in concussed professional fighters leaves open the 

question as to what effect repetitive sub-concussive exposure may have on its own. 

While our study cannot speak pervasively to concussive brain injuries per se, we have 

highlighted that the very nature of contact sports as violent as MMA and as typical as rugby 

can manifest dynamic changes to the integrity and regulation of the BBB due to what we can 

term “sub-concussive” events.  

The current clinical assessment of mTBI falls far below the kind of objective criteria that would 

provide meaningful and clinically robust diagnostic and prognosis information for patients. 

This is compounded not only by the lack of an appropriate imaging paradigm but also due to 

the lack of any systemic biomarkers that can predict the severity of injury. Lately, there has 

been a growing awareness of implications of concussive brain injuries in sports given the well-

defined increased risk of dementia associated with moderate or severe TBI (26, 27, 28, 29) and 

emerging evidence suggestive of a link between repetitive mild head trauma and the 

development of CTE (30, 31, 32). There is a clear need for understanding the molecular 

aetiology of concussive and sub-concussive brain injuries and for developing methods to aid 

in the diagnosis and management of such injuries to the brain.  

While participation in sports activities is hugely important for social, physiological and 

psychological development of children and young adults, it is critical that we make objective 

and rational decisions on a case-by-case basis when deciding whether athletes should compete 

in full contact sports. The most common contact sports include rugby, American football, 

boxing, horse riding and MMA. What remains to be elucidated, however, is whether these 

sports are putting future brain health at an acceptable risk. Downloaded by Karolinska Institutet 

University Library from www.liebertpub.com at 09/07/19. For personal use only. Page 11 of 

27 11 Journal of Neurotrauma Dynamic blood brain barrier regulation in mild head trauma 

(DOI: 10.1089/neu.2019.6483) This paper has been peer-reviewed and accepted for 

publication, but has yet to undergo copyediting and proof correction. The final published 

version may differ from this proof. Expanded and longitudinal studies using the 
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multidisciplinary methods outlined in the current pilot study will undoubtedly lead to better 

management and clinical decision making with regard to repetitive mTBI. Imaging of BBB 

integrity in tandem with serological analysis of participants in contact sports could also form 

the central platform in diagnosis and may better inform return to play guidelines 

Methods 

Head impact measurements and brain tissue deformation estimations 
Head impact measurements and brain tissue deformation estimations We deployed the Stanford 

Instrumented Mouthguard (MiG2.0) to 5 professional MMA fighters during regular matches 

(n=5 subjects, 6 fights). The human subject protocol was approved by the Stanford, Trinity 

College and Institute of Technology Tallaght Panel for the Protection of Human Subjects. We 

conducted data collection in accordance with the institutional review boards’ guidelines and 

regulations. Both video analysis and instrumented mouthguard data were used to validate each 

impact.  

The MiG2.0 senses 6 degree of freedom kinematics via a triaxial accelerometer and a triaxial 

gyroscope. The sensory board is completely sealed between three layers of ethylene vinyl 

acetate (EVA) material and communication occurs via blue-tooth. A tight fit to the dentition is 

achieved by forming the EVA material around a dental model (33). In this study we recorded 

events with linear acceleration exceeding 10 g in agreement with previously published systems 

(34). The acquisition window was 50 ms pre-trigger and 150 ms post-trigger. Linear 

acceleration and angular velocity were filtered using a 4th order Butterworth low-pass filter 

with cut-off frequency of 300Hz. Angular acceleration was estimated using a 5-point stencil 

derivative of the measured angular velocity.  

Estimates of brain tissue deformation for all head impacts were obtained from simulations 

using the KTH finite element (FE) model (KTH Royal Institute of Technology, Stockholm, 

Sweden) (35, 36). This model includes the brain, skull, scalp, meninges, cerebrospinal fluid 

(CSF), and 11 pairs of bridging veins. Skull acceleration measured from the MiG2.0 was 

prescribed to follow the measured 6DOF head accelerations and ensuing brain deformation 

was observed. The brain was modelled as an Ogden hyper-elastic constitutive material to 

account for large deformations of the tissue, with additional linear viscoelastic terms to account 

for the rate dependence of the tissue. The boundary condition between the dura and skull was 

tied. Between the brain and dura, a sliding interface was implemented that allowed tangential, 

and not radial, movement between the structures (given the incompressibility of the mostly-

water CSF). The determined brain geometry and material properties were validated against 

displacement data from cadaver head impact experiments where neutral density targets were 

inserted inside cadaver brains and tracked using high-speed biplane X-ray during impacts (37, 

38).  

To locally compare brain deformation to BBB disruption from DCE-MRI images we 

implemented a protocol involving FE mesh voxelization and an affine registration between the 

DCE brain mask and the voxelized FE brain mask. Firstly, the FE brain mesh was voxelized to 

obtain a reference volume (MATLAB R2018a); subsequently a spatial transformation was used 

to align the DCE-MRI brain to the model. The volume resampling was performed with the 3D 

SLICER 4.10.0 BRAIN registration package. Based on spatial coordinates, the mechanical 

deformation was assigned to the DCE-MRI voxels belonging to the corresponding element, 

and only the voxels with the BBB disruption were considered in the linear regression. Different 

methods were used to calculate a scaler quantity to represent the severity of brain deformation 

during the game. As an example shown in Eq.1, the peak (superscript P) and the integration 
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(superscript I) over history of the strain (ε), the strain rate (𝜀̇), the stress (σ) and the power 

absorbed (ω) were calculate for every point and impact. Then, the effect of the multiple impact 

is considered and the maximum values over all impact were calculated for every points. The 

values for points in the map were caused by different impacts. The Total (Σ), average (A) and 

the value which was higher than that in 95% points (95) were calculated and used in the 

regression. 

𝜀Σ
𝐼 = Σ(𝑥,𝑦,𝑧) (𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑚 (∫ 𝜀(𝑡, 𝑡𝑚, 𝑥, 𝑦, 𝑧). 𝑑𝑡

𝑡
))      Eq.1 

Where 𝜀(𝑡, 𝑡𝑚, 𝑥, 𝑦, 𝑧) is the strain at point (x, y, z), at time point t, in the impact im. The 

maximum peak values of the magnitude of linear (a) and angular (β) acceleration were 

calculated as an example shown in Eq.2. Eq.2. 

𝑎𝑃 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑚(𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑡(𝑎))      Eq.2 

 
Magnetic Resonance Imaging (MRI) 
All ethical approvals were in place prior to initiation of studies on human subjects. Initially, 22 

participants were recruited pre-season for the schoolboy study, however only 11 returned for 

post-season evaluation. All participants underwent a pre-season scan prior to the start of the 

competitive rugby season and underwent a post season scan within two months of the end of 

the season in the case of the schoolboy team (n = 11). In addition, the university-based team 

participants (Initially n = 10 recruited but only n = 8 were scanned post match) underwent a 

scan within 2 hours of playing a full contact competitive rugby match. BBB permeability maps 

were created using the slope of contrast agent concentration in each voxel over time, calculated 

by a linear fit model as previously described. Thresholds of high permeability was defined by 

the 95th percentile of all slopes in a previously examined control group (39). Supra-threshold 

values of individuals were then normalized to pre-season values to determine relative change 

over the course of play. MMA fighters were scanned pre-fight and again within 120 hours post 

competitive fight using identical parameters as that used in the university-based rugby players. 

All ethical approvals were in place prior to initiation of studies on human subjects.  Initially, 

22 participants were recruited pre-season for the schoolboy study, however only 11 returned 

for post-season evaluation. All participants underwent a pre-season scan prior to the start of 

the competitive rugby season and underwent a post season scan within two months of the end 

of the season in the case of the schoolboy team (n = 11). In addition, the university-based team 

participants (Initially n = 10 recruited but only n = 7 were scanned post match) underwent a 

scan within 2 hours of playing a full contact competitive rugby match. BBB permeability maps 

were created using the slope of contrast agent concentration in each voxel over time, calculated 

by a linear fit model as previously described. Thresholds of high permeability was defined by 

the 95th percentile of all slopes in a previously examined control group (20, 21). Supra-

threshold values of individuals were then normalized to pre-season values to determine relative 

change over the course of play.  Additionally, Ktrans maps were also created for each scan. 

All imaging was performed using a 3T Philips Achieva scanner, and included a T1-weighted 

anatomical scan (3D gradient echo, TE/TR =3/6.7 ms, acquisition matrix 268x266, voxel size: 

0.83x0.83x.9mm), T2-weighted imaging (TE/TR =80/3000 ms, voxel size: 0.45x0.45x.4mm), 

FLAIR (TE/TR =125/11000 ms, voxel size:0.45x0.45x4mm). 
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In the first cohort, the calculation of pre-contrast longitudinal relaxation time (T10), the variable 

flip angle (VFA) method was used (3D T1w-FFE, TE/TR = 2.78/5.67 ms, acquisition matrix: 

240x184, voxel size: 0.68x0.68x5 mm, flip angles: 2,10,16 and 24°). Dynamic contrast 

enhanced (DCE) sequence was then acquired (Axial, 3D T1w-FFE, TE/TR = 2.78/5.6 ms, 

acquisition matrix: 240x184, voxel size: 0.68x0.68x5 mm, flip angle: 6°, Δt = 6.5 Sec, temporal 

repetitions: 70, total scan length: 7.6 minutes). An intravenous bolus injection of the contrast 

agent gadobentate dimeglumine (Gd-BOPTA, Bracco Diagnostics Inc., Milan, Italy) was 

administered using an automatic injector after the first three DCE repetitions.  

For the second, older cohort, T1-weighted, T2-weighted and FLAIR imaging parameters were 

kept the same. For the calculation of pre-contrast longitudinal relaxation time (T10), the variable 

flip angle (VFA) method was used (3D T1w-FFE, TE/TR = 2.78/5.67 ms, acquisition matrix: 

208x,204 voxel size: 0.86x0.86x6 mm, flip angles:10,15, 20, 25 and 30°). Dynamic contrast 

enhanced (DCE) sequence was then acquired (Axial, 3D T1w-FFE, TE/TR = 2.78/5.6 ms, 

acquisition matrix: 208x,204 voxel size: 0.86x0.86x6 mm, flip angle: 20°, Δt = 22.2 Sec, 

temporal repetitions: 61, total scan length: 22.6 minutes). Intravenous bolus injection of the 

contrast agent gadobentate dimeglumine was administered using an automatic injector after the 

first five DCE repetitions 

To obtain permeability values in healthy individuals, we (Co-author, Prof Alon Friedman’s 

group) first scanned a cohort of 27 non-contact sport athletes (n=27 males, range, 18-36 years; 

median, 28 years). Each registered brain voxel was assigned a value corresponding to a 

normalized permeability. Based on a cumulative distribution function (CDF) of normalized 

permeability values, we defined an upper limit for “normal” permeability as the 95th percentile 

of the mean CDF. Brain voxels with higher values were considered as having “abnormally high 

permeability”. An additional control group (healthy, non-athlete controls) recruited at a later 

stage (n = 26, range 18-40, median, 30 years) as a test group. No differences in permeability 

maps were found between the two separate control groups.  

Changes in DCE scan length were made as the shorter scan time can sometimes inflate the 

LDM signal, as the length of time allowed for the contrast signal to decay following bolus 

injection until scan completion is less. To align scans with a previous study (34) a longer scan 

time was utilised in the university rugby cohort and the MMA cohort. The values measured 

were normalised to an internal ROI and therefore relative values are used to generate % voxels. 

Also, there was no significant difference between the values generated using the shortened scan 

time and the longer scan time.  

Human plasma analyses 
Statistical analysis was performed using Student’s t-test, with significance represented by a P 

value of ≤ 0.05. For multiple comparisons, ANOVA was used with a Tukey-Kramer post- test 

and significance represented by a P value of ≤ 0.05. ANOVA followed by a Bonferroni post-

test was used for multiple comparisons was used with P ≤ 0.05 representing significance. 

G*Power was used a priori to calculate an appropriate sample size to ensure adequate power 

for experiments. For biomechanical regression with DCE-MRI results, multiple comparisons 

were made to look for correlations. Therefore, statistical significance is not considered in this 

analysis. 
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Supplementary Figures 

 

 
 
Supplementary Figure 1: Spearman’s r-values correlating post-season suprathreshold voxel values 
with relative changes in serological markers of TBI and immune response markers in plasma 
samples. Relative changes were generated by normalising post-season concentrations to baseline 
values. BDNF: brain-derived neurotrophic factor. MCP-1: monocyte chemoattractant protein-1. 

 

 

 
 
Supplementary Figure 2: Demographics of rugby players and MMA fighters. 
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