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Abstract

Audio content is today consumed in a plethora of ways. This may be on stereo headphones,

via a home cinema system, in the car or on a smart speaker. The format used to deliver the

content may be an MP3 or WAV, FLAC, AIFF, OGG, or any number of various other video

and audio streaming options. The content may be a game, music or drama & current affairs

broadcasting.

Audio content is predominantly delivered in a stereo audio file of a static, pre-formed mix.

The content creator makes volume, position and effects decisions, generally for presentation

in stereo speakers, but has no control ultimately over how the content will be consumed. This

leads to poor listener experience when, for example, a feature film is mixed such that the

dialogue is at a low level relative to the sound effects. Consumers can complain that they

must turn the volume up to hear the words, but back down again because the effects levels are

too loud. Addressing this problem requires a television mix optimised for the stereo speakers

used in the vast majority of homes, which is not always available.

The concept of object-based audio envisages content delivery not via a fixed mix, but

as a series of auditory objects which can be flexibly controlled individually. This method

would increase the flexibility available to creators such that they could design sound mixes

for multiple consumption paradigms. A package of audio content could then come provided

with a menu of mix configurations, giving consumers the option of choosing which to use.

Object-based audio could also be used to automate content decisions in an informed manner

for different scenarios. If a television mix is required for a film where none is available,



a model could be applied to automate an appropriate mix which balances dialogue and

effects levels. If it became necessary to reduce the amount of data transmitted, variable

compression could be applied to objects, selectively reducing data file sizes. In this way,

the most important objects could be reproduced at highest quality with no file compression.

Those less critical could be rendered at lower quality, having been heavily compressed. From

these examples it follows that an ability to predict the importance of auditory objects would

be useful as it would permit the selective treatment of assets for both creative and delivery

strategies.

This thesis provides a research roadmap for a machine learning investigation of auditory

hierarchy, and thus serves two communities. For those from a machine learning background,

it introduces perceptual auditory theory and gives insight into how humans perceive sound.

For those from an audio background, it provides insight into common machine learning

methods and best practices. To begin, perceptual audio research is reviewed and a theory of

auditory hierarchy is offered, which outlines factors relevant to hierarchical classification in

the context of modern media consumption paradigms. A review of audio machine learning

research is then presented, which frames hierarchical prediction as a problem complicated by

the subjective nature of the labelling task, distinct from other prediction problems such as

environmental sound classification where correct sound identification results in an objective

label. The nature of auditory hierarchy is then explored via a number of experiments.

The machine learning techniques employed are exploratory and provide insight into the

performance of common methods. This is with the intention of illuminating a problem area

which to date has not received widespread interest from the machine learning community. It

is hoped that the experiments described in this work will thus inform further applications of

machine learning methods to auditory hierarchy.

The first experiment described in this work is a perceptual labelling task, which investi-

gates the inherent sound hierarchy between a small corpus of isolated sounds. A subsequent

iv



machine learning analysis produces promising results, achieving a foreground recall score of

93.3%, but the size of dataset used is noted as an issue, highlighting the requirement for a

larger dataset of hierarchically labelled sounds. For this reason, Active Learning methods

for minimising the manual effort required to label large numbers of experimental stimuli are

investigated. It is found that labels can be predicted to high degrees of accuracy (95.5% of the

total possible) by selecting just a small percentage (1.7%) of the most informative instances.

This method is then used in tandem with data augmentations to build a corpus of 100,000

instances with hierarchical labels. The performance of Support Vector Machine (SVM) and

Convolutional Neural Network (CNN) algorithms on a sound hierarchy prediction task using

different feature representations is then presented.

It is found in this case that performance of the CNN is superior (82.2% average class

accuracy), but it is noted that this is not greatly superior to that of an SVM (77.5%) trained on

a smaller dataset. This is an interesting result, as it suggests that the manual effort required

to label datasets large enough for deep learning algorithms may not be justified for every

application.
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Chapter 1

Introduction

1.1 Motivation

Recent technological advances have driven changes in how media is consumed in home,

automotive and mobile contexts. Multi-channel audio home cinema systems are not ubiqui-

tous, but have become more prevalent. The consumption of broadcast and gaming content

on smartphone and tablet technology via telecommunications networks is also more com-

mon. Research in object-based broadcasting [8, 9] and auditory object categorisation [10]

has underlined a growing interest in the area. Object-based Audio (ObA), introduced in

Section 2.3, may lead to new modes of content creation and consumption by providing audio

on an object level with metadata which controls how the media is delivered depending on the

consumption paradigm and other considerations.

Delivering audio content as a collection of objects, as opposed to a fixed stream, suggests

new possibilities and consequently poses new challenges for audio content delivery. A stereo

audio file is adequate for consumption in a mobile context using headphones, for example,

but it is limited to stereo presentation in the context of a surround-sound home entertainment
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system. Delivering this content as a collection of objects controlled by metadata allows the

possibility for many mix configurations accompanying the raw audio to accommodate nu-

merous consumption paradigms. The variability of telecommunications network bandwidths

is another factor which constricts data transmission capacity for consumers ‘on-the-move’.

In this context, an ability to adapt audio content based on the importance of each object

to perception of the auditory scene as a whole would allow file size optimisation based on

end user experience in addition to network capacity. This could be achieved by varying

the degree of compression applied to elements of the auditory scene, rendering the most

important objects at highest quality.

These examples motivate the requirement for a perceptual understanding of which audi-

tory objects are deemed important and how the relative importance of sounds may change

with time. Any real-world implementation of these concepts would require a method of

accurately predicting Auditory Hierarchy (AH) without human intervention which motivates

investigation of models trained for this purpose.

There is a considerable body of research in the area of Auditory Scene Analysis (ASA) ,

the study of human sound perception. ASA involves a constant activity of sound cate-

gorisation which Bregman [11] outlines as both a conscious (schematic or top-down) and

unconscious (primitive or bottom-up) process of soundscape perception. Guastavino [12]

has noted converging evidence from both behavioural and neurophysiological domains that

provides support for the notion that amalgamation of these processes is integrated, rather than

serial. Thus, ASA can be considered as a constant analysis of the surrounding sound scene,

subject to varying levels of influence from a number of external factors, which involves

continual innate identification of interesting sounds which may then be consciously analysed

for semantic information or further meaning, or not, as deemed necessary based on the

interaction of these functions.
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Machine Learning (ML) is another extremely active area of research both generally [13]

and in audio terms [14]. There is a rich recent history in this area deriving from events such as

the Detection and Classification of Acoustic Scenes and Events (DCASE) challenges [15, 16],

which provide background to a variety of sound classification tasks. Performance in some

ML domains has begun to approach and even surpass human accuracy levels, which suggests

that an ML implementation can be successfully applied to automate classification of auditory

objects on a hierarchical scale.

Given the multifaceted nature of hierarchical classification, not to mention the individual,

subjective nature of auditory perception, it can be presumed that predicting a phenomenon

such as AH would be a non-trivial task. This presents a number of practical challenges.

While much perceptual work uses small numbers of stimuli to investigate aspects of ASA,

ML research typically requires much larger datasets. Indeed, the lack of large datasets

is a problem common to many domains of ML research [17, 18], particularly given the

tendency of Deep Learning (DL) models to outperform others once supplied with sufficient

data [19, 20, 21]. This motivates the formulation of a large corpus of hierarchically labelled

sounds to provide an assessment of ML algorithm performance when predicting AH.

The material presented in this work constitutes a roadmap of research into the domain of

AH and outlines a series of ML experiments on the subject. It is therefore of practical use for

both the ML and audio research communities. For audio practitioners, it provides a summary

of ML methods and best practices, which can serve as an introduction to the domain. For ML

researchers, a grounding in auditory theory is provided, and an introduction to audio features

for ML work is presented. To those interested in the problem of AH and how to predict it

using ML, a series of methods and experiments are employed, and the findings may be used

to inform further work in the domain.
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1.2 Thesis Objectives, Research Questions and Contribu-

tions

It is clear that in order to fully understand the nature of AH and appreciate its application

to modern media consumption patterns a thorough understanding of ASA will be required.

Furthermore, accurately predicting AH will require an in-depth appreciation of ML as it

applies to the auditory domain. In cognisance of this and drawing from the motivation of

this thesis a number of Research Objectives (OBJ) were formulated to structure the research

described in subsequent chapters. These are summarised as follows:

OBJ 1: To develop an understanding of ASA with particular attention to the concepts

of object-based audio, AH and modern media consumption paradigms.

OBJ 2: Informed by perceptual audio research, to propose a machine learning ap-

proach for the task of predicting AH.

OBJ 3: To assess the performance of supervised ML algorithms when predicting AH.

Setting these OBJs has helped to define a number of Research Questions (RQ) to address

specific issues raised by consideration of the objectives. A review of ASA concerns was

formative in defining factors which influence AH, which were critical to decisions made for

the ML analysis. In order to provide a basis for further investigations of these factors it was

decided to use stimuli isolated from context, and this necessitated an investigation into the

nature of the hierarchical relationship between such sounds. These initial questions framed

the assessment of ML methods described. The RQs formulated are as follows:

RQ 1: What factors are involved in the perception of AH?

RQ 2: Does a hierarchy of importance exist between sounds isolated from context?

RQ 3: Is it possible to accurately predict AH using supervised ML methods?
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The contributions of this thesis outline how AH can be effectively predicted in a set of

isolated sounds. This knowledge can then be applied to media content delivery strategies to

improve the user experience and the efficiency of content delivery. They are organised in

major and minor contributions as follows:

Major Contributions

Maj. Contrib. 1: A roadmap for research into ML methods for AH. AH has received rel-

atively little attention in terms of ML research. This work explores per-

ceptual audio theory and applies a number of common ML methods to the

domain and the findings are offered in the shape of a roadmap which can

inform future research in the area.

Maj. Contrib. 2: A published working theory of AH. AH is theorised to vary due to the

influence of factors such as the physical properties of sounds and individual

biases. Sounds are proposed to be characterised hierarchically in terms of a

number of indicators such as whether they indicate the presence of humans

or not, whether the sound contains semantic information or not, and others.

Maj. Contrib. 3: Evidence of a hierarchy of importance between sounds isolated from

context is presented. The understanding of AH is enhanced by conducting

a perceptual experiment where the hierarchical relationship between sounds

isolated from context is investigated.

Maj. Contrib. 4: Validation of the use of ML methods to predict AH with competitive per-

formance. Average Class Accuracy of 82.2% is noted using a Convo-

lutional Neural Network (CNN). A series of experiments are described

which address the problem of hierarchical prediction in an audio context.
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Performance comparable with other audio ML applications is noted using

Random Forest (RF), Support Vector Machine (SVM) and CNN algorithms.

Maj. Contrib. 5: Applied to AH, the Exploration Guided Active Learning (EGAL) algo-

rithm can be used to select a minimal number of labels (in this case 1.7%

of the total) to achieve 95.5% of possible model accuracy, outperforming

other selection methods. In an assessment of Active Learning (AL) selec-

tion methods, EGAL is found to be most effective in selecting informative

instances to reduce manual labelling effort, outperforming Uncertainty

Sampling Active Learning (USAL). Use of EGAL is more computationally

efficient and less time consuming than USAL as it does not require a model

to be trained at each iteration of the algorithm.

Minor Contributions

Min. Contrib. 1: In the context of AH, the Log Power Mel Spectrogram (LPMS) zero or-

der feature representation is found to be an effective compromise for

predicting AH, providing comparable performance to larger representa-

tions which are considerably more expensive in terms of computation

time. Delta representations are found to provide performance improve-

ment in some, but not all cases. A number of feature representations have

been utilised in the course of this research. While it is noted that in certain

cases superior performance is possible from larger data representations it

is debatable as to whether the increase in performance is justified by the

computation cost entailed.

Min. Contrib. 2: The development of a hierarchically labelled corpus of 10,000 sounds

consisting of both manual and predicted labels. Future investigations
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of AH are facilitated via the corpus developed during the experiments

conducted for this thesis. To our knowledge, this corpus represents the

largest audio database of hierarchically labelled audio instances.

1.3 Document Structure

Chapter 2 provides an introduction to ASA (in Section 2.2), and introduces the concept of

ObA and discusses how this may impact on consumption of audio content in Section 2.3. An

overview of existing sound taxonomies and datasets is offered in Section 2.4 and Section 2.5

covers relevant industry standards for perceptual testing to include listening test design and

implementation. These discussions inform a map of AH outlined in Section 2.6 conceived to

encapsulate theory around the functioning of AH and how this can be predicted using ML

methods. This commentary is based on that published by the authors previously, see [22].

Chapter 3 firstly provides an overview of ML research as it pertains to audio hierarchy

in Section 3.2. In Section 3.3, methodological concerns are outlined in the areas of feature

representation, algorithm choice, feature extraction and selection in addition to how models

are built and evaluated. Section 3.4 provides a review of feature representations commonly

used in the audio ML domain. An overview of algorithms applied to audio ML tasks is

offered in Section 3.5. Methods used to minimise manual effort in ML labelling tasks, such

as AL and data augmentation are outlined in Sections 3.6 and 3.7.

Chapter 4 describes the methodology and results of an experiment investigating the

subjective evaluation of isolated environmental sounds on a Foreground (FG) — Neutral

(N) — Background (BG) scale. This research, published previously by the authors [23],

offers evidence that an AH exists even among sounds which have been removed from context

to the extent this is possible in such a test. The application of ML analysis to this dataset is

described in Section 4.3, and is also based on work recently published by the authors [24].

Encouraging results are noted that motivate further investigation on larger datasets.
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Chapter 5 investigates application of AL to the problem of AH. Feature representations

and algorithms are compared in a cross validation experiment outlined in Section 5.3.5

and three AL selection methods are contrasted in Section 5.4. Results, as published by

the authors [25], suggest that minimal manual labelling can be used to label large corpora

hierarchically.

This leads to an implementation of these concepts and data augmentation techniques

to build a large labelled dataset, described in Chapter 6. The resultant analysis compares

algorithms used in prior investigations with Deep Learning methods, held to be state-of-the-

art [17, 26, 27] in audio domains.

Finally, in Chapter 7, the work undertaken is summarised and discussed in the context

of the research objectives and questions outlined in earlier chapters. The contributions of

the thesis are summarised, conclusions are offered and possible avenues for future work are

considered.

1.4 Publications

The following publications directly exploit work presented in this document.

• Coleman, W., Delany, S. J., Yan, M., & Cullen, C. (2020). A Machine Learning

Approach to Hierarchical Categorisation of Auditory Objects. Journal of the

Audio Engineering Society. 68(1/2), 48–56.

• Coleman, W., Delany, S. J., Yan, M., & Cullen, C. Active Learning for Auditory Hi-

erarchy. Cross Domain Conference for Machine Learning and Knowledge Extraction

(CD-MAKE), Dublin, Ireland; 25-28 August, 2020.
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• Coleman, W., Cullen, C., & Yan, M. (2018). Categorisation of Isolated Sounds on a

Background - Neutral - Foreground Scale. Proceedings of the 144th Convention of

the Audio Engineering Society, Milan, Italy; May 23-26, 2018.

• Coleman, W., Adams, L., Cullen, C., & Yan, M. (2017). Perception of Auditory

Objects in Complex Scenes: Factors and Applications. Institute of Acoustics - 21st

Century Developments in Musical Sound Production, Presentation and Reproduction

(pp. 1–16), Nottingham, UK; November 21st, 2017.

The following publications constitute other work which has informed the context of this

research.

• Coleman, W., O’Sullivan, L., Cullen, C., & Yan, M. (2017). sonicPainter: Mod-

ifications to the Computer Music Sequencer Inspired by Legacy Composition

Systems and Visual Art. International Festival and Conference on Sound in the Arts.

Science and Technology (ISSTA 2017), Dundalk, Ireland; 8-9 September, 2017.

• Coleman, W., O’Sullivan, L., Cullen, C., & Yan, M. (2017). iPhone FM Tilter: A Fre-

quency Modulation Instrument for Improvisational Performance using iPhone

and Arduino. International Festival and Conference on Sound in the Arts. Science

and Technology (ISSTA 2017), Dundalk, Ireland; 8-9 September, 2017.

• Cullen, C., & Coleman, W. (2016). Human Pattern Recognition in Data Sonifica-

tion. 6th International Workshop on Folk Music Analysis, Dublin, Ireland; 15th-17th

June, 2016.
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Chapter 2

Predicting Auditory Hierarchy: A

Roadmap

2.1 Introduction

This chapter introduces the area of ASA (Section 2.2), the perceptual study of sound, and

also outlines the concept of ObA (Section 2.3) which conceives the auditory scene as made

of a collection of audio ‘objects’. These sections frame the further study of the concept of

AH in the context of existing research. In furtherance of that end, Section 2.4 reviews a

number of datasets available in the audio domain and nominates one as suitable for inclusion

in this work given the requirements outlined in Sections 2.2 and 2.3. Section 2.5 then offers

a review of approaches to perceptual testing and a rationale for those methods chosen for use

in this case because of the specific requirements of this study. Finally, these concerns are

synthesised in Section 2.6, where a theory of AH is offered together with a roadmap which

frames the work presented in this thesis.
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2.2 Auditory Scene Analysis

Auditory perception, like timbre itself [28], is a many splendoured thing, subject to influence

from a series of factors external to the physiological functioning of the human auditory

system. Bregman [11] has described ASA as the process by which auditory scenes are parsed

into individual sounds, referred to in this work as auditory objects. This is a complex task

because sounds are interleaved and overlap in both temporal and frequency domains, and the

human auditory system only has access to an amalgam of all sounds that are presented to the

ear at any one moment. Bregman describes how the human auditory system addresses this

using processes of sequential and simultaneous grouping, where perception is governed by

primitive low-level and schematic high-level structures that parse the sound scene presented

to the ear for individual objects.

Sequential grouping occurs when similarities in sounds from one moment to the next

result in them being grouped to form a stream. This is demonstrable via variations in tempo,

frequency, timbre, spatial direction and duration of exposure (what Bregman describes

as cumulative effects [29, pg. 5]). Other factors known to aid sequential grouping are

onset/offset synchrony, origination from the same spatial location, similarities in pattern of

fluctuation and frequency proximity [11]. Simultaneous grouping occurs when properties of

the sound scene match patterns that tend to be true when components of sound come from

the same source. If a subset of frequencies that are multiples of a common fundamental

are detected, this suggests that the subset is from a common source. Sounds which have a

different fundamental frequency tend to be segregated and considered separate. Periodic

sounds, such as the human voice and many musical instruments, are an example of this

phenomenon [11].

Both forms of grouping are functions of primitive and knowledge-based processes

(see [30] and [31]). The term bottom-up is frequently used to refer to primitive, some-

times unconscious processes which are thought to be innate, have been found in non-human
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animals [32] and in the perception of speech [33] and music [11]. Knowledge-based pro-

cesses are frequently referred to as schematic, or top-down processes which involve conscious

attention or past experience [34], for example.

2.2.1 Listening Modes

The listening modes of Truax [35] provide a useful framework for different levels of auditory

perception. Truax outlines three modes in total, BG listening, Listening-in-Readiness and

Listening-in-Search.

BG listening is outlined as a class of sounds that are not actively monitored, but for

which awareness exists. While subliminal auditory perception is acknowledged as con-

troversial, Kotzé and Möller [36] note significant galvanic skin response (changes in the

electrical resistance of the skin) to subliminal auditory stimuli. Norman et al. [37] offer

evidence of awareness of stimuli without conscious attention. Linzarini et al. [38] offer a

review of consciousness and awareness studies and suggest that cognitive control can operate

on conflicting subliminal information. Furthermore, the concept of change deafness [39]

positions conscious attention as critical for auditory change detection even in very simple

auditory scenes [40].

Dupoux et al. [41] suggest that conscious and unconscious processing are distinguished

by “high-level perceptual streaming factors” rather than stimulus energy and duration distinct

from Truax’s mode of BG listening. Sounds that are actively attended to can be thought of as

figure sounds while others form the ground, similar to the Gestalt example of figure/ground

perception [42]. The cocktail party effect [43] highlights the ability of the auditory system to

pull different auditory objects in and out of focus as required. This frames BG listening as a

complex process of constant evaluation and re-evaluation of the auditory scene [44], where

objects are continually evaluated for whether they are worthy of greater attention [45] or not.
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The second of Truax’s listening modes is Listening-in-Readiness, described as being an

intermediate mode of listening where familiar sounds, such as the sound of our own name,

are continually monitored while primary attention is focused elsewhere. Truax highlights the

example of a parent capable of sleeping through traffic noise who wakes at the sound of their

baby crying as an example of this mode in action.

The last of these modes, Listening-in-Search is when listening is most analytical, where

the sound itself is searched for meaning. This is illustrated by the cocktail party effect, where

a conversation within one group can be focused on to the exclusion of the conversations of

others.

The foregoing supports the view that FG/BG categorisation of a sound can be established

with a reasonable degree of confidence, with the caveat that this could not be considered

a universal, unchanging categorisation. FG/BG categorisation, in other words, retains a

somewhat subjective nature, dependent on other factors and can be considered to continually

be in a state of flux. This has been illustrated by the dog on a beach Gestalt image, reproduced

in Figure 2.1 and recently in the auditory realm via the Yanny/Laurel stimulus [46], which

illustrates how perception can vary on an individual level due to small changes in timbre.

Sound categorisation is therefore seen to be a complex process of auditory perception

and subsequent organisation and constant reorganisation, likely on both conscious and

unconscious levels. This is supported by Guastavino [12], who posits sound categorisation as

an aggregation of inputs from different classification schemas such as source identification,

source action and context. Framing our investigation of the FG/BG categorisation task

through the listening modes of Truax, this positions the categorisation of auditory objects as

fluctuating due to perceived importance relative to activity in the observed scene, semantic

meaning derived from the sound itself, and/or the action that it represents.

Thorogood et al. [47] examine the consistency of an arbitrary BG/FG categorisation of

sounds drawn from the World Soundscape Project Tape Library [48] (WSPTL) . Subjects’
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2.2 Auditory Scene Analysis

Fig. 2.1 The Gestalt dog on a beach image where the outline of a dog is suggested by the alignment
of Dalmation spots. Subjects typically fail to perceive the dog if the picture is first presented to them
upside down, but quickly form the dog percept once the picture is presented as above.

were asked whether they agreed or disagreed with the categorisation provided by the WSPTL.

Strong levels of consensus were observed between study participants and the arbitrary tagging

of the WSPTL on what constitutes an FG sample (80%), BG sample (92%) and BG with FG

samples (75%).

The authors [47] make several further points about the nature of the FG/BG categorisation

task which are worthy of mention. Firstly, that it is dependent on context (consistent with [1])

and focus of attention, which can be encapsulated with the idea of listening modes, as

outlined by Truax [35], Chion [49] and Wolvin and Coakley [50]. Such listening modes

treat a sound as BG or FG, depending on the amount of attention being paid to the sound.

For example, Truax’s Listening-in-Search can be characterised as focused, FG listening.

His BG Listening can conversely be thought of as unconscious BG monitoring of a sound

scene. Ubiquitous sound can be thought of as the BG quality of a soundscape. Finally, as
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Fig. 2.2 A representation of the progression from background to foreground listening as a continuum,
and how this relates to soundscape/semantic listening and auditory perception in general.

summarised by Augoyard and Torgue [51], sound can seem to come from everywhere and

nowhere.

Developed from a literature review of the areas of ASA, related soundscape and sound

categorisation research, Figure 2.2 outlines a series of axes proposed as those upon which AH

acts. This theoretical mapping envisages a constant unconscious monitoring of the auditory

scene while conscious attention is focused on FG sounds to derive semantic meaning from

them [52]. This hypothesises AH operating as a process of constant identification of sounds

deemed worthy of closer attention [53]. Sounds thus identified become the focus of FG

attention while others, deemed less important for the time being, ‘fade’ to become part of the

BG sound scene. This is not to suggest that all sounds containing semantic information or all

sounds that suggest movement are constantly part of the FG sound scene. Rather, there is a

constant interaction of different functions (context, attention, training and others), which alter

the position of an auditory object on a hierarchical scale. This suggests two problems. Firstly,

that of identifying which objects are of most importance and secondly, how and to what

degree this relative importance changes due to the influence of context, attention, training

and other factors.
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This section has introduced the area of ASA and as part of this offered a high-level

roadmap for the function of AH. The next section will introduce the concept of ObA and

position it relative to ASA and sound hierarchy research.

2.3 Object-based Audio and Modern Media Consumption

Paradigms

Modern audio content consumption has in many ways been informed by the legacy technology

used to make and present audio recordings. The earliest methods of sound recording rarely

involved more than one microphone, and output was via a single channel of audio [54]. As

technology developed, content creators drove the desire for more flexibility in how broadcast

content could be presented. Gradually, the concept of multi-channel recording became the

norm, and this in turn created the need for more sophisticated mixing systems. The desire to

individually treat mix elements with different equalisers (used to balance frequency levels

of audio content), compressors (used to alter relative loudness levels within audio content)

and other effects was thus facilitated. With the advent of digital recording systems content

management became ever more complex, as with the capability to record hundreds of tracks

came the proliferation of elements over which creators required control in order to produce

compelling content.

In addition to content creation, advances in technology have also greatly changed how

audio is consumed. The popular phrase, ‘Put a sock in it!’, may or may not have its origins

as a rudimentary volume control for early gramophones. What can be said is that consumers

now have greater control than ever before over audio content both in terms of mode of

consumption (headphones, stereo speakers, home assistants, sound bars or multi-channel

home cinema systems) and control (equalisation, volume, genre). However, with a few

exceptions, such as cinema sound, bespoke art installations and home multi-channel audio
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systems, the predominant method for mass media audio consumption is still the stereo audio

file.

ObA is a concept which replaces the stereo mix with a bundle of audio ‘objects’ controlled

by accompanying metadata. It envisages audio delivered not as a static mix of many individual

elements combined into one stereo file, but as a collection of individual audio assets which

are presented according to a provided metadata schema. For content creators this potentially

allows the freedom to optimise the delivery of audio depending on content type (broadcast,

game or music audio), end-user configurations (stereo, headphones or multi-channel) and

other factors, even adapting automatically to local conditions (varying bandwidth capacities,

individual preferences and differing environments) [9]. For consumers, the concept may

materialise via the ability to control elements of the sound mix delivered to their televisions.

The BBC has experimented with object-audio football broadcasting, for example, providing

individual consumers control over crowd noise from different parts of the stadium and a

commentary feed. Participants tended to balance their mix in the first minute of the broadcast

and did not alter it subsequently. Preferred mixes were observed [55]. Another configuration

could see control of film audio surfaced to consumers in the home, either offering a choice of

mixes or allowing the audience control of individual audio objects themselves.

The interest in providing audio as a series of individual assets as opposed to a fixed

mix carries with it a number of questions as to how content might best be managed by

creators in order to leverage the full range of possibilities the concept facilitates. In many

cases, content creators will have specific needs and a vision for the presentation of pieces.

The proliferation of possibility that technology allows, however, suggests the usefulness

of an ability to derive semantic meaning from individual assets to ease their integration

into production workflows. This applies not only to the identification and classification of

objects but also their categorisation in other semantically meaningful ways, such as which are

perceived as being most important at the current moment, and monitoring how this changes

18



2.3 Object-based Audio and Modern Media Consumption Paradigms

over time. The ability to predict such semantic properties could then be used to formulate

codec(s) for use in the generation of audio content for different media forms and for differing

consumption paradigms.

Environmental sound categorisation, of which hierarchical classification could be con-

sidered a sub set, is a multi-faceted problem which requires control of numerous effects

bearing individual study. Previous sections have identified a series of possible influences

on temporal variance in the AH which suggests a need to study each influence in isolation,

so far as this is possible, in order to identify the degree to which each exerts influence on

the hierarchical fluctuation. This suggests a necessary simplification of a complex system

from a fluid continuum to one of discrete categories in order to facilitate understanding and

assimilation of the concept into modern media production workflows. This work proposes

that in order to do so in a structured manner, a corpus of sounds must be utilised that are

isolated from context to the degree that this is possible, while still providing a broad palette of

sound types to choose from. By proceeding in this manner, other influences on hierarchy can

be introduced and studied in isolation, allowing a broader understanding of the phenomenon.

Considerable sensory research exists regarding soundscapes (e.g. [2, 56, 57]), sound

categorisation (e.g. [30, 34, 58]) sound taxonomies (e.g. [1, 59, 60]) and how attentional,

contextual and other processes affect our perception of the environment (e.g. [10, 61, 62]),

which includes the recent multi-stable Yanny/Laurel percept [46]. However, there is little

focused on hierarchies of importance between sound objects in complex auditory scenes

and on the movement of sounds from BG sound scene to FG conscious attention. A more

complete overview is offered in Section 2.6 but to summarise, the author is unaware of any

studies which investigate this phenomenon and provide a broad palette of isolated sounds

with hierarchical information on a BG — N — FG scale. Lewis et al. [63] provide a rating

on an object-like versus scene-like axis for a selection of mechanical and environmental

sounds. Thorogood et al. [47] use a selection of soundscape recordings derived from the
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World Soundscape Project Tape Library database [64] and categorise them in BG, FG and

‘FG with BG’ categories. These sounds were selected with the intention of allowing the

listener to identify sound context. Salamon et al. [59] perform subjective labelling of BG

and FG urban sounds and validate their accuracy with experimental testing, but the sounds

used are confined to urban contexts and are not isolated from context. This suggests that a

database of hierarchically labelled sound objects, isolated from context in so far as this is

possible, would be a useful contribution to research in this domain.

The next section will offer a selective summary of existing sound datasets and taxonomies,

as this will be of assistance in elucidating stimuli selection choices for the experiments

outlined in later chapters.

2.4 Sound Datasets

This section reviews sound taxonomies and existing sound datasets to investigate the methods

applied to sound organisation. Implications are drawn for further study, given the envisaged

need for a dataset to study AH.

2.4.1 Sound Taxonomies

Numerous taxonomies of sound exist, which serve to highlight the different ways in which

it is possible to categorise sounds. In general, these tend to be organised in terms of the

materials that produce sounds [65], or the activities that they indicate [1].

Gaver [65] outlines a taxonomy (Figure 2.3) of sounds delineated between classes of

materials (vibrating objects, aerodynamic and liquid sounds) and by interactions which may

cause them to sound (impacts, explosions, dripping etc.). Gaver further suggests the thesis,

supported by Gygi et al. [62], that everyday listening, or “the experience of listening to events

rather than sounds” (pg. 2), focuses on acoustic factors most useful for source identification,
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Fig. 2.3 A reproduction of Gavers’ taxonomy of everyday sounds, delineated by classes of materials
and by interactions which may cause them to sound.

Fig. 2.4 Categories of sounds used for the World Soundscape Project.

as distinct from musical listening, where the “perceptual dimensions and attributes of concern

have to do with the sound itself” (pg. 1). It is interesting to note that this taxonomy is outlined

according to qualities of the sounds themselves rather than the objects which produce the

sounds, a facet which is prevalent in more recent similar taxonomies.

R. M. Schafer outlines an extensive catalogue of sound types as used in the World

Soundscape Project in [66]. The organisation used in the catalogue is arbitrary, but also

comprehensive, having been built up over a period of years, and is empirically derived.

Regarding the bias inherent in any such organisation of objects, Schafer makes the point

that “the only framework inclusive enough to embrace all man’s undertakings with equal

objectivity is the garbage dump” [ibid., pg. 137]. An illustration of the broadest categories of

sounds is offered in Figure 2.4.

Brown et al. [1] offer a comprehensive review of the perceptual assessment of human

sound preference compiled by working group 54 of ISO/TC 43/SC 1. The authors suggest that

for this area of study to be standardised there needs to be a parallel standardisation of language

usage across disciplines that have an interest in the area. They emphasise the importance of

context in the perception of sound, noting that sounds which are unacceptable in one context
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Fig. 2.5 A taxonomy of the acoustic environment for soundscape studies as presented by Brown et al.
[1].

may be acceptable in others. Further to this they call for the analysis, identification and

categorisation of such contexts that are germane to soundscape studies. The study offers a

taxonomy of the acoustic environment for soundscape studies (reproduced in Figure 2.5),

which has been used in other soundscape research [59], and shows promise for exploitation

in sound categorisation tasks. It is interesting to note that a significant organising rule of this

taxonomy is whether sounds do or do not indicate the presence of humans.

Raimbault and Dubois [2] suggest a taxonomy for urban sound scenes (shown in

Figure 2.6) and summarise research on two particular topics of interest. It is again interesting

to note that presence or absence of people in an auditory scene is a significant organisational

structure. Furthermore, they reinforce the idea that certain noises are identified in terms
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Fig. 2.6 An urban soundscape taxonomy as developed by Raimbault and Dubois [2].

of the semantic content the sound suggests in the goal of source determination. They also

summarise research that suggests soundscape perception is affected by factors such as air

pollution and physical appearance —- this recalls research reinforcing the importance of

context in deriving meaning [1].

A more recent example of such organisations is offered by Gemmeke et al. [3] which

consists of a dataset of sounds [67] manually curated from over 2 million YouTube [68]

videos. These events are organised using a hierarchically structured ontology of 632 audio

classes, which demonstrates the complexity to which any sound categorisation task is subject.

A summary of the top level of organisation of this ontology is offered in Figure 2.7.

The taxonomies outlined in this section reflect the arbitrary nature of the sound cate-

gorisation task, but are indicative of the general principles used in the research and reflect

much of the subsequent literature. They illustrate that multiple approaches are valid, and

many similarities can be observed. For example, note the presence of human sound and

natural sound categories in both the taxonomy of Schafer and the ontology from Gemmeke

et al. [3]. Similar themes are recognised in the area of sound categorisation, with semantic

elements noted in subject categorisation of sound by [30, 57], and presence or absence of
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Fig. 2.7 The top-level categories of the ontology used by Gemmeke et al. [3] to organise over 2
million sound stimuli curated from YouTube.
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humans noted as an organising factor by both [58] and [1], for example. Similar structures

are envisaged as being useful in content organisation for subsequent experiments.

2.4.2 Stimuli Selection

To the author’s knowledge, there exists no systematic strategy for the selection of listening

test stimuli. This is supported by the literature (see Ekeroot et al. [69] for a review) who

suggest that accounts of stimuli selection for published experiments should be collated to

develop a systematic strategy in this regard.

Section 2.5.1 outlines relevant audio listening test standards which stipulate that stimuli

must be critical in that they should stress the systems under test [70] and that a panel of

suitable material should be parsed by a small group of expert listeners to finalise test items.

Stimuli selection is also acknowledged as being time-consuming and resource-intensive, but

remains a critical task as it has been shown to be the single biggest factor in intra-subject

variance [71]. Evidence from both soundscape categorisation [72] and music information

retrieval literature [73] would concur with the need to codify the stimuli selection process, as

both domains have seen that use of a skewed dataset can lead to misleading results. Obviously,

this underlines the criticality of the stimuli selection task.

An abundance of different sounds have been used in listening test experiments. Music

and/or speech stimuli gathered from commercial music CDs, live music recordings or

speech excerpts have been used extensively for BS. 1116 and MuSHRA tests by Bates

et al. [74], Wüstenhagen et al. [75], Feiten et al. [76], Barbour [77], George et al. [78]

and Schinkel-Bielefeld et al. [79], for example. Quackenbush and Gross [80], Stoll and

Kozamernik [81], and De Man and Reiss [82] use speech only stimuli, whilst Sun et al. [83]

utilise a singing voice stimulus only. Environmental and mechanical sounds are used in an

experiment by Lewis et al. [63] where subjects used Likert scales to rank sounds as object like

(low score) or scene like (high score). Environmental, musical and vocal sounds are used to
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compare the perception of subjects with and without hearing aids by Collett et al. [84]. Gygi

and Shafiro [85] use everyday environmental sounds in an experiment that demonstrates

what they term the incongruency advantage, the fact that sounds deemed out of place in an

auditory scene are more likely to be noticed. Gygi et al. [62] use environmental sounds in a

categorisation experiment that identifies three broad categories (harmonic, discrete impact,

and continuous sounds) using multidimensional scaling. Lewis et al. [86] use animal and

tool sounds to investigate brain activity evoked by each using magnetic resonance imaging.

Animal sounds are observed to activate middle portions of the left and right superior temporal

gyri, whereas tool sounds activate a predominantly left hemisphere cortical mirror network,

associating the sound heard to the motor action judged likely to have produced it. Wilson

and Fazenda [87] use 20-second excerpts from 63 tracks of popular music to investigate the

quality perception of recorded music. Hold et al. [88] use a surround mix of an up-tempo

pop track recorded specifically for their experiment to investigate the impact on listening

preference evoked by introducing variation in the spatial mix. They identify variations in

virtual source positioning, loudness and dynamic range compression as being capable of

positioning sounds in either FG or BG. Woodcock et al. [58] use excerpts from various

broadcast scenarios in an object audio categorisation test. Stimuli used include:

• Radio drama (BBC productions of “The Wizard of Oz” and “The Hitchhiker’s Guide

to the Galaxy: Tertiary Phase”)

• Nature documentary (BBC production of “Life: Challenges of Life”)

• Live events (BBC productions of the last night of the proms (live music), tennis at

Wimbledon, and a soccer match)

• A feature film (Woman in Black)

• Naturalistic soundfield recordings of urban soundscapes around the city center of

Manchester, UK
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Rummukainen et al. [34] use audio-visual soundscape stimuli recorded in locations

around the city of Helsinki in a scene categorisation task. Scenes were subjective categorised

as ‘calm’, ‘still’, ‘noisy’, ‘vivid’ and ‘open’, with perceived movement, noisiness and

eventfulness highlighted as factors used in the categorisation process. Guastavino [30] also

uses soundscape recordings in an experiment that investigates sound categorisation on the

basis of object identification, function or low-level features. Soundscape categorisation was

found to diverge on two broad dimensions: the presence or absence of humans and the level

of mechanical noises observed. These categories were further subdivided into the different

activities undertaken according to the presence and/or absence of humans and by type of

engine in scenes dominated by mechanical noises.

This research is concerned specifically with investigating the nature of any possible

hierarchy of importance of auditory objects within auditory scenes. Papers summarised

utilise accepted tests, such as the ITU MuSHRA [70] and BS.1116 [89] standards, or tests

based on a modified version of these, for evaluating auditory aspects of perceptual codecs or

investigating the perception of everyday auditory scenes.

Numerous studies in this section are noted as using varied stimuli in different contexts.

Use of such stimuli in this manner can be held to pass the ecological validity test, as the

stimuli used consistently reflect either end use cases or the specific environment under

investigation. For example, contemporary and classical music recordings are good choices

for tests evaluating audio codecs and loudspeakers, as they reflect a significant proportion of

the eventual end use cases. Similarly, urban and rural soundscape recordings are a logical

choice for stimuli in experiments investigating the categorisation of sounds from such scenes.

Care has been taken in each test design to take account of the specific end use case. Indeed,

in some instances stimuli from previous tests are re-used in slightly different contexts, with

additional stimuli added based on broadening the test case or encapsulating a development

in end use, with care taken to ensure the validity of new stimuli. For example, Gygi et al.
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[62] conduct an acoustic similarity and categorisation task using a subset of the sounds used

by the same authors in [90] to investigate spectro-temporal factors in the identification of

environmental sounds.

Notable here is the fact that stimuli selection is tailored in each instance to match the

task at hand. Consequently, in this work consideration was given to optimal stimuli to

establish a baseline regarding hierarchical ranking of sounds, given the evaluation task in

this instance differs somewhat from that of the tests mentioned. The experiments outlined

previously evaluate either some notion of Basic Audio Quality (BAQ) or the factors behind

the categorisation of auditory scenes and/or objects. BAQ in this research is a reference

to a single, global attribute used to judge all perceptible differences between two auditory

stimuli, to include aspects of timbre, loudness, spatial presentation, distortions, noise, pops,

clicks and other artefacts as defined in the various ITU standards [70, 89]. When concerned

with BAQ the purpose is generally to arrive at a grading of some function of the audio

delivery paradigm such as a compression codec, a microphone or a sense of envelopment.

In these cases, the differences between stimuli are relatively small, and the stimuli can be

said to be very similar to each other, lending themselves naturally to comparison. This is a

fundamentally different evaluation task to that of applying hierarchical labels to a series of

environmental sounds.

This research is concerned with investigating the participant’s perception of an auditory

scene. Most specifically, this concerns the identification of which auditory objects a subject

is likely to think more important. This suggests that selecting stimuli from auditory scenes

that are agreed to be ecologically valid should be a priority. In this context, using stimuli

which consist of sine tones and/or noise bursts would not appear to be ecologically valid, as

these will seldom (if ever) comprise the audio in most end-use cases. A consideration of end

use cases has already been outlined in Section 1.1 to include broadcast, game, music and
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entertainment audio, with specific regard to mobile content delivery in limited bandwidth

situations. This provides a considerable palette of possible options for test content selection.

As observed, a wide variety of audio stimuli are utilised in evaluation and categorisation

listening tests, from commercial music [87, 91, 92], synthesised tones as with many of

the demonstrations presented by Bregman [11], and in more recent studies [93, 94], to

soundscape-based stimuli noted to contain FG and BG elements [95, 96] and soundscape

field recordings [97, 98]. Bearing in mind the future relevance and possible applicability of

any resultant research, it would then seem logical to base experimental stimuli on contexts

and modes of consumption which are most relevant to future implementation. Such usage is

likely to include multiple entertainment delivery scenarios both in public and home-based

contexts, automotive and mobile consumption of audio-visual content and gaming. This

would envisage use of a selection of broadcast, musical, gaming, film and environmental

based stimuli.

The broad palette of sound types identified indicates that investigating sound objects in

isolation to determine what hierarchy, if any, exists in this state will be a useful first step to in

building a model to predict AH. For this work it is considered that scenes which use primarily

non-music elements such as speech and effects will be analogous to visual streaming content

such as drama or sports broadcasting and much computer game content which form the core

of expected end use-cases. Thus, the stimuli selected should reflect this position excepting the

use of speech stimuli, which could naturally be considered to form a core component of the

FG of many sound scenes, as indicated by its primacy in many categorisation schemas [99].

The FG/BG nature of isolated sounds initially derived can then be used to inform design of

further experiments to either improve the ability to predict or to deepen understanding of

other parameters important in determining sound importance.
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2.4.3 Existing Sound Stimuli Corpora

In approaching the design of an experiment to investigate categorisation of sounds, a review

was undertaken of existing sound corpora to assess their suitability for use as test stimuli.

The lack of large, labelled datasets for experimental purposes is an acknowledged problem

in the field [17]. A non-exhaustive summary is offered below, which serves to outline the

different options available and illuminate the stimuli selection process.

R. Murray Schafer outlines an extensive catalogue of sound types as used in the World

Soundscape Project [48] in his book The Soundscape: Our Sonic Environment and the Tuning

of the World [66]. This catalogue is connected to an extensive database of sound recordings

collected since the inception of this project in the 1970s called the World Soundscape Project

Tape Library database [64]. These recordings have been used as source stimuli in [47], and

there are further examples of soundscape recordings used as stimuli in perceptual testing

( [30, 34, 100]) and repositories of recordings compiled with the express purpose of providing

a source of stimuli for such tests ( [3, 59, 101]).

At the original time of writing The Soundscape, in 1977, this catalogue numbered several

thousand cards. An outline of the broadest categories of these sounds is offered in Figure 2.4.

Schafer makes the point that a sound can appear in several places in this catalogue, as a

sound can function in more than one context. In terms of the corpus as a whole, these sounds

are predominantly of whole soundscapes, and so use of isolated samples from this dataset

would require an extensive selection process.

Salamon et al. [59] present a taxonomy of urban sounds based on the urban subset

outlined in [1], and a dataset of audio sounds, entitled UrbanSound [102], which contains

27 hours of audio. They define 4 top level groupings in their taxonomy: Human, Nature,

Mechanical and Music. Interestingly, each sound in this dataset has been labelled with

what they term a saliency characteristic. This description indicates whether the sound was

subjectively perceived as being in the FG or BG of the recording. While this was manually
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labelled by the authors, a subsequent automatic categorisation experiment found that, with

only one exception (a siren noise) items labelled as BG sounds were significantly more

difficult to identify than those labelled FG, suggesting this manual labelling process is robust.

This is an extensive dataset based on urban sounds which has been organised to a specified

taxonomy and has potential to be a useful building block for establishing a test dataset which

is not confined to urban sounds.

Piczak [101] presents the ESC dataset of sounds for use in categorisation research. This

dataset consists of 2,000 short clips which are annotated and span 50 different classes of

audio events. Also included is an unlabelled compilation of 250,000 audio excerpts culled

from the Freesound [103] project, a collaborative database of Creative Commons licensed

sounds available to all. A categorisation comparison experiment was carried out with this

dataset to compare human accuracy with that of automatic classifiers. In general, it was

found that humans achieved greater accuracy in the categorisation task, with three broad

delineations in categories highlighted by the author as follows:

• Easy categories (human and animal sounds, some distinct sound sources e.g. siren,

water drops, breaking glass)

• Average categories (sounds ranging between easy and difficult categories)

• Difficult categories (soundscapes and some mechanical noises)

This is a collection of individual sounds in short clips which offers the flexibility of testing

individual sounds in a categorisation task or the possibility of composing bespoke sound

scenes with separate audio object stems should this be deemed appropriate. Furthermore,

there is a considerable body of categorisation research which uses these sounds for various

purposes, for examples, see [104, 105, 106].

The DCASE events are a series of sound classification competitions, the sixth of which is

running in 2020. The challenge was created “to support the development of computational
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scene and event analysis methods by comparing different approaches using common publicly

available datasets” [107]. The challenge encompasses a number of different cases which

include acoustic scene classification, general-purpose audio tagging of Freesound content

(this element is hosted on the popular machine learning competition platform, Kaggle [108])

and semi-supervised sound event detection in domestic environments. Audio data from a

variety of sources is provided for each task. In the case of acoustic scene classification, files

recorded in large European cities are provided. Diverse sound events which feature musical

instruments, human and domestic sounds and animals are culled from Freesound for the

tagging task. YouTube [68] video excerpts focusing on domestic context are provided for

event detection tasks. All audio data is available for download and could potentially be used

as experiment stimuli, though much of it consists of sound scene stimuli rather than isolated

sounds.

Gemmeke et al. [3] provide a large dataset [67] of manually labelled audio events curated

from YouTube. These events are organised using a hierarchically structured ontology of 632

audio classes, which has been compiled via the literature and manual curation. The top-level

structure of this ontology is outlined in Figure 2.7. At the time of writing, the dataset consists

of more than 2 million YouTube videos using 527 labels. While not organised in terms of

audio event importance, this is a large corpus of potential listening test stimuli, culled from

a source which is highly relevant to modern audio delivery. A significant degree of mobile

audio entertainment consumption is via video platforms like YouTube, arguably making it a

relevant source for ecologically valid test stimuli. The stimuli would need extensive parsing

to provide a corpus of isolated sounds to test, however.

This section has identified and summarised a number of existing sound corpora, but is

not offered as an exhaustive list. Other sound corpora certainly exist, though not all are freely

available to the scientific community. Indeed, a repository of such sound sets, both freely

available and not, is curated by Toni Heittola [109], one of the DCASE organisers. At the
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time of writing, more than 40 datasets were listed which furnish access to a wide variety of

sounds for experimental purposes.

Few of these corpora feature an extensive set of isolated sounds, an exception being the

ESC50 and associated datasets [101], although in order to select only sounds isolated from

context an extensive auditioning process will be required. Given the desire to prioritise an

investigation of isolated sounds in order to establish a dataset from which further parameters

of variance could robustly be investigated, it was decided to use this dataset as a source for

stimuli for initial experiments.

2.5 Perceptual Testing and Audio Standards

Hierarchical categorisation of audio objects is essentially an environmental sound classifi-

cation problem for content such as game audio, much visual streaming content and drama,

entertainment and current affairs broadcasting. This involves an investigation of individual

subjective judgement of sound, specifically with regard to which sounds are most important

when. As such, this should be seen as distinct from studies focussed on variations in BAQ

between experimental stimuli, which will further be reviewed in Section 2.5.3. In other words,

our focus in predicting AH will be on subjective perception of macro sound categorisation

on a hierarchical level, rather than on micro differences between stimuli which may become

important in the fine-tuning of any real world implementation of such a system.

The following sections outline the design decisions for an initial experiment, referred to

henceforth as Experiment 1, whose aim is to establish the nature of AH that exists between

sounds isolated from context to the extent that this is possible. This will entail an examination

of current best practice in perceptual audio testing including a review of relevant standards,

the dangers of bias in perceptual test design and experiment implementation concerns. This

discussion frames the basis for design decisions taken and highlights issues encountered

throughout the process.
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2.5.1 Listening Test Standards

Numerous bodies have published standards regarding the correct procedures to be followed

when conducting listening tests investigating the perceptual evaluation of audio. These

include, but are not limited to, the Audio Engineering Society (AES) the International

Telecommunications Union (ITU) , and the International Standards Organisation (ISO) . It

was decided to focus primarily on the ITU standards as the weight of material from audio

domain sources such as the Journal of the Acoustical Society of America and the Journal

of the Audio Engineering Society cite these standards when conducting audio perceptual

evaluation tests. Furthermore, as the delivery of broad bandwidth, multichannel audio in

broadcasting situations is one of the potential foci of this research, it was decided that

cognisance should be taken of the methods used by industry broadcasting bodies to evaluate

audio in similar paradigms. The European Broadcasting Union (EBU) has issued a number

of papers on the evaluation of audio in broadcast situations, in which they make extensive use

of the ITU standards. Their members include the prominent national broadcasting companies

of Europe [110], such as ARD (Germany), the BBC, ITV, Channel 4 (UK), and Canal Plus

(France).

Within the ITU there are two categories of standards relating to the perceptual evaluation

of audio: ITU-T and ITU-R. The scope of the ITU-T standards is confined to telecommuni-

cations applications, and they refer to either narrowband (300 – 3400 Hz) or wideband (150 –

7000 Hz) bandwidths. The ITU-R family of standards pertains to audio of the bandwidth 20

Hz – 20 kHz, that is generally accepted [11] as the range of human hearing. For this reason,

the ITU-R standards were chosen as most applicable for the current research as it is intended

for multiple areas of application, not simply telecommunications.

Within the ITU-R category, there are a number of methods detailed for the perceptual

evaluation of audio that cover both subjective (Rec. ITU-R BS.1116, BS.1285, BS.1534 and
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BS.1679) and objective (Rec. BS.1387-1) evaluation of audio. There are also guidelines on

the evaluation of audio in audio-visual contexts (BT.500-11, BS.775-1 and BS.1286).

Rec. ITU-R BS.1116 [89] is intended for the subjective assessment of impairments so

small that they cannot be detected without rigorous control over test conditions and stringent

statistical analysis. Respondents are required to be experienced audio listeners, and the test

entails a double-blind setup where neither participant nor moderator knows the order of

stimuli to be presented. This test facilitates a very high level of detail when evaluating test

stimuli. Such rigour comes at a cost in terms of the facilities, experimental precision required

and time and resources needed to adequately administer the test. This test is therefore

time-consuming to implement, and extreme care must be taken lest factors external to the test

impact on results. The ITU-R BS.1116 test is designed to grade the impairment of an audio

signal. The scale used is a value from 0.0 to -4.0, with the individual steps being categorised

as ‘imperceptible’ (0.0), ‘perceptible, but not annoying’ (- 1.0), ‘slightly annoying’ (-2.0),

‘annoying’ (-3.0) and ‘very annoying’ (-4.0).

ITU BS.1534 [70] is intended for the subjective assessment of intermediate quality levels

of audio coding systems. This test, known as MuSHRA (Multiple Stimuli with Hidden

Reference and Anchor), uses a series of stimuli which the respondent can compare at will

and, like ITU-R BS.1116, is a double-blind test. The stimuli presented include a high quality

reference signal, the test signal(s) and anchor signal(s). MuSHRA tests have become widely

used [83, 111, 112, 113], and software versions are available for online implementation, in

addition to numerous other ABX test variants [114].

The goal of the MuSHRA test is to grade the absolute quality of an audio signal. Respon-

dents are asked to grade stimuli between 0 and 100, giving their perspective on the quality

of each sample. The scale is labelled as ‘excellent’ (100-80), ‘good’ (80-60), ‘fair’ (60-40),

‘poor’ (40-20) and ‘bad’ (20-0). Up to three ‘anchor’ stimuli can be used for comparison

purposes. The first of these is a hidden reference, which is identical to the original. The

35



Predicting Auditory Hierarchy: A Roadmap

second is a 3.5 kHz low pass filtered version of the original. The third anchor is of an

optional design but is required to be inhibited in the same modality as the audio artefacts

being measured, thus giving respondents context for their grading of the material.

The EBU, in their own assessment of multichannel audio codecs [115] and [116], elected

to use ITU-R BS.1534 for their top-line assessment of multichannel audio codec performance.

While greater resolution is possible with the ITU-R BS.1116 method, the EBU in this instance

decided to use the MuSHRA method as it “covers the whole quality range and is easier

to run than ITU-R BS.1116” [115, p. 15]. MuSHRA is regarded as a method which is

not as laborious and time-consuming to implement as ITU-R BS.1116, yet still provides

results which are highly accurate, reliable and consistent [117]. The scoring system used

for MuSHRA is more suitable in some instances than that used by ITU-R BS.1116 (an

impairment scale). Although the resolution provided by ITU-R BS.1116 is greater, it is not

always appropriate to use this method because of the time-consuming and resource heavy

nature of the test.

In summary, over a period of years, methods for evaluating the subjective perception of

auditory stimuli have been formulated and honed. The current consensus is that subjective

human rating is the gold standard for perceptual testing [118], and that such tests should

be conducted double-blind [119], where neither participant nor moderator is aware of the

presentation order of test stimuli. However, the standards outlined are designed to detect

small differences between multiple stimuli and are commonly used in tests comparing

loudspeakers [120, 121, 122, 123], compression codecs [81, 111, 124, 125], multi-channel

presentation of audio [126, 127, 128, 129] and more recent tests investigating surround sound

envelopment [78, 130, 131]. Notable in the literature is the existence of many instances

where tests are based on these standards, but do not adhere to them in every single detail

(see [78, 132, 133] for example), meaning that the standards are often used as a baseline

method to instil scientific rigour but adapted to fit specific use cases. It would seem logical
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therefore to use the outlined standards similarly in the design process for Experiment 1,

adapting them appropriately to suit the nature of the task defined as a categorisation of sounds

on a macro level with a subjective hierarchical label as opposed to ranking a series of similar

stimuli on a BAQ basis.

2.5.2 Bias in Perceptual Testing

Unless carefully designed and administered, there is potential for the results of any listening

test to be compromised by various forms of bias. Numerous papers have been published on

this topic [112, 120, 134, 135] and the following is a brief summary of the important points

outlined in this literature. Poulton [136] categorises bias types into three areas: contraction

bias, bias caused by lack of familiarity with units of measurement and bias caused by

unfamiliarity with the mapping of the responses to the stimuli.

Contraction bias occurs when a respondent tends to be conservative in underestimating

large differences and overestimating small differences between stimuli. This includes effects

caused by the order of presentation of the stimuli. Poulton suggests counteracting this effect

by counterbalancing the order of presentation of stimuli, or by using a Latin squares design,

where every possible order of stimuli presentation is used.

Bias caused by a lack of familiarity with units of measurement is a particular problem for

audio listening tests, as many subjects lack a frame of reference for the judgement they are

asked to make. For example, while subjects may be confident in making a weight comparison

judgement as they have everyday experience of judging the relative weight of objects, asking

them to judge the audio quality of a presentation will not in most instances be a task they are

familiar with. This can be tackled by inserting a training routine as part of the listening test.

Bias caused by unfamiliarity with the mapping of response to stimulus takes the form of

logarithmic response, range equalising, centering, stimulus spacing, and stimulus frequency

bias. These can be tackled using techniques outlined by Zielinski et al. [134], which include,
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but are not limited to, ensuring some stimuli are not presented to subjects more than others,

familiarising listeners with the range of sounds they will be presented, the use of a label-free

scale to avoid bias caused by a perceptually nonlinear scale, modifying the scale used to

grade stimuli, using anchoring techniques, and systextual design methods, where the range

and distribution of stimuli are systematically changed and the influence of this activity on the

results is analysed.

One further instance of bias is mentioned by Poulton, that of transfer bias, where an

assessment of one attribute is affected by the impression of another. This is commonly an

issue where the same group of subjects are used to assess different attributes or different

conditions of the same attribute. Counteracting this effect must be balanced against the

practicalities of using separate groups with a common rating scale and the advantages of

efficiency that attend presenting all stimuli to all subjects.

Bech and Zacharov [112] have noted that no study of this effect relevant to listening tests

currently exists. However, it is possible to examine the data gathered for evidence that notable

transfer has taken place between significant stimuli, as in the case of systextual design. For

instance, if Stimulus B can be shown to consistently drag the scoring for Stimulus A upwards

when presented in the order B – A, then this can be adjusted for in the statistical treatment.

The consideration of bias effects is critical in any perceptual test design phase, as there are

multiple opportunities for the introduction of confounding elements. Careful consideration

of the bias problem is warranted due to the multi-faceted nature of the area and the ease with

which unintended effects can influence experiment results.

2.5.3 Listening Test Implementation

Listening tests could generally be said to focus on one of two broad areas of research. The

first of these, referred to here as perceptual experiments, is broad auditory scene analysis,

which investigates how sound scenes are perceived, parsed and categorised. The second,
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designated evaluation experiments for the purposes of this research, generally investigate the

perceived BAQ of system components. Compression codecs, loudspeakers and microphones

have all been the subject of such evaluation research and Section 2.5.1 has listed examples of

a series of such tests.

Methods differ somewhat between these two purposes. The first is generally related to the

process of our perception of sound and has given rise to a variation of experimental design

approaches, a range of which have been outlined in Section 2.2.1. The most prominent

proponent of this research is Albert Bregman [29], who investigated perception of auditory

streams using a series of experiments that often made use of synthetic tones to establish the

basic principles of auditory scene analysis. The success of using such stimuli to broaden

understanding of the general workings of the auditory system suggests that they may be of

use in understanding more complex sounds. However, evidence suggests that the response

of neurons to complex sounds cannot be estimated from their response profile to pure

tones [137]. More recent soundscape research using naturalistic stimuli [56, 138, 139, 140]

investigates human perception of complex sound scenes to evaluate how they, and the audio

objects that comprise them, are perceived and categorised by listeners.

Evaluative research is often based around ITU test methods and standards already men-

tioned, the ITU-R BS.1116-3 and ITU-R BS.1534-3 (MuSHRA) standards. Such tests are

concerned with forensically parsing audio stimuli to detect fractional differences between the

element(s) under investigation to determine which is superior. The stimuli used in such exper-

iments generally reflect the intended end use of the factor under investigation, so a listening

test comparing headphones, for example, will often use popular music for stimuli [141].

Experiment 1 could logically be thought of as a perceptual experiment rather than an

evaluation of some audio system component, suggesting that the primary focus is less on

minor differences between sounds and more the semantic information derived from them.
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This informs experiment design significantly, as it suggests that the stringent laboratory

setting required by the ITU standards is not necessary.

Participants

A common characteristic of evaluative testing is that subjects are skilled audio practitioners

of some form [133, 142, 143], as stipulated in the standards. This is a sensible precaution

when evaluating minor differences in performance between audio codecs, but not necessarily

applicable to every test scenario. Furthermore, the stringent requirements of the standards

mean that all experiments complying with them are conducted in laboratory conditions,

generally in highly treated rooms designed to eliminate any possible confound caused by

room reverberation or other such test environment factor. These requirements combine to

keep the number of test participants low, frequently between 10—20 subjects (20 expert

listeners is generally held to be enough to obtain a reliable evaluation [133]), and to keep the

relative ‘cost’ of running each test high, given that constructing such facilities to the required

standard is expensive.

Perceptual experiments, on the other hand, are more interested in subject perception

or classification of the sound presented rather than the minutiae of marginal differences

between different sound files. In the case of evaluative research, the same sound may be

reproduced multiple times, while the bitrate at which the files are encoded is varied, or a

series of different loudspeakers are used to audition the sound, and the subject is asked to

pick which returns superior sound quality. The perceptual experiment task is not one of

BAQ evaluation, in other words. Participants are generally asked to classify the sounds they

hear, or provide some other semantic feedback evoked, but are not asked to compare sounds

searching for fractional difference. Indeed, the EBU has stated that the ITU.R 1116 standard

is excessively stringent for the assessment of internet audio codecs, proposed the MuSHRA

standard as an appropriate alternative [81], and has found the resolution provided by the 1116
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standard only necessary where the finest possible discrimination between auditory stimuli is

required [115].

Perceptual experiments are often carried out in highly controlled environments when

this is appropriate [10, 34]. These seldom directly adopt established standards, however,

but frequently adapt to the particular use-case. Moreover, and just as frequently, subjective

data is gathered via other methods, such as fieldwork surveys [144, 145] or even via in-

situ smartphone applications [146]. Additionally, Lemaitre et al. [142] has noted that

acousticians conceptualise sounds as abstract acoustic phenomena, whereas non-acousticians

conceptualise sounds as indicating the presence of an object that is not abstracted from the

sound source. Bech [147] notes that experts are more sensitive to artefacts and are generally

more reliable in their ratings than non-experts, however, Schinkel-Bielefeld et al. [79] also

note that while inexperienced listeners tend to give test audio higher scores than experts, they

tend to rank them the same in the vast majority of cases. This suggests that, while there may

be more noise in the data from inexperienced listeners, it will generally be in line with ratings

from experienced listeners, even for tests investigating marginal impairments between audio

signals.

This suggests that non-expert input may be just as desirable as expert input for the

purposes of refining a model to predict AH for media consumption paradigms if non-experts

are thought of as users who can give insight into audio object perception, and experts as

having a role in evaluating early iterations of applied schemas. Additionally, any robust ML

model of sound object hierarchy would require greater participant numbers than is common

in evaluative testing, generating ratings on potentially thousands of sounds by hundreds of

subjects in order to avoid analysis problems generated by having a great many more features

than samples in a given dataset (the so-called Curse of Dimensionality or large ‘p’, small ‘n’

problem [148]).

41



Predicting Auditory Hierarchy: A Roadmap

Environments

The standards outlined in Section 2.5.1 contain detailed instructions regarding appropriate

environments for listening tests. Guidelines for room size, shape, dimension proportions,

reverberation time, operational room response curve, background noise level, height and

orientation of loudspeakers, distance of loudspeakers from room walls and reference listening

position for monophonic, stereo and multi-channel setups are covered in detail in the briefing

document [89] for the ITU-R BS.1116 standards, which cover the [70] MuSHRA standard

also.

These standards are formulated for a specific task, however: discriminating between

audio representations on a very fine level of detail. This level of detail is deemed unnecessary

for the purposes of this research, a perceptual sound categorisation task.

The desire to maximise the number of participants also mitigates directly against the use

of strictly controlled laboratory conditions as a test environment. Furthermore, a number

of studies [149, 150] suggest that online testing displays minimal differences to laboratory

experiments for comparable tests that do not require forensic examination of minimal differ-

ences between stimuli. Most interestingly Cartwright et al. [118] implement a MuSHRA-like

test via Mechanical Turk [151], an online environment suitable for collecting ‘crowdsourced’

annotations for perceptual experiments. In crowdsourcing, participants are not selected from

a small potential pool but via an open invitation circulated via social media [152] or, in the

case of this research, to large communities such as the ‘Auditory’ mailing list [153] or the

R&D department of the industrial partner for this research, Xperi [154]. This suggests that

an online listening test is a viable alternative to strict laboratory conditions for certain types

of sound labelling tasks. Given these factors, it would seem viable to initially proceed with

an online test environment to maximise the number of respondents. This approach can be

revised, or indeed cross-validated with tests conducted in laboratory conditions, should this

be deemed necessary.
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2.6 A Map of Auditory Hierarchy

In this section, research reviewed thus far is summarised and a series of factors hypothesised

to have an effect on AH is outlined. Findings on the perceptual function behind hierarchical

ranking of sounds are then presented and encapsulated in a theory of AH.

The foregoing has outlined how the level of attention granted sounds by listeners [52,

155, 156], volume level [157, 158], proximity [138], sound event context [35], level of

anticipation [159], prior training [147, 160] and experience [161], listening mode [35] and

other senses (sight [162, 163], smell [164] and touch [165]) are all known to affect our

perception of sounds to some degree. However, the extent to which these factors interact with

each other, how they affect any inter-object hierarchy of importance and how this manifests

in auditory scene perception is less well understood. The inherent BG or FG nature of a

sound in isolation is also speculative, though it can reasonably be hypothesised that certain

sounds (speech, alert noises, such as alarms) would likely be thought of as FG. Detailed

knowledge in these respects would be central to any well-functioning model based on object

audio theory, if each of these factors is thought as requiring a weighting proportional to the

influence they exert on sound hierarchy fluidity, which maps how such hierarchies vary over

time. Further investigation is required, but the likelihood exists that the some outlined factors

are more important than others as regards such sound importance fluidity.

Critical functions of such a model will include a number of considerations. Firstly,

the inherent nature of a sound, and its predisposition to be either FG or BG, if any such

predisposition exists. Secondly is the identification of the relative importance of different

influences on auditory perception and an establishment of appropriate weights in each

instance. Thirdly is the development of an understanding of how influences on perception

interact in order that changes in the inter-object hierarchy over time could be predicted.

Fourthly is consideration of how an ML model to predict the hierarchy of auditory objects
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can be built which can then be extended to an implementation which takes consideration of

how the nature of how such hierarchies change over time.

Environmental sound classification holds a significant similarity to this task in that it

involves the identification of individual sounds within auditory scenes. It could be said

that in the act of identification and subsequent categorisation sounds can be thought of as

having an importance level allocated which would view these processes as interlinked, the

act of categorisation being a subsequent function of identification. Existing studies of sound

categorisation have been reviewed to establish what consistencies may be observed in subject

approach to such a task. Dimensions of such a categorisation-space will be useful in the

formulation of any rule-set to predict sound object FG/BG ranking. To that end, this section

will attempt to outline this categorisation-space with a view to formulating strategies for

automated hierarchical classification.

As mentioned in Section 1.1, Lewis et al. [86] present a study where subjects were asked

to rank stimuli as either object-like or scene-like. In general, sounds judged as objects were

more likely to be mechanical and those thought of as belonging to a scene were predominantly

natural. Additionally, scene-like sounds tend to have a more gradual change characteristic,

differentiating continuous sounds from those with more abrupt change characteristics. In

a study investigating the categorisation of broadcast audio objects, Woodcock et al. [58]

identified three dimensions in sound object categorisation using multidimensional scaling.

One of these dimensions ranged between continuous and discrete impact sounds. Another was

proposed to be related to the presence of absence of humans. A third dimension progressed

from continuous BG sounds to clear speech. The authors maintain that this dimension

is related to whether the sound carries semantic meaning or not, which is mirrored in

neurocognitive studies such as [86] and [166]. Interestingly, subjects’ perceived importance

of sound objects correlated with this dimension, suggesting that sound objects which carry

semantic information are more important than those which do not.
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Collett et al. [84] found that musical and vocal stimuli were easier to categorise than envi-

ronmental sounds which, supported by [65], [62] and [63] suggests that sound categorisation

is easier when more semantic information is discernible from the sound. Additionally, Guas-

tavino [57] suggests that people organise sounds and soundscapes in terms of the meaning

attached to a sound as a semantic clue to source identification as opposed to any abstract phys-

ical property of the sound. Dubois et al. [167] investigate meanings attributed to soundscapes

both on an individual and collective level in an attempt to outline the similarities between

the two. They present converging evidence that the subjective effects of complex acoustic

scenes rely on semantic meanings attributed to sounds via cognitive processes. Furthermore,

they outline two generic cognitive categories for sounds encountered in soundscapes. The

first they term event sequences, from which the sources of sounds can be easily identified.

The second is amorphous sequences where sources cannot be easily identified. These event

sequences are further subcategorised by subjects according to either the source involved

(vehicles, parts of vehicles, human sounds) or a qualitative evaluation of whether the sound

was pleasant or not. Amorphous sequences are mostly described as background noise and are

further subdivided by whether they are pleasant or by an evaluation of acoustic parameters

(sound intensity, spectral content, temporal structure).

Gygi and Shafiro [85] demonstrate what they term an incongruency advantage by

showing that sounds perceived as out of place in an auditory scene are more likely to be

noticed. This is supported by Winkler and Schröger [53] and by Sussman-Fort and Sussman

[61], who suggest that the auditory system maintains a representation of the environment that

is only updated when new information indicates that re-analysing the scene is necessary. This

is consistent with Rummukainen et al. [34] who find that humans are attentive to perceived

movement, noisiness and eventfulness when analysing real-life urban environments. They

note that arousal can affect selective attention, increasing focus on certain sounds to the

detriment of attention paid to others.
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Salamon et al. [59] present a taxonomy of urban sounds which they have labelled with

a saliency characteristic, which indicates a subjective labelling of the sound on an FG/BG

scale. A subsequent categorisation experiment found that BG sounds were significantly more

difficult to identify than FG sounds, with only one exception —- a siren noise. This suggests

that subjective labelling, if done with care, is a robust mechanism for sound categorisation.

Guastavino [30] suggests that sounds are either classified into taxonomic categories

(‘car’, ‘truck’, ‘street’, ‘acceleration’) according to low-level features or into script categories

(‘doing the groceries’,‘taking a walk’,‘having a drink’) according to high-level features

concerned with the situation of use or the end-use purpose of the object. Raimbault and

Dubois [2] support the idea that certain noises are identified in terms of the semantic content

the sound suggests, and also outline research that suggests that psychological and sociological

factors can affect sound scene perception. They suggest that street scenes which are visually

appealing will generally be thought to sound more pleasant than those which do not.

A number of factors known to influence the perception of sound have been outlined at

the beginning of this section. In the interests of clarity these will henceforth be referred

to as Factors Influencing Auditory Hierarchy (FIAH) and are illustrated in Figure 2.8.

Furthermore, an organisational distinction is made between the physical properties of sounds

themselves [46, 168, 169] and variation on the level of the individual which manifests in

terms of sound context, training level and so on. Characteristics of sounds which may

be indicators of their hierarchical placement are also highlighted, such as the presence or

absence of humans, and discreet and continuous sounds. These will be referred to as Potential

Hierarchical Indicators (PHI) .

This model bears a number of similarities to the Quality of Experience (QoE) model [170]

which identifies ‘Influence Factors’ relevant to experience of multimedia content. The def-

inition of QoE offered in [170] notes that it is influenced by “content, network, device,

application, user expectations and goals, and context of use.” (cited after [171]). Influence

46



2.6 A Map of Auditory Hierarchy

Potential Hierarchical Indicators

Factors Influencing Auditory Hierarchies
Physical 

Properties 
of Sounds

Individual 
Biases

Presence of 
People

Speech 
Sounds

Semantic 
Meaning

Abstract 
Sounds

Continuous 
Sounds

Discrete 
Sounds

Pleasant 
Sounds

Unpleasant 
Sounds

Non-speech 
Sounds

Absence of 
People

Level of 
Attention

Sound 
Context

Sound 
Proximity

Anticipation 
Expectation

Prior 
Training

Prior 
ExperienceSight

Touch Olfaction

Timbre Loudness

Pitch

Transients
Onsets

Subjective Quality RatingContent Related Classes

Fig. 2.8 A framework outlining factors which influence subjective hierarchical ranking of sound
objects derived from the literature review outlined in Chapter 2 which shall be used to guide ex-
perimental design. These are components around which audio object hierarchy is hypothesised to
vary.

Factors are noted as interrelated and grouped in three categories: human, system (notably

including content related factors) and context. As the QoE model is concerned with experi-

ence as a whole it differs from the model of AH outlined in this thesis, but the similarities

between each suggest that the hierarchical model has a sound theoretical base given the broad

acceptance of the definition of QoE. The PHI outlined in Figure 2.8 can be considered as

four content related classes and one subjective quality rating, as indicated.

Both this section and Section 2.2.1 have outlined evidence in support of the view that

multiple factors, designated FIAH, affect human perception of auditory scenes and the

focus of attention on individual sound objects in those scenes. This evidence suggests that
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hierarchical perception is constantly in flux, that it is a continuum. It suggests that sound

categorisation on a hierarchical scale is based on multiple FIAH, not confined to the relevance

of a sound to current activities, the semantic information carried by the sound, whether the

sound indicates human presence or perceived movement and sounds which are incongruous

in the sound scene. This information elucidates the process of hierarchical categorisation

which this thesis studies in a simplified manner, seeking to explore ML performance in the

domain. In doing so, the intention is to offer a roadmap as to how this technology can be part

of an intelligent system for content delivery optimisation. These thoughts will inform the

design of subsequent investigations.

From similarities in groupings observed in these sources, the author has identified a series

of characteristics, outlined in Figure 2.8 as PHI, which suggest relationships between sound

types and define some dimensions of a possible categorisation space for hierarchical object

classification. They may be of use in investigating the fluctuation of relative importance

between sounds as a function of time. As conceptualised, PHIs suggest dimensions of sound

hierarchies which range from those that indicate the presence of humans, to those that do

not, between sounds which carry a high degree of semantic information about the object,

action or event that caused their creation, and sounds that do not. This could also be referred

to as the variation between sounds often described by the event that caused them, and thus

easier to identify, versus sounds often described using some abstract quality of the sound

itself, which are more difficult to identify. Further possible dimensions include continuous

sounds (more likely to be BG and harder to identify) versus discrete sounds (connected to

an object or event, easier to identify) and pleasant (people, nature, music, harmonic, lively

ambience) versus unpleasant (traffic, alerts, inharmonic, alert) sounds.

Several studies examining the perception of acoustic scenes and the categorisation of

sound have been reviewed in Section 2.2, Section 2.2.1 and Section 2.4.1. Subjective labelling

of BG and FG sounds and testing of these labels in [47] and [59] suggest that this is a valid use
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of such labelling systems. This provides a possible ground truth of hierarchical classification

which may be of use when isolating test stimuli for new experiments once caution is used in

their application, however, an entirely empirically derived hierarchical corpus would also

undeniably be interesting for comparison if nothing else.

Many of the studies reviewed ( [63, 65, 84], [58], [2, 57, 167]) reinforce the point made

in Section 2.3 regarding semantic meaning in sounds. Additionally, Woodcock et al. [58]

suggest one of the dimensions in which sounds are categorised pertains to the semantic

information contained in a sound, or a lack thereof, and that this dimension was found to

correlate with subjects’ importance rating of individual sounds.

Evidence of an incongruency advantage in sound recognition [85] was also outlined. Fur-

ther research suggests that the auditory system maintains a representation of the environment

that is only updated when this is deemed necessary [61]. Additionally, Wustenhagen et al.

[124], Mason et al. [117], and Marston et al. [111] observe that certain sound types, such as

applause, are noted as being more difficult to encode than others. In a variable bandwidth

situation, such sounds could be earmarked for high quality reproduction even if the model

indicates they are of low importance. Sounds indicated as being FG can also be encoded at

the highest quality possible, and minimum resources can be allocated to the less important

stream. This points toward a working methodology which may be of use in applications of

this research. A proposed outline of the temporal nature of change in hierarchical auditory

perception is outlined in Figure 2.9.

This conceptualisation envisages a division between FG and BG sounds varying due

to the FIAH outlined in Section 2.2 and manifesting in the PHI summarised in Figure 2.8.

Sounds newly presented are evaluated and incorporated to perception and categorised as

either FG or BG sounds as deemed appropriate. The process is continuous and fluid, meaning

a constant re-evaluation of sound importance occurs, with sounds moving from BG to FG

and vice versa. This outlines potential for a model predicting sound hierarchy which would
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Fig. 2.9 A conceptualisation of temporal variance in auditory object hierarchy.

incorporate weightings for different FIAH which vary in the temporal domain due to new

sounds being introduced. Such weightings would take the form of codec encoding parameters

which would vary the weights accorded per PHI such as the presence or absence of humans,

whether the sound contains semantic content or not, the degree of perceived movement in a

sound and whether a sound is pleasant or unpleasant in addition to the FIAH mentioned such

as focus of attention, sound context and so on.

Given the multi-faceted nature of AH it is logical to break down its functions to individual

units of study, accepting that interaction is likely between them and each will require separate

investigation. With this in mind, it was decided to first examine sounds in isolation from an

auditory scene in order to establish what sounds are thought of as inherently either FG or

BG. Additionally, establishing the feasibility of building a model using ML methods would

constitute proof of concept, which could subsequently be augmented with other parameters

as these are subjected to study. This positions the task of understanding an inherent hierarchy

of importance between isolated sounds and examining how the phenomenon responds to ML

analysis as a basic building block for understanding how a fully featured model could be
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built. This could then be augmented by investigating the effect of context, attention, training

and other FIAH.

Previous sections have derived an overview of AH as an initial step to building an

ML model to predict the phenomenon. Section 2.2 has established ASA as a complex

operation subject to multiple influences. Auditory object categorisation, of which hierarchical

categorisation is a sub-task, is also subject to influence from FIAH outlined in Section 2.6,

such as the inherent FG/BG nature of individual sounds, level of attention, sound event

context and others.

This is a complex process with numerous interacting effects, which suggests that consid-

erable detail and care must be undertaken in order to understand how hierarchical sorting

works and how it might be robustly predicted for content delivery applications. Therefore, an

investigation is proposed using sounds isolated from context, in so far as this is possible, as

this will allow study of different FIAH as deemed necessary.

2.7 Conclusion

This chapter has provided an overview of ASA, introduced the concept of ObA and discussed

these areas in the light of modern media consumption patterns. Auditory perception has been

highlighted as a complex process subject to influence from a series of factors, identified as

FIAH in Section 2.6, which require consideration in the formulation of a framework outlining

AH and a method to predict audio object importance.

This has informed a discussion of sound taxonomies (Section 2.4.1) and available sound

datasets (Section 2.4.3) which revealed no hierarchical classification data based on isolated

sounds that were empirically derived. Some examples of arbitrarily-labelled non-isolated

sounds that were subsequently validated by listeners have been previously mentioned ([47,

59, 63]), but these sounds are not isolated entirely from a sound scene and in some cases
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are confined in scope ([59] for example is an entirely urban sound dataset). One of the

contributions of this thesis is to derive this data.

Perceptual testing methods and listening test standards were reviewed in Section 2.5.

The forensic level of detail afforded by the ITU-R BS.1116-3 and MuSHRA standards was

deemed inappropriate for this study as the focus is not on BAQ differences between stimuli,

but rather on respondent subjective judgement of the hierarchical placement of isolated

sounds. This relaxes the necessity for laboratory listening conditions. Accordingly, it was

decided to deploy subsequent experiments in an online environment as it has been shown,

by Disley et al. [149] and McGraw et al. [150] for example, there is minimal difference

between laboratory and online experiments for comparable tests. Furthermore, the potential

response rate for an online experiment is far greater than that of one confined to a laboratory

and the flexibility of the medium allows easy adaption at relatively little time cost should this

be required.

Background research relevant to AH has been outlined, and a working concept for how

such a hierarchy may function has been proposed. This is presented in Figure 2.9. The design

of an experiment to investigate the existence of an AH between isolated sounds as an initial

step towards designing an ML model to predict the phenomenon has also been outlined.

Experiment 1 has been formulated to investigate isolated sounds only, as it is felt that this

must first be established before other influences on hierarchy can be examined. The danger

in not establishing such a baseline would be that future manipulations would potentially be

open to multiple interpretations, thus invalidating any subsequent analysis. Once the nature

of the relationship between isolated sounds is understood, then the empirical data derived

can be used in further experiments.

The literature review offered in this chapter has addressed OBJ 1, namely:

OBJ 1: To develop an understanding of ASA with particular attention to the concepts

of object-based audio, AH and modern media consumption paradigms.
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The material reviewed in this chapter has identified FIAH and the value of directly

investigating the hierarchical relationship between isolated sounds for media consumption

applications. This has been addressed via the formulation of RQ1 and 2, as follows:

RQ 1: What factors are involved in the perception of AH?

RQ 2: Does a hierarchy of importance exist between sounds isolated from context?

The review of sound stimuli corpora offered in this chapter has established that existing

datasets of sound stimuli do not provide scope for the study of FIAH in a suitable manner.

This identifies a need to form such a database using sounds isolated from FIAH to the greatest

extent possible, in order that a study can be made of each factor individually. Chapters 4, 5

and 6 will describe research relevant to this aim. In the first element of this, Chapter 4 will

detail the implementation and results of Experiment 1, which also addresses RQ1 directly.

First however, Chapter 3 will outline audio ML research in the context of sound object

hierarchies in complex auditory scenes.
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Chapter 3

Audio Machine Learning

3.1 Introduction

There is a considerable extant audio ML literature [14] and a rich recent history in the

application of such knowledge to speech recognition [172, 173, 174], music information

retrieval [175, 176, 177] and various automated personal assistant technologies such as

Google Home [178] and Amazon Echo [179]. In this context, an ML analysis of the objective

features of the stimuli used in the experiment described in Chapter 4 will be illustrative of

the potential of such an approach for building a model to accurately predict AH as outlined

in Section 2.6. This chapter will give a brief overview of ML relevant to concerns around

building a model to predict AH. The choice of audio features will be discussed, as will the

choice of ML algorithms for the specific task of hierarchical modelling. This will include

a discussion of those referred to as Deep Learning (DL) algorithms, and an outline of the

advantages and disadvantages of each approach generally. ML concerns specific to the audio

domain will be covered in addition to methods for evaluating model performance.
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This discussion will underline how important large volumes of labelled data are to the

performance of supervised ML. Section 2.5 has introduced the area of perceptual testing in

the audio domain which establishes the labelling task as an expensive undertaking in terms

of the resources required to accumulate large volumes of labels. Section 2.4 has outlined the

lack of an audio dataset consisting of isolated sounds labelled hierarchically, and selected the

ESC datasets [101] as suitable for forming the basis of such a corpus. This has established the

requirement for two tasks in order to form a dataset of auditory objects labelled hierarchically.

Firstly, the ESC sounds require a manual review to select a subset which evinces a single

auditory object only. This process is described in more detail in Chapters 4 and 5. Secondly,

a hierarchical label must be sourced for each object. To address this second problem in

Section 3.6 the technique of AL will be described as a method to reduce the manual effort

required to label audio. In Section 3.7 methods for data augmentation relevant to audio

applications will be discussed.

Two points on nomenclature are relevant at this point. In Section 2.6 we have introduced

the concept of a ‘model’ for AH, which we use as a term in reference to the conceptualisation

of AH, influenced by a number of different factors (FIAH), which we hypothesise to have

varying levels of influence on the perception of AH. This is intended to be distinct from the

ML concept of a ‘model’. The terms ‘algorithm’ and ‘model’ are used frequently in the

following. In ML parlance, ‘algorithms’ are held to be a framework of assumptions used to

structure the prediction process. Logistic regression, Support Vector Machine (SVM) , Naive

Bayes and Convolutional Neural Networks (CNN) are all examples of different algorithms.

A ‘model’ is held to be a deployment of an algorithm with suitably fitted parameters, trained

using appropriate data and methodology, which can be used to make an actual prediction,

and this is the sense in which these terms are used in the following.
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The remainder of this chapter will offer an overview of ML concepts and methodologies

with particular relevance to the auditory domain. Section 3.2 outlines ML generally and will

structure a further discussion around methods employed in this research.

3.2 Overview of Machine Learning

ML has been extensively and successfully applied to numerous audio problems. A full

review of the area is beyond the scope of this work, however, a brief introduction is in order

to outline the state of the art.

ML can be understood as the process of deriving insight into real-world processes by

analysing patterns in data they produce. There are numerous flavours of ML, which can

broadly be categorised into two types: supervised and unsupervised learning [180].

Supervised learning involves predicting some outcome from the analysis of data which

must be labelled in some manner. The goal is to build a model capable of accurately predict-

ing on unseen data instances. The label can be categorical, as with a classification task where

the label is a discrete category, such as whether an image is a cat or a dog. The label may

alternatively be a continuous number, as with a regression task where the result is a quantity

which is continuous [181], such as trying to predict the price of a house. Examples of super-

vised algorithms are SVMs [182] and Linear and Logistic Regression [183]. Unsupervised

learning, on the other hand, seeks to learn structure in data without reference to labels. For

example, clustering algorithms, such as the k-Nearest Neighbours (kNN) algorithm seek to

define the proximity of instances to each other identifying clusters of similar examples as

demonstrated by Noda et al. [184], who classify fish species by clustering vocalisation data.

In the case of this research, perceptual hierarchical labels were required as an indication

of audio object importance for modern media consumption. This informed the choice of

supervised ML for subsequent work.
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There is a distinction made between some supervised ML techniques, outlined in Sec-

tion 3.5, which generally consist of minimal layers of abstraction between source data and

model prediction, and the ‘Deep’ Learning class of algorithms [185], outlined in Section 3.5.5,

that learn a function between the representations of data and a target output with multiple

layers of abstraction. Furthermore, algorithms can be considered in terms of whether they

are more suited to discriminative training, in that they learn the boundary between classes,

or lend themselves more to generative training, in that they learn the characteristics of the

distributions of different classes [180]. Additionally, some algorithms are known as lazy

learners because they typically delay making a prediction until they are queried, as is the

case with the Nearest Neighbour algorithms reviewed in Section 3.5.2 where query instances

are compared to training instances in order to make a prediction. Other algorithms are known

as eager learners because they construct some function during training which is then used to

make predictions, as is the case with the SVM algorithms reviewed in Section 3.5.4.

The fundamental requirement for training accurate ML models is the availability of

representative data. In the case of supervised learning, labelled data is required, and lack of

such data is a noted problem in audio domains such as acoustic scene classification [17] and

speech emotion recognition [18]. While large volumes of data are not necessarily required

for all algorithms, it is a noted characteristic of deep learning models that they are capable of

superior performance to other algorithm types once sufficient, large volumes of representative

data are available [19, 20, 21].

This work focusses on using supervised ML methods in a classification task to predict

AH. Section 3.3 first offers an overview of ML methodology and then introduces the areas

of feature extraction and selection in addition to methods of model evaluation. Section 3.4

contains a review of audio features used in ML research and Section 3.5 outlines algorithm

choice concerns. Finally, Section 3.6 reviews application of Active Learning methods to the

auditory domain, while Section 3.7 considers data augmentations methods.

58



3.3 Machine Learning Methodology

3.3 Machine Learning Methodology

A series of decisions are required during an ML project regarding a number of factors not

limited to data treatment, feature representation, algorithm choice and evaluation method. In

general, the ML process can be outlined as a series of iterative steps:

1. Domain knowledge accumulation.

2. Data gathering, analysis.

3. Feature representation and algorithm choice. Feature extraction and selection.

4. Training models.

5. Evaluation.

6. Predicting.

The iterative nature of the process is important, as learnings from prior stages can be

recycled with further data analysis in an attempt to improve model performance. In many

instances specific domain detail, such as the form of available data, will mandate choice of

methods.

3.3.1 Feature Representation

Chapter 2 presents a summary of relevant perceptual audio research for the problem of

hierarchically labelling auditory objects. This has outlined a broad range of possibilities in

terms of feature representation. That is, how auditory objects will be represented in data

form for input to ML models for this research.

In the case of some ML problems, the source data is already structured, presented in

an organised table of instances, the historical events or items under analysis (in the case of

this research, auditory objects), and features which describe the instance in some manner.
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Fig. 3.1 An illustration of the data pipeline from unstructured data to prediction for supervised ML.

Features can consist of numerical, continuous, textual, categorical (cannot be ranked, such as

countries, animals), binary (consisting of two categories, e.g. gender) or ordinal (categorical,

which can be ordered in some fashion, such as small, medium, large) descriptions of instances.

Often, however, the data is said to be unstructured and must be gathered and organised in

order to be useful as input to an ML algorithm, as illustrated in Figure 3.1.

The broad breadth of features introduced in Section 3.4 outlines the scale of the task

confronting practitioners in choosing which feature representation to use when building ML

models. In the audio domain alone, numerous works exist demonstrating the superiority of

one representation over another for certain tasks [172, 186, 187, 188]. Additionally, recent

evidence [189] suggests that learning features directly from the data, as is the case with NN

algorithms, is a more robust method of approaching sound classification tasks. Choice of

feature representation is therefore a difficult task with multiple options, but central to the

success or otherwise of final model performance.

The data pipeline from source to prediction can be summarised as presented in Figure 3.1.

Given the wide range of potential representations and raw data forms, the data for this

research is unstructured, requiring a number of decisions to finalise feature representation.

Many of these are relevant to the process of feature extraction (surveyed in Section 3.3.4):

The process of transforming raw data into features suitable for ML analysis. In the audio

domain, feature types can be extracted for analysis at varying resolutions using a variety of

temporal and spectral options. Feature selection, surveyed in Section 3.3.5, is the process
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of removing features which do not help the ML task, as reducing dataset dimensionality by

removing features has been found to improve learning performance in addition to lowering

computational complexity and decreasing storage requirements [190]. Once a final feature

representation has been identified, this can be used as input to train a model, which can then

be used to predict.

3.3.2 Building Supervised Machine Learning Models

Once domain knowledge has been assimilated, data gathered and analysed, decisions can be

made as regards which algorithm to use and how to approach feature extraction. The feature

representations used in ML vary widely, not least because there are a number of possible

approaches to feature extraction and selection.

An outline for the process of building supervised ML models is offered in Figure 3.2. In

the training phase, features are extracted from the available training data and a model is built

to predict an outcome, which in the case of this research is a categorical label pertaining to

AH. In the classification phase, the model trained in the training phase is given unseen data

for which it predicts labels.

When building models, it is desirable to do so in a manner that ensures maximum possible

performance on unseen data. To do so, the available data is split into training and test data

subsets, where the model is built using only the training data and the test split is used only to

evaluate the model. Effectively, test data is treated as unseen data to give a robust assessment

of performance. One method of implementing such a split is by using a hold-out test set,

where a portion of the available data is selected at random to form a test set. The drawback

of this method is that it runs the risk of returning a misleading result should the test split

contain numerous instances that are easy to predict. Implementing repeated hold-out test sets

is one way of controlling for this possibility, averaging the performance of models across

each split to provide a final result [180].
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Fig. 3.2 An illustration of the supervised ML process.

A more comprehensive method for data splitting is k-Fold Cross Validation, where the

available data is divided into k equal sized folds and each fold is used to build a model.

Illustrated in Figure 3.3, each fold is divided into training and test splits, and a model is

trained for each fold using only the training data for that fold and evaluated using only the

test data for that fold. In this way, all the available data is used in both training and evaluating

models. Treating the data in this way gives a more robust estimate of how a final model,

trained on all the available data, will perform on unseen instances [180].

Once the method of splitting data is decided, algorithm hyperparameters can be fitted

to each fold of training data by further splitting the training data into train and validation

splits and subjecting the subsequent train split to a hyperparameter grid search. To do this a

parameter grid is formed using a range of hyperparameter values and a model is trained for

each combination using the train split and evaluated using the validation split. Figure 3.4

illustrates this split implemented using a 4-fold cross validation split with the ‘Fold 1’ training
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Fig. 3.3 A representation of 5-fold Cross Validation, which provides 5 different training and test splits,
each of which are used to build a model.
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Fold 1_2 Validation
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Fig. 3.4 A cross validation split implemented to fit parameters.

split outlined in Figure 3.3 divided into 4 further folds, designated ‘Fold 1_1’ through ‘Fold

1_4’, each with a validation split used to evaluate the performance of different hyperparameter

combinations. In this example, each combination of hyperparameters is evaluated 4 times

using different train and validation data. The performance of each combination is averaged

over the four folds to identify the best hyperparameters. A model is then trained using

the best set of hyperparameters and all train and validation data (the ‘Fold 1’ training data

outlined in Figure 3.3 in this example) and evaluated using the test data for ‘Fold 1’.

The size of training and test sets is generally set to 70-80% train versus 30-20% test,

though this can vary according to dataset size. In scenarios with particularly small datasets,
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allocating a 20% test set may lead to a non-representative sample giving a misleading

impression of model performance, in which case the size of the test set should be increased.

Equally, in situations where there the dataset consists of millions of instances, a much smaller

test set can be implemented once there is confidence it will be representative of the dataset as

a whole.

3.3.3 Algorithm Choice

The discussion around the general ML process outlines the numerous decisions that must

be taken. These may be impacted by algorithm choice, which in itself is a major decision

in the data modelling process. Each of the algorithms outlined in Section 3.5 have different

inductive biases and sets of assumptions and there is widespread acknowledgement that

there is no best approach that consistently outperforms all others. This idea even has its own

term — the No Free Lunch Theorem [191]. Algorithm assumptions manifest in distinctive

characteristics of decision boundaries they draw for classification tasks. For example, kNN

models, will manifest notably jagged decision boundaries because of the influence of nearest

neighbours. Decision tree boundaries will have a step characteristic because of the way

instances are split in the tree, and so on. Which algorithm works best will depend on

particular dataset characteristics, and for this reason it is advisable to choose a number of

different models initially in order to evaluate the strengths and weaknesses of each as they

pertain to a particular project [180].

A number of different factors feed into the algorithm selection process. Firstly, that of

prediction speed. Some algorithms predict more quickly than others. Logistic regression

tends to be quite quick to make predictions because the calculations involved are relatively

simple in comparison with other ML algorithms. In contrast, kNNs can be very slow to make

predictions as they must compare each and every instance in a training set, which can run to

thousands of individual instances, thus adding to computation time. Secondly, the capacity
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for retraining of the model can vary between algorithms due to how they accommodate new

data instances. If new, previously unseen, instances are presented which are different from

those on which the model was trained this can lead to concept drift, where the model no

longer accurately reflects the data and ceases to make good predictions. In such a case, the

model must be adapted to the changing data, generally by retraining using new data.

Finally, the degree to which an algorithm is interpretable or not may be of critical

importance for the end model to be accepted. It will sometimes be necessary to derive

insights into why the final model is making particular predictions. A rationale for how

particular categorisations are arrived at can drive development of further research and deepen

understanding of the processes being studied. This is not always possible for every ML

algorithm with some, such as the NN family of models (see Section 3.5.5), still referred to as

‘black box’ models because of this interpretability issue. To this point however, Zeiler and

Fergus [192] present a technique for visualising the inputs that are important to final outputs

in some forms of Neural Network (NN) models.

3.3.4 Feature Extraction

The concept of feature extraction has been introduced within the context of preparing data

for introduction to ML algorithms. Auditory stimuli can be represented in many ways, and

for the purposes of a broad overview in the context of ML research this can be summarised

as a process of extracting continuous, numerical data that describes an auditory event or

‘object’, as in the case of this research. A review of feature types is offered in Section 3.4 and

all represent audio in numerical terms. Even the visual features outlined in Section 3.4.4 are

fundamentally a pictorial presentation of audio data represented numerically.

There are a number of decisions to be made in the feature extraction process when dealing

with audio data. Generally, short term features are calculated on a frame level. The temporal

length of this analysis frame is a parameter that varies across the studies surveyed, and thus
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requires consideration. Typical values observed in the literature reviewed range between 25

and 100 milliseconds. Furthermore, the step size, and whether there is to be any overlap

between analysis frames, also requires consideration with typical values for this parameter

ranging between 25 and 50% overlap.

The aggregation of analysis frame information over time is another possible point of

variance. A number of possibilities exist in this respect, as outlined by Ruvolo et al. [193].

One approach, utilised by Barrington et al. [194], involves modelling the short-term features

on a frame level and then combining them in a bag of features manner, with the overall

categorisation being a product of the individual frame probabilities. Also, temporal data

aggregation by summary statistics is commonly used, as applied by Grimm et al. [195], where

mean, standard deviation and other summary statistics are computed for the frame-level

features and these are used for modelling purposes. However, Lagrange et al. [72] question

the sufficiency of these approaches for some applications, such as soundscape classification.

While they acknowledge that soundscape categorisation is a difficult computational problem

they suggest that such temporal aggregation should be allied with methods which align

individual sources with what they term sound ‘textures’ [72, p. EL491] such as urban or rural

sound settings, in order to provide more scientific rigour. With regard to building a model to

predict AH, such additional information could be derived from subjective ratings provided in

the experimental process.

A number of the algorithms reviewed in Section 3.5 do not directly address the variation

of audio data over time, though Hidden Markov Models (HMM), capable of describing a

sequence of events where the probability of each event depends only on the state attained in

the previous event, may be used to do so [196]. If SVM, Linear Regression, Decision Tree

or NN algorithms are to be deployed, some method of introducing the temporal variance

of sound data should be attempted. In this case, the use of delta values between frame

analysis windows may be deployed as in [197]. A delta value, also referred to as a first order
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delta value, is obtained by calculating the difference between two adjacent analysis frames

of the same feature, for illustrative purposes these can be labelled frames ‘A’ and ‘B’. A

double-delta, or second order delta value is obtained by calculating the difference between

frames ‘A’ and ‘C’, ‘C’ being the direct neighbour of ‘B’. Such delta values can be calculated

for increasing orders if deemed necessary by the experimenter.

Finally, consideration must be given to the treatment of the data thus derived. Outlier

values can cause problems in any statistical analysis process, and ML is no different. Both

normalisation (adjusting feature values to a common scale) and standardisation (re-mapping a

feature to fall within a number of standard deviations of the mean value of the sample) [180]

techniques are available to the experimenter and there is no rule of thumb as to which should

be applied in particular situations. Again, the decision is generally subject to a degree of

experimentation before a final model is derived.

Numerous software environments exist in which it is possible to extract features from

audio data. Matlab [198] is a well established and widely used programming environment de-

signed specifically for scientific applications. A number of bespoke libraries [199, 200, 201]

have been written in Matlab specifically for the purpose of audio feature extraction. Similar li-

braries [202, 203, 204] have also been written for the R [205] and Python [206] environments,

both of which are well established and extensively used for scientific experimentation and

data modelling purposes. There also exist a number of bespoke audio analysis programs such

as MARSYAS [207], Praat [208], which was specifically designed for phonetics analysis but

has been applied to other domains, and openSMILE [209]. All of these programs offer access

to an ample selection of features to choose from, and in the case of Matlab, Python and R, a

framework within which to calculate bespoke features should these be deemed necessary.

The existence of numerous libraries for feature extraction means that it is relatively

straightforward for the experimenter to simply calculate a series of standard features and

evaluate each in terms of their suitability of the task under consideration. Having said
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this, in practice automatically extracting a broad range of features may ultimately make

interpretation of the results more difficult as well as causing unnecessary logistical difficulty

(e.g. increased training times). It is noted that feature extraction should ideally be guided

by the intended final application, as some features may be more appropriate than others in

specific cases. Additionally, evaluating feature performance on an isolated set of sounds does

not guarantee that similar performance can then be assumed for all sounds. Some features

may not be as discriminatory, could potentially be outperformed by features previously

deemed unsuitable, or the relative importance level of auditory objects may change. In

practice, different configurations would need to be evaluated before finalising choices for

real-world applications.

3.3.5 Feature Selection

Feature selection, the elimination of redundant features from training and test sets, is

important as this alleviates the so-called curse of dimensionality, where few instances n

are spread over many features p, meaning that the target feature to be investigated is distal

in p-dimensional space to its nearest neighbouring instances [210]. This section offers a

compact overview of the area, a more complete review is offered by Özseven [211].

There are a number of ways to identify the features with high predictive power. Filter-

based approaches involve ranking each individual feature according to some predefined

metric. Information gain (a measure of the amount of information a feature brings to a training

set) and information ratio (information gain divided by the amount of information used to

determine the value of the feature) are common metrics to use in such an instance [180].

Some algorithms, for example Random Forest (RF) [212] , offer a grade for each feature

included and this can be used as a selection metric also. Thus ranked, those features below a

determined cut off point are discarded and modelling proceeds with the most informative

features only. This makes the model more efficient. However, as the predictiveness of the
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features is evaluated in isolation, this excludes any possible interacting features which could

potentially be more informative than the features evaluated in isolation.

So-called wrapper approaches attempt to incorporate interacting effects among features

by searching the feature set for subsets that perform best. This involves generating subsets

of features, commonly using either forward sequential selection, where the search starts

with no features and gradually adds single features, or backward sequential selection, where

the search starts with the full feature set and iteratively eliminates single features from

each subsequent trial. Individual feature subsets are evaluated according to the potential

performance of models based only on that subset.

Feature selection is also possible via a process of Principal Component Analysis (PCA) ,

a commonly used statistical technique for finding a linear transformation for dimension

reduction [213]. If each feature is considered a potential axis along which data points can

be plotted, PCA sees these axes being transformed such that feature vectors are orthogonal

to each other. This resolves the feature set into a lower dimensional representation, thus

filtering the potential input features for modelling [197].

It is important that feature selection is performed on the data in the training set only. This

point is noted as often neglected in the literature Hastie et al. [214, p. 245], who point out that

feature selection on all instances in the dataset gives the model an unfair advantage in that

the most important features will have been selected having seen both training and test data.

Performing feature selection — on the training set only — ultimately leads to more robust

models that will generalise better to unseen data. Deep Neural Network (DNN) models differ

at this point as they essentially learn features directly from the data itself without outside

intervention.
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3.3.6 Model Evaluation

The final step in the modelling process is measuring the performance of the models trained.

There are numerous metrics used for this purpose, the applicability of which will vary for

different use cases and scenarios. In other words, there is no acknowledged consensus on

which metric is useful for every particular application [215]. The following section will offer

a brief summary of those utilised in the course of this work. An extended version of this

section is offered in Appendix B.

In the context of supervised ML categorisation task, the predictions made by a model

can be compared to the actual categories to generate a number of metrics. Those used in this

work include:

• Accuracy — In total, what percentage of predictions made by the model are correct?

• Average Class Accuracy (ACA) — Sometimes referred to as ‘balanced’ accuracy,

where individual class accuracies are averaged.

• Precision — What percentage of instances predicted as YES are correct?

• Recall — What percentage of YES instances are correctly predicted as YES?

Choice of metric can be highly dependent on the intended use for the model. For

example, should identification of a maximal number of instances in a particular category be

deemed important, then thought should be given to utilising the recall measure. If correct

identification of all instances in a category is deemed important, this would suggest the

precision metric should be used.

There are numerous other metrics available to the machine learning practitioner. One

other was utilised extensively over the course of this work. A variant of the Area Under

the Curve (AUC) metric was used during the experiment outlined in Chapter 5. An AUC

value calculates the area underneath a curve which outlines model performance at varying
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categorisation thresholds. In this way, different models can be compared using a single digit

for each.

This section has offered an overview of ML methodology. The next section will review

commonly used feature representations for audio ML applications, as this will inform our

subsequent review of algorithms and techniques for the domain.

3.4 Audio Features for Machine Learning

Feature extraction and selection is a significant element of any audio based ML process given

that there exist many possible ways to represent sound events in data form. Numerous spectral

and temporal features of sound files have been used in a series of audio experiments with

varying degrees of utility. These include Low Level Descriptors (LLDs) , such as the time

and frequency domain features summarised in Sections 3.4.1 and 3.4.2, and ‘global’ features

such as spectrograms, outlined in Sections 3.4.3 and 3.4.4, so called as they summarise an

entire audio event from beginning to end in one representation.

These sections offer a brief summary of features used in audio applications, together

with a commentary on the extraction methods employed. Much of this overview is based

on the in-depth reviews offered by Mitrovic et al. [216] and Alías et al. [186], who detail a

taxonomy of audio features which delineates them by temporal, frequency, cepstral and other

features.

3.4.1 Time Domain Features

Features in the time domain represent how a signal changes over time and include measures

of amplitude change, Zero Crossing Rate (ZCR) and power change of a signal. Such measures

can include the Root Mean Square (RMS) of a signal, which mainly describes the power

envelope of an audio signal. RMS is usually thought of as an approximation of the volume
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of a signal [216], and is derived by calculating the mean root of individual values from each

analysis frame. Comparable to these are the maximum absolute values of each frame, known

as amplitude envelope values. ZCR measurements, in their simplest form simply a count

of the number of times an audio signal crosses zero level, can be used as an indicator of

the perceptual attribute of brightness of an audio signal. Autocorrelation, a measure of the

self-similarity of a time series derived by multiplying the signal with a delayed version of

itself, can be used to extract periodicity information about the signal [217].

Also used are statistical and cumulative distribution, mean and statistical noise levels: L1

L10 L50 L99. These are indicators of dynamic properties as outlined in [218]. A statistical

noise level of L99 for example, indicates the noise level that has been exceeded in a particular

piece of audio data for 99% of the audio excerpt length. Other measures such as Sharpness,

Roughness, Fluctuation strength, Tonality and measures of temporal variability as outlined

in [219] are also candidates for use.

ZCR features have been used in soundscape context classification [197], sound recogni-

tion feature comparison [220], environmental sound classification [221] and animal sound

classification [188]. RMS measures, or measures derived using them, such as Crest Factor,

have been used in speech/music categorisation studies [222], environmental sound identi-

fication [90], urban soundscape differentiation [223] and speech segmentation [224] tasks.

Autocorrelation features have been used in various sound categorisation [84], environmental

sound categorisation [62] and soundscape evaluation [225] tasks.

The variety of applications outlined suggests that time domain features have proven useful

in a number of different audio ML tasks. However, from this research, there is no single

gold standard feature set or extraction method suggested. To summarise, the level of usage

suggests the efficacy of this feature type, however there is no consensus as to the superiority

of ZCR over RMS measures or vice versa, for instance. The numerous frameworks available

make the task of extracting common features relatively straightforward, and a frequently used
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approach is to extract a broad battery of features as opposed to minimising those selected

via guesswork. Some frameworks, such as openSMILE [209], even provide pre-formulated

feature sets for common audio ML applications. It is therefore easy to include these features

and then implement a feature selection exercise, if required, to isolate the most informative

features for the task at hand.

3.4.2 Frequency Domain Features

Frequency domain features reveal information about the spectral content of a signal and can

be used to analyse the harmonic structure, bandwidth and tonality of a signal. They include

features such as brightness, pitch, harmonicity and short-time Fourier transforms of a signal.

These features can be approached in a number of different ways. Linear Predictive

Coding (LPC) is used to estimate parameters of a signal by predicting the value of a sample

based on the values of previous samples [216]. As it accommodates the source-filter model

of speech reproduction it has been used extensively in automatic speech recognition [172],

and has also been used in audio context recognition [197], animal sound categorisation [226]

and environmental sound classification [221].

The Short Time Fourier Transform (STFT) is extensively used in audio file analysis

for time-frequency decomposition for feature extraction purposes, being necessary for the

derivation of measures such as spectral centroid and sharpness, which relate to the brightness

and sharpness of sounds, and spectral flux, rolloff, entropy and crest, which relate to the

tonality of sounds. Such measures have been used in a variety of audio studies, such as sound

identification, by Yang and Kang [227] who use spectral flux and Ogg et al. [228] who use

spectral centroid and flatness as features, environmental sound classification by Bountourakis

et al. [221] via use of spectral centroid, spread, rolloff, skewness, sharpness and smoothness

features and by Eronen et al. [197] who use spectral flux, rolloff and centroid and in bird

species identification by Fagerlund [229] who also use spectral centroid detail.
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Other tonal measures include pitch, chroma and harmonicity features. Pitch information

has been used in musical genre classification [230] via the use of pitch histograms, sound

categorisation [231] and soundscape categorisation [225]. Chroma features present audio

information in the form of spectral energy divided by pitch bands, essentially a time-frequency

distribution, that are designed to represent the cyclic attribute of pitch perception [232]. They

have been used in audio thumbnailing [233], music information retrieval applications [234]

and can be used to model listener response times in melody and harmony tasks [235]. A

feature called chromatic entropy, a measure of the change in energy between frequency bands,

has also been used in speech/music discrimination tasks, such as [236].

Similar to the other LLD features outlined in Section 3.4.1, frequency domain features

have been utilised in a broad variety of audio ML tasks and are relatively easy to extract

using the various software frameworks available, outlined in Section 3.3.4. Once more,

the literature reveals no superior subset of frequency features which provide universally

high accuracy levels in a variety of tasks. Given the level of usage, it then seems wise

to include them in a feature extraction exercise in addition to time domain features. It is

interesting to note, however, the general predominance of global summary features, such

as spectrograms, in the more recent literature, as evinced on the various DCASE challenge

leaderboards [237, 238, 239], for instance.

3.4.3 Cepstral Domain Features

Cepstral domain features are based on the inverse Fourier transform of the logarithm of

the estimated spectrum of a signal and were initially extensively used in speech analysis

applications [240]. The cepstrum in general can be thought of as giving information about

the rate of change of a signal in different frequency bands. Pitch information is known to be

particularly strong in the cepstral domain for vocal signals because vocal formants and pitch
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excitations are additive in the logarithm of the power spectrum, which helps to delineate

them [241].

Cepstral features, primarily Mel Frequency Cepstral Coefficients (MFCC) are generally

thought to capture timbral information well and have been widely used in various audio

specific ML applications [216]. Specifically, they have been used in music information

retrieval [230], automatic speech recognition [172], acoustic scene [242] and animal sound

categorisation [184, 188, 243] in addition to general sound classification [197, 221, 244, 245]

tasks.

MFCCs were initially designed to model the human vocal tract and were implemented

for speech analysis and recognition applications [246]. If the vocal tract is thought of

as a source-filter production model, MFCCs are designed to mainly discard the source

element, with the result that they are somewhat pitch independent [247]. MFCCs as they

are generally implemented are also phase-blind, meaning they lack finely grained temporal

information [248, 75]. Yet, MFCCs have been extensively and successfully used in music

and environmental sound analysis tasks where pitch would be a critical factor. Furthermore,

they provide a global summary of an audio event in a single representation, which in theory

bundles a number of the LLDs outlined previously together. The widespread utilisation of

MFCCs across many audio applications speaks to their efficacy in multiple scenarios.

3.4.4 Visual and Other Features

Numerous other features have been extracted from audio files that are designed for a

specific purpose [186]. MFCCs are often treated as a visual input, given they are a global

representation of temporal changes in energy at different frequencies. There are numerous

variants on the standard MFCC feature, chroma features being one such example, which

organise the frequency representation in terms of musical semitone spacing. Another variant

is Log-Power Mel Spectrogram (LPMS) images, which scale the power representation in
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decibels, generally providing a more informative image feature. LPMS features are noted

as being very popular in state-of-the-art audio deep learning research [20] and have been

used in a number of audio ML tasks [249, 250]. Image-based features have also been

used in sound event recognition [251] and a robust sparse spike coding of a 40-dimension

Mel-filtered spectrogram is used in [252] for a sound event classification task. Gammatone

Cepstral Coefficients (GTCC) are computed using the same method as MFCCs but by using a

Gammatone instead of a Mel filter bank. They have been found to give a good approximation

of the human auditory systems’ impulse response, magnitude response and bandwidth [186],

and have been used in computational auditory scene analysis [253] and road traffic noise

mapping [254].

Electroencephalogram (EEG) features are generated from EEG signals of a subject

who is listening to an auditory stimulus, their favourite music in the case of [255], who

generate features from the EEG signals as well as RMS, ZCR and others, which they then

correlate with the EEG signals enabling the generation of EEG data directly from the audio

features. Purwins et al. [20] also note that raw audio waveforms are popular as input for

deep learning approaches. Other features used in ML audio tasks include those that capture

activity in the frequency modulation domain designed to represent the hearing percepts of

fluctuation strength and roughness, and have been used in music and sound categorisation

applications [256]. Phase space reconstruction features can approximate the non-linear

behaviour of a system, which other features represent poorly, and estimate its entropy. They

are usually used in combination with other features and have been successfully used in

music genre classification [257]. Perceptual Linear Prediction (PLP) attempts to represent

spectral contour more accurately by predicting future values based on prior occurrences

and including some human auditory system inspired elements such as the use of a Bark

frequency scale and asymmetrical critical-band masking curves [258]. They were specifically

designed for speech analysis purposes and have also been used in infant crying sound event
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recognition [259]. Relative Spectral-Perceptual Linear Prediction (RASTA-PLP) [173]

is a version of the PLP method which bandpass filters each frequency channel in order

to derive a more noise-robust feature [186]. It has been used in speech recognition [172]

and animal sound recognition [188], but may not be optimal for an environmental sound

classification task as the effect is to suppress components of spectral variations that are not

speech related [248, 84].

Finally, there are also a number of examples of end-to-end systems in the literature. In

these cases a neural network architecture front end is used to learn features of the audio input

which are then fed to a back end classifier. For example, Mao et al. [260] attempt automatic

feature learning on an emotion in speech task and achieve performance superior to that based

on LLD-type features alone. Abdoli et al. [261] use a similar approach on an environmental

sound classification problem and outperform approaches that utilise handcrafted features

or spectrograms. This suggests systems which learn a feature representation directly from

the audio signal hold much promise in audio ML research and deserve consideration for

applications where sufficient data is available to implement a deep learning approach.

3.4.5 Summary of Feature Types

This section has reviewed the rich variety of feature representations available for use in audio

ML research. It is difficult to isolate a single approach that outperforms all others consistently,

though image-based features are utilised extensively in more recent research. This is perhaps

due to the popularity of deep learning approaches, such as CNNs, which are designed to take

a visual input. End-to-end architectures have shown promising results, but these are also

built using deep learning methods which depend on having access to large amounts of data

which may not be available for every application. LLD inputs, while outperformed in some

cases, cannot therefore be entirely ruled out of consideration as they have been shown to

perform reliably in a variety of applications. This suggests that, for any exploratory work,
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a mix of both LLD and global feature representations should be first experimented with in

order to establish their efficacy for the ML task at hand.

Section 2.5 has noted the similarity between hierarchical and environmental sound

classification. Linkage has also been drawn in Section 2.6 between the theoretical AH model

proposed and the QoE model. Emotion detection [175] is also a related research area. While

similar, these categorisation tasks entail differing evaluation in terms of the level of focus on

the sound itself and the listener’s perception of the sound. Sound categorisation requires the

object to be identified and is inherently an objective task. Hierarchical categorisation, quality

assessment and emotion detection are more subjective and subject to differing opinions

and thus may merit selection of different features for a prediction task. Furthermore, AH is

predicted in this work using solely audio features, independently of sound labels or categories.

While the ML work described in this thesis focusses on predicting AH to a context free

binary level it should be emphasised that this is a simplification of the theoretical model

presented in Section 2.5 which allows for a wider understanding of hierarchy.

Section 3.3.4 has noted that feature choice should be driven by the intended application.

For example, Section 2.6 has noted that certain sounds, such as applause, are more difficult

to encode transparently. This indicates that quality could be a consideration which should

influence feature choice if a multi-faceted approach is identified as being necessary. This

acknowledges that object identification, hierarchical classification and content clarity are

distinct considerations where LLD or LPMS may prove more or less appropriate.

The discussion presented in Section 3.4 demonstrates the rich variety of visual feature

representations used in audio ML tasks. It is difficult to assess which of those outlined is

optimal for a specific application. It would seem logical, therefore, to begin by investigating

those in most common usage, such as MFCCs and LPMS representations, and to focus on

variants of these subsequently should this be deemed necessary.
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Algorithm choice is one factor that bears relevance to representation selection. For

example, use of a CNN algorithm suggests use of a visual feature representation as input,

given the algorithm’s popularity in the visual ML domain. The next section will review audio

ML literature for algorithms in common usage and assess which is most appropriate for an

investigation of AH.

3.5 Algorithms for Audio Prediction

There are numerous examples in the literature of various ML algorithms applied to different

problems in the audio domain, such as soundscape classification [47, 197, 262, 263], animal

classification [184, 264, 265, 266] and environmental sound classification [267]. Those

mentioned following are not intended to be exhaustive, merely to give context to those

chosen for predicting AH in the following.

The following sections consider algorithms within the context of supervised learning,

as that is the focus of this research. Information-based (Section 3.5.1), similarity-based

(Section 3.5.2), probability-based (Section 3.5.3) and error-based (Section 3.5.4) algorithms

will be reviewed, in addition to DL algorithms, which will be outlined in Section 3.5.5.

3.5.1 Information-based Learning

Information-based machine learning is based around calculating the reduction in entropy

provided by splitting dataset instances using the most informative features. The most

informative feature is used to split the rest of the data, and this process is repeated until all

instances in the dataset are categorised according to the target feature. Both categorical and

continuous data can be treated in this manner by discretising continuous data [180].

RF algorithms are an example of decision tree-based ML, the most common information-

based ML approach. RF models incorporate elements of bootstrap aggregating and subspace
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sampling. Bootstrap Aggregating (or ‘bagging’) is a process whereby a collection (known

as an ensemble) of models is used, each trained on a random sample of the dataset using

sampling with replacement. This results in an ensemble of models based on different

instances of the dataset, each of which will vary. Subspace sampling is the process by which

a subset of dataset features are used to build different models, thus introducing more diversity

into the component models.

Yang and Su [262] have utilised RF in a 21-class soundscape classification problem and

achieved 79.7% average class accuracy across the 10 classes reported using a composite

feature representation on a dataset of 5,250 instances. Unfortunately, this study does not

report accuracy for all classes. However, the results reported suggest RF are capable of high

accuracy levels on some sound categories. Noda et al. [184] compared the performance

of RF, kNN and SVM algorithms on a fish species classification task. They noted RF are

slightly outperformed by both kNN and SVM models, but are still capable of 93.56% median

accuracy on 102 different species. RF was also noted as being more time-consuming to

train than the other two algorithms in this study. Malfante et al. [264] also approached a

fish species problem using RF for both feature selection and classification, and compared

the results with those achieved by an SVM model. They found little difference in terms of

algorithm performance in this case. While RF are noted as outperformed by other algorithms

on occasions, the degree to which this is the case does not suggest they should be neglected

as an option for audio classification tasks.

Decision tree models are generally easily interpretable, which is very important in

contexts where an understanding of how the model arrives at its decision is important. They

can become unwieldy, and therefore difficult to interpret, when dealing with large amounts

of continuous data, however. Decision trees also struggle with datasets containing many

features, and most especially when there are few samples in these datasets. They are also

known as eager learners and are not most suited to modelling change over time [180].
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3.5.2 Similarity-based Learning

Similarity-based learning techniques consider the proximity of instances to each other as a

means of clustering and thereby identifying similar instances for grouping or classification

purposes. The distance between feature vectors (the feature representation for each instance)

can be computed using a number of different measures based on instance location in a feature

space, an n-dimensional space where all dataset instances can be plotted, where n is equal

to the number of features in the dataset. Euclidean distance, is one such measure, which

computes the length of a straight line between two points. Manhattan distance is another

distance metric, so called because it involves calculating the distance between two points in a

block layout system, as would be the case in Manhattan, New York [180]. Implementing a

nearest neighbour algorithm thus involves plotting all training instances in the defined feature

space and identifying the nearest neighbour(s) to each instance. This is known as the kNN

algorithm, where k can be any value ≥ 1. In a case where k = 5 for example, this would mean

the majority target level of the 5 nearest neighbours to the query instance would be used.

kNN models have been used in environmental sound classification by Wang et al. [267],

who use a hybrid kNN/SVM method to achieve an average accuracy rate of 85.1% across

12 sound classes in a dataset with 527 sounds. Esfahanian et al. [265] use kNNs when

classifying dolphin whistles, and find their performance slightly inferior (94%) to that of a

SVM (98%). Han et al. [266] find kNNs effective in acoustic classification of Australian

Anurans, achieving an average accuracy of 98% across 9 frog species on a small database of

54 total instances. Eronen et al. [197] refer to kNNs as the most straightforward classification

method, and this view is perhaps reflected in audio domain studies which use kNNs as a

comparator or baseline to other options which demonstrate superior performance [184, 197].

When used in a prediction task, similarity-based models attempt to rank or categorise

dataset instances by comparing them to adjacent instances. This makes them easy to interpret,

though consideration must be given to the choice of distance metric used, as these are
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appropriate to different kinds of data. As these models make use of all the features in a

dataset they are sensitive to missing values (not usually a grave concern when deriving

objective measurements of audio files) and also outlying values as these can unduly skew

results. Consideration should be given to normalising or standardising the data if appropriate.

Nearest neighbour algorithms are also known as lazy learners, because they do not

abstract from the data until asked to make a prediction. Consequently, when the number of

instances in a dataset becomes large, the nearest neighbour algorithm slows down due to the

increase in instances it must check. In other words, where speed of prediction is a critical

factor, nearest neighbour may not be the optimal choice. However, they can handle different

types of training features, and they are robust to concept drift, as is the case in spam email

prediction tasks for example. Each time a correct classification is made in such a task, the

instance can be added to the training set and thus constantly update the algorithm as input

evolves [180].

3.5.3 Probability-based Learning

Probability-based learning involves using estimates of likelihoods to determine the most

likely predictions for a given dataset. This involves the constant revision of predictions based

on the accumulation of more data and other evidence. Each feature in a dataset is regarded as

a random variable, and the set of all possible combinations of all possible values for each

feature [180] is the sample space for the domain.

This approach is heavily based on Bayes’ Theorem, which states that the probability

an event has occurred is equal to the probability of the evidence being caused by the event

multiplied by the probability of the event itself. Essentially, if beliefs about the causes of an

event are modified proportionally with how measurements relate to the potential causes of

that event, beliefs regarding the events that occurred which resulted in our measurements

can be altered and iteratively improved. This idea has seen application in many scenarios,
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primarily through the Naive Bayes model, so-called as there is an assumption of conditional

independence between dataset features. Cai et al. [263] use a Bayesian network-based ap-

proach to integrate prior knowledge and statistical learning to investigate high-level semantics

of an auditory context. When predicting on a 10 class dataset of 12 hours of audio data taken

from film and television effects tracks, they achieve recall of 87.6% and precision of 78.1%.

Bayesian prediction is problematic in that the number of probabilities grows exponentially

with the number of features. This is generally tackled by reducing the interactions between

features and the number of model parameters, known as factorisation [180, pg. 313], meaning

that these models can be trained using a small dataset. Although this factorisation is based

upon the (naive, and often incorrect) assumption that each feature is conditionally independent

of all the other features, Naive Bayes models often perform well as long as the error in the

calculated probabilities does not affect the rankings between target levels. As a consequence,

Naive Bayes models are not generally suitable for predicting continuous targets. They are

often easy to interpret because of the factorised feature space, as it is possible to analyse the

probabilities for each feature to see how each affects the model categorisation, which can be

a useful tool to use when building more complex models.

Hidden Markov Models (HMM) are used to represent probability distributions over

sequential data [268]. As referenced in Section 3.3.4 they can be used to address the temporal

variation in audio data by providing a probability for events dependant only on the state

attained in the previous event. HMMs have been used extensively in speech recognition

systems for this purpose with Gaussian Mixture Models (GMM), another probabilistic algo-

rithm, used to assess the match between states of each HMM and the acoustic representation

used as input [269]. While successful, recent research suggests that HMM/GMM systems

can be outperformed by those using deep learning architectures in both speech and acoustic

event recognition domains [269, 270, 271, 272]. It should be noted however that this is

not universal, with Schroder et al. [273] reporting DNN systems as less accurate than a
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HMM/GMM model in a sound event detection task based in a multi-source environment

(analogous to everyday life).

3.5.4 Error-based Learning

Error-based learning is an approach that attempts to minimise the error in the predictions

made by a model by varying model parameters until the total error, or cost, is minimised.

This envisages the error from a set of parameters as a surface via which the point of minimum

error can be calculated. This approach can be applied to linear, logistic and multinomial

models as required [180].

A simple linear regression model can be built by plotting two continuous variables which

convolve to a straight line on the graph. This line can be expressed in the form:

y = mx+b (3.1)

Here, m is the slope of the line, and b is the intercept, where the line cuts the y-axis when

x is equal to zero. Logistic models, which use the logistic function in binary classification,

and multinomial models, used to classify instances on multiple levels, can be easily expressed

using more complex developments of this equation using squared, cubed or higher order

expressions to define models that involve one or more curves. The values of y and x in

Equation 3.1 then represent model parameters and when one is known the other can be

predicted. The distance between each data point and the model line represents the model

error for that instance. By summing the squares of all the instances an overall measure of the

accuracy of the model can be identified, and by minimising this number the most accurate

model can be built. Iterating this process, which is known as gradient descent, involves

sequentially modifying the model parameters to trial a series of different models. Over a

sequence of iterations, this process finds the global minimum error point at which the model

is most accurate.
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Multiple linear regression is noted as extensively used to model subjective audio prefer-

ences to objective measures in a review of the area by Pietila and Lim [274], but the authors

note the approach is limited in terms of the number of sounds which can be evaluated and the

linearity of the dataset. Neural network-based approaches are noted as having the potential

to address these issues, but the lack of interpretability and scarcity of sufficient data are

highlighted as drawbacks for these model types. Härmä et al. [275] compared performance

of linear regression and neural network models on a spatial sound experience task and found

the linear regression model slightly superior, which they note as interesting. In addition,

logistic regression has been used to model subjective perception of urban soundscapes from

objective measurements [276] and perceived changes in perceptual properties of object-based

audio treatments [9], but these studies do not compare performance with other algorithms.

Linear regression models are accepted as easily interpretable and engender a deeper

understanding of the interactions between the features used in the model, although a high

degree of domain knowledge is required in order to develop an accurate model. Furthermore,

as the name suggests, a linear relationship is assumed between the features studied, and this

may not be the case [274]. Conversely, logistic and multinomial models can model more

complex relationships, but may not be as easy to interpret. Additionally, this capability comes

with increasing complexity in terms of model implementation. Regression modelling is well

established through extensive use in multiple areas of research, and thus its application to

different areas of investigation is uncontroversial.

SVMs are another type of ML modelling that is based on error-based learning. They

differ from the approaches described above in that they find a decision boundary that defines

the greatest separation between data instances, and so result in more robust models. They

have been used extensively in audio machine learning experiments, including audio scene

classification by Jiang et al. [224], who find them capable of consistently classifying to

greater than 90% accuracy on instances featuring pure speech, non-pure speech, music and
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environmental sound content. It should be noted that the categories used in this instance mean

the classification task is straightforward in comparison to more recent work which focuses

on more difficult tasks. For example, McLoughlin et al. [277] compare SVM and DNN

models in a 50 class sound scene categorisation task, examining the effect of varying levels

of background noise on classification accuracy. Here, the SVM is observed to outperform the

DNN model in clean audio conditions, but the DNN proves more robust to the challenging

condition of classifying correctly in increasing levels of background noise. As noted in

Section 3.5.2, Esfahanian et al. [265] use SVMs on an animal call species classification task,

in this instance on dolphin whistles, and find their performance slightly superior (98%) to

that of a kNN (94%).

Although the popularity and potential of deep learning approaches is notable in the litera-

ture surveyed, the lack of large, suitably labelled datasets is an acknowledged problem [17].

SVMs are prominent in the foregoing review for competitive performance levels on datasets

that are small by the standards of deep learning. For example, Wang et al. [278] use an SVM

in a 15 class environmental sound classification task and achieve 91.7% accuracy on a dataset

of 677 instances. Furthermore, SVMs are robust to overfitting and perform well for problems

that use a multi-dimensional feature space [180].

3.5.5 Deep Learning Algorithms

DL is a subset of machine learning based on the family of NN algorithms. NNs seek

to learn hierarchical relationships directly from datasets and are inspired by observations

of the way the human cerebral cortex deals with natural signals. They have gained a

reputation as being good predictors for a wide variety of tasks and are considered state-

of-the-art [17, 26, 27] in audio domains such as speech recognition [269, 270] and in

computer vision [279, 280]. They have been shown to perform comparably to humans in

sound categorisation tasks [197], particularly when considering higher-level contexts such
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as ‘Outdoor’, ‘Vehicles’ or ‘Public/Social’ opposed to lower-level sub-divided contexts of

‘Outdoor’ such as: ‘street’, ‘road’, ‘nature’ or ‘construction site’. Furthermore, applications

such as Google’s translator, street view, image search and Android’s voice recognition [281],

Apple’s automated assistant Siri [282] and IBM’s brain-like computer [283] are based on DL

algorithms.

Neural Networks

NNs are built on layers of neurons, mathematical representations of biological structures

based on the concept of a perceptron introduced by Rosenblatt [284]. The inputs for the

first layer of neurons is the initial dataset under analysis. At its simplest (see Figure 3.5) a

neuron takes a number of inputs and introduces weights for each input which signify the

importance of that input to the output of the neuron. Each input is multiplied by its weight,

these values are summed, and a bias term is added. The result is applied to a non-linear

function called an activation function, and this determines the output of the neuron. Different

activation functions can be applied to control the output of the neuron. NN weights are

usually randomly initialised to values close to zero [214] and the process of training then

involves updating the weights so that the error of the network is minimised [285]. The bias

value (sometimes referred to as an offset) is used to adjust the position of the activation

function to better fit the product of inputs and weights.

In a NN, neurons are arranged in layers, as illustrated in Figure 3.6. The first layer on the

left in this illustration is referred to as the input layer, and in this illustration consists of 6

neurons. On the right-hand side of this illustration is the output layer, which here consists of

a single neuron. In between can be a number of hidden layers, so called because they are

neither input not output layers [5]. NNs consisting of multiple hidden layers were possible

but relatively unpopular until recent developments in computer processing power. Greater
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Fig. 3.5 A visual representation of a neuron showing input (a1−N), weight (w1−N), bias, and activation
function (g) elements (reproduced from [4]). Here, z is the result of adding the bias term to the sum of
the products of inputs, a, and weights, w.

computational capacity has led to NNs with significantly more hidden layers than before,

leading to the term ‘deep’ learning.

A process akin to gradient descent, described in Section 3.5.4, known as backpropagation

[196], then calculates the gradient of the error function with respect to the NNs weights and

back-propagates this through the network of neuron layers. The gradients at each node are

then used to update the weights before the next instance is presented. This process gradually

refines to either a single output node, if the prediction takes the form of a number, or small

number of output nodes, as in the case of a multi-class categorisation problem. A learning

rate parameter is used to control the size of the update applied to model weights and can be

adjusted if the network is found to learn inefficiently. Optimisers, such as AdaGrad (Adaptive

Gradient [286]) and Adam (Adaptive Moment Estimation [287]) employ methods which

automate learning rate adjustment and help to avoid error reduction getting stuck in local

minima, thereby decreasing the time required to train models.
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Output LayerHidden LayersInput Layer

Fig. 3.6 A visual representation of a NN consisting of layers of neurons (adapted from [5]).

Different kinds of activation functions can be used when determining neuron output,

though some of these (for example, tanh, logistic or soft-sign) are said to saturate when

approaching maximum positive or negative values. In the case of a saturated node the

gradient will be zero which means the weights will not update, and the node stops learning.

This is referred to as the vanishing gradient problem [288], where updates to neural net

weights decay exponentially, meaning over time the network ceases to learn [289]. Other

activation functions, such as the Rectified Linear Unit (ReLU) or soft-plus, saturate only on

negative inputs, or in the case of ‘leaky’ ReLU, not at all, which generally make them a better

choice, though the choice of activation function is left to the discretion of the researcher.

For audio applications the scale of the data used is important, and it has been noted

that coordinate-wise standardisation post a log-amplitude scaling of spectral magnitudes

generally works well for a number of different audio applications [196]. An example of this

is the LPMS representation outlined in Section 3.4.4. Neurons as described do not take full

advantage of the temporal and spectral structure of audio data. This means that outputs can
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vary widely, even if they are separated by only a few analysis frames. Variations of NNs exist

which are designed to circumvent this issue will be outlined in the following sections.

The NN just described is known as a feedforward network — no feedback loops exist in

the network, and information is always fed forward. The next sections will outline networks

which use different architectures, such as CNNs, and sometimes contain feedback loops, as

is the case with Recurrent Neural Networks (RNN) .

Convolutional Neural Networks

CNNs vary from standard neural networks in that they incorporate a form of subsampling

with repetition termed local receptive fields, using shared weights for each hidden layer

of the network and a process of pooling to simplify layer results. Local receptive fields

essentially take a subset of the initial dataset and feed them into the next layer of the network,

learning an associated weight and bias. This process is repeated with a degree of overlap

such that the hidden layer consists of a different number of units, subject to the degree of

overlap and number of units in the subsample. As the same weight and bias is applied to

subsamples, each can be thought of as learning a single feature of the dataset from a slightly

different set of data. Each set of units with the same weights and biases is referred to as a

feature map, illustrating as it does a single feature. In order to learn another feature therefore,

different weights and biases are applied similarly, building up a layer of feature maps which

is referred to as a convolutional layer. Subsequently, the network will commonly consist

of pooling layers after each convolutional layer. Each pooling layer simplifies the output

from a convolutional layer, resulting in a representation of each feature map included in the

convolutional layer that is smaller and thus easier to perform calculations on [290].

CNNs generally perform well in situations where the desired output is a series of predic-

tions based on local interactions [196] and are able to extract features that are not influenced

by local spectral and temporal variations [27]. They have been applied to a number of dif-
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Fig. 3.7 An example of CNN architecture depicting the VGG16 model proposed by [6]. The image
was sourced from https://neurohive.io/en/popular-networks/vgg16/, Accessed: 5th December, 2019.

ferent audio classification problems including environmental sound [104], soundtrack [291]

and fish species [292] classification. Even a cursory review of CNN usage in the domain

reveals a plethora of architectures, features and approaches. For example, Sharan and Moir

[293] investigate feature representation types, comparing standard spectrogram, a frequency

domain moving average representation they call a smoothed spectrogram, a mel-scale spec-

trogram and a cochleagram image which is based on the characteristics of the human cochlea.

They find that the cochlear representation gives the best performance in an acoustic event

recognition task. In an environmental sound classification experiment, Dai et al. [294] use

raw waveforms as input to a very deep CNN (up to 32 weight layers) and report results that

are competitive with CNNs using log-mel spectrogram inputs [106]. Kumar et al. [295]

propose a transfer learning approach, where weakly labelled audio data is used to learn

a representation which can then be tuned to state-of-the-art results on both ESC-50 and

Audioset datasets. Hershey et al. [291] experiment with a number of CNN architectures

drawn from the computer vision domain and report excellent sound event recognition results

using AlexNet [296], VGG [6], Inception [297] and ResNet [298] configurations.
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Given the rich variety of methods utilised, it is difficult to identify a reliable best practice

implementation, however, the popularity of CNN approaches in successful solutions entered

to significant domain competitions such as the DCASE environmental sound classification

challenges [15, 21, 299, 300] speaks to their effectiveness in audio ML applications.

Recurrent Neural Networks

CNNs are feedforward networks where the route from input to output is fixed and unchanging.

RNNs incorporate dynamic change over time to the network architecture and are noted as

being strong in modelling long term temporal context in audio signals [27]. They have

neurons which fire for a predefined, limited duration of time only. This activity can cause

other neurons to fire, also for a limited time, which gives rise to the possibility not only of

units from early layers activating those in later layers, but also vice versa. This behaviour

can cascade through a network, resulting in multiple instances of such feedback loops

which refine the models results. RNNs can directly model sequential information available

from audio stimuli, and because of their feedback and feedforward nature can be said to

‘remember’ past states. This property can bypass the need for tailored postprocessing in some

instances [289].

RNNs have been successfully applied to a number of problems in the auditory realm.

Parascandolo et al. [289] have used them in a polyphonic sound event detection task using

a Bi-directional Long Short Term Memory architecture , which was originally proposed to

address the problem of vanishing gradient [288]. Long Short Term Memory (LSTM) architec-

tures address this by implementing feedback structures which make it possible to propagate

information from previous layers through the network. BiLSTM structures facilitate prop-

agation of information from both previous and subsequent layers [301]. Such structures

implemented as part of an RNN were found to surpass previous state-of-the-art performance

in a sound event detection task [289]. Li et al. [19] also addressed a sound detection problem
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using an RNN and compared performance with other DL algorithms (DNN and CNN) in

addition to a GMM baseline. Using a number of different feature representations including

MFCC and LPMS features, the authors found in this instance that performance varied for

each algorithm and feature representation pairing, with both DNN (84.2%) and CNN (82.2%)

slightly outperforming the RNN (80.2%) using an ACA measure. The best performing

model was an ensemble which fused input from all three neural nets and achieved a score

of 88.1%, indicating that diversity in algorithms and feature representations can augment

overall performance.

These examples demonstrate successful applications of RNN to audio classification

problems. It is interesting to note that in public ML competitions similar to that of predicting

AH, such as the various DCASE challenges [237, 238, 239] it could be said that more of

the superior performing solutions feature CNN, rather than RNN, architectures. This is not

to suggest that CNNs are a superior solution to every audio ML application. However, in

light of this, it is reasonable to suggest CNNs as the first choice for a new audio prediction

problem.

Summary of Deep Learning

Deep ML algorithms such as those outlined above have in recent years become the most pop-

ular classification method for audio tasks such as environmental sound categorisation [299]

as they have been observed to outperform other learning architectures consistently when

trained on unstructured data. They are also capable of solving complex problems where

other algorithms as yet cannot, such as recognising speech and objects [285]. Set against

their considerable advantages are a number of disadvantages, however. They are more

computationally expensive than other algorithms [302], arguably provide less insight into the

data under analysis [192] and require far greater volumes of data in order to reach superior

accuracy levels [299]. This suggests that they are a good choice for audio ML tasks in
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Fig. 3.8 An outline of the Active Learning process. The purpose of the selection method is to select
unlabelled instances that will be most informative of the dataset. Once labelled by a human annotator,
a model can then be trained on the instances in the labelled pool to predict labels for remaining
unlabelled instances. Selection methods are outlined in Section 3.6.1.

situations where there is an abundance of processing power and appropriately labelled data,

where they can be expected to provide higher accuracy levels than other algorithm options.

3.6 Active Learning

This work proposes addressing the labelling problem outlined in Section 3.2 using a com-

bination of crowdsourced labels, AL and data augmentation. Methods for crowdsourcing

labels have been outlined in Section 2.5.3. This section will outline AL as a ML method

which can be used to label large numbers of instances with minimal manual effort. Data

augmentation for the auditory domain will be examined in Section 3.7.

AL is a supervised ML technique, originally designed to build classifiers with minimal

manual labelling effort. It can be used to label large datasets [303]. As outlined in Figure 3.8,

an unlabelled pool of instances can be assessed for informativeness using a selection method,

reviewed in Section 3.6.1. The instances deemed most informative can then be removed

from the unlabelled pool and presented to a human oracle for labelling. The AL process
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is applied iteratively, and more instances are presented for labelling, reducing the size of

the unlabelled pool, until either the performance of a model trained on the labelled pool

reaches a predetermined level of performance, a label ‘budget’ is reached or there are no

more instances to label. The objective is to use minimal manual effort to label the entire

dataset to the maximum level of accuracy possible.

3.6.1 Selection Methods

There are a number of methods for selecting the most informative instances from an

unlabelled pool. The following is a non-exhaustive summary.

Uncertainty Sampling Active Learning

The most common selection approach [303] is Uncertainty Sampling Active Learning

(USAL) which uses uncertainty in model prediction as a metric to select instances for

labelling. The hypothesis behind USAL holds that the instances about which the classifier is

most confident will provide the least useful information and that the instances most difficult to

categorize will be more informative, allowing greater accuracy from fewer manually applied

labels. It therefore selects these instances for labelling first.

Uncertainty can be identified in different ways. Settles [303] identifies three main

methods. The least confident method ranks classification confidence based on the best

prediction for a single instance. The predictions are ranked and the lowest ranking instance,

that which the model is most uncertain, is presented for labelling. The margin method ranks

instances by their proximity to a classifier decision boundary, presenting those closest to

the boundary for labelling first, as they are the instances most difficult to categorise. These

methods are limited in the case of a multi-class categorisation problem as they use only

information on the most confident, or two most confident predictions to rank instances. An

entropy measure can also be used to assess the average information content of an instance.
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Settles [303, Pg. 16] notes that the entropy approach is most appropriate where the objective

is to reduce log-loss and the margin and least confident methods are more appropriate if the

desire is to reduce classification error, with the margin method being slightly more powerful

as it uses more information to arrive at a decision.

Query-by-Committee

Query-by-Committee (QBC) uses an ensemble of models to select instances on which the

models in the committee disagree the most, viewing these as most informative for labelling

purposes. It relies on the theory that each classifier used will have a slightly different

interpretation of the data, resulting in differences to class predictions.

Some general points about model ensembles are relevant to QBC. Committee mem-

bers can be differentiated either by varying model parameters [304] or by using a ‘bag-

of-classifiers’ [305]. Seung et al. [306] suggest that using a small number of classifiers is

adequate and Melville and Mooney [307] note that using diverse classifiers is advisable.

Expected Error Reduction

Expected Error Reduction (EER) is an approach that uses the generalisation error of a model

as a selection measure. Every unlabelled instance is ranked using an estimate of the degree

to which the model’s error will be reduced should it be labelled. Those which reduce the

model’s error the most are selected for labelling. This method has been successfully used for

text classification [308], but is computationally expensive [303, 309].

Exploration Guided Active Learning

Exploration Guided Active Learning (EGAL) identifies useful instances for classification

purposes in relation to their location in the feature space relative to neighbouring instances

and proximity to already labelled instances. It has been used in text classification applica-
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tions [310] but not to our knowledge on an audio domain problem. It differs from the other

selection methods outlined above in that it is not dependant upon a model to select instances.

EGAL seeks to identify instances in clusters that are furthest from labelled instances on

the assumption that dense clusters that are diverse from labelled instances will be most

informative for classification purposes. This is implemented by first calculating a density

value per instance, defined as the sum of similarities between the instance and all other

instances within a certain radius. Secondly, a diversity value is calculated by measuring

instance distance to the nearest labelled instance of the dataset.

Variants of EGAL can be implemented by varying the balance between density and

diversity measures. A density only approach selects instances from dense areas of the feature

space only. Using the diversity metric in isolation will select instances that are most diverse

from already labelled instances. These measures can be combined to select instances from

the most dense areas of the feature space that are most diverse from already labelled instances.

EGAL is arguably a computationally inexpensive method as once a similarity measure is

calculated for all instances in the unlabelled pool, only the diversity calculation is required

for each iteration of the algorithm. The other methods surveyed require a model to be trained

at each iteration of the algorithm, which can considerably increase the time required to label

instances.

3.6.2 Active Learning in the Auditory Domain

There are a number of example applications of AL in the audio domain. Mandel et al. [311]

use AL in a popular music mood, style and artist classification task. They use MFCC features

and an angle diversity selection method, which balances decision boundary proximity with

coverage of the feature space, based on the findings of Chang et al. [312], who recommend it

in an image retrieval task. Mandel et al. [311] find that AL proceeds quicker using smaller

batch sizes (the number of instances selected for labelling at each iteration) as this gives the
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algorithm more opportunities to select helpful instances. They also note that use of a small

batch size can initially hurt classification performance, and postulate that beginning training

using a larger number of instances may be a way to counteract this.

Gulluni et al. [313] utilise AL in an electro-acoustic music sound object classification task

and compare three selection strategies based on the prediction confidence of an SVM model.

They find that a selection strategy based on the instances the model is most uncertain in a

binary classification case works best for this application, outperforming two other strategies:

selecting instances the model is most confident classifying as class A, and those the model is

most certain are class B. In an emotion in speech study, Zhang and Schuller [314] investigate

a sparse-instance-based AL method and an uncertainty sampling technique, once more using

an SVM. The sparse instance method involves randomly selecting instances that the SVM

predicts are members of a sparse class in an imbalanced binary dataset. When compared

to a passive selection approach, where instances are selected completely at random, they

find that the sparse instance approach achieves 5% greater absolute Unweighted Accuracy

(UA) and reduces the amount of data required by 64.2% versus passive selection. In this

case, uncertainty sampling achieves 61.5% UA versus 65.5% from the sparse sampling, on

the same number of instances. Using a balanced dataset, the authors find that an uncertainty

selection approach outperforms passive selection by 1.3% absolute UA when trained using

the same number of instances.

Han et al. [309] scrutinised both supervised and semi-supervised approaches to AL in

an environmental sound classification task. They used distance from the decision boundary

of an SVM to derive pseudo-probabilistic values which they used as an indicator of model

confidence, scores close to the decision boundary indicating which instances the model was

least confident about. In the supervised approach, instances the model was least confident

about were manually labelled, and this process was repeated until there were no more

unlabelled instances or the model stopped improving. In the semi-supervised approach,
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an additional step was added after the least confident instances were identified. Once the

newly labelled instances were added to the labelled pool, the model was re-trained and the

instances about which the model was most confident were automatically labelled. Once more,

this process continued until there were no more unlabelled instances or the model stopped

improving. It is interesting to note that the semi-supervised approach was deemed feasible in

this instance only after observing that a high proportion of the dataset was classified with

high confidence, which may not be the case with every dataset. The authors find that in this

case the semi-supervised approach outperformed both supervised AL and passive selection,

making it possible to reduce by 52.2% the number of manual labels required to achieve the

best performance.

3.6.3 Active Learning Summary

USAL is popular in AL applications both generally [303] and in audio scenarios as demon-

strated above. Aggarwal et al. [315] note that QBC, used in sound event classification

contexts [316], is similar to USAL in that the selection measure is based on the uncertainty

of a model or committee of models. EER is highlighted as being computationally expensive

in the foregoing, so is not investigated in this work. EGAL is a selection method that takes

account of the position of all dataset instances relative to each other, which suggests it

provides a contrast in method to USAL. This work examines the EGAL and USAL selection

methods and compares them with passive (or random) selection to assess performance. To

our knowledge, this is the first application of AL to a hierarchical audio task and the first

application of the EGAL selection method in the audio domain.
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3.7 Data Augmentation

Data augmentation involves applying a series of deformations to labelled training data to

produce new training instances. Recent trends in ML have seen the growing popularity of

deep learning methods, which tend to outperform other models when supplied with large

volumes of data [19, 20, 21]. However, a general difficulty is noted in the auditory domain

in terms of access to large datasets of suitably labelled data [17]. Data augmentation is one

method of addressing this problem, as it provides an opportunity to scale labelled datasets to

much larger sizes, making it possible to improve the accuracy of models [317]. Extensively

applied in the visual domain [318], distortions such as image rotation, mirroring and scaling

result in recognisable images of the original source, essentially providing a cheap source

of labelled data. Equivalents of these manipulations exist for the auditory domain, with the

caveat that care must be taken with their application such that the original semantic meaning

of the sound so augmented is not changed in the process.

Auditory augmentations can be summarised as follows:

• Pitch Shifting: This augmentation either lowers or raises the pitch of the audio

while retaining file duration unchanged. Negative and positive pitch shifts of 1 to 3.5

semitones were implemented by Salamon and Bello [250] where they were found to

be responsible for greater improvements in accuracy than other augmentation types.

• Time Stretch: Manipulating the audio by altering the temporal duration (slowing it

down or speeding it up), while retaining file pitch.

• Dynamic Range Compression (DRC) : Commonly applied in audio production work-

flows, DRC involves compressing the range between the loudest and quietest parts of

an audio file. Many common parameterisations of this augmentation are available in

audio production software.
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• Background Noise: Entails mixing the audio with other sound, chosen to simulate

different kinds of background auditory scenes. Given this artificially introduces a

contextual element to stimuli it is not utilised for this research.

• Random Cropping: Involves randomly selecting short sections of audio content and

cropping them entirely. The length of time cut can be randomly varied.

• Gain: Increasing or decreasing the loudness of the audio.

• Equalisation: Altering the relative loudness of frequency components to alter the

timbre of the audio. High frequencies could be cut to make a sound seem more

‘muffled’, for example.

• Band Limiting: Somewhat similar to equalisation, band limiting implies selecting a

bandwidth of frequencies and blanking them entirely.

McFee et al. [317] compare the performance of a CNN trained with and without data

augmentations in a music classification task and find a small, but consistent improvement

from the no augmentation condition to a number of pitch, time stretch and background noise

augmentations. The pitch-shift augmentation improves average precision from 65.5% to

67.7%. Other augmentation schemas are less successful, but perform similarly to the pitch

augmentation, there being no significant difference observed between the augmentation

schemas in a Bonferroni-corrected Wilcoxon signed-rank test. All augmentation methods

consistently outperform the no-augmentation condition, however. Salamon and Bello [250]

investigate pitch, time stretch, DRC and background noise augmentations in an environmental

sound classification task, also using a CNN. They find that their proposed model performs

comparably to a clustering baseline method using a non-augmented dataset, but significantly

outperforms the baseline according to a paired two-sided t-test when both are trained using

augmentations. They also compare the per-class classification accuracy as a function of
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each augmentation and find that the pitch augmentations generally have the greatest positive

impact on classification performance.

The primary concern when selecting suitable data augmentations is to ensure the effect

on semantic meaning is minimised. This is subject to debate in some cases more than others,

though it could be considered that any alteration to an audio stimulus has the potential to

alter semantic content. It is therefore advisable to minimise the augmentations applied and

to be selective about which are used. Increasing volume level (gain) is likely to affect the

hierarchical perception of a sound, based on the literature reviewed in Chapter 2. Equalisation

and band limiting could be considered a similar case given they involve altering the volume

of a selection of frequencies, though selective, light usage may be suitable. Addition of

background noise can be considered unsuitable as it introduces a hierarchical element in an

instance where care has already been taken to minimise such instances. DRC also involves a

manipulation of perceived volume levels, but may be permissible if applied appropriately,

and has been used in this manner in similar studies [250]. Random cropping and time

stretch involves manipulating the temporal length of the stimulus, and may not be applicable

for applications where file length could be considered a variable when labelling stimuli

semantically. Additionally, random cropping in this instance could potentially crop important

parts of an audio file which dictate its hierarchical position. Finally, pitch shifting could be

considered less intrusive to semantic meaning than many of the options highlighted hitherto.

Furthermore, it has been successfully applied in a similar prediction task [250] and for

this reason it has been employed in this research in addition to DRC compression applied

restrictively.

In theory, the application of data augmentation techniques to the auditory domain is

logical, given its success in other domains. The area is ripe for investigation via perceptual

testing in an audio context, as the effect on semantic meaning of different manipulations

would be of interest from the point of view of confining future use to those manipulations
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judged to have no effect and also defining the degree to which manipulations can be applied

before semantic meaning is judged affected. At the time of writing, the authors are unaware

of any such study.

3.8 Conclusion

ML analysis is a complex process requiring numerous decisions governed by specific domain

details, available data and prediction task. Frequently an iterative approach is required to

deepen analysis using learnings from simpler initial approaches to inform the building

of more complex models. There is an extensive extant literature on the application of

ML analysis to many audio problems using a range of algorithms, feature extraction and

selection methods. The diversity of applications and approaches in the literature suggests that

successful modelling can be arrived at via numerous methods, and an experimental approach

is required in this regard. In other words, there is indeed no free lunch [191].

In Chapter 2 we have outlined AH from a perceptual point of view and as regards how it

pertains to modern media consumption paradigms. This has inspired the desire to predict

AH as perceived by consumers of such media, which motivates the need to establish a

baseline dataset of sounds tagged with appropriate labels. This in turn has motivated the

use of supervised ML, using these labels, to predict AH. Sections 3.2 and 3.3 have in turn

highlighted the requirement for large volumes of data for supervised ML tasks and together

with the summary of available audio datasets in Section 2.4 this mandates that considerable

work is required to compile a dataset suitable for analysis in this respect. To that end AL

approaches used to minimise the manual effort required to label large datasets have been

introduced in Section 3.6 and data augmentation techniques relevant to the auditory domain

have been outlined in Section 3.7.

A series of supervised ML algorithms have been surveyed in Section 3.5 with particular

attention to their application in audio prediction tasks. Recent work on the popular ML
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competition platform, Kaggle [319] and on audio specific ML challenges such as the DCASE

challenges [15] is notable for the success of ensemble solutions, where the predictions of

several algorithms are combined to make a more robust prediction. This is an interesting

development, but not one that suggests other ML methods should be abandoned entirely. It

should be noted that the importance of interpretability is a topic of hot debate in the wider

ML community [320] with some citing the continued preference in commercial contexts to

favour a more interpretable model over a more accurate model. Prominent practitioners, such

as Rahimi and Recht [321], have recently called for a more systematic analysis of the DL

modelling process in order to greater understand its workings.

It is logical in this context to proceed with an ML investigation of AH using algorithms

which can successfully be applied to small datasets in order to establish the feasibility of

predicting AH. In doing so, the value of implementing a large logistical and manual labelling

task can be evaluated before significant effort is expended doing so.

The material covered in this chapter addresses OBJ 2 by providing an overview of ML

and a description of how a supervised ML model that predicts AH can be built. To recap,

this objective was formulated as follows:

OBJ 2: Informed by perceptual audio research, to propose a machine learning ap-

proach for the task of predicting AH.

This in turn has inspired the formulation of another RQ to address the requirement for a

model to predict AH as follows:

RQ 3: Is it possible to accurately predict AH using supervised ML methods?

To answer this question, Chapter 4 will outline a semantic labelling exercise, referred

to as Experiment 1. An initial ML investigation of the findings, designated Experiment 2,

is also described in this chapter. Subsequent chapters will focus on further assessment of

algorithms and feature representations applied to AH. Methods of building larger datasets
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(Chapter 5) are then also investigated and further explored using ML and DL algorithms

(Chapter 6).
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Chapter 4

Perceiving and Predicting Auditory

Hierarchy

4.1 Introduction

This chapter examines the perception of AH for isolated sounds using ML techniques.

This examination comprises two parts. The first of these, Experiment 1, is an exploratory

perceptual experiment where subjects rank sounds on a BG — N — FG scale to establish

the nature of audio object hierarchy as it pertains to stimuli analogous to broadcast media

content. The second part of this analysis, referred to henceforth as Experiment 2, applies ML

to the perceptual labels gathered in Experiment 1 to evaluate ML performance on an audio

hierarchy problem.
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4.2 Perception of Auditory Hierarchy in Isolated Sounds

With a move towards object-based sound delivery in visual streaming scenarios, a deeper

understanding of how auditory objects are parsed and hierarchically categorised will be

useful in the development of strategies for sound file delivery. To that end, Experiment 1

explores inherent inter-object hierarchies of importance in the context of a BG/FG evaluation

task.

4.2.1 Methodology

In Chapter 2 this work outlined theory behind the existence of a hierarchy of importance

between sounds isolated from an auditory scene. This section will describe the methodology

of an experiment investigating this question. Figure 4.1 presents an overview of the method-

ology for the experiment. The dataset used and online environment where the experiment

was conducted will be described. Participant recruitment and profile will also be discussed.

Dataset
Creation Labelling Statistical

Analysis

The ESC-50 dataset is
examined for sounds
suitable for inclusion. From
a total of 2,000 sounds 40
are selected for inclusion.

An online labelling
environment is presented
to 112 participants who are
asked to label the sounds
in FG-N-BG categories.

The numerical coding for
each category is used to
generate hierarchical
scores. The data is
analysed to broaden
understanding of auditory
hierarchy.

Fig. 4.1 Methodology overview for Experiment 1.

Dataset

It was decided to use stimuli analogous to visual streaming content as this is the envisaged

end-use of object-based audio in media consumption scenarios. The stimuli for this initial
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experiment were sourced from the ESC-50 [101] sound set. This dataset has been compiled

for use in computational audio scene analysis contexts for training and testing automatic clas-

sification of sounds. A total of 40 sounds were deemed suitable for inclusion in Experiment

1. A list of these sounds is presented in Table 4.1. Dataset recordings are of approximately 5

seconds duration and are organised into 5 broad classes:

• Animals

• Natural soundscapes and water sounds

• Human, non-speech sounds

• Interior/domestic sounds

• Exterior/urban sounds

These classes are further subdivided into 10 sub-classes consisting of 40 sounds per

sub-class, resulting in a dataset of 2,000 sounds in total. Sounds from every class were

auditioned, and each test sound was selected with care so that each instance was that of an

isolated sound, minimising the possibility of perception of a mini sound ‘scene’ due to the

existence of other sounds at lower levels in the same file. This process resulted in some

sub-classes not being represented as no individual recording was deemed suitably isolated,

and others being rejected for reasons of similarity. For example, the sub-class ‘Mouse click’

was deemed to have a similar modality to ‘Keyboard tapping’ and thus one was excluded.

It should be noted that a varying degree of scale is perceptible from some sounds, though

this variance was minimised by auditioning multiple instances from each class and selecting

sounds which were deemed acceptable. While the difficulty in removing context using any

methodology is acknowledged, this approach was adopted as a practical solution to provide

scope for future investigation.
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Test Environment

The experiment was deployed in an online environment as it has been found ([149] and [150])

that there is minimal difference between laboratory and online experiments for comparable

tests and the potential response rate for an online experiment is far greater than that of one

confined to a laboratory.

Disseminating the experiment in this way is feasible due to the ease of distributing a

website link to the experiment environment. There are inherent challenges because of the

wide array of devices and programs in usage for browsing the web, however. Design of the

environment must account for different browser versions, operating systems and devices,

for smartphones, tablets, desktop computers and so on. What may work for one participant

may not work for the majority of configurations. Consideration should be given therefore

to options that will work for the majority of participants. Sufficient time must be allowed

in advance of the experiment going live, not alone for the basic design and coding of the

experiment, but also to allow for extensive testing of functionality in multiple different

browsers and devices. Once this process is completed, the advantage is that the same design

can be reused multiple times, thus repaying the initial resource investment.

The experiment asks subjects to rate sounds on a BG — N — FG scale. For the purposes

of this study, FG and BG were defined as follows:

A Foreground sound: One you are likely to think prominent and give greater attention.

A Background sound: One you are likely to think less important and give less attention.

If unsure whether a stimulus was BG or FG, subjects were advised to mark the sound as

neutral. Informed consent was obtained for all participants following guidelines approved

by the Technological University Dublin Research Ethics Committee. Figure 4.2 shows the

stimulus presentation and scale rating portion of the test environment. It should be noted that

any definition of FG and BG sounds is problematic, given these categories are inextricably
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Fig. 4.2 The test environment.

linked to context. The screening process used to select stimuli which evinced only a single

audio object addresses this concern.

The test website was designed using pre-formulated stimulus presentation orders which

were seeded using randomised output as it was desirous to control directly for presentation

order occurrences. Random orders were sourced from www.random.org, a source for true

random sequences cited in a number of peer-reviewed publications [322]. These series were

then analysed for repeated occurrences of order, and controlled so that the mean occurrence

of a particular order was 5, with all combinations occurring at least once. This process was

repeated so that 200 unique presentation orders were compiled for the experiment.
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In the experiment environment, detailed instructions and a training phase were imple-

mented, during which participants were asked to set the volume at a comfortable level

and not to adjust it. Participants were asked to complete the test using headphones in a

quiet environment, were required to submit basic demographic information and then rate 40

sounds.

Participants

The desire to maximise the number of participants was one of the considerations behind

using an online environment for the experiment. This was judged an acceptable compromise

as the study focus was not on BAQ differences between stimuli but rather on participant

subjective judgement of the hierarchical placement of isolated sounds, which relaxes the

necessity for laboratory listening conditions.

Consideration was given to the manner in which participants were recruited. Once the

experiment environment was completed, the primary challenge to completion was engaging

with a sufficient number of respondents. While social media can be an effective way of

reaching a large pool of participants, this requires a broad reach from the accounts used to

disseminate the experiment request. As such an account was not available, this challenge was

addressed by utilising the following resources. Firstly, a request for participation was placed

on the Auditory list [153], an online mailing list set up by Albert Bregman where listening

tests of various forms are routinely circulated. Secondly, participation was requested of the

staff and students of the TU Dublin School of Media, where participation requests for various

studies are a common event. Thirdly, a curated list of the authors’ contacts in the research

and creative arts domains were asked to participate. Additionally, not being constrained

by a hard completion deadline was useful, as it meant that the labelling exercise could be

extended until sufficient tests were completed. In this way, a balance could be struck between

moving to the analysis phase in a timely manner and securing enough participants for the
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experiment. This process resulted in 112 complete tests collected from 36 women and 76

men. The majority (65%) of respondents were 25 — 44 years of age.

4.2.2 Results

Subject responses were collated in a tabular format in Microsoft Excel and a frequency table

(summarised in Table 4.1) was compiled showing counts of BG, N and FG selections for

each sound. The R statistical environment was used to generate additional summary statistics

and plots of the results.

It was decided to use the median as the centre measure of this data, as it is generally

accepted as the appropriate measure of centre for ordinal data. The median is the centre value

in a series that is arranged sequentially. Ordinal data is categorical and has an order, though

the distance between different levels on the scale may not be equal. The numerical coding

used for sound categories was as follows: BG — 1, N — 2, FG — 3. A median value of 1

means that at least 50% of subjects categorised the sound as BG, while a median value of 3

signifies that at least 50% categorised the sound as FG. Scores for each sound were arranged

in a series and the median value for each sound isolated and used as a basic categorisation

rule for each sound as outlined in Table 4.1. It should be pointed out that in marginal cases

this would mean, in the case of BG sounds for example, that nearly as many subjects rated

the sound as either N/FG as rated it BG, thus weakening the strength of any such category

membership.

The frequency counts were analysed using a scatter plot matrix to visualise the correla-

tions between subject categorisations and see if autonomous clusters were apparent from

which robust BG — N — FG categorisations could be made. This plot is reproduced in

Figure 4.3, which colour codes results based on the median categorisation rule previously

mentioned. Unsurprisingly, a strong linear correlation is observed between FG and BG scores
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Table 4.1 Summary results ordered by mean sound rating from top to bottom. Sounds ranked More
Background are towards the top, while those More Foreground are towards the bottom.

Sound BG N FG Category
Birds 95 12 5 BG
Keyboard_Tapping 81 25 6 BG
Clock_Tick 79 25 8 BG
Fire 76 31 5 BG
Crickets 81 16 15 BG
Water_Drops 73 23 16 BG
Wind 69 28 15 BG
Engine 69 23 20 BG
Helicopter 68 22 22 BG
Train 62 19 31 BG
Washing_Machine 61 20 31 BG
Rain 55 28 29 N
Drink_Sipping 51 31 30 N
Hen 50 32 30 N
Can_Open 53 25 34 N
Pouring_Water 50 26 36 N
Coughing 43 38 31 N
Snoring 46 28 38 N
Crow 45 27 40 N
Brushing_Teeth 42 33 37 N
Handsaw 36 40 36 N
Fireworks 37 30 45 N
Clapping 35 31 46 N
Pig 31 35 46 N
Church_Bells 34 26 52 N
Dog 28 36 48 N
Cow 35 20 57 FG
Door_Wood_Creak 31 25 56 FG
Insects 28 27 57 FG
Thunderstorm 30 22 60 FG
Rooster 24 25 63 FG
Cat 24 18 70 FG
Laughing 17 30 65 FG
Breathing 19 22 71 FG
Chainsaw 12 16 84 FG
Siren 11 12 89 FG
Baby_Crying 6 7 99 FG
Door_Knock 3 10 99 FG
Glass Breaking 2 11 99 FG
Clock_Alarm 1 7 104 FG
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(as one increases, the other decreases, and vice versa). However, the plots do not suggest

obvious autonomous clusters for groupings of BG, N and FG categories.

The numerical coding used for each category was used to calculate a mean of the rating

values for each sound. This was used to draw an indicative spectrum to rank sounds from

‘More Background’ to ‘More Foreground’ in order to gain insight as to how sounds relate to

each other on this spectrum. Similarly, the standard deviation was calculated to investigate

the level of consensus between subjects for each categorisation. These values are compared

in Figure 4.4. Sounds ranked as more BG are to the left and those more FG are to the right.

Sounds with a smaller standard deviation are plotted towards the bottom of the chart, while

those with a larger value are at the top. This plot demonstrates that there are relatively few

sounds which most subjects agree are either BG (‘Birds’, ‘Keyboard Tapping’, ‘Fire’ and

‘Clock Tick’) or FG (‘Baby Crying’, ‘Door Knock’, ‘Glass Breaking’ and ‘Clock Alarm’).

There is greater disagreement between subjects regarding the category of the remaining

sounds. Conversely, there is greater consensus regarding strongly FG or BG sounds at either

end of the spectrum, with slightly more agreement regarding which sounds are FG than BG.

The exact point at which a sound can be said to have definitively changed from being

BG to N, or N to FG is arbitrary and the efficacy of applying such a margin remains to

be seen in further research and in real-world applications. The median rating value would

appear to be insufficient, at least in the context of categorising all sounds with high inter-

subject agreement, as the decision boundary encompasses sounds which evince considerable

disagreement between subjects as to appropriate category based on the plot offered in

Figure 4.4. Formulating a decision boundary threshold based on a function of overall rating

and sample consensus would allow for more sophistication in the model, but is still subject

to an arbitrary decision on where this boundary would best lie. For example, the following

equations use rating and standard deviation (σ ) values to isolate ‘Birds’, ‘Keyboard Tapping’,

‘Fire’ and ‘Clock Tick’ as BG sounds (Equation 4.1) and ‘Baby Crying’, ‘Door Knock’,
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Fig. 4.3 Scatterplots of BG, N and FG counts. The categories in this plot are derived from the median
ratings noted in Experiment 1. A strong linear relationship is noted between BG and FG ratings.
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subjects as to category in these instances. There is no clear categorisation pattern by sound class.
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‘Glass Breaking’ and ‘Clock Alarm’ as FG sounds (Equation 4.2), but could be altered to

include or exclude other sounds. These are but two possibilities suggested by the plot.

BGRATING ⩾ 76 ∧ σ ⩽ 0.62 (4.1)

FGRATING ⩾ 99 ∧ σ ⩽ 0.5 (4.2)

The data was also analysed for differences in sound ratings between genders. Figure 4.5

plots mean sound scores for the whole sample and both female and male subsets. Figure 4.6

is a similar plot showing the variance in standard deviation. While there are some variations

in the rankings of sounds, no general trend emerges along gender lines. For example, female

mean rating for ‘Dog’ (2.5) and ‘Insects’ (2.44) sounds are more FG than male ‘Dog’ (2.03)

and ‘Insects’ (2.17) ratings, remembering that BG = 1, N = 2 and FG = 3. However, this

trend does not extend to other animal noises, with female mean ratings for ‘Hen’ (1.61) and

‘Pig’ (1.92) being more BG than equivalent male mean ratings (1.92 and 2.24 respectively).

Female data appears more spread out than the male equivalents, though this could easily be

explained by the disparity in sample sizes (68% male). Given a larger female sample size, it

could reasonably be expected that the scores would regress towards the mean.

Finally, the data were examined for any evidence of correlation between sound class and

subjective categorisation. Figure 4.4 presents the sounds colour-coded by class. While there

are some weak trends visible, there is no clear categorisation trend by sound class. ‘Natural’

sounds tend more to BG and N than other classes. ‘Animal’ sounds caused significant

disagreement among respondents compared to other classes, having higher standard deviation

values and no representatives from this class being considered highly BG or FG. ‘Household’

sounds contained a considerable spread across the BG—N—FG spectrum, with many of the

most BG and FG sounds coming from this class.
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Fig. 4.5 The relationship between mean sound rating and gender. Once again, sounds considered FG
are towards the right of the plot, BG sounds are to the left.
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Fig. 4.6 A comparison of sound ranking standard deviation by gender. Sounds considered FG are
towards the right of the plot, BG sounds are to the left.
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4.2.3 Discussion

The results outlined suggest that a spectrum of sound hierarchy exists for isolated sounds and

that this can potentially be predicted provided suitable objective measurements that correlate

with subjective evaluation of sounds can be isolated. Subject ranking of sounds, as outlined

in the scatter plot in Figure 4.5, suggests that BG — N — FG is a continuum. Chapter 2

has offered an overview of perceptual theory and a schema for AH hypothesised as being

affected by factors outside the scope of this experiment such as, but not confined to:

• Sound context

• Prior experience and training of subject

• Attention/listening mode

• Sound loudness

• Physical characteristics of the sound

• Spatial location of the sound etc.

It is important to note that testing using isolated sounds is somewhat artificial as they

are seldom, if ever, experienced entirely in isolation – a point made by some subjects in

correspondence who reinforced the importance of context and sound meaning in making a

decision in the categorisation task. Thus, further investigation of the effect of such factors is

necessary in order to derive a useful categorisation schema for real-world implementation.

While a clear consensus among subjects was observed for certain stimuli, there were no

unanimous decisions, an indication of the subjective nature of the experiment task. Sounds

such as ‘Clock Alarm’, which received 104 selections as FG (104 — 92.86%), the most

emphatic FG score, still received selections for either N (7 — 6.25%) or BG (1 — 0.89%).

The converse holds for sounds considered overwhelmingly BG, such as ‘Birds’, which
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received 95 selections as BG (95 — 84.82%), 12 for N (12 — 10.71%) and 5 for FG (5 —

4.46%).

4.2.4 Conclusions

Section 4.2.3 has noted the wide range in rating scores and the lack of unanimous cate-

gorisations. For the purposes of this discussion, sounds with an average rating below 1.5

will be referred to as being definitively BG (6 sounds: ‘Birds’, ‘Keyboard Tapping’, ‘Clock

Tick’, ‘Fire’, ‘Crickets’ and ‘Water Drop’). Conversely, those with an average rating over

2.5 are designated definitively FG (also 6 sounds: ‘Chainsaw’, ‘Siren’, ‘Baby Crying’, ‘Door

Knock’, ‘Glass Breaking’, ‘Clock Alarm’). If all other sounds are considered a Neutral

rating, then this category dominates the dataset in terms of size: 28 sounds are rated between

these two values. This indicates the level of disagreement between participants as to the

appropriate hierarchical category in many cases, which effectively results in a noisy dataset

for ML purposes.

It should be noted that it may not be possible to obtain a similar set of results from a

different cohort of participants. While many elements would remain the same, such as the test

environment and sounds, other factors are potentially beyond the control of the experimenter

when using an online test. This experiment demonstrates inter-rater reliability, and it is

argued that this is useful for the development, training and testing of an objective auditory

hierarchy classification model. However, the experiment cannot fully validate a conceptual

model of auditory hierarchy because it does not establish intra-rater reliability (participants

only rate each sound once). For this reason, though the experiment provides some evidence

of a hierarchy of importance between sounds isolated from context, it is not considered to be

a conclusive demonstration of audio hierarchy in non-contextual sounds.

As noted, the decision boundary between what constitutes a BG, N or FG sound is open

to debate. Indeed, the location of such boundary lines may form part of any final solution
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in this regard, becoming a parameter used to tune a model for specific applications. In this

context, compare the differences in categorisations suggested by median sound rating score

and any variant on this, such as those outlined in Equations 4.1 and 4.2. What may prove

more illuminating in this regard is a testing of the subject nominated categorisation schema

for different applications. An object audio codec which encodes BG assets at lower bit rates

than FG may prove to be perceptually transparent at specific thresholds yet to be determined,

for example.

Equally, subjective categorisation of audio objects may not be a comprehensive indicator

of asset importance with regard to a perceptual coding application. For instance, certain

sounds may not necessarily rate as FG, but are known to be more challenging for com-

pression codecs to deal with transparently. Applause is an example in this regard [111].

Simply put, what subjects perceive as a relatively unimportant sound in isolation may have a

disproportionate effect on the perception of a sound scene if that element is delivered at an

inappropriately low bit rate.

These points noted, the following section describes Experiment 2, an investigation of ML

algorithms to the perceptual data collected in Experiment 1 to assess whether ML can be

used to accurately predict AH.

4.3 Predicting Auditory Hierarchy

Section 4.2 summarises research which suggests the existence of a hierarchy of importance

between isolated auditory objects by quantifying human subjective hierarchical ratings of

sounds. The next step is to derive labels from these data for use in an ML classification

exercise, which establishes the feasibility of predicting the hierarchy of a sound set using

purely objective measurements. The arbitrary nature of deciding on a classification boundary

location in advance of perceptual testing for the implications of such a decision on the end

use case has been noted in Section 4.2. To facilitate investigation of ML methods applied to
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AH, it was decided to use the median rating score from Experiment 1 as the categorisation

schema used in Experiment 2.

4.3.1 Methodology

Section 4.2.2 has presented evidence of the perception of hierarchy as a continuum and

noted that the positioning of borders between hierarchical categories is somewhat arbitrary.

Respondents were asked to categorise sounds rather than score them on a continuous scale

and Section 2.6 has stated the intention of providing a roadmap for how intelligent content

optimisation systems can be built via a simplified study of AH. With these thoughts in mind

it was decided to approach the modelling task as a categorical rather than a regression task

using the median score as the category boundary. It was also decided to prioritise identifying

FG sounds. Any real-world implementation of a variable compression codec, for example,

would in theory require as many important sounds be correctly identified as possible and

be forgiving of having some misclassified non-important objects. For this reason, it was

decided to frame the task as a binary classification problem using the target labels of ‘FG’ and

‘nonFG’, the latter of which is simply the set of all sounds identified as N and BG according

to the median rating derived in Section 4.2.

The following sections describe the process of building the dataset for this experiment

by extracting audio features from the 40 sounds used in Experiment 1. Feature selection

methods are described and a rationale for algorithm selection is offered. Figure 4.7 offers an

overview of the methodology used for Experiment 2.

Dataset Creation

As the purpose of the experiment was an exploratory assessment of ML applied to AH it was

decided to extract a series of LLD features which are summarised in Table 4.2. Subsequent

experiments will contain an investigation of feature representations. Feature extraction was
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Feature 
Extraction

Feature 
Selection

Model 
Tuning

Statistical 
Analysis

The dataset is created by
extracting 700 audio
features comprising of
continuous numerical
data for each of the 40
sounds used in
Experiment 1.

The dimensionality of the
dataset is reduced using
two rounds of backward
sequential selection with
a RF wrapper. This
results in smaller data
subsets of between 2 to
200 features.

RF and SVM models are
tuned on the dataset
subjected to dimension
reduction.

Baseline and optimised
models are compared are
compared using the
Kruskal-Wallace H-test.

Fig. 4.7 Methodology overview for Experiment 2.

completed using Matlab [198] via the ‘Matlab Audio Analysis Library’ [323] as detailed

in [200]. A Hamming window of the form outlined in Equation 4.3 (where n = sample number,

N = the number of samples in the window, window length L = N + 1) was implemented with

a size and step length of 0.05 and 0.025 secs (50% overlap) respectively. This resulted in an

initial dataset of 35 features.

w(n) = 0.54−0.46 cos(2π
n
N
), 0 ≤ n ≤ N (4.3)

Standard statistical summaries (mean, median, standard deviation, standard deviation by

mean ratio, maximum, minimum, mean non-zero, and median non-zero) were applied to each

feature resulting in an initial vector of 280 features per sound. In addition to these global

summaries, delta and double delta measures for the original 35 features were calculated to

capture detail of local variation in the stimuli. These were derived from the frame level data

and summarised using mean, median, standard deviation, standard deviation by mean ratio,

maximum and minimum values resulting in another 420 features. This resulted in a final

dataset of dimensions 40 sounds detailed by 700 features comprised of continuous numerical

data.
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Table 4.2 A description of features extracted as objective measures of the sound stimuli.

Feature Description

Zero Crossing Rate The number of times the signal changes value, negative to positive
and vice versa, divided by frame length.

Energy Sometimes referred to as the power of a signal, calculated as the
sum of the squares of signal values normalised by the respective
frame length.

Entropy of Energy A measure of the abrupt changes in the energy of an audio signal,
which can be thought of as an indication of signal predictability.

Spectral Centroid An indicator of timbre. Higher values equate to brighter sounds.
Spectral Spread A measure of how the sound spectrum is distributed about the

spectral centroid. Higher values result from spectra not tightly
grouped about the centroid, exhibiting more variety.

Spectral Entropy Similar to energy entropy, but in the frequency domain. A measure
of abrupt changes.

Spectral Flux The degree of change in the frequency domain between two analy-
sis frames.

Spectral Rolloff Generally used to indicate the frequency below which 90% of the
magnitude distribution of the spectrum is focussed.

MFCCs Mel Frequency Cepstral Coefficients capture timbre detail of a
signal efficiently. The frequency bands used to split the signal
are not linear but distributed according to the mel-scale which is
modelled on the human auditory system. In this instance, 13 bands
are extracted.

Harmonic Ratio The maximum value of the normalised autocorrelation function
(the correlation of an analysis frame with itself at a defined time
lag, in this instance, one analysis frame).

Fundamental Frequency An estimate of the frequency equivalent of the length of the funda-
mental period of the signal.

Chroma Vector A 12-element representation of spectral energy, where the bins are
organised as per the 12 equal-tempered pitch classes of western
music (semitone spacing).
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Algorithm Choice

Numerous ML algorithms have been utilised in audio research as outlined in Section 3.5.

The relatively small size of the available dataset was a factor in algorithm choice, as there are

noted strengths and weaknesses for the different ML methods. As pointed out by Krstulovic

[302], SVMs tend to outperform other algorithms on small datasets. Also, Deep Neural

Networks require large amounts of data to outperform SVMs, which are noted to perform well

using up to 10,000 instances, but deteriorate in performance thereafter [324]. This suggests

that better results will be achieved with the current dataset using algorithms known to perform

well with relatively small datasets, such as SVMs, which find the optimal hyperplane which

separates instances by maximising the margin of distance from hyperplane to data point [325].

Data was normalised before input to SVM models as required [324].

It was decided to compare the performance of SVMs with RF models for this experiment.

RFs are an ensemble of decision trees used extensively in ML classification problems [324].

Where a single decision tree can overfit the training data, an ensemble of trees is less prone

to this problem, as the tendency to overfit in single trees can be averaged out throughout

the ensemble. RF are often used to provide insight into relative feature importance to assist

in the process of dimension reduction. They have been introduced in Section 3.5.1 where

they are noted to be slightly outperformed by SVMs on some audio classification problems.

Their selection for this task is motivated by their interpretability and the insight they may

give as to feature importance. In this sense they add balance to the use of SVMs which are

not easily interpreted. As RFs are known to perform poorly in situations where few instances

are represented with many features [180] they will also be used in this instance to reduce the

dimensionality of the dataset in order to improve performance.
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Table 4.3 The parameter grid used to find optimal hyperparameters for baseline models for the RF
algorithm.

Parameter Values

No. of Estimators 50, 200, 500
Maximum Features 2, 5, 10, 20, 50
Maximum Depth 2, 3, 5, None
Minimum Samples per Split 2, 3, 5
Minimum Samples per Leaf 1, 2
Bootstrap True, False

Table 4.4 The parameter grid used to find optimal hyperparameters for baseline models for the SVM
algorithm.

Parameter Values

kernel radial basis function, polynomial, linear, sigmoid
C 0.001, 0.10, 0.1, 1, 10, 25, 50, 100, 1000, 10000
gamma 10, 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5

Model Training and Validation

5-fold random, stratified, cross-validation was implemented to split the dataset into train and

test sets and a further 4-fold cross-validation was used on the training sets to select features

and to fix parameters. Before the dimension reduction process described in Section 4.3.1 was

applied a parameter grid search was run to identify optimal hyperparameters using all features.

The parameter grids for this search are reproduced in Tables 4.3 and 4.4. These parameters

were used to train baseline models for comparison with optimised models trained after the

dimension reduction was complete. Once the optimal feature set was identified, another grid

search was conducted, as it was found in experimentation that the initial hyperparameters

were not necessarily optimal on the reduced feature set. Once hyperparameters were finalised,

models were trained on the training set and evaluated on the test set for comparison with

baseline models.
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Dimension Reduction

There are a number of feature selection procedures for ML features which include filter-based,

wrapper and PCA approaches as introduced in Section 3.3.5. In the following, dimension

reduction is applied using the training portion of the dataset only, as to apply it across the

whole dataset in advance of any dimension reduction exercise would give an unrealistic

picture of how models would perform on unseen data [214].

A wrapper approach was applied in this instance because the relatively small dataset

size meant that the computational load entailed, prohibitive with large datasets [326], was

feasible. To recap on the information provided in Section 3.3.5, the wrapper technique

uses a prediction algorithm (the wrapper) to reduce the dimensionality of a dataset while

incorporating interacting effects among features by searching the feature set for subsets that

perform best [327]. This is achieved either via a process of forward sequential selection,

where the search starts with a single feature and iteratively adds more, or backward sequential

selection, where the search starts with the full feature set and iteratively eliminates single

features from each subsequent trial.

Two rounds of backward sequential selection were applied to reduce the dimensionality

of the initial dataset. Firstly, 5 subsets were generated using an RF wrapper trained using the

best hyperparameters found in a grid search across the values outlined in Table 4.3, as it was

noted that each repetition resulted in variations and numbers of features chosen. Each of the

initial subsets were large, ranging from 200 - 600 features, so it was decided to conduct a

further round of dimension reduction using a wrapper based on the final prediction algorithm,

either RF or SVM. This produced smaller data subsets of sizes ranging from 2 - 200 features.

Model Evaluation

The final step in the modelling process is measuring the performance of the methods chosen,

for which there are a number of popular metrics. The applicability of these varies for
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Table 4.5 Summary results for baseline (BL) and optimised (OP) models. CA is the FG class accuracy
rate (or FG recall rate). ACA is the Average Class Accuracy for both FG and ‘nonFG’ classes.

Metric RF-BL RF-OP SVM-BL SVM-OP
CA 30 % 73.3 % 50 % 93.3 %
ACA 60.8 % 80.3 % 67.7 % 88.1 %

different use cases. Given the priority of correctly classifying FG sounds outlined in earlier

in Section 4.3.1, it was decided to use FG class accuracy (also referred to as recall) and

Average Class Accuracy (ACA) as measures of model success. FG class accuracy indicates

correct predictions of FG sounds only. ACA, on the other hand, indicates how many ‘FG’

and ‘nonFG’ predictions are on average correct.

Scores from baseline and optimised models from each of the 5 cross-validation folds

implemented in the experiment were compared using the Kruskal-Wallace H-test, a non-

parametric statistical test for comparing two or more independent examples which can

be applied to data samples of 5 or more observations. A significance level of p < 0.05

was adopted in this instance to indicate a statistically significant difference between model

scores [328].

4.3.2 Results

Table 4.5 summarises the results of ML modelling providing FG class accuracy and ACA

scores for baseline and optimised models. The baseline class accuracy scores are poor, 30%

of FG sounds captured by RF and 50% by SVM. However, ACA scores are more promising

with RF successfully categorising 60.8% of sounds and SVM scoring 67.7%. Taken together,

these results suggest that AH may plausibly be modelled using machine learning techniques,

though improvement in categorisation success rates will likely be required for any real-world

implementation.

The parameter tuning and dimension reduction process described in the foregoing were

implemented in an attempt to improve these baseline scores to levels comparable with other
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studies. If successful, this would strengthen the case for utilisation of ML in the domain.

Regarding RF, FG class accuracy improves from 30% to 73.3%, and ACA from 60.8% to

80.3%. When comparing the fold scores using the Kruskal-Wallace test, the difference

between class accuracy baseline and optimised models is statistically significant at the 95%

level. The ACA scores are not statistically significant, but only marginally so (p = 0.057).

SVM FG class accuracy improves from 50% to 93.3%, and ACA from 67.7% to 88.1%. Both

of these results are statistically significant. While it is yet to be determined if these success

rates would be effective in the implementation of a variable compression codec, the SVM

FG class accuracy score of 93.3% is encouraging, given the stated priority of classifying FG

sounds. Furthermore, the optimised model scores are comparable to similar studies [47, 264]

which indicate that experimentation with feature extraction approaches may lead to further

improvements. Finally, when comparing optimised RF with SVM scores, while we report

better performance for SVM models in Table 4.5, the difference between optimised learning

models was not statistically significant in this case.

In terms of the features selected for final optimised models, no pattern was observed in

preponderance of the feature types utilised, those being temporal, frequency and cepstral

features. It was interesting to note however that a disproportionate number of double delta

features were selected as being most informative. An analysis was made of the features used

in the optimised models for each fold and this shows that 23% of the features used are zero

order, 20% are delta and 57% are double delta features.

4.3.3 Discussion

The study aim was to establish if predicting AH from objective measures of the sounds is

feasible, and it can be regarded as successful in this respect. The FG recall rate achieved

(93.3%) is an encouraging starting point, as it suggests that almost all FG instances can

be successfully predicted and therefore prioritised for optimal delivery using a variable
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compression approach. However, the wide variance in ratings for the majority of sounds

reflects the subjective nature of the rating task, which possibly impacts classification scores.

This should be contrasted with other audio ML tasks, such as environmental sound classi-

fication, where the equivalent labelling task could be said to be objective. In other words,

deciding on a hierarchical category for the sound of a dog barking is a far more subjective

task than identifying and classifying sounds, i.e. correctly categorising a dog barking versus

deciding the sound is actually a cat coughing. Attendant to this discussion is the inherent

difficulty of definitively isolating sound stimuli from context, given the variance in auditory

perception on the level of the individual referenced in Section 2.6. In effect, the variance in

subject responses has resulted in a noisy set of ratings that is not ideal for ML prediction.

This demonstrates the difficulty inherent with any study of sound hierarchy concerned with

establishing a universal FG/BG categorisation. Such a distinction may not be feasible except

in more restrictive terms. The popularity of double delta features used suggests that temporal

context is important in a hierarchical classification task.

The process has revealed two further issues requiring attention when attempting to

predict AH for any real-world application. Firstly, the amount of labelled data available

is a significant issue to address before further ML analysis. The dataset of 40 sounds

derived previously as described in Section 4.2 is useful for initial modelling attempts to

assess the application of ML techniques to the domain, but a larger dataset would enable

a more robust analysis. It should also be noted that providing more sounds of the same

kind may provide a more nuanced set of data with which to perform ML analysis. Given

the selection of 40 different sounds for the experiments just described, it would be of great

interest to examine the ratings returned for multiple examples of a sound. This applies to the

example offered previously of a dog barking. Logically, given the perceived proximity of

the stimulus would be likely to vary, even under conditions where every effort was made to

isolate the sounds from context, different examples of dogs barking would be applied with
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varying hierarchical labels, thus informing a more challenging prediction task, but ultimately

facilitating the training of a more useful model. Given the performance of DL algorithms in

the environmental sound classification literature noted in Section 3.5.5 it should be regarded

as likely that a superior performing model can be derived once a suitable dataset is compiled.

It should also be noted that while Mesaros et al. [215] recommends quantity over quality of

data for sound classification applications, every effort should be made to improve the quality

of data used whenever possible. Application of DL techniques to this domain will require a

labelled dataset of significantly greater size than used in the foregoing. This could potentially

be compiled by combining subjective ratings with Active Learning [329] techniques.

Secondly, further investigation is required on the hypothesised impact of how attentional,

contextual and other processes, as outlined in Section 2.6, affect our perception of auditory

hierarchies. Sound context, for example, may prove a more important indicator of importance

than visual accompaniment, suggesting that a weighted schema could be derived experi-

mentally which would model how different factors affect hierarchical categorisation and

auditory scene perception. Once complete, such a schema would inform the functioning of

a model, meaning that auditory objects could be compressed in terms of their importance

to sound scene perception. Thus, audio content could be flexibly delivered to consumers,

taking cognisance of the mode of consumption and the capacity of the delivery mechanism

involved.

4.4 Conclusions

The thesis statement presented in Section 1.2 outlined the OBJs which have inspired this

work. Experiments 1 and 2 are relevant to the following OBJs:

OBJ 1: To develop an understanding of ASA with particular attention to the concepts

of object-based audio, AH and modern media consumption paradigms.
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OBJ 3: To assess the performance of supervised ML algorithms when predicting AH.

Experiment 1 informs the understanding of ASA as it pertains to media consumption by

analysing a corpus of sounds analogous to modern media content and suggests that, even

when detached from context to the extent possible in a listening test paradigm, a hierarchy of

importance may exist between sounds. Experiment 2 subjects the labels thus gathered to ML

analysis and shows promising results that arguably constitute a proof-of-concept working

model that predicts AH. Work presented in this chapter is therefore formative in addressing

the following RQs:

RQ 2: Does a hierarchy of importance exist between sounds isolated from context?

RQ 3: Is it possible to accurately predict AH using supervised ML methods?

This chapter has outlined perceptual research in Experiment 1 which confirms the exis-

tence of a hierarchy of importance between sounds isolated from context. In Experiment 2

these results were subjected to ML analysis and high performance levels (93.3% FG class

accuracy) were observed predicting FG instances using an optimised SVM model. However,

it is important to note that the dataset used comprised of only 40 sounds and this is noted

as being small when compared to most ML datasets. Therefore, Experiment 3, outlined in

Chapter 5, will outline methods of maximising the quantity of labelled data while employing

minimal manual effort.
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Chapter 5

Active Learning for Auditory Hierarchy

5.1 Introduction

One of the largest problems encountered when subjecting datasets to machine learning

analysis is the lack of labelled data [20]. Chapter 4 has outlined initial steps to predict AH

using a small dataset. In this chapter, methods to build large datasets using minimal manual

labelling are outlined. An investigation of AL applied to an AH problem is described in

addition to the assessment of selection methods and data representations.

5.2 Active Learning

AL has previously been introduced in Section 3.6, which outlined a number of selection

methods for identifying informative instances for labelling by an oracle. The experiment

described following, referred to henceforth as Experiment 3, compares three selection

methods in an AH task: Uncertainty Sampling AL (USAL), Exploration Guided AL (EGAL)

and random selection.
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USAL is the most commonly used selection method, using uncertainty in model prediction

as a metric to select instances for labelling. As outlined in Section 3.6.1, it has been used

in a variety of audio applications including environmental sound classification [309], bird

sound categorization [330] and speech emotion recognition [314]. USAL is a model-based

selection method, which holds that the instances which will be most informative for labelling

purposes are those the classifier categorises with the least confidence. It therefore selects

these instances first.

A number of methods to identify uncertainty have been introduced in Section 3.6.1. The

margin method is implemented in Experiment 3. This ranks instances by their proximity to a

classifier decision boundary, presenting those closest for labelling, as they are the instances

most difficult to categorise. USAL is computationally expensive and potentially very time-

consuming for large datasets, as it requires a model to be trained every time labelled instances

are added.

The EGAL selection strategy is a model-free method that addresses this shortcoming,

which has been found to outperform USAL in other domains [331]. EGAL identifies useful

instances for classification purposes in relation to their location in the feature space relative

to neighbouring instances and proximity to already labelled instances. It has been used in

text classification applications [310] but to our knowledge this is the first application of this

technique to an audio problem. EGAL seeks to identify instances in clusters that are furthest

from labelled instances on the assumption that dense clusters more diverse from labelled

instances will be most informative for classification purposes. This is implemented by first

calculating a density value per instance, defined as the sum of similarities between the instance

and all other instances within a certain radius. Here the inverse of Euclidean distance for this

measure is implemented, which indicates similarity to neighbouring instances. Secondly, a

diversity value is calculated by measuring instance distance to the nearest labelled instance

of the dataset.
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In all, 3 forms of EGAL are investigated here: the first uses the density measure only,

selecting instances from dense areas of the feature space. The second uses diversity in

isolation, which selects instances that are most diverse from already labelled instances. The

third EGAL form is a hybrid approach, which combines the first two to select instances from

the most dense areas of the feature space that are most diverse from already labelled instances.

To provide a baseline comparison for USAL and EGAL methods, a random selection strategy

is also implemented.

5.3 Methodology

The following sections outline the methodology applied to our investigation of AL for

AH. Audio stimuli are described, as are label collection methods based on those used in

Experiment 1 (outlined in Section 5.3.1). Feature extraction and data preparation are covered

in Section 5.3.2 and classifier choice is outlined in Section 5.3.3. Having extracted a number

of feature representations, it was decided to compare these in an initial cross validation

experiment which identifies the optimal feature representation to submit to AL. This is

outlined in Section 5.3.5. Finally, AL using USAL, EGAL and random selection is applied

to the chosen representation as described in Section 5.3.6. Figure 5.1 presents a methodology

overview for Experiment 3. The Python language was used for implementation using the

associated Scikit-learn [332], SciPy [333] and Pandas [334] libraries.

5.3.1 Dataset Creation

As introduced in Section 2.4.3, the ESC datasets [101] have been compiled from the

Freesound website (freesound.org) for use in computational audio scene analysis contexts

for training and testing automatic classification of sounds. They have been selected for use in
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Dataset
Expansion

Feature
Extraction

Feature
Rep.

Experiment

AL
Experiment

Statistical
Analysis

The ESC dataset is
reviewed for further
sounds and 10,166 are
deemed suitable for use
in as they evince only
one audio object. 3,002
of these sounds are
labelled at least 3 times
using the same methods
applied in Experiment 1.

Global MFCC, Chroma
and LPMS feature
representations are
extracted of these
sounds. The resulting
dataset yields 3,002
instances detailed by
vectors of continuous
numerical data with
lengths 2,028, 1,872 and
6,240 respectively. 

SVM models were built
using these feature
representations to
compare the performance
between representations
and SVM kernels. The
radial basis function
kernel and LPMS feature
representation are
selected for use in the AL
experiment.

As all instances are
already labelled a
simulated AL experiment
is carried out to compare
the performance of three
AL selection methods:
USAL, EGAL and random
selection.

The EGAL selection
method is found to
perform best at selecting
the minimum number of
informative instances with
which to build accurate
models. The result is
statistically significant at
the 5% level using the
Friedman test with a
post-hoc Wilcoxon
signed-rank.

Fig. 5.1 Methodology overview for Experiment 3.

Experiment 3 because of their use in Experiments 1 and 2 and because they provide a large

bank (>250,000) of potential stimuli with associated sound class metadata.

In excess of 20,000 sounds were reviewed by the authors for suitability of use in Ex-

periment 3 with care taken to exclude sounds which evinced more than one sound event in

order to provide a corpus of stimuli isolated from context in so far as this is possible. The

vetting process for Experiment 3 sounds differed from that applied for Experiments 1 and

2 in that it was decided to include sounds judged to be amorphous combinations, such as

urban and nature soundscapes, as long as no one sound of the combination was judged to

predominate. An example of this would be the concept of “urban hum” [49, pg. 68] where

the combination of numerous cars and other vehicles becomes a percept of ‘traffic’ rather

than a series of individual objects. This process resulted in the selection of 10,166 sounds as

suitable for inclusion as they did not evince more than one audio ‘object’. Note that while

not all of these sounds were labelled in Experiment 3 they will be utilised in subsequent

experiments when applied with predicted hierarchical labels. Table 5.1 outlines the sounds

selected for inclusion in Experiment 3 organised into 12 broad classes based on the metadata

provided from the ESC dataset.
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Table 5.1 A summary of instance count, average score and standard deviation (σ ) per class for all
3,002 sounds for which at least 3 ratings were gathered. The highest occurrences are reproduced in
bold, the lowest are underlined.

Class No. Average Score σ

Nature 523 1.655 0.578
Ambience 507 1.477 0.504
Animal 408 2.121 0.569
Urban 370 1.382 0.437
Machine 285 1.941 0.585
Human 266 2.131 0.461
Other 226 2.325 0.564
Domestic 145 2.307 0.527
Travel 115 1.285 0.356
Actions 67 2.269 0.573
Alarms 55 2.535 0.41
Bells 35 2.41 0.715
Total/Average 3,002 1.986 0.523

These sounds were labelled using the same methodology as Experiment 1, described in

Section 4.2.1. Participants for Experiment 3 came from employees of Xperi/DTS Inc. and

researchers in the TU Dublin School of Media.

In all, 3,002 sounds were labelled a minimum of 3 times on a FG — N — BG scale

by 149 participants (73% male, 7% 18-24, 49% 25-44). An average of 83.42 sounds were

rated per participant, with each given the opportunity to rate 100 stimuli. The average time

taken to complete the rating process excluding outliers greater than 1 hour in duration was

19 minutes 54 seconds. The numerical coding for each category (BG - 1, N - 2, FG - 3) was

used to generate mean and standard deviation scores for each sound. The mean was used

in Experiment 3 as it was felt this would give a more realistic view of the subjective nature

of the labelling task given most sounds were rated 3 times. For example, in cases where a

sound received 2 FG and 1 BG rating this would result in a mean score of 2.3̇, indicating a

non-unanimous rating, versus a median score of 3 which in data analysis would indicate a

unanimous FG score. The average rating score and standard deviation per class are provided

in Table 5.1.
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This table shows that sounds such as ‘Alarms’ are likely to be labelled as FG. Sounds

categorised as ‘Travel’ are most likely to be labelled BG reflecting the interior public transport

hum ambience present in many of these sounds. Standard deviation per sound class varies

between 0.41 and 0.715. The variance in average rating is outlined using the boxplots

reproduced in Figure 5.2 giving an indication of the variance in the data which in this

instance indicates the degree of subject consensus on BG/N/FG sounds.

For illustrative purposes, the sounds are organised into three average rating score bands.

There are 1,156 instances with an average rating of 1.5 or under which are designated BG

sounds. There are 608 sounds with an average rating of greater than 2.5 that are designated

FG sounds. The remaining 1,238 sounds have average ratings greater than 1.5 and less than

2.5. These are referred to as neutral sounds. The width of each box plot is proportionate to

the number of instances summarized in each rating band.

Similar to the findings noted in Chapter 4, a greater consensus is noted among subjects

as regards sounds considered most FG or most BG, there being less variance in the ratings

for these bands than those sounds considered N. Interquartile range for both FG and BG

bands is approximately 0.33 of a rating score. N sounds on the other hand exhibit greater

variance in rating scores compared to BG and FG sounds, interquartile range here being

twice that of BG and FG sounds, 0.67 of a rating score. The high degree of variance for

some sounds, indicating a lack of consensus between subjects as to the correct sound class,

is to be expected with a subjective labelling task and the dataset evinces disagreement

between annotators as to the correct hierarchical category for many instances. The proposed

application of a variable compression codec suggests a priority of identifying FG sounds, so

for the purposes of subsequent investigations it was decided once again to address the data

as a binary classification problem. Accordingly, all sounds achieving an average score ≥

2.5 (608 instances, 20.25%) are categorized as ‘FG’. All others (2,394 instances, 79.7%) are

categorized as ‘nonFG’ sounds.
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Fig. 5.2 Boxplots outlining the variance in average sound ratings grouped in broad bands for the
3,002 sounds for which at least 3 ratings were gathered. Note that the minimum average score for BG
sounds is 1, hence there is no quartile or minimum whisker below this value. Similarly, the maximum
average score for FG sounds is 3, hence this band has no quartile or maximum whisker above this
value. Also, the width of each boxplot is proportional to the number of instances summarised in each
band.

141



Active Learning for Auditory Hierarchy

5.3.2 Feature Extraction

Experiment 2 has utilised statistical summaries of LLD features and applied feature selection

to identify those of most use in the prediction task. For Experiment 3 it was decided to

compare a number of global representations given the popularity of this approach in the

audio ML domain.

The Python LibROSA [335] package was used to extract three different feature repre-

sentations for each audio stimulus. Mel Frequency Cepstral Coeficients (MFCC) and Log

Power Mel Spectrogram (LPMS) representations were extracted based on their popularity

in audio machine learning applications [20] and a chroma representation was also extracted

based on its usefulness in Experiment 2. All files were first downsampled to 16kHz to

account for the variable recording quality of sounds sourced from Freesound, such as the

ESC datasets. A Hann window of the form outlined in Equation 5.1, (where n = sample

number, M = the number of points in the output window) is used to extract audio data. A

number of different window types are available for audio extract, such as the Hamming

window used in Experiment 2. The Hann window was used in this instance as it is the default

window applied in the LibROSA framework [335] and has been used in multiple audio ML

tasks [221, 336, 337].

w(n) = 0.5−0.5cos
(

2πn
M−1

)
, 0 ≤ n ≤ M−1 (5.1)

In line with similar experiments, an environmental sound classification task [250] and

an acoustic event detection experiment [338], a window size of 128 ms (2048 samples at

16 kHz) and stride of 32 ms was used to extract 12 frequency bands of chroma, 13 bands

of zero-order MFCC feature vectors and 40 bands of LPMS features. This results in the

feature representation dimensions outlined in Table 5.2, where 3,002 instances with at least

3 hierarchical ratings are represented by the frequency bins noted for MFCC, chroma and

LPMS features and 156 temporal analysis frames. From these zero-order, delta, double delta
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Table 5.2 A summary of feature representation data vectors and their dimensions. For each represen-
tation (MFCC, chroma and LPMS) zero-order (ZO) and 1st (1OD), 2nd (2OD) and 5th order (5OD)
delta vectors are computed, resulting in a total of 12 initial representations. The Dimensions column
denotes the number of instances x number of frequency bins x temporal feature extraction frames for
each feature representation. These vectors were flattened prior to input to SVM models for AL.

Type Dimensions Flattened Dimensions
MFCC ZO 3002 x 13 x 156 3002 x 2,028
MFCC 1OD 3002 x 13 x 156 3002 x 2,028
MFCC 2OD 3002 x 13 x 156 3002 x 2,028
MFCC 5OD 3002 x 13 x 156 3002 x 2,028
Chroma ZO 3002 x 12 x 156 3002 x 1,872
Chroma 1OD 3002 x 12 x 156 3002 x 1,872
Chroma 2OD 3002 x 12 x 156 3002 x 1,872
Chroma 5OD 3002 x 12 x 156 3002 x 1,872
LPMS ZO 3002 x 40 x 156 3002 x 6,240
LPMS 1OD 3002 x 40 x 156 3002 x 6,240
LPMS 2OD 3002 x 40 x 156 3002 x 6,240
LPMS 5OD 3002 x 40 x 156 3002 x 6,240

and fifth-order delta representations were extracted as delta features were prominent in the

features selected as being most useful for categorisation purposes in Experiment 2. All data

is scaled and bands from each data matrix are flattened and organized into 12 data subsets, 4

each for the MFCC, chroma and LPMS data, a summary of which is presented in Table 5.2.

5.3.3 Algorithm Selection

A Support Vector Machine (SVM) algorithm is used for classification purposes as it was

most successful in Experiment 2 (as outlined in Section 4.3) and has been used extensively

on audio ML applications [47, 221, 339]. A number of different kernels can be used with a

SVM, three are investigated here: the Radial Basis Function (RBF), Polynomial and Linear

kernels.
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Table 5.3 Default parameters used per kernel in the initial classification exercise. The ‘scale’ value
for the gamma parameter uses 1/(no. f eatures∗ variance) as value of gamma.

Kernel Parameters
Radial Basis Function C=1, gamma=‘scale’
Linear C=1
Polynomial C=1, degree=3, gamma=‘scale’

5.3.4 Performance Measures

Average Class Accuracy (ACA), precision and recall scores were used to evaluate model

performance. These measures have been introduced in Section 3.3.6. When building models

the data was first split into 5 stratified folds and to fit parameters the training set was further

divided into 4 stratified folds to form train and validation portions as outlined in Section 3.3.2.

The results reported are therefore averages across 5 folds.

To assess performance during AL runs an Area Under the Learning Curve (AULC) metric

was used to compare learning curves for different selection methods using a single number.

This metric utilises the same concept as the AUC metric introduced in Section 3.3.6, applying

it to the learning curve accuracy of models trained during the progression of AL as opposed

to a ROC curve (see Appendix B) which plots TP against FP rates for a number of thresholds.

AULC therefore calculates a single value to represent the area underneath the learning curve,

so trials using different selection methods can be compared.

5.3.5 Cross Validation Experiment

In a preliminary experiment optimal feature representation was investigated, firstly for

distinguishing between FG and nonFG sounds and secondly to examine which SVM kernel

works best on these data. An SVM with three different kernels (RBF, polynomial and linear)

was applied using default parameters outlined in Table 5.3.

Class weights were adjusted to penalise mistakes inversely proportional to the number of

instances in each class to adjust for the class imbalance in the dataset. Results showed that
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Table 5.4 Average Class Accuracy (ACA), and Class Accuracy scores for FG and nonFG classes per
kernel and feature representation. As noted, the ‘All’ representation is an amalgamation of the other 3.

Kernel Measure MFCC Chroma LPMS All
RBF ACA 72.2% 65.7% 73.9% 74.3%

FG 67.3% 53.6% 67.1% 69.7%
nonFG 77.2% 77.8% 80.7% 78.9%

Linear ACA 63.9% 53.1% 63.1% 60.3%
FG 45.9% 31.9% 38.5% 35.9%
nonFG 81.9% 74.3% 87.8% 84.8%

Polynomial ACA 72.4% 63.0% 73.4% 74.4%
FG 66.6% 61.0% 69.1% 70.1%
nonFG 78.3% 65.0% 77.7% 78.7%

extracted delta representations gave no improvement on the zero-order versions in this case,

and so these were discarded.

In addition to MFCC, chroma and LPMS zero-order representations one further repre-

sentation is investigated: a concatenation of these three, labelled the ‘All’ representation in

Table 5.4. This table also provides ACA and class accuracy scores per kernel and representa-

tion, where the best ACA performances are highlighted in bold typeface.

The best ACA score (74.4%) is achieved using the polynomial kernel on the ‘All’ rep-

resentation. The ACA score for the RBF (73.9%) kernel on the LPMS representation is

only slightly behind this, and training is considerably quicker using LPMS compared to

‘All’ representation. The MFCC and LPMS representations perform similarly to the ‘All’

representation, while the chroma is notably poorer. It was decided to proceed with the LPMS

representation as it performs slightly better than the MFCC and takes significantly less time

to train than the ‘All’ representation, while achieving scores only slightly lower. With regard

to kernel choice, RBF and polynomial kernels are observed to perform more strongly than

linear. The overall difference between RBF and polynomial is marginal, so the RBF kernel

was selected as it is more commonly used [340].
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5.3.6 Active Learning Process

As 3,002 instances were pre-labelled as described in Section 5.3.1, a simulated labelling

exercise was next conducted to assess AL for AH. A stratified, randomly selected hold-

out test set of 501 instances was extracted to measure performance. The remaining 2,501

instances form the pool of ‘unlabelled’ examples. Due to the random nature of the hold-out

test set and ‘unlabelled’ pool, three random splits are formed to counteract the chance of a

single iteration providing a misleading result. The results reported are therefore averages

over 3 iterations.

Agglomerative clustering was applied on the ‘unlabelled’ pool to select the first set of

instances forming 5 distinct clusters. A batch size of 10 instances were selected from the

cluster centroids, 2 from each cluster, as this has been shown to be an effective way to initiate

AL [310, 341]. During labelling runs, ACA was used to measure performance due to the

imbalanced class distribution. The initial instances were labelled, a model trained on them

and an ACA score calculated on the hold-out test set. The selection method was then used to

pick the next batch of 10 instances from the ‘unlabelled’ pool, these were labelled, added to

the other labelled instances and a new ACA score calculated on the hold-out test set. This

process was iterated until no instances remained to be ‘labelled’. The ACA values were used

to plot a learning curve used to compare methods both visually and with an AULC value.

The baseline comparison method used was a random selection strategy, which does not seek

to intelligently select instances for labelling.

5.4 Results

In total five selection methods are investigated:

• USAL, which uses a SVM to identify the instances closest to the classification decision

boundary.
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• Diversity EGAL, which uses the diversity measure from EGAL to select instances that

are most diverse from already labelled instances.

• Density EGAL, which uses the density measure from EGAL to select cluster centroids

from the most densely populated areas of the feature space.

• Hybrid EGAL, which combines density and diversity EGAL measures to select cluster

centroids that are most diverse from already labelled instances.

• Random selection, selects instances randomly. Three random selection runs are

implemented to account for randomness.

Figure 5.3 shows results of labelling runs from 10 to eventually 2,501 ‘labelled’ instances.

It includes a shaded area that denotes the maximum and minimum values achieved by random

selection for each batch, which demonstrates large variance.

The EGAL runs are noticeably strongest early in the training runs, all quickly achieving

scores in excess of 70% accuracy. USAL does not match this performance and indeed,

given the popularity of this method in other domains [303], is surprisingly less effective than

random selection method apart from the earliest section of the run under 70 labels. There is

considerable variance between the maximum and minimum scores from the random selection

method, showing it is not reliable in this application. Figure 5.4 focusses on the early portion

of the labelling run which tracks scores achieved between 0 - 500 labels.

This highlights the success of diversity EGAL, which achieves 74% ACA using only

50 labels. The other EGAL variants are fractionally behind this early result, but perform

similarly up to approximately 120 labels, with the performance of density EGAL being

notably strong beyond this point. The random selection strategy does not improve on the

accuracy level of diversity EGAL at 50 labels until it is provided 350 labels. USAL requires

1,410 labels to achieve the same. Table 5.5 offers a summary of ACA and AULC scores at

different points from each labelling run.
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Table 5.5 A summary of model accuracy and AULC scores for points in the labelling run per AL
method. Using Diversity EGAL it is possible to achieve high classification accuracy (74%), using the
50 most informative instances selected using this method.

No. Labels 50 100 200 500 2501

Method ACA Scores
Diversity EGAL 74.0% 72.5% 70.3% 70.2% 77.5%
Hybrid EGAL 72.7% 71.4% 70.5% 71.1% 77.5%
Density EGAL 70.7% 72.4% 73.8% 75.6% 77.5%
USAL 66.0% 65.2% 67.0% 70.1% 77.5%
Random 60.9% 67.8% 72.6% 75.4% 77.5%

AULC Scores
Diversity EGAL 20.4 57.1 128.9 338.4 1838.2
Hybrid EGAL 20.8 56.7 127.7 341.6 1845.2
Density EGAL 20.2 54.9 128.2 353.3 1900.8
USAL 17.8 50.4 117.5 323.1 1808.6
Random 17.2 48.6 117.9 340.4 1877.5

Here we see that the performance achieved from 2,501 labelled instances across the three

random splits used to compare selection methods was 77.5% ACA. In light of this, the score

of 74% from 50 labels achieved by diversity EGAL is a strong result, meaning that AL in

this instance can achieve 95.5% of total possible model accuracy using only 1.7% of labels.

As noted, using random selection, 350 labels, or 11.7% of the total, are required to improve

on this accuracy level.

The Friedman test to compare more than two samples and the Wilcoxon signed-rank as

a post-hoc test between pairs of samples are used for statistical analysis. In the case of the

Wilcoxon test a Bonferroni correction is applied for the significance level in order to reduce

the Type I error rate (identifying a significant effect where there is none) [342]. This results

in a revised significance level of 0.005 for the post-hoc Wilcoxon tests as 10 comparisons

are made. Additionally, for the Wilcoxon test, runs of 20 measurements are compared as

comparisons below this point are not recommended due to sample size [333]. The Friedman

and Wilcoxon are non-parametric tests that look for differences between related samples
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and are noted to be a safer option than using parametric tests as they do not assume normal

distributions or homogeneity of variance [343].

A Friedman test on the AL balanced accuracy values up to 200 labels provided is

significant at the 95% level (p = 8.03E-10). The Wilcoxon tests reveal that the differences

between EGAL variants are not significant to the revised significance level. However, the

differences between EGAL and USAL, and between EGAL and random selection methods

are significant to the revised significance level. This indicates that EGAL is superior to

both USAL and random selection at selecting instances on which a classifier can be built to

achieve high accuracy levels with minimal labelling. These results also suggest that there is

little difference between the EGAL variants in this instance, as the Wilcoxon comparison

results between EGAL runs are not significant.

5.5 Discussion

This chapter has explored a series of AL approaches to an AH labelling problem. In this

case, it has been found that it is possible to classify to 95.5% of maximum model accuracy by

labelling only 1.7% of dataset instances using the EGAL selection method. Using a random

selection strategy, it is necessary to select 350 instances (11.7% of the total) to surpass this

accuracy level. The large variance observed in scores using the random selection strategy

makes this an unreliable method in this instance, however. The poor performance of the

USAL selection method in this case is surprising given its popularity in other domains. This

is possibly due to the low number of confident predictions made by the SVM model, which

resulted in many instances with similar uncertainty scores, thereby making the selection of

informative instances more difficult.

DL techniques are acknowledged as state-of-the-art in the audio classification domain [27]

but are limited in terms of application to specific problems by the existence of suitable, large,

appropriately labelled datasets. In a real-world scenario where potentially millions of labelled
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instances are required for DL applications, the performance of EGAL in this instance suggests

a potential for significant savings on manual labelling effort in both time and money terms

for many audio ML problems based on subjective human perception and evaluation of

environmental sounds.

This is particularly interesting given the significance accorded to the emergence of large

datasets in other domains. For instance, the existence of ImageNet [344], consisting of over

14 million labelled images, is considered an important factor in the success of computer

vision techniques and the influence of the DL methods applied to them [20]. While a number

of large audio datasets are available [67, 345, 346] they are not labelled in a manner that

is universally appropriate for all audio ML problems. Having the ability to label these

datasets for other categorisation tasks is a useful contribution to knowledge, particularly for

applications where subjective judgement is required in the labelling process. Being able to

quickly and efficiently generate new labels for existing sound corpora has the potential to

facilitate the study of many more specific questions than would be the case if such datasets

required extensive manual labelling for each task. AH applied to the concept of variable

asset compression is one example of such a task.

Ultimately, the use of AL in this manner is a trade-off between the manual effort required

to label large numbers of instances and the increasing accuracy to be attained by sourcing

more manual labels. This work demonstrates that by intelligently selecting informative

instances over 95% of total possible accuracy can be reached using 1.7% of all labels.

However, scaling datasets to millions of instances even with the use of AL methods is still a

challenging logistical task, even if the selection of informative instances for the purposes

of labelling greatly reduces the manual workload. For example, to reach the same level of

performance on a dataset of 100,000 instances would require a minimum of 1,700 labels.

The approach shows promise, however, and for the purposes of this research is suitable for
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use in concert with data augmentation techniques and crowd-sourced labelling methods to

compile a large audio dataset with hierarchical labels.

5.6 Conclusion

This chapter has presented research which investigates the application of AL techniques

to a hierarchical audio labelling task. This process has involved a detailed assessment of

the SVM algorithm and associated kernel types, different feature representations and AL

selection methods on a hierarchical audio ML task. The work described therefore directly

addresses the following OBJ, initially outlined in Section 1.2:

OBJ 3: To assess the performance of supervised ML algorithms when predicting AH.

Investigating methods to efficiently label audio stimuli with hierarchical labels broadens

understanding of the phenomenon in a ML context and provides background for an assess-

ment of subsequent algorithm investigations. The work outlined here addresses the following

RQ:

RQ 3: Is it possible to accurately predict AH using supervised ML methods?

The RBF and polynomial kernels were noted to perform well in this task. It was also

found that high performance was possible using the LPMS feature representation even though

the training time was much shorter than when using a concatenated feature representation

including MFCC and chroma. EGAL was found to be the most effective selection method in

this case, outperforming both USAL and random selections, making it possible to classify to

95.5% of maximum model accuracy while requiring only 1.7% labelled instances.

It is intended to utilise the best methods identified during Experiment 3 to hierarchically

label a large corpus of audio data, and to further expand this corpus using data augmentation
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techniques. This dataset will also be suitable for use in deeper investigations on the function-

ing of AH, noted in Chapter 2 to be influenced by a series of factors such as sound context,

subject experience level and the physical characteristics of the sound itself. In summary,

Chapter 6 will describe a number of investigations, collectively designated Experiment 4 for

the sake of clarity, which will:

• Validate the accuracy of predicted labels using a dedicated validation set of manually

labelled instances.

• Build a corpus of 100,000 hierarchically labelled instances using crowd-sourced

labelling, AL and data augmentations.

• Examine the effect of different sound rating threshold values for determining FG/nonFG

instances.

• Compare the performance of DL and SVM algorithms on different dataset configura-

tions and feature representations.
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Chapter 6

Deep Learning for Auditory Hierarchy

6.1 Introduction

Work outlined in Chapter 5 has established that the EGAL algorithm can be used to minimise

the manual labelling required to label an auditory corpus with hierarchical labels. Chapter 3

has provided an overview of the audio ML domain and highlighted that deep learning

algorithms tend have superior performance, once they are supplied with sufficient data, in

other ML domains such as computer vision and environmental sound classification. The

work outlined in this chapter compares the performance of a popular DL algorithm (CNN)

against the SVM used in prior experiments.

This was firstly approached by applying EGAL to a corpus of unlabelled instances to

identify those most informative for labelling purposes. These were then manually labelled

and used to train a model to predict labels for the remaining unlabelled instances. Secondly,

in order to validate the accuracy of predicted labels, a randomly selected validation set was

also manually labelled. These manual labels were then compared to those predicted for

the validation instances to validate the accuracy of labels predicted for Experiment 4. The

methods used for labelling were the same as those employed for Experiments 1 and 3.
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Fig. 6.1 Methodology overview for Experiment 4.

Thirdly, different category threshold values were used to categorise ‘FG’ and ‘nonFG’

instances, as it is possible that different audio applications would require differing categorisa-

tion criteria. For example, acceptable performance for a variable compression codec may

be achieved by focussing on some of the ‘most FG’ sounds. An auto-mixing application

for content creators may need to have a broad definition of ‘FG’ in order to be effective.

Therefore, an investigation of models trained using different thresholds is of interest in the

context of audio applications.

Fourthly, the category threshold selected was used to apply labels to all remaining

unlabelled instances and data augmentations were applied to bring the total number of

instances to 100,000. CNN and SVM algorithms were then trained on a number of dataset

and feature representation configurations to assess performance. The chapter concludes with

a discussion of results and suitability of each algorithm for the task of predicting AH. An

overview of the methodology for this experiment is offered in Figure 6.1.

6.2 Active Learning Experiment

This section outlines an experiment that applies the EGAL selection method to an unlabelled

audio corpus to select the optimal instances for manual labelling, such that a model can be
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trained to label instances accurately. The accuracy of the labels predicted using this method

is checked using a dedicated validation split.

6.2.1 Methodology

The assets and techniques described in the following have been introduced in Chapters 4 and

5. Here they are elaborated upon only if they differ from methods introduced prior.

For this study the ESC datasets [101] are again used as a source of stimuli. In the

following work 10,000 sounds selected as described in Section 5.3.1 comprise the initial

dataset. These are divided into a corpus L of 3,002 stimuli which have been manually labelled

as described in Chapters 4 and 5, and an unlabelled corpus U of 6,998 stimuli.

A Log Power Mel Spectrogram (LPMS) feature representation was used in this investiga-

tion, as it was found to be an effective compromise between performance and processing time

in Experiment 3. The same settings are used here to perform extraction. The SVM algorithm

was used to build models in order to provide a point of comparison with Experiment 3 in

which they were found to be effective. ACA, precision and recall scores are used to evaluate

model performance.

Active Learning Process

EGAL was applied to U in an iterative manner, selecting 10 instances at a time to select in

total 5% (350) of the instances in this corpus as being the most informative for the purposes

of predicting labels for all of U . The batch size of 10 and label budget of 350 instances

are based on those outlined in Chapter 5, which achieves 95.5% of model accuracy when

trained using 1.7% of the most informative instances. For clarity, the 350 instances selected

by EGAL and removed from U will henceforth be referred to as ‘EGAL Instances’. From

the remaining instances in U , 247 were selected at random to form a label validation split

and will be referred to as ‘Validation Instances’.
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The instances thus selected were then deployed to the online labelling environment used

for previous experiments described in Chapter 4. Subjects, sourced from the TU Dublin

school of media and participants in previous studies, were asked to label the instances as

either BG, N or FG. The numerical coding (BG=1, N=2, FG=3) was used to calculate

an average rating score for each instance which was used to rank sounds on a BG to FG

scale. Presentation order was controlled using random orders sourced from www.random.org

and every sound was rated at least 3 times. Subjects were asked to listen to sounds using

headphones in a quiet environment and not to adjust their volume for the duration of the

session, having set it to a comfortable level in an initial training phase.

Validating Predicted Labels

An average score threshold of ≥ 2.5 was initially used to form a binary categorisation schema

of FG (≥ 2.5) and nonFG (< 2.5) sounds. Applying a threshold of 2.5 results in the class

distributions presented in Table 6.1. It should be noted that there is a significant difference

in the class distributions between different sound sets. The instances in L, which were not

selected using an intelligent selection criteria such as EGAL, contain 20.1% FG instances.

EGAL Instances have a greater proportion of FG sounds, suggesting a tendency in the EGAL

algorithm to select FG instances as being more informative for labelling purposes. The

Validation Instances by comparison, selected at random before labels were gathered, contain

only 12.1% FG instances, which has an implication for model accuracy that will be relevant

in subsequent discussions. This is possibly because of the propensity of the EGAL algorithm

to select a higher proportion of FG instances, therefore leaving fewer in the pool from which

the Validation instances were selected at random.

A grid search using a stratified 5-fold CV to fit parameters using the parameter grid

outlined in Table 6.2 was then applied to all manually labelled (3,352) instances. The best

parameters were then used to build a model trained on all labelled instances, and this model
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Table 6.1 Class distribution of the splits used in both Active Learning process and subsequent
validation.

Split Total FG nonFG % FG

L 3,002 602 2,400 20.1%
EGAL Instances 350 128 222 36.6%
Validation Instances 247 30 217 12.1%

Totals 3,599 760 2,839 21.1%

Table 6.2 An outline of grid search parameters used. ‘C’ is the only parameter varied for the linear
kernel. The ‘degree’ parameter is varied for the polynomial kernel only.

Parameter Values

kernel radial basis function, polynomial, linear
C 0.001, 0.01, 0.1, 1, 10, 100, 1000
gamma ‘scale’, 0.01, 0.1, 1, 10, 100
degree 2, 3, 4

was used to predict labels for the Validation Instances. These labels were then compared to

subjective manual labels acquired for these instances in the labelling exercise to generate

accuracy scores.

6.2.2 Results

ACA and class accuracy scores for the labels predicted for the Validation Instances are

reproduced in Table 6.3, which compares them to the performance noted in Experiment 3

achieved using 3,002 manually labelled instances and the same algorithm, kernel and feature

representation. For reference, see the performance noted on the RBF kernel and LPMS

feature representation in Table 5.4, Section 5.3.5. Table 6.4 provides a classification report

on the accuracy of predicted labels, where the ‘f1 Score’ is a harmonic mean of the precision

and recall scores and ‘Support’ indicates the number of instances for each class.

These findings demonstrate that the results on Validation Instances are in line with those

achieved previously. This indicates that the EGAL algorithm has been successful in selecting
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Table 6.3 A comparison of accuracy scores achieved on the Validation Split in the current instance
compared to results noted in Experiment 3.

Metric Experiment 3 Validation Instances

ACA 73.9% 76.4%
FG Class Accuracy 67.1% 66.6%
nonFG Class Accuracy 80.7% 86.2%

Table 6.4 A classification report outlining the accuracy of predicted versus manual labels for the
Validation Instances.

Category Precision Recall f1 Score Support

nonFG 0.95 0.86 0.90 217
FG 0.40 0.67 0.50 30

a minimal number of informative instances that allow a model to be trained to high accuracy

to predict labels on an unseen corpus. However, an asymmetry between FG and nonFG

class results was noted and is reflected in prior work also. In this case, precision (95%) and

recall scores (86%) are strong for the nonFG class but noticeably poorer for the FG class,

particularly in the case of the FG Precision score which is only 40%, meaning that of all

the instances predicted as FG by the model only 40% are actually of that class. However,

FG Recall is better at 67%, meaning two thirds of the FG instances are correctly predicted.

The relatively low proportion of FG instances is possibly at fault in this case. To summarise,

this means many nonFG instances are incorrectly predicted as FG, but 95% of the nonFG

predictions are correct.

SVMs classify instances based on which side of a decision boundary they lie. A negative

or positive margin value is generated for each prediction denoting instance distance from

the decision boundary, with the sign value denoting class prediction. The margin value

for all Validation Instances was analysed for patterns to investigate if it could be used to

tune the results of the model trained to predict labels. Implementing a revised boundary of

≤−0.937 in this instance results in the confusion matrix provided in Table 6.5, though this

would obviously come with the risk of overfitting the model to the dataset. This example
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Table 6.5 A confusion matrix achieved by tuning the margin information provided by the SVM model.
A margin value of -0.937 was used to classify instances.

n=247 Predicted: nonFG Predicted: FG

Actual: nonFG 100 117
Actual: FG 0 30

demonstrates however that the margin information may be used to optimise classification of

FG instances at the expense of incorrectly capturing more nonFG instances as FG.

6.2.3 Discussion

As noted previously, the best performing model achieves 76.4% ACA when comparing the

predicted labels to those derived from manual labelling on the validation instances. This is

a similar accuracy score to that observed in a previous experiment (73.9%) using similar

data and methods, which suggests that Active Learning, specifically EGAL, is an effective

method for minimising the number of instances required to achieve high accuracy when

using those instances to train a model to predict AH. This in turn suggests EGAL would

be an effective method for selecting informative instances with the goal of labelling large

corpora of auditory stimuli with minimal manual effort.

Further examination of these results highlights the fact that focussing on FG class

accuracy may not be the only option for audio ML tasks. Focussing on correctly identifying

nonFG instances may be an effective strategy when seeking to identify less important objects

for automated mixing tasks, given the high precision score (95%) achieved on this class

(see Table 6.4). While the lower recall score of 86% would mean many nonFG instances

are misclassified as FG, the confidence with which nonFG instances are predicted means

that a large proportion of audio assets can be identified as being suitable for mixing to less

prominent positions. This should however be considered in light of the imbalanced class

distribution noted.
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Additionally, on examining the margin information used by the SVM algorithm to classify

instances, it should be noted that the classification can be manipulated by tuning the decision

boundary. This would reduce the number of FG instances that are misclassified as nonFG, at

the cost of poor precision in terms of the FG prediction (see the confusion matrix provided

in Table 6.5). This approach may be suitable for certain applications as it isolates 46.1% of

instances as being definitively nonFG, but it should be stressed that the margin applied in this

example could not be considered universally applicable. Simply put, these results suggest

that some optimisation of model prediction is possible, but forcing universal capture of all

FG instances in this example is only achieved at the cost of incorrectly categorising more

than half of all nonFG instances as FG. Also, fine-tuning in this manner would require a

large data sample in order to provide confidence the tuning would generalise reasonably to

unseen data.

The hierarchical labelling task has been framed in a simplified manner in order to subject

it to ML analysis. Given the subjective nature of the task, it is not surprising that considerable

variance can be observed in the average rating scores, sourced from human participants,

for some sounds. While a certain subset of sounds can be identified as FG, subject to the

definition of a suitable threshold, this does not confer unanimity between subjects as to the

correct category for every sound. This lack of consensus manifests as noise in the labelling

schema, which could be considered to have an adverse effect on the accuracy of any model

trained using the data and therefore any labels predicted for unseen instances. In light of this,

the ACA of 76.4% achieved on Validation Instances (see Table 6.3) should be considered a

strong result, accepting that the performance on FG instances is not ideal.

It has been noted that there is an imbalance in the class distribution of the Validation

Instances relative to the other two splits, as outlined in Table 6.1. This was unavoidable, as

labels were not known for these instances before they were selected at random. The tendency

of the EGAL algorithm to select FG instances as being more informative has also been noted,
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meaning fewer FG instances remained in the unlabelled pool for selection in the validation

split. It is therefore possible the preponderance of nonFG instances in the validation set has

resulted in a misleading performance.

This section has outlined an experiment investigating the accuracy of predicted hierarchi-

cal labels in an AL task applied to audio stimuli has been outlined. The following section

outlines an experiment examining the effect of threshold value on model performance.

6.3 Category Threshold Experiment

As noted in Section 6.2.1 an average rating score value of ≥ 2.5 has been used to classify

manually labelled instances as either FG or nonFG to this point. The value was chosen to

strike a balance between the large proportion of sounds participants found difficult to rate

(having an average rating of approximately 2) and the much smaller proportion of sounds

definitively identified as FG (having an average score of 3). The suitability of this threshold to

any given application of hierarchy prediction would require validation via perceptual testing,

and other thresholds may potentially be of greater suitability for different applications. In

light of this, it would therefore be of interest to examine potential thresholds to investigate

the performance of models trained using them.

6.3.1 Methodology

To begin all 3,599 manually labelled instances were pooled and the distribution of all average

ratings examined (see Table 6.6). The values of 2.2 and 2.75 were selected for use as

additional thresholds to 2.5, as these values provide a roughly even decrease in the proportion

of FG instances as the threshold value increases. The resulting class distributions and

proportion of FG instances per threshold are noted in Table 6.7. Feature representations,

models and metrics are as those outlined in Section 6.2.
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Table 6.6 A frequency table showing the count per average rating for all 3,599 manually labelled
instances.

Average Rating Count

1.00 748
1.17 1
1.20 23
1.25 40
1.33 508
1.40 14
1.50 38
1.60 10
1.67 505
1.71 1
1.75 26
1.80 16
2.00 455
2.20 9
2.25 38
2.33 402
2.40 5
2.50 28
2.60 9
2.67 292
2.75 28
2.80 9
2.86 1
3.00 393

Table 6.7 Class distribution per threshold value. An instance is classified as FG for a particular
threshold if its average rating value is greater than or equal to the threshold value.

Threshold Value Total FG nonFG % FG

T ≥ 2.2 3,599 1,214 2,385 33.7%
T ≥ 2.5 3,599 760 2,839 21.1%
T ≥ 2.75 3,599 431 3,168 11.9%
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To assess performance 3 random, stratified, 20% test splits were implemented for each

threshold level to account for random variation in test data selection. Results reported are

therefore averages from the 3 models built for each threshold to account for any abnormal

variations in the data, which could lead to misleading performance for a particular selection

of data. For each test split, a parameter grid search was then conducted on the training portion

of the data using a 5—fold CV across the parameter values outlined in Table 6.2. The best

performance observed from the CV was assessed using ACA scores, and from this a model

was built using all training data and tested on the test split. This process was repeated for

each test split and the scores averaged to arrive at a score for each threshold.

6.3.2 Results and Discussion

Figure 6.2 provides the average scores achieved by models for each threshold. From this it

can be observed that the variation in ACA scores achieved across thresholds is small (lowest

73%, highest 77%). FG precision gets progressively worse with higher threshold values and

conversely, nonFG precision improves as the threshold increases. Note from Table 6.7 that

the classes become quite imbalanced as the FG threshold increases with only 11.9% of the

dataset classified as FG when T ≥ 2.75.

Overall, the results suggest that accurately predicting FG instances is a difficult task

where many false positive predictions (nonFG sounds classified as FG) will be made. This is

reflected most starkly using the T ≥ 2.75 threshold, where only 27% of FG predictions will

be correct. Set against this is the fact that 97% of nonFG predictions will be correct, meaning

if our goal is to simply split assets into two groups, there can be confidence that the nonFG

predictions are predominantly correct. On the other hand, the FG grouping contains many

incorrect predictions, but captures 4 out of every 5 FG instances correctly. The division of

assets in this scenario is not precise, but this may be useful for specific applications.
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Fig. 6.2 A comparison of scores noted for different thresholds. Note that ‘FG P’ denotes FG Precision,
‘FG R’ FG Recall etc.

Using the T ≥ 2.5 threshold this division is relatively more accurate, but FG precision

is still poor (42%) and FG recall has dropped to 73%, meaning roughly 3 in every 4 FG

instances are correctly predicted as such. A similar issue to T ≥ 2.75 is observed at T ≥ 2.5,

where many nonFG instances are incorrectly predicted as FG. However, while more than

half of FG predictions at this threshold are wrong, this is actually an improvement from that

observed using T ≥ 2.75, where almost three quarters of FG predictions are incorrect. It is

also worth noting that there are almost twice the number of FG instances using T ≥ 2.5 as

opposed to T ≥ 2.75. This means that, under T ≥ 2.5, 73% (555 of 760) FG instances can be

correctly identified, whereas at T ≥ 2.75, 80% (345 of 431) of FG instances can be correctly

identified.

By far, the strongest FG precision score (63%) is observed using the T ≥ 2.2 threshold,

which contains the largest number of FG instances (1,214, or 33.7% of the total). The FG

recall score here is on a par with the best achieved in this exercise and equates to correctly
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predicting 79% (959 of 1,214, or 4 out of every 5) FG instances, indicating that almost

the same proportion of FG instances can be identified at this threshold as at T ≥ 2.75

(80%). Ultimately, the separation of categories is somewhat neater at T ≥ 2.2 than at other

thresholds. Returning to the example of a variable compression codec, if T ≥ 2.2 were

used as the threshold to categorise FG instances, this indicates that a lower bitrate could

be applied to more than half of auditory assets (2,385, or 66.3% of all those designated as

nonFG under this threshold, see Table 6.7). Just as importantly, this could be done while

retaining confidence that 79% of FG instances (based on FG recall figure of 79%) could be

correctly classified as FG and could therefore be accommodated with a higher quality level.

A discussion around threshold selection would not be complete without accounting for

the significance of threshold choice in the audio domain. The T ≥ 2.75 threshold focusses on

those instances where the greatest consensus exists for nominating a particular instance as

FG. For the purposes of this research these should be regarded as the most critical instances

to capture as theoretically the consequence for missing one is more likely to be noticed

in the context of a variable compression codec. In contrast, the T ≥ 2.2 threshold can be

considered a much broader categorisation of what constitutes a FG sound, given nearly three

times as many sounds are labelled as FG under this threshold as under T ≥ 2.75. Given

this more inclusive classification includes many instances with a weaker consensus for FG

categorisation, it could be considered that miscategorisation of an instance at this threshold

would be less likely noticed in the context of a variable compression codec. Use of T ≥ 2.5

could be viewed as a compromise choice between the two extremes represented by the other

thresholds.

Ultimately, the results do not support a universal optimal threshold for dividing instances

into FG and nonFG categories. However, useful classification is achieved to some extent

using each of the thresholds investigated. Making a choice of an optimal threshold is therefore

dependent on the priorities for the application at hand, there being no clear winner among
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those examined in terms of the model accuracies observed in this case. In practical terms,

variable compression codecs can still benefit from a non-ideal level of accuracy in either

FG or nonFG categorisation. Though FG prediction is more important, higher accuracy in

nonFG predictions will also improve codec performance by accurately identifying instances

where the heaviest compression can be applied. In this respect, accurate nonFG predictions

can thus add value to the overall compression strategy.

The subjective nature of the labelling task has been observed as contributing to noise

in the data. The lack of perceptual testing to determine the optimal threshold has also been

noted, and in this light it would then seem prudent to adopt a broad threshold to define FG

sounds, rather than narrowly constrict the categorisation. For this reason, T ≥ 2.2 was used

in the following Deep Learning experiment.

These results constitute a useful starting point for the construction of a variable compres-

sion codec. Given a situation where an ability to manipulate the most important elements

of a sound scene is required, it can reasonably be suggested that priority would be given to

identifying as many FG instances as possible, with a tolerance for capturing some nonFG

instances as part of this process once the majority of FG were identified. The results outlined

above indicate capture of a majority of FG cases with a high precision of nonFG predictions,

meaning a significant proportion of assets can be isolated as suitable for variable compres-

sion treatment. This also suggests that improving the accuracy of these models would be a

worthwhile undertaking, given the poor precision of FG predictions observed. To this end, a

Deep Learning algorithm is next investigated.

6.4 Deep Learning Experiment

Section 6.2 has described an AL exercise which validates the accuracy of labels predicted

by a model trained using minimal manual labelling on instances selected using the EGAL

selection method. Section 6.3 has compared different FG threshold values and discussed
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classification performance and the implications of threshold choice. The following section

outlines an experiment which compares SVM and CNN algorithms trained using different

feature representations and data augmentations in order to identify which are most useful for

predicting AH.

6.4.1 Methodology

In the following methods are described in brief except where they differ from those used in

previous experiments. This section outlines the algorithms chosen for comparison, the data

representations and augmentations used to train models and also includes a description of

how labels were predicted for all remaining instances in the unlabelled set, U .

Dataset and Feature Representations

Table 6.7 provides a breakdown by threshold for all 3,599 manually labelled instances.

The T ≥ 2.2 threshold was used to categorise these instances, fit parameters and train an

SVM model to predict labels for the remaining 6,401 instances in U giving a total labelled

corpus of 10,000 sounds. The class distribution of these 10,000 instances is 39% FG, 61%

nonFG meaning the FG proportion is slightly larger than that observed on manually labelled

instances only using the T ≥ 2.2 threshold (33.7%). This is not surprising given the FG

precision score (63%) noted for this threshold in Figure 6.2 which suggested that 37% of

instances predicted as FG would be incorrect.

Data augmentations, introduced in Section 3.7, are applied to the 10,000 instances which

have a mixture of manually applied and predicted labels to expand the dataset to a total

of 100,000 instances. A total of 6 pitch augmentations are extracted using the Python

LibROSA [335] sound library employing the following pitch shift values in semitones: -2.5,

-2, -1, 1, 2, 2.5. Parameters for 3 DRC augmentations are outlined in Table 6.8 and have
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been drawn from standard presets provided with Adobe Audition [347], editing software

commonly used in media production environments.

Table 6.8 Parameter settings for the DRC augmentations. In the following, ‘ms’ are milliseconds,
‘dB’ are Decibels, ‘CSK’ refers to ‘Classic Soft Knee’, ‘SL12’ to ‘Soft Limit -12dB’ and ‘SL24’ to
‘Soft Limit -24db’.

Parameter CSK SL12 SL24

Look-Ahead Time (ms) 3 3 3

Input Gain (dB) 0 0 0
Attack Time (ms) 1 1 1
Release Time (ms) 300 300 300

Output Gain (dB) 0 8 16
Attack Time (ms) 10 5 5
Release Time (ms) 250 15 15

The feature representation used in this instance was based on that outlined in Section 6.2.1

with the addition of delta and double-delta data for the purposes of comparison. A summary

of feature representations is provided in Figure 6.9. Here, ‘10k’ indicates the pool consisted

of 10,000 instances (manual and predicted labels only), ‘100k’, means the pool consisted

of 100,000 instances, using manual and predicted labels in addition to data augmentations,

‘Zero Order’ indicates the model was trained using a Zero Order data representation only and

‘Delta’ indicates that delta and double delta representations were used to train the model in

addition to the zero order representation. ‘SVM 10k Zero Order’ therefore indicates an SVM

algorithm trained using 10,000 instances with a zero order representation only. Similarly,

‘CNN 100k Delta’ indicates a CNN algorithm trained from a pool of 100,000 instances with

a zero order and a delta representation. Delta data is employed to capture temporal change

effectively and has been successfully used in similar research [106].

Impact of SVM Predicted Labels

It was hypothesised that use of an SVM to predict labels for a dataset then used to compare

performance of SVMs and other algorithms would infer an advantage to the SVM. A toy
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Table 6.9 A summary of feature representation pools used when building SVM and CNN models.

Model Dimensions

SVM 10k Zero Order 10,000 x 6,280
SVM 10k Delta 10,000 x 18,840
CNN 10k Zero Order 10,000 x 40 x 157 x 1
CNN 10k Delta 10,000 x 40 x 157 x 3

SVM 100k Zero Order 100,000 x 6,280
SVM 100k Delta 100,000 x 18,840
CNN 100k Zero Order 100,000 x 40 x 157 x 1
CNN 100k Delta 100,000 x 40 x 157 x 3

simulation was used to investigate and attempt to quantify the impact. To begin, 500 instances

were selected in a random but stratified manner from the 3,599 manually labelled instances to

form the toy dataset using the ‘SVM 10k Zero Order’ representation and T ≥ 2.2 threshold

labels. To simulate the same proportion of labelled to unlabelled instances in the entire dataset

180 of the toy instances were used to train a model and predict labels for the remaining 320

instances of the toy dataset. All models built for this exercise employed a 5—fold CV. Finally,

models were built on two versions of the toy dataset, one consisting of 500 instances with

manually applied labels and the other of 180 instances with manual labels and 320 instances

with predicted labels. A graphical representation of this process is offered in Figure 6.3.

It was observed that the models built with a mix of manual and predicted labels outper-

formed the models built solely with manual labels by an average of 15.01% ACA per fold.

The scores were compared using a Kruskal Wallace H-test and were found to be significant

at the 5% level. This indicates that the SVM would enjoy an advantage in any algorithm

comparison experiment, and thus any direct comparison would be confounded. Speculatively,

it is possible that the small size of the dataset used in the assessment compounds the differ-

ence in scores noted and that this disparity would not be as stark with larger datasets. It was

decided to proceed with building SVM and CNN algorithms while noting this exercise, as
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500 instances selected in a
random, stratified manner

from 3,599 manually labelled
instances.

Dataset Size: 500

180 of these instances are
selected, again in a random,

stratified manner.

These 180 instances are
used to build a model which
is used to predict labels for

the remaining 320 instances
of the toy dataset.

All (500)
manual labels.

180 manual
labels plus

320 predicted
labels.

Two datasets are then
formed, both with 500

instances.

The labelling schemas of
these datasets differ.

The performance of models built on these
datasets is compared.

Fig. 6.3 The process and dataset details for comparing the performance of SVMs trained using all
manual and a mixture of manual and predicted labels.

useful conclusions may still be drawn, particularly if CNN performance is noted as being

similar to, or surpassing, that of an SVM.

Building Models

When building SVMs and CNNs, models were evaluated using ACA, precision and recall

scores as outlined in Section 6.2.1. Three randomly selected, stratified, hold-out training/test

sets of size 80/20 were implemented for representations having 10,000 instances: those

without augmentations. Care was taken with representations having 100,000 instances to

ensure that augmentations of instances in the test set were removed from the training set, as

otherwise this would constitute data leakage. As the nature of the dataset would not allow

a simple 80/20 split because of this consideration, three randomly selected test sets were

formed from non-augmented instances, each of these consisting of approximately 3,333

instances. The training set was then formed for each test split by removing augmentations of

the test set instances from the training set. This resulted in train set sizes of approximately
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Table 6.10 Train and test split sizes used to train SVM and CNN models.

Split Number No. of Instances Train Set Size Test Set Size

All Splits 10,000 7,999 2,001
1 100,000 60,003 3,333
2 100,000 60,003 3,333
3 100,000 59,994 3,334

Table 6.11 An outline of the smaller parameter grid used for large data representations.

Parameter Values

kernel radial basis function
C 0.01, 0.1, 1
gamma ‘scale’, 0.1, 1

60,003 instances. The metric scores reported for each model are therefore averages across

three test splits. Train and test split sizes are presented in Table 6.10.

A 3—fold CV was performed on the training data for SVM models to fit parameters

using a validation split. Those built on 10,000 instances used the same parameter grid as that

presented in Table 6.2. Those built on 100,000 instances utilised a smaller parameter grid

(presented in Table 6.11) due to the memory and time required to fit parameters on the larger

representation. In selecting a reduced parameter grid, it was decided to focus on the RBF

kernel only, due to the performance of this kernel in previous exercises. Furthermore, the

‘SVM 100k Delta’ model required a slightly different approach, as the memory requirement

was still too large to fit parameters on all training instances at once given the size of this

feature representation. As a result, the training set was split into 3 to fit parameters for this

model.

CNN models were built by experimenting with model architecture and parameters using

the training and validation data. Number and level of dropout, size of filter, numbers of

filters, stride and padding parameters, activation function type, optimisers and numbers of

layers were varied to examine their effect on model performance. The Adam optimiser

was ultimately used on all CNN models. The loss metric used was binary cross entropy.
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Examples of finalised CNN architectures used are provided in Table 6.12, for the ‘CNN 10k

Zero Order’ model and Table 6.13 for the ‘CNN 100k Delta’ model.

Where applicable, the McNemar test was used to compare model predictions for statistical

significance as it is recommended by Dietterich [348] in cases where it is prohibitive to run

many iterations of a model using different randomly selected test splits, as was found here in

the case of the ‘SVM 100k Zero Order’ model. While 3 random splits were implemented,

this does not provide enough samples to make meaningful use of the Wilcoxon and Friedman

statistical tests used in previous experiments. To make a comparison of models using

McNemar’s test, an 2 x 2 contingency table must be compiled from the predictions made

by two models, as outlined in Table 6.14. The test can then be conducted by comparing

the classification errors made by each model using Equation 6.1. A statistically significant

result indicates that the two models have different performance, as the errors they make are

in different proportions Dietterich [348]. In this case, the test was applied for each random

hold-out test split, giving three iterations for each comparison. Therefore, ACA, precision

and recall scores averaged across hold-out test splits are used to evaluate model performance

and the McNemar test is used to determine if there is a statistically significant difference

between the errors made in each test split.

(|AnotB−BnotA|−1)2

AnotB+BnotA
(6.1)

Algorithm Choice

For this exercise, SVM and CNN models were evaluated. SVMs, as outlined in Section 6.2,

were used to provide consistency with prior research outlined in Chapters 4 and 5 where they

were selected due to extensive use in the audio domain [47, 224, 255, 277, 339]. As noted in

Section 6.4.1 however, they enjoy an advantage in this context because the model used to

predict labels for a portion of the dataset was an SVM.
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Table 6.12 An example of CNN architecture applied in this research, in this instance the final
configuration for the ‘CNN 10k Zero Order’ model. An initial architecture based on that described
by Chen et al. [7] was implemented and adapted for each CNN outlined in Table 6.9. The notation ‘5
x 5 Conv2D(pad=2, stride=2) x 12 - BN - ReLU - DO(0.3)’ denotes a 2D convolutional layer with 12
filters of size 5 x 5 followed by batch normalisation, ReLU activation function and Dropout where
p=0.3.

Layer Name Settings

Input 10,000 x 40 x 157 x 1

Convolution 1
5 x 5 Conv2D(pad=2, stride=2) x 12 - BN - ReLU - DO(0.3)

3 x 3 Conv2D(pad=1, stride=1) x 24 - BN - ReLU
2 x 2 MaxPooling

Convolution 2

3 x 3 Conv2D(pad=1, stride=1) x 48 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 48 - BN - ReLU

3 x 3 Conv2D(pad=1, stride=1) x 48 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 48 - BN - ReLU

2 x 2 MaxPooling

Convolution 3

3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU - DO(0.3)

2 x 2 MaxPooling

Convolution 4

3 x 3 Conv2D(pad=1, stride=1) x 128 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 128 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 128 - BN - ReLU - DO(0.3)
3 x 3 Conv2D(pad=1, stride=1) x 128 - BN - ReLU - DO(0.3)

2 x 2 MaxPooling

Pooling Flatten()
Dense() x 128 - BN - ReLU

Output Dense() x 2 - Sigmoid

175



Deep Learning for Auditory Hierarchy

Table 6.13 An example of CNN architecture applied in this research, in this instance the final
configuration for the ‘CNN 100k Delta’ model. The notation ‘5 x 5 Conv2D(pad=2, stride=2) x 12
- BN - ReLU - DO(0.2)’ denotes a 2D convolutional layer with 12 filters of size 5 x 5 followed by
batch normalisation, ReLU activation function and Dropout where p=0.2.

Layer Name Settings

Input 100,000 x 40 x 157 x 3

Convolution 1
5 x 5 Conv2D(pad=2, stride=2) x 12 - BN - ReLU - DO(0.2)

3 x 3 Conv2D(pad=1, stride=1) x 24 - BN - ReLU
2 x 2 MaxPooling

Convolution 2
3 x 3 Conv2D(pad=1, stride=1) x 48 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 48 - BN - ReLU

2 x 2 MaxPooling

Convolution 3

3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 56 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 96 - BN - ReLU

2 x 2 MaxPooling

Convolution 4
3 x 3 Conv2D(pad=1, stride=1) x 128 - BN - ReLU
3 x 3 Conv2D(pad=1, stride=1) x 128 - BN - ReLU

2 x 2 MaxPooling

Pooling Flatten()
Dense() x 128 - BN - ReLU - DO(0.5)

Output Dense() x 2 - Sigmoid

Table 6.14 Composition of a contingency table based on the results of two models, A and B.

Number of instances misclassified by
both A and B (AandB)

Number of instances misclassified by
A but not by B (AnotB)

Number of instances misclassified by
B but not by A (BnotA)

Number of instances misclassified by
neither A nor B (AnorB)
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Table 6.15 Summary of average ACA, precision and recall scores noted across three randomly selected
hold-out test sets. Note that ‘P’ indicates Precision and ‘R’ indicates Recall in the following.

MODEL ACA FG P FG R nonFG P nonFG R

SVM Manual Labels Only (3,599) 77.5% 63.3% 78.7% 88.0% 76.3%
SVM 10k Zero Order 81.1% 76.0% 78.0% 86.0% 84.0%
SVM 10k Delta 77.6% 74.7% 70.7% 81.7% 84.3%
SVM 100k Zero Order 78.2% 74.3% 72.3% 83.0% 84.0%
SVM 100k Delta 78.6% 75.0% 73.0% 83.0% 84.7%

CNN 10k Zero Order 82.2% 78.0% 79.0% 86.3% 85.7%
CNN 10k Delta 81.4% 78.3% 76.0% 85.0% 86.7%
CNN 100k Zero Order 80.9% 76.0% 77.3% 85.0% 84.3%
CNN 100k Delta 80.6% 78.7% 74.0% 84.0% 87.0%

CNNs were chosen as they are extensively used in audio DL tasks including environmental

sound classification where Sailor et al. [104] have derived the most successful model for

sound categorisation at time of writing based on the ESC-50 dataset [101] with a classification

accuracy of 86.5%. Indeed, CNNs feature strongly throughout this leaderboard [105, 295].

CNNs are also well represented in successful solutions to the DCASE 2017 [15, 349]

environmental sound classification challenges [7, 21, 300].

6.4.2 Results and Discussion

The average scores achieved by each classifier are summarised in Table 6.15, which corre-

sponds in terms of feature representations used to Table 6.9. The only exception is the first

model, an SVM trained using manually sourced labels only, which was used to predict labels

as described in Section 6.4.1. This is provided as a baseline to give context for the scores

achieved by the other models, which are all trained using a mixture of manual and predicted

labels.

Performance of the SVM models trained using a mixture of manual and predicted labels is

marginally ahead of that noted for the SVM trained on manual labels only. The performance

improvement is much smaller than that noted in Section 6.4.1, where it was observed that the
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models built with a mix of manual and predicted labels outperformed models built solely

with manual labels by an average of 15.01% ACA per fold. The difference in scores is much

smaller here, being of the order of 0.1 - 4.7%. Indeed, when examining nonFG precision

(88.0% versus 86.3%) and FG recall (78.7% versus 79.0%) the model trained entirely on

manual labels either surpasses or is only very marginally behind the best score noted on

models trained using manual and predicted labels. This aligns with the speculation that the

advantage enjoyed by the SVM in this respect may decrease as dataset size grows.

Little benefit appears to be derived from the use of data augmentations for SVMs. The

best ACA score noted on SVMs is trained without augmentations, 81.1%. This contrasts

with 78.6%, the best score noted using augmentations. This is not particularly surprising,

given there is no context in the literature for using data augmentations to train SVMs. In

terms of feature representations, it again appears that there is little benefit in this case to

using delta data, with the best ACA score noted for SVMs being achieved using a zero order

representation. Note that the SVM trained on 10,000 instances of zero order data outperforms

the equivalent model trained using a delta representation in all metrics except nonFG recall,

and there only marginally, by 0.3%. The opposite is the case with SVMs trained using

augmentations, with the delta variant performing either equally or marginally better than the

zero order model. The scale difference is larger in the models trained without augmentations.

For example, FG recall on the zero order model outperforms the delta model by 78.0% to

70.7%. The largest difference between metrics noted in models trained with augmentations is

0.7%. McNemar tests carried out on the three splits comparing SVMs trained on zero order

versus delta representations were statistically significant to the 5% level for all three splits

for models trained on 10,000 instances. However, for SVMs trained using a pool of 100,000

instances only one split found a statistically significant split on the proportion of errors made

by each model.
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In all, this indicates that practitioners should strongly question the utility of using delta

data representations and data augmentations to build SVM models to predict AH. The

larger representations are considerably more cumbersome to train in terms of the time and

compute required, and thus could not be advised based on the results noted in this case.

Furthermore, the lack of a statistically significant result in two of the splits for the larger

feature representations indicates that there is little difference in the information derived

between feature representations at this scale.

Considering CNN models, we note the highest scores in all metrics are achieved using

this model type. The highest ACA score noted is 82.2%, achieved on 10,000 instances using

a zero order representation. This model also achieves the best FG recall score noted (79.0%)

and the best nonFG precision score (86.3%). The best scores achieved in FG precision

(78.7%) and nonFG recall (87.0%) are on a CNN using data augmentations with a delta

representation. The fact that these are the best scores noted strongly suggests that CNNs

are a better choice than SVM as they are achieved in a configuration where the SVM is

acknowledged to have an advantage. Also, interestingly, when comparing the CNN scores

with the SVM trained solely on manual labels with 3,599 instances we find that the CNN

model trained on a zero order representation with 10,000 instances outperforms the SVM

across a number of metrics. These include ACA (82.2% versus 77.5%), FG precision (78.0%

versus 63.3%), FG recall (79.0% versus 78.7%) and nonFG recall (85.7% versus 76.3%) with

the sole exception being nonFG precision, where the SVM outperforms the CNN (88.0%

versus 86.3%). This is interesting because the CNN is trained on a small dataset relative to

the size of most deep learning datasets, which suggests that greater performance would be

noted once a large dataset is available.

Set against this point is the performance of CNNs trained using data augmentations.

Surprisingly, they are generally less accurate than the models trained using 10,000 instances,

although the best scores on some metrics of all models trained are noted on CNNs trained
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using augmentations: FG precision of 78.7% and nonFG recall of 87.0%. The reason for

this can be speculated upon. Only two forms of augmentations are applied in this case: pitch

shifting and dynamic range compression. Perhaps a greater variety of augmentations would be

more useful. Furthermore, 9 augmentation types were implemented for this experiment. Due

to the necessity of avoiding data leakage the training sets for the larger models trained would

still be considered small in the context of deep learning, as they consisted of approximately

60,000 instances. By expanding the number of augmentations applied, and also configuring

the augmentation process such that different levels of augmentations can be applied (applying

pitch shift on top of dynamic range compression, for instance) the size of the training set can

be enlarged, and perhaps better performance may be observed.

The difference in performance on CNNs when comparing zero order to delta represen-

tations is marginal and on the whole is not statistically significant using the McNemar test.

Only one split of the models trained using augmentations is statistically significant, both of

the other splits for this model, and all of those for the model trained without augmentations,

fail to reject the null hypothesis. Therefore, there is no compelling case here for the use of

larger delta representation on CNNs.

On the whole, these are interesting results, particularly in light of the advantage enjoyed

by the SVM due to the method used to predict labels for a portion of the dataset used. It

suggests that CNNs are a better choice than the SVM, even when trained on a relatively

small number of instances. Certainly SVMs and CNNs are in general making errors in

different proportions, as the McNemar tests comparing models trained on the same data and

representations are all statistically significant apart from one split each on the 10,000 instance

zero order and 100,000 instance delta representations. It is noted, however, that the best

performing CNN trained using manual and predicted labels is only marginally better than an

SVM trained using instances which have all been manually labelled. While this cannot be

considered definitive, it still suggests that use of SVMs should not be discarded out of hand,
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as they are capable of strong performance on small datasets. Equally, these results outline

that CNNs are a good option, and it would be reasonable to hypothesise that, should a large

dataset be available, the performance noted here would be surpassed.

6.5 Conclusions

This chapter contains a comparison of algorithms and feature representations that include

manual and predicted labels in addition to data augmentations. This is relevant to OBJ 3:

OBJ 3: To assess the performance of supervised ML algorithms when predicting AH.

The models built in Experiment 4 are a step in the development of the proof-of-concept

model to predict AH outlined in Chapter 4. They suggest that CNN models can be trained to

high accuracy levels to predict AH on a dataset consisting of instances which have a mixture

of manually applied and predicted labels. However, the performance noted is only slightly

better than that of an SVM trained using manual labels alone. These findings directly address

RQ 3.

RQ 3: Is it possible to accurately predict AH using supervised ML methods?

The work outlined in this chapter has underlined previous work introduced in Chapters 4

and 5 which presented models capable of high accuracy levels (> 80%) across a number

of metrics. In this instance, models trained using manual and predicted labels achieve an

ACA of 82.2% (‘CNN 10k Zero Order’). In addition, an SVM trained using manual labels

only achieved an ACA of 77.5%. These accuracy levels are comparable with other audio

ML problems, and collectively suggest that it is possible to predict hierarchy between audio

objects using ML methods.

Section 6.2 has presented an AL experiment which validates the accuracy of labels

predicted by an SVM model trained using instances selected with the EGAL selection
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method. As the accuracy achieved on the validation set (ACA 76.4%) is comparable to that

noted in Experiment 3 (ACA 73.9%) this suggests that EGAL is an effective method for

selecting instances in a hierarchical audio ML context and is therefore suitable for application

to the task of labelling large numbers of audio instances with hierarchical labels.

The work described in this chapter has utilised LPMS feature representations, having

found them useful in Experiment 3. Experiment 4 has compared LPMS representations

which utilise zero order data alone, and those implementing zero order data in addition to

delta and double delta representations. In this case, it has been found that delta data has not

aided the accuracy of SVMs. The utility of delta data for CNN models is debatable.

Similarly, little difference is observed in the scores of SVM models trained with and

without data augmentations, making their use questionable for this algorithm. As can be

observed from Table 6.15 there is a similar finding with regard to CNNs, with marginal

differences only observed between models trained with and without augmentations.

As outlined in Section 6.4.2 the ‘CNN 10k Zero Order’ model has been found to achieve

the highest ACA score of the models trained for this experiment. However, the performance

is only superior to an SVM trained on a smaller dataset by 4.7% ACA — not so large a result

that would rule out usage of SVMs in future work. The performance of CNNs trained using

data augmentations is quite surprising given their success in other works, and should be the

focus of further investigation given the successful application of the technique on other audio

ML problems. Nevertheless, strong results appear to be possible should the requirement to

build a suitable dataset for deep learning be deemed excessive. This finding is very useful as

it can be used as guidance in the formation of any real-world implementations which take

account of the FIAH outlined in Chapter 2.

This chapter has described three exercises which investigate the application of ML

techniques to the problem of predicting AH. The following chapter will offer a summary of
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the central work of this thesis and a recap of research objectives and questions, which will

lead to a final statement of thesis contributions.
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Chapter 7

Machine Learning Methods Applied to

Auditory Hierarchy

This work has reviewed research relevant to Auditory Scene Analysis (ASA) and audio

Machine Learning (ML). It has also described an investigation of sound perception and the

performance of models trained to predict Auditory Hierarchy (AH). This chapter will review

the work completed with reference to the research objectives, research questions and thesis

contributions introduced in Chapter 1.

The research objectives (OBJ) around which this work has been structured were as

follows:

OBJ 1: To develop an understanding of ASA with particular attention to the concepts

of object-based audio, AH and modern media consumption paradigms.

OBJ 2: Informed by perceptual audio research, to propose a machine learning ap-

proach for the task of predicting AH.

OBJ 3: To assess the performance of supervised ML algorithms when predicting AH.

These OBJs were formative in the derivation of a number of research questions (RQ)

which have structured and defined the scope of the work completed in this thesis:
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RQ 1: What factors are involved in the perception of AH?

RQ 2: Does a hierarchy of importance exist between sounds isolated from context?

RQ 3: Is it possible to accurately predict AH using supervised ML methods?

Section 2.2 has identified auditory perception as a multi-faceted task which is influenced

by a series of factors. This in turn has informed the proposal of a ‘map’ of AH based

on a perceptual theory of hierarchical classification as influenced by a number of factors,

designated Factors Influencing Auditory Hierarchy (FIAH) for the purposes of this work.

These FIAH, introduced in Section 2.6, include physical properties of sounds, such as pitch

and timbre, and biases that vary by individual, such as experience, training and expectation.

In turn, characteristics of sounds hypothesised to indicate AH, such as the presence or absence

of humans and abstract versus semantically loaded sounds, designated Potential Hierarchical

Indicators (PHI) for this research, were outlined.

This conception of AH as a non-trivial system subject to multiple influences, both

endogenous and exogenous to the person, emphasises the desirability of studying individual

factors in isolation. By approaching the problem this way, a complete picture can be built

of the degree to which each influences categorisation. Use of a dataset which removes the

presence of these factors to the greatest extent possible is therefore mandated. The desire to

focus on the modern media production paradigm has motivated the use of a broad palette of

environmental sounds as stimuli because they are considered to be ecologically valid in the

context of drama, current affairs, reality television and game audio content.

Chapter 3 has offered an overview of supervised ML research with particular attention to

the audio domain. The methodology for building ML models was outlined in Section 3.3

and additionally the significance of feature extraction and selection methods were discussed.

Evaluation measures used to measure the performance of models were also summarised. A

number of different audio feature types were then reviewed in Section 3.4, and an overview
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of common supervised ML algorithms employed on audio prediction tasks was then offered

in Section 3.5. Active Learning (AL) theory was introduced in Section 3.6 and data augmen-

tation methods were reviewed in Section 3.7. This overview concludes that supervised ML

is a complex task which features many variables requiring adjustment in order to optimise

the accuracy of final models, concurring with the No Free Lunch Theorem [191], which

outlines the lack of unified approach that consistently outperforms all others. This mandates

considerable experimentation for which this thesis offers efforts in the area of AH, which it

is hoped will constitute a useful roadmap for both machine learning and perceptual audio

researchers interested in the area.

The review of literature presented in Chapters 2 and 3 has been followed by an inves-

tigation of the RQs detailed in Chapters 4, 5 and 6. This has in turn lead to the following

contributions, organised into major and minor:

Major Contributions

Maj. Contrib. 1: A roadmap for research into ML methods for AH. AH has received rel-

atively little attention in terms of ML research. This work explores per-

ceptual audio theory and applies a number of common ML methods to the

domain and the findings are offered in the shape of a roadmap which can

inform future research in the area.

Maj. Contrib. 2: A published working theory of AH. AH is theorised to vary due to the

influence of factors such as the physical properties of sounds and individual

biases. Sounds are proposed to be characterised hierarchically in terms of a

number of indicators such as whether they indicate the presence of humans

or not, whether the sound contains semantic information or not, and others.
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Maj. Contrib. 3: Evidence of a hierarchy of importance between sounds isolated from

context is presented. The understanding of AH is enhanced by conducting

a perceptual experiment where the hierarchical relationship between sounds

isolated from context is investigated.

Maj. Contrib. 4: Validation of the use of ML methods to predict AH with competitive per-

formance. Average Class Accuracy of 82.2% is noted using a Convo-

lutional Neural Network (CNN). A series of experiments are described

which address the problem of hierarchical prediction in an audio context.

Performance comparable with other audio ML applications is noted using

Random Forest (RF), Support Vector Machine (SVM) and CNN algorithms.

Maj. Contrib. 5: Applied to AH, the Exploration Guided Active Learning (EGAL) algo-

rithm can be used to select a minimal number of labels (in this case 1.7%

of the total) to achieve 95.5% of possible model accuracy, outperforming

other selection methods. In an assessment of Active Learning (AL) selec-

tion methods, EGAL is found to be most effective in selecting informative

instances to reduce manual labelling effort, outperforming Uncertainty

Sampling Active Learning (USAL). Use of EGAL is more computationally

efficient and less time consuming than USAL as it does not require a model

to be trained at each iteration of the algorithm.

Minor Contributions

Min. Contrib. 1: In the context of AH, the Log Power Mel Spectrogram (LPMS) zero or-

der feature representation is found to be an effective compromise for

predicting AH, providing comparable performance to larger representa-

tions which are considerably more expensive in terms of computation
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time. Delta representations are found to provide performance improve-

ment in some, but not all cases. A number of feature representations have

been utilised in the course of this research. While it is noted that in certain

cases superior performance is possible from larger data representations it

is debatable as to whether the increase in performance is justified by the

computation cost entailed.

Min. Contrib. 2: The development of a hierarchically labelled corpus of 10,000 sounds

consisting of both manual and predicted labels. Future investigations

of AH are facilitated via the corpus developed during the experiments

conducted for this thesis. To our knowledge, this corpus represents the

largest audio database of hierarchically labelled audio instances.

These contributions will be discussed in the next section, summarised by the research

questions identified.

7.1 Summary of Research Questions

The following sections discuss each RQ outlined previously in turn, noting relevant findings

and limitations where necessary. Additionally, these sections highlight the thesis contributions

relevant to each RQ.

7.1.1 RQ1: What factors are involved in the perception of Auditory

Hierarchy?

Material covered in Sections 2.2, 2.3 and 2.6 has outlined a working theory of how sounds

are sorted hierarchically on a continuous basis and identified a series of FIAH which are

hypothesised as having relevance to hierarchical sound categorisation. These include the
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physical properties of sounds, such as pitch, timbre, loudness, sound transients and onsets.

A number of individual biases are also hypothesised to have an influence. These are noted

as anticipation and expectation, sound proximity, attention, context, prior experience and

training and also senses other than hearing such as olfaction, touch and sight. This literature

review has also highlighted a series of PHIs hypothesised to be useful in identifying hierar-

chical position. These are the presence or absence of people, sounds which are abstract in

nature versus those that are rich in semantic content, speech and non-speech sounds, pleasant

versus unpleasant sounds and discrete or continuous sounds.

This review motivated a desire to enable a study of these factors in isolation to establish a

firm foundation for real-world implementations. Existing sound taxonomies, stimuli selection

methods and sound datasets were reviewed in Section 2.4 and this revealed that, while a

number of datasets feature hierarchical information, the labels are either not empirically

derived, the sounds are selected to accommodate the presence of a situational context (the

stimuli are sound ‘scenes’ rather than isolated sounds) or the stimuli are limited in scope

in that they feature urban sounds only, and thus do not provide a broad palette of different

sounds. It was therefore determined that in order to study FIAH identified as being relevant to

hierarchical classification a dataset would be required which permitted such study, featuring

sounds which are isolated from context to the greatest extent possible.

Of interest in this respect is the investigation of sound importance hierarchy between

stimuli isolated from context to the extent that this is possible in an experimental scenario (RQ

2) and additionally, whether this hierarchy can be accurately predicted using ML methods

(RQ 3). Once these questions are answered, investigation of FIAH can logically proceed, or

not, armed with greater knowledge regarding the nature of AH and the likely ability of ML

algorithms to predict the phenomenon.

Addressing this question was formative in three contributions of this thesis. It provided

the necessary theoretical grounding for a roadmap of research into AH, motivated a theory
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of AH, and established the requirement for a dataset of sounds isolated from context. The

relevant contributions are as follows, firstly major:

Maj. Contrib. 1: A roadmap for research into ML methods for AH.

Maj. Contrib. 2: A published working theory of AH.

Secondly, minor:

Min. Contrib. 2: The development of a hierarchically labelled corpus of 10,000 sounds

consisting of both manual and predicted labels.

7.1.2 RQ2: Does a hierarchy of importance exist between sounds iso-

lated from context?

This RQ was formulated in Chapter 2 when the requirement for a dataset of sounds isolated

from context in order to study individual FIAH was identified. A number of the stimuli

datasets reviewed in Section 2.4 contain hierarchical information which was deemed un-

suitable for study in this case for reasons outlined in the previous section. While these

studies established the existence of a hierarchical organisation between the sounds utilised,

an extensive effort was deployed to generate a corpus of sounds which were isolated from

context in order to facilitate the study of FIAH. For this reason, it was decided to investigate

the existence hierarchy between the sounds selected to study the interrelationships of FIAH.

This was addressed in Experiment 1, described in Section 4.2, where 40 sounds were

labelled by 112 participants. While there were no unanimous categorisations, a clear contin-

uum was observed in this experiment, ranking sounds from BG to FG. The ‘Clock Alarm’

sound was considered the most FG sound in this experiment, receiving 104 FG, 7 N and 1

BG ratings. The ‘Birds’ sound received an emphatic BG rating, collecting 5 FG, 12 N and

95 BG ratings. The other sounds presented in this experiment ranked between these two
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examples, with many sounds characterised by a lack of consensus between subjects as to the

correct hierarchical category. This suggests the position of a classification boundary should

be open to debate. These issues are possibly due to a number of factors such as the subjective

nature of the task, the difficulty inherent in attempting to isolate sounds fully from context

and the artificial nature of the experimental paradigm. Nevertheless, the results observed

here suggest the existence of a hierarchical spectrum between sounds, which is of interest for

object-based audio applications.

Answering this RQ forms another of the contributions to this thesis as it is a useful case

study for future researchers in the domain and as it offers evidence of hierarchical importance

between sounds which have been isolated from context to the extent this is possible in an

experimental paradigm. It therefore forms part of the following contributions:

Maj. Contrib. 1: A roadmap for research into ML methods for AH.

Maj. Contrib. 3: Evidence of a hierarchy of importance between sounds isolated from

context is presented.

7.1.3 RQ3: Is it possible to accurately predict AH using supervised ML

methods?

This section is divided into a number of sub-sections, as the investigation of ML algorithms

has also involved a number of exercises which compare AL methods, feature representations

and data augmentations. Algorithm comparisons are first reviewed.

ML Algorithms

The work presented in Chapters 4, 5 and 6 has investigated the accuracy of RF, SVM and

CNN algorithms to assess which is most appropriate for the task of predicting AH. Chapter 4

has presented work comparing RF and SVM models on a task to predict AH using statistical
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summaries of audio low level descriptors as a feature representation. The SVM in this case

was observed to perform more strongly than the RF, both in terms of FG class accuracy (93.3%

versus 73.3%) and average class accuracy (ACA) (88.1% versus 80.3%). This indicates

that, while high accuracy is possible with both algorithms, the SVM is particularly good at

capturing almost all FG instances, albeit on a small dataset in this case. The performance

of SVM versus RF is not surprising, given that it is in line with other ML studies in the

audio domain noted in Section 3.5. This work motivated the desire to form a larger dataset of

sounds to render a more complete comparison of ML algorithms on the problem. This in

turn motivated the investigation of AL techniques in Experiment 3 to minimise the manual

effort required to build large corpora of hierarchically labelled sounds.

Chapter 5 has presented work which compared a number of kernels for the SVM algorithm

to investigate which would be best for use in an Active Learning (AL) exercise to label audio

data hierarchically. Experiments conducted for linear, Radial Basis Function (RBF) and

polynomial kernels across four feature representations revealed that the linear kernel was

outperformed by the RBF and polynomial kernels. Little difference in performance was

observed between these last two kernels. For example, the RBF kernel outperformed the

polynomial in terms of ACA score on the Log Power Mel Spectrogram (LPMS) representation

(73.9% versus 73.4%) but in turn was slightly less accurate (ACA of 72.2% versus 72.4%)

on the Mel Frequency Cepstral Coefficient (MFCC) representation. Comparing the other

metrics, there is generally very little to choose between RBF and polynomial kernels in this

case, indicating that either would be a reasonable choice for applications to predict AH.

Chapter 6 outlines the performance of SVM and CNN algorithms while predicting AH.

Each algorithm was trained on a number of feature representations, some of which include

augmented data. Superior scores are achieved using CNN models in spite of the advantage

SVMs are acknowledged to have because of the method used to predict labels. The best

ACA score noted is 82.2% from a CNN trained with a zero order representation, compared
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to the best noted ACA from an SVM of 81.1%. It is interesting to note however that the

performance of an SVM model trained on a smaller dataset with manual labels is competitive

with this result, and indeed surpasses CNN performance on certain metrics. The conclusion

therefore is that neither algorithm can be ruled out of consideration for AH tasks.

The work outlined in this section is interesting, as it indicates that competitive perfor-

mance is possible using both SVM and CNN models. Given the performance improvement

noted on other audio ML tasks, it is surprising that the use of data augmentations for CNNs

has been ineffective in this case, and this deserves further investigation. These are useful

insights for the study of AH and are thus contribute to the roadmap of research offered in

this work. Collectively, these investigations indicate that AH can successfully be predicted

using ML methods. They thus form part of the following thesis contributions:

Maj. Contrib. 1: A roadmap for research into ML methods for AH.

Maj. Contrib. 4: Validation of the use of ML methods to predict AH with competi-

tive performance (Average Class Accuracy of 82.2% is noted using

a CNN).

Active Learning

Chapter 5 outlined a simulated AL exercise using a labelled corpus of 3,002 instances. Two

AL selection methods, Uncertainty Sampling Active Learning (USAL) and EGAL were

compared, with random selection also implemented as a baseline. Noting the ACA of an

SVM model built on 3,002 instances of 76.9%, the EGAL selection method was found to

have a statistically significant performance benefit over the other methods, achieving 95.5%

of possible model accuracy from 1.7% of all labels. This confirms that selecting the instances

to train a model intelligently is an effective way to minimise the manual effort required to

train a model to near maximal performance. It furthermore suggests the EGAL selection
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method works well on an audio domain problem, outperforming USAL and random selection

methods in this instance.

To our knowledge, this work constitutes the first application of AL to AH and of the

EGAL selection method to an audio problem. The results are particularly interesting when

contrasted with the USAL method, given its popularity in many other domains. EGAL offers

some advantages over USAL in that it selects instances for labelling based on their proximity

both to each other and to labelled instances in the feature space. EGAL does not require a

model to be trained at each iteration of the selection algorithm, as USAL does. It is therefore

more computationally efficient in addition to not being subject to the biases inherent in any

model used to predict as required when using USAL. The work presented here suggests that

AL is an effective method for reducing the manual effort required to label audio instances

with hierarchical labels.

These findings were formative in assessing the viability and implementation of AL to

audio object hierarchy, establishing a research context for using these methods to form a

large dataset of hierarchically labelled audio instances. This work has therefore added to the

following contributions of this thesis:

Maj. Contrib. 1: A roadmap for research into ML methods for AH.

Maj. Contrib. 5: Applied to AH, the EGAL algorithm can be used to select a minimal

number of labels (in this case 1.7% of the total) to achieve 95.5% of

possible model accuracy, outperforming other selection methods.

Min. Contrib. 2: The development of a hierarchically labelled corpus of 10,000 sounds

consisting of both manual and predicted labels.

Feature Representations

A number of different feature representations have been implemented for the experiments

described in this thesis. These range from the statistical summary features employed in
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Experiment 2 when comparing RF and SVM algorithms to the spectrogram based LPMS

features utilised in Experiment 4 which compared SVM and CNN algorithms. Varying

degrees of success have been observed using different representations and due to the specific

approaches of each experiment it is difficult to draw definitive conclusions. However, a

number of observations can be made and some general recommendations for suitable feature

representations when predicting AH are appropriate.

Experiment 2, which compares the performance of RF and SVM algorithms when predict-

ing AH, has utilised statistical summary representations drawn from a number of objective

Low Level Descriptors (LLD) of sounds. These included data on spectral spread, entropy,

rolloff and flux, in addition to MFCC and chroma measures. Zero order representations were

extracted in addition to first and second order delta variants, and a number of standard statis-

tical summaries (mean, median, min, max etc.) were drawn from the sounds. The summary

vector was then subjected to recursive feature elimination to select the most informative

elements. In this case, the double-delta representation was found to be disproportionately

more useful than other representations — 57% of the features chosen as more informative

were of this type, whereas 23% were zero order with 20% being first order delta. An SVM

trained using these methods achieved high FG recall (93.3%), however, due to the dataset

size (a total of 40 sounds) caution must be advised in terms of recommending this approach

generally.

The AL exercise described in Experiment 3 utilised MFCC, chroma and LPMS feature

representations consisting of zero order and first, second and fifth order delta data. The cross

validation experiment described in Section 5.3.5 explicitly compared a number of different

representations for use in the simulated labelling task. In this case, the delta representations

were found not to be of use and were thus discarded. Marginal differences were found in

the performance of an SVM model with an RBF kernel trained using zero order MFCC and

LPMS representations (72.2% versus 73.9% ACA) with a chroma representation somewhat
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poorer (65.7% ACA). It should be noted that the best performing representation (74.3%) for

this SVM configuration used a zero order feature representation which was a concatenation

of MFCC, chroma and LPMS representations which took approximately 4 times as long to

train as the LPMS representation alone. Given the marginal performance improvement noted

in this case, it was decided to utilise the LPMS feature representation given the considerable

time saving involved.

The exploration of SVM and CNN algorithms described in Chapter 6 compares models

trained using zero order and delta feature representations of LPMS data. Here it was estab-

lished that for certain performance metrics a CNN trained using a zero order representation

outperforms CNNs trained on delta data and is competitive in the other metrics used. Ta-

ble 7.1 summarises these results which outline superior CNN zero order performance on

10,000 instances in ACA (82.2%) FG recall (79.0%) and nonFG precision (86.3%). The CNN

trained using a delta representation on 100,000 instances is superior on both FG precision

(78.7%) and nonFG recall (87.0%). Performance of SVMs trained with and without delta

representations is similarly close.

Table 7.1 Summary of average ACA, precision and recall scores noted across three randomly selected
hold-out test sets. Note that ‘P’ indicates Precision and ‘R’ indicates Recall in the following.

MODEL ACA FG P FG R nonFG P nonFG R

CNN 10k Zero Order 82.2% 78.0% 79.0% 86.3% 85.7%
CNN 10k Delta 81.4% 78.3% 76.0% 85.0% 86.7%
CNN 100k Zero Order 80.9% 76.0% 77.3% 85.0% 84.3%
CNN 100k Delta 80.6% 78.7% 74.0% 84.0% 87.0%

In summary, statistical summaries of LLDs have been observed to provide representations

on which high accuracy levels were noted in Experiment 2, an investigation of RF and SVM

algorithms predicting AH. Double-delta representations proved particularly useful in this

case, although it should be noted that these results were observed on a small dataset.
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The results of exercises investigating feature representations for Experiment 3 indicate

that, of the representations utilised, models built using LPMS and MFCC data perform

to similar levels, with the LPMS being slightly superior to the MFCC and those using

chroma representations somewhat behind both of these. A representation combining all of

those extracted was found to provide marginally superior performance to both MFCC and

LPMS representations on their own at the cost of significantly increased training time. Delta

representations were not found to be useful in this experiment.

Finally, Experiment 4 presented SVM and CNN algorithms trained using LPMS repre-

sentations, utilising both zero order and delta data. A number of the best scores observed

were noted on a CNN trained using zero order information, with generally little to choose in

terms of performance between the smaller zero order and larger delta representations. This

suggests that bigger feature vectors are not always the optimal choice in the context of AH

prediction, and that use of delta information in addition to zero order data is not always

necessary or optimal. This work is relevant to the following contributions of this thesis:

Maj. Contrib. 1: A roadmap for research into ML methods for AH.

Min. Contrib. 1: In the context of AH, the LPMS zero order feature representation

is found to be an effective compromise for predicting AH, providing

comparable performance to larger representations which are consid-

erably more expensive in terms of computation time. Delta represen-

tations are found to provide performance improvement in some, but

not all cases.

7.2 Future Work

These results build the case for predicting AH using ML methods, indicating the feasibility of

doing so via the performance of models compared in the experiments detailed in Chapters 4,
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5 and 6. This is not to suggest that development in the area is in any sense complete.

One potential application of a these models is within a variable asset compression codec,

prioritising the most important audio elements by encoding them at high bitrates, while less

important elements are delivered at poorer quality. A perceptual investigation of this idea

is an obvious choice for further investigations, as it will give some insight as to the use

of hierarchical prediction in this respect. Additionally, the complexity of perceiving and

categorising sounds hierarchically has been summarised as being subject to a number of

FIAH which are hypothesised to have an effect on hierarchical categorisation. These factors

are another logical course of further study so that their degree of influence, or lack thereof,

may be accounted for in future work.

The dataset developed for this study is intended to be a starting point for such research,

providing as it does a ground-truth for AH which can be further manipulated in order to study

FIAH. In order for this work to benefit the research community at large, it is intended to

make this dataset publicly available once formatting and other considerations are addressed.

Additionally, the models outlined in this work explore AH within the framework of sound

categorisation. Exploring regression techniques in this domain is also worthy of investigation,

given the potential for a more nuanced interpretation of hierarchy this would afford.

Results from the application of AL to AH are promising, and there are a number of

additional areas for future work. The variance in scores achieved using different feature

representations noted in Section 5.3.2 suggests an avenue for future investigation given the

abundance of choice in terms of possible feature representations outlined in Section 3.4.

Many possibilities for experimentation exist in this respect, such as altering the frame-level

extraction parameters, or incorporating different window lengths to provide a more temporal

context. Also, recent audio ML work has focussed on the use of raw waveforms as input to

an ‘end-to-end’ deep learning classifier, which both learns a representation and classifies

sounds [106]. Furthermore, in the case of AL methods, techniques with Self Learning
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elements, where labels are assigned to instances based on predictions from a model, or

the concept of Co-Training, where labels are derived via a combination of prediction and

selection methods on different feature representations, are also worthy of investigation.

The work outlined in Chapter 6 has investigated SVM and CNN algorithms. An in-

vestigation of other deep learning architectures and algorithms, such as Recurrent Neural

Networks, Long Short Term Memory structures, transfer learning and attention mechanisms

as outlined in Section 3.5.5 would also be of interest. Capsule networks are another example,

having been introduced by Sabour et al. [350] as an alternative to the use of dropout, and

successfully used in an audio context by Vesperini et al. [351] and Iqbal et al. [352]. The

focus on investigation of deep learning algorithms in the foregoing has also resulted in use

of feature representations known to be effective in this context, such as the LPMS features

implemented in Experiments 3 and 4. An FG recall rate of 93.3% was noted in Experiment 2

when comparing the performance of RF and SVM algorithms. This promising result, using

statistical summary features as input, optimised with recursive feature elimination to find

those most useful for classification, suggests that experimentation with such feature types

in addition to LPMS and other combinations subjected to feature selection techniques as in

Experiment 2 may be of interest.

AL techniques involve intelligent selection of instances to provide the maximum informa-

tion to a model being trained to predict. They have been found to be effective in this case, but

still involve a trade-off between prediction model accuracy and the cost of acquiring more

labels. Considering media consumption applications, it would be worthwhile investigating

the prospect of sourcing stimuli directly from broadcast content if possible. Using multi-track

mixes from drama programmes, for example, might offer a method of labelling assets which

are panned centrally and therefore objectively placed in the sound scene FG, in addition to

giving insight into the variance of object hierarchy as proposed in Section 2.6. This may
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give access to large volumes of data labelled for broadcast applications, therefore potentially

rendering use of deep learning algorithms more attractive, given the results noted previously.

While this research has ultimately found little benefit in the implementation of data

augmentations, in that CNN models trained using them are slightly outperformed by models

trained without them in ACA, they are still an interesting concept which is worthy of further

investigation. As noted in Section 3.7, the authors are unaware of any perceptual research

investigating the effect of different audio augmentations on the semantic meaning of auditory

stimuli, but this is another interesting topic for future research given the potential applications

for other audio ML problems. The research described here has attempted to minimise bias

in this respect by applying augmentations selectively and in a minimal manner. Providing

knowledge of the extremes to which augmentations can be applied, before an effect on

semantic meaning is caused, would be of use in many audio applications where a scarcity of

data exists in tandem with potential for superior performance from ML algorithms.

In conclusion, this research has investigated AH as it pertains to modern media con-

sumption and found that, while complex, the phenomenon can be predicted to high accuracy

levels using ML methods, though with some caveats. The lack of a suitable dataset has been

addressed using a number of techniques. Among these, sourcing labels manually should be

considered the optimal method of building datasets. In certain situations it is impractical to

do so at the scales required for best prediction performance, however, and in such cases AL

using the EGAL selection method has been found to be most effective at selecting informa-

tive audio instances for labelling purposes. A number of algorithms have been investigated

and found to classify auditory instances to high accuracy levels comparable to other audio

ML applications. Taken together, these findings comprise a useful roadmap for both audio

and machine learning practitioners to predict AH and thus provide a launch pad for further

research.
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Appendix A

Computer Code

A.1 Experiment 1

A.1.1 Experiment 1 - R Data Exploration Code

R code written to analyse the findings of Experiment 1 and produce plots.

1 # Read in dataset

2 data_demographics <- read.csv(’/Volumes/GoogleDrive/My Drive/DIT -PhD/

EXP_2/R_Analysis/soundFeatures.csv’,

3 header=TRUE , stringsAsFactors=TRUE)

4

5 # Use this to read the dataset into R memory so you can refer

directly to variables

6 attach(data_demographics)

7

8 class(gender)

9 levels(gender)

10 names(data_demographics)

11 summary(data_demographics)

12 head(data_demographics)
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13

14 summ_data <- summary(data_demographics)

15 View(summ_data)

16

17 sound_ratings <- data_demographics [ ,4:43]

18 View(sound_ratings)

19

20 dim(sound_ratings)

21 head(data_demographics)

22 summary(data_demographics)

23

24 # Mean of female scores for Thunderstorm

25 mean(Thunderstorm[gender =="female"])

26

27 # Mean of male scores for Thunderstorm

28 mean(Thunderstorm[gender =="male"])

29

30 # Mean of all scores for Thunderstorm

31 mean(Thunderstorm)

32

33 # Subset Female data - everything in data_demographics where gender =

female

34 FemData <- data_demographics[gender =="female", ]

35

36 # Subset Male data

37 MaleData <- data_demographics[gender =="male", ]

38

39 dim(FemData)

40 dim(MaleData)

41

42 # calculate SDs for all data by columns

43 allSD <- apply(data_demographics , 2, sd)
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44 # join SDs to other summary stats for all tests

45 summ_data <- rbind(summ_data , allSD)

46 View(summ_data)

47 head(summ_data)

48

49 # Repeat for Female respondents

50 sdFem <- apply(FemData , 2, sd)

51 View(sdFem)

52 names(FemData)

53 summFem <- rbind(summFem , sdFem)

54 View(summFem)

55

56 # Repeat for Male respondents

57 sdMale <- apply(MaleData , 2, sd)

58 View(sdMale)

59 summMal <- rbind(summMal , sdMale)

60 View(summMal)

61

62 # Join all with female and male subsets for comparison

63 summStats <- rbind(summ_data , summFem , summMal)

64 View(summStats)

65

66 # Export this table to .csv

67 write.csv(summStats , "summStats.csv")

68

69 # Calculate mean sound rating

70 sound_rating_Means <- apply(sound_ratings , 2, mean)

71 head(sound_rating_Means)

72

73 # Calculate standard deviation of sound ratings

74 sound_rating_SDs <- apply(sound_ratings , 2, sd)

75
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76 # Calculate summary stats

77 sound_rating_Summary <- apply(sound_ratings , 2, summary)

78 head(sound_rating_Summary)

79 View(sound_rating_Summary)

80 View(sound_rating_SDs)

81

82 # Bind the mean and SD values into one table

83 mean_sd <- rbind(sound_rating_Means , sound_rating_SDs)

84 View(mean_sd)

85

86 # Bind Summary Stats to mean and SD values - compare means to see if

they match

87 summary_mean_sd <- rbind(sound_rating_Summary ,mean_sd)

88 View(summary_mean_sd)

89

90 # Bind mean & SD with originl ratings

91 allratings_meanSD <- rbind(sound_ratings , mean_sd)

92 View(allratings_meanSD)

93

94 # Transpose a data frame

95 sort_mean_sd <- t(mean_sd)

96 View(sort_mean_sd)

97

98 # Attach sound class data

99 classFactor <- c("Natural","Natural","Household","Animals",

100 "Household","Household","Household",

101 "Animals","Animals","Exterior","Exterior",

102 "Natural","Exterior","Animals",

103 "Human","Natural","Human","Animals",

104 "Natural","Exterior","Natural","Animals",

105 "Household","Human","Human","Household",

106 "Household","Natural","Exterior","Human",
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107 "Exterior","Human","Exterior","Household",

108 "Animals","Animals","Natural","Exterior",

109 "Human","Human")

110

111 View(sound_rating_Means)

112

113 meanClass <- cbind(classFactor , sound_rating_Means)

114 View(meanClass)

115

116 sdClass <- cbind(classFactor , sound_rating_SDs)

117 View(sdClass)

118

119 # Plot means and SDs on the same scatter

120 plot(sound_rating_Means , sound_rating_SDs ,

121 xlab="Sound Mean Score",

122 ylab="Sound Score Standard Deviation",

123 main="Summary of Sound Scores and Standard Deviations by Class",

124 col=as.factor(classFactor), pch = 19, cex = 1, lty = "solid",

lwd = 2)

125

126 # add sort_mean_sd row.names as data labels

127 text(sound_rating_Means , sound_rating_SDs ,

128 labels = row.names(sort_mean_sd), cex=0.7, pos = 1)

129

130 # legend

131 legend("bottom", legend=c("Exterior", "Human", "Household", "

Animals", "Natural"),

132 col = c("red","blue", "green", "black", "cyan"), pch=c

(15), bg="white", border="black")

133

134 ####################################################

135 names(data_demographics)
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136

137 boxplot(Baby_Crying ~ gender , data=data_demographics ,

138 main="Gender Comparison",

139 xlab="Score by Gender", ylab="Sound Rating")

140

141 tapply(Thunderstorm , gender , mySummary)

142

143 mySummary <- function(x) {

144 theSD <- sd(x) #Standard deviation

145 # fiveNumSumm <- fivenum(x) #Tukey ’s five number summary ,

usefull for boxplots

146 # IQR(x) #Interquartile range

147 # quantile(x) #Compute sample quantiles

148 # range(x) # Get minimum and maximum

149 # result <- list(fiveNumSumm ,theSD)

150 data <- cbind(min(x), median(x), max(x), theSD)

151 result <- as.data.frame(data , col.names=c("MIN", "MEDIAN", "

MAX", "SD"))

152 return(result)

153 }

154

155 tapply(Thunderstorm , gender , mySummary)

156

157 ################## MUNGED DATA PLOTTING #############

158 munged_data <- read.csv(’/Volumes/GoogleDrive/My Drive/DIT -PhD/

STATS/EXP_1_R_ANALYSIS/Munged_all_male_female.csv’,

159 header=TRUE)

160 munged_data

161

162 # Plot means and SDs on the same scatter

163 plot(munged_data$ALL.MEAN , munged_data$ALL.SD,

164 xlab="Sound Mean Score",
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165 ylab="Sound Score Standard Deviation",

166 main="Summary of Sound Scores and Standard Deviations",

167 col= "red", pch = 19, cex = 1, lty = "solid", lwd = 2)

168

169 points(munged_data$FEMALE.MEAN , munged_data$FEMALE.SD,

170 col= "blue", pch = 20, cex = 1, lty = "solid", lwd = 2)

171

172 points(munged_data$MALE.MEAN , munged_data$MALE.SD,

173 col= "orange", pch = 18, cex = 1, lty = "solid", lwd = 2)

174

175 # add sort_mean_sd row.names as data labels

176 text(munged_data$ALL.MEAN , munged_data$ALL.SD,

177 labels = munged_data$GROUP , cex=0.7, pos = 1)

178

179 # Plot FEMALE mean and SDs on the same scatter

180 plot(munged_data$FEMALE.MEAN , munged_data$FEMALE.SD,

181 xlab="Sound Mean Score",

182 ylab="Sound Score Standard Deviation",

183 main="Female Sound Scores and Standard Deviations",

184 col= "blue", pch = 20, cex = 1, lty = "solid", lwd = 2)

185

186 # add data labels

187 text(munged_data$FEMALE.MEAN , munged_data$FEMALE.SD,

188 labels = munged_data$GROUP , cex=0.7, pos = 1)

189

190 # Plot MALE mean and SDs on the same scatter

191 plot(munged_data$MALE.MEAN , munged_data$MALE.SD,

192 xlab="Sound Mean Score",

193 ylab="Sound Score Standard Deviation",

194 main="Male Sound Scores and Standard Deviations",

195 col= "brown", pch = 18, cex = 1, lty = "solid", lwd = 2)

196
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197 # add data labels

198 text(munged_data$MALE.MEAN , munged_data$MALE.SD,

199 labels = munged_data$GROUP , cex=0.7, pos = 1)

200

201 labelsVector <- munged_data$GROUP

202 labelsVector

203

204 # What are the graph margins?

205 par(’mar’)

206

207 # reset graph margins to see sound labels

208 par(mar=c(9.1 ,4.1 ,4.1 ,2.1))

209

210 # Plot all means on the scatter

211 plot(munged_data$ALL.MEAN ,

212 xlab="",

213 xaxt="n", # prevents the drawing of tick marks and numbers on

the x axis

214 ylab="Mean Sound Rating",

215 main="Mean Sound Ratings - Comparison by Gender",

216 # xlim=c(1 ,40),

217 ylim=c(1,3),

218 col= "red", pch = 15, cex = 1, lty = "solid", lwd = 2, las=2)

219

220 # Draw gridlines

221 grid(nx = NULL , ny = NULL , col = "lightgray", lty = 5,

222 lwd = par("lwd"), equilogs = TRUE)

223

224 # Draw sound names on x axis

225 axis(1,

226 at=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

227 21,22,23 ,24 ,25 ,26,27,28,29,30,31 ,32 ,33 ,34,35,36,37,38 ,39 ,40),
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228 labels=labelsVector ,

229 pos =0.919 , # vertical placement of new axis

230 lty="solid",

231 col="black",

232 las=2,

233 tck=-0.01,

234 outer =0)

235

236 # Draw female mean points to graph

237 points(munged_data$FEMALE.MEAN ,

238 col= "blue", pch = 16, cex = 1, lty = "solid", lwd = 2)

239

240 # Draw male mean points to graph

241 points(munged_data$MALE.MEAN ,

242 col= "green", pch = 17, cex = 1, lty = "solid", lwd = 2)

243

244 # Add a legend , ’legend ’ is for the test int he legend , ’fill ’ is for

colours ,

245 # which has been replaced below with ’col=’ and ’pch=’ to specify

colours and

246 # shapes for the legend

247 legend("topleft", legend=c("All", "Female", "Male"),

248 col = c("red","blue", "green"), pch=c(15 ,16 ,17), bg="white",

border="black")

249

250 names(munged_data)

251

252 # A numerical vector of the form c(bottom , left , top , right) which

gives the

253 # number of lines of margin to be specified on the four sides of the

plot.

254 # The default is c(5, 4, 4, 2) + 0.1.
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255 par(mar=c(9.1 ,4.1 ,4.1 ,2.1))

256

257 # Plot all SDs on the scatter

258 plot(munged_data$ALL.SD,

259 xlab="",

260 xaxt="n", # prevents the drawing of tick marks and numbers on

the x axis

261 ylab="Standard Deviation of Sound Ratings",

262 main="Standard Deviation of Sound Ratings - Comparison by Gender

",

263 # xlim=c(1 ,40),

264 ylim=c(0.1 ,1),

265 col= "red", pch = 15, cex = 1, lty = "solid", lwd = 2, las=2)

266

267 # Draw gridlines

268 grid(nx = NULL , ny = NULL , col = "lightgray", lty = 5,

269 lwd = par("lwd"), equilogs = TRUE)

270

271 # Draw sound names on x axis

272 axis(1,

273 at=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

274 21,22,23 ,24 ,25 ,26,27,28,29,30,31 ,32 ,33 ,34,35,36,37,38 ,39 ,40),

275 labels=labelsVector ,

276 pos =0.065 , # vertical placement of new axis

277 lty="solid",

278 col="black",

279 las=2,

280 tck=-0.01,

281 outer =0)

282

283 # Draw female SD points to graph

284 points(munged_data$FEMALE.SD,
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285 col= "blue", pch = 16, cex = 1, lty = "solid", lwd = 2)

286

287 # Draw male SD points to graph

288 points(munged_data$MALE.SD,

289 col= "green", pch = 17, cex = 1, lty = "solid", lwd = 2)

290

291 # Add a legend , ’legend ’ is for the test in the legend , ’fill ’ is for

colours ,

292 # which has been replaced below with ’col=’ and ’pch=’ to specify

colours and

293 # shapes for the legend

294 legend("topleft",

295 legend=c("All", "Female", "Male"),

296 col = c("red","blue", "green"), pch=c(15 ,16 ,17), bg="white",

border="black")

A.2 Experiment 2

A.2.1 Experiment 2 - Random Forest Python Code

Python code (originally written in a Jupyter Notebook) for Random Forest parameter grid

search and recursive feature elimination.

1 #!/usr/bin/env python

2 # coding: utf -8

3 # In [61]:

4 import pandas as pd

5 import numpy as np

6 import pprint as pp # pretty printer

7

8 from sklearn.model_selection import StratifiedKFold ,

RandomizedSearchCV , ParameterGrid , GridSearchCV
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9 # Recursive feature elimination - starts with all features , leaves

one out

10 from sklearn.feature_selection import RFECV , RFE

11 from sklearn.ensemble import RandomForestClassifier

12 from sklearn.metrics import make_scorer , recall_score ,

precision_score , classification_report , confusion_matrix

13

14 df = pd.read_csv(’data/mtResults_AllStim_ROWS.csv’) # Read in data

from external excel sheet

15

16 # In [22]:

17 # indexing rows and columns by name , note ’loc’ and square brackets

18 CAT_target = pd.DataFrame(df.loc[:, "EXP2_FGnotFG_CAT"])

19 # indexing rows and columns by number , note ’iloc’ and square

brackets - : gives all rows here

20 # This gives access to all the soundNames

21 soundNames = pd.DataFrame(df.iloc [: ,3])

22

23 # all numerical data inc. deltas

24 allData = pd.DataFrame(df.loc[:, "maxval":"

DBLDELTA_Chroma_Vector_12_STDdivMEAN"])

25 print("CAT_target Shape is: ", CAT_target.shape)

26 print("soundNames Shape is: ", soundNames.shape)

27 print("39th entry in soundNames is: ", soundNames.iloc [39])

28 print("allData Shape is: ", allData.shape)

29

30 # In [981]:

31 # DELTA_MFCC_9_MIN

32 # allData.loc[:, "DELTA_MFCC_9_MIN "]

33 # Which dataset to analyse

34 # datasetFocus = 2

35 # DataFrame of sound information - includes counts from EXP1
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36 # dataSetInfo = pd.DataFrame(df.iloc [: ,0:22])

37

38 # In [23]:

39 ################

40 ### STEP 1.1 ###

41 ################

42 # First split the data up into 5 stratified folds

43 # Stratified k Folds - outer split of 5

44 skf_Outer = StratifiedKFold(n_splits=5, random_state =3, shuffle=True)

45

46 ’’’

47 On the outer split // trainval/test:

48 Do a parameter search on trainval for what works best with this fold

49 Choose model , then use this to build a series of feature sets.

50 Then on the inner split // train/val:

51 Do CV fitting across all feature sets and inner folds to find best

performing model/feature set combination

52 Then evaluate this model using the outer split trainval/test

53 ’’’

54

55 i = 1 # just for counting

56 # dicts to hold outer splits and indexes

57 X_trainval_dict = {} # trainval data

58 y_trainval_dict = {} # trainval labels

59 X_test_dict = {} # test data

60 y_test_dict = {} # test labels

61

62 trainval_indices = {}

63 test_indices = {}

64 # Stepping through the Outer folds one at a time

65 for trainval_index , test_index in skf_Outer.split(allData ,

66 CAT_target):
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67 # keep track of different indices for later

68 trainval_indices[i] = trainval_index

69 test_indices[i] = test_index

70 # Store the actual data and corresponding labels for later access

71 X_trainval_dict[i], X_test_dict[i] = allData.loc[trainval_index],

allData.loc[test_index]

72 y_trainval_dict[i], y_test_dict[i] = CAT_target.loc[

trainval_index], CAT_target.loc[test_index]

73 # make sure shapes of data are correct

74 print("X_TRAINVAL_SHAPE", [i], ":", X_trainval_dict[i].shape , "

X_TEST_SHAPE", [i], ":", X_test_dict[i].shape)

75 print("y_TRAINVAL_SHAPE", [i], ":", y_trainval_dict[i].shape , "

y_TEST_SHAPE", [i], ":", y_test_dict[i].shape)

76 i += 1

77

78 # In [982]:

79 # SAVING THE TRAIN/TEST SPLITS TO A SEPERATE EXCEL FILE IN CASE I

NEED THEM LATER.

80 filename = "METHOD_3_trainval_test_splits.xlsx"

81 # print(filename)

82 # Write data to excel

83 writer = pd.ExcelWriter(filename)

84

85 dataSetInfo.to_excel(writer , ’dataSetInfo ’)

86

87 j = 1

88

89 for j in trainval_indices:

90 X_trainval = ’X_trainval_data_%d’ % (j)

91 X_trainval_dict[j]. to_excel(writer , X_trainval)

92 y_trainval = ’y_trainval_labels_%d’ % (j)

93 y_trainval_dict[j]. to_excel(writer , y_trainval)
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94 X_test = ’X_test_data_%d’ % (j)

95 X_test_dict[j]. to_excel(writer , X_test)

96 y_test = ’y_test_labels_%d’ % (j)

97 y_test_dict[j]. to_excel(writer , y_test)

98

99 writer.save()

100

101 # In [1326]:

102 ################

103 ### STEP 2.1 ###

104 ################

105

106 # Randomised parameter search across trainval data

107 # Defining Parameters used in RANDOM grid search

108 # Number of trees in random forest

109 n_estimators = [50, 200, 500]

110 # Number of features to consider at every split

111 max_features = [2, 5, 10, 20, 50]

112 # Maximum number of levels in tree

113 max_depth = [2, 3, 5, None]

114 # Minimum number of samples required to split a node

115 min_samples_split = [2, 3, 5]

116 # Minimum number of samples required at each leaf node

117 min_samples_leaf = [1, 2]

118 # Method of selecting samples for training each tree

119 bootstrap = [True , False]

120 # Create the random grid

121 random_grid = {’n_estimators ’: n_estimators ,

122 ’max_features ’: max_features ,

123 ’max_depth ’: max_depth ,

124 ’min_samples_split ’: min_samples_split ,

125 ’min_samples_leaf ’: min_samples_leaf ,
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126 ’bootstrap ’: bootstrap}

127

128 pp.pprint(random_grid)

129

130 # In [1327]:

131 ################

132 ### STEP 2.2 ###

133 ################

134

135 ######################################################

136 ###### RANDOMISED PARAMETER SEARCH ON FOLD DATA ######

137 ######################################################

138

139 # Automating text output

140 # f = open(’random_param_search.txt ’,’w’)

141 # sys.stdout = f

142

143 ######################################################

144 ############### CHANGE FOLDFOCUS HERE ################

145 # change this to move through the outer folds ########

146 foldFocus = 4 ########################################

147 ######################################################

148

149 modelRows = {} # to track different model parameters and scores

150 allmodelDF = pd.DataFrame ()

151

152 # Change dataset here \/ \/ \/

153 useThisDataset = X_trainval_dict[foldFocus] # look at this fold only

154 # searching for

parameters that work best on this fold

155

156 # classifier to use in parameter search
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157 rf = RandomForestClassifier ()

158

159 scorers = { # setting up recall and precision as the metrics we’ll

use

160 ’precision ’: make_scorer(precision_score , pos_label="FG"),

161 ’recall ’: make_scorer(recall_score , pos_label="FG")

162 }

163

164 X_train = useThisDataset

165 y_train = y_trainval_dict[foldFocus]

166

167 # Random search of parameters , using 4 fold cross validation ,

168 # search across 100 different combinations , and use all available

cores

169 clf = RandomizedSearchCV(estimator = rf ,

170 param_distributions = random_grid ,

171 n_iter = 100, cv = 4, verbose=2,

172 random_state =42, scoring=scorers ,

173 refit=False , n_jobs = -1)

174

175 # Fit model

176 clf.fit(X_train , y_train.values.ravel ())

177

178 # Reporting which parameters perform best on this inner fold

179 #print()

180 #print("Grid scores on development set:")

181 #print()

182 means = clf.cv_results_[’mean_test_precision ’]

183 stds = clf.cv_results_[’mean_test_recall ’]

184

185 for mean , std , params in zip(means , stds , clf.cv_results_[’params ’]):

186 #print ("%0.3f (+/ -%0.03f) for %r"
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187 #% (mean , std * 2, params))

188

189 modelRows.update ({’Precision ’: means , ’Recall ’: stds , ’Params ’:

clf.cv_results_[’params ’]})

190

191 modelDF = pd.DataFrame(modelRows)

192 allmodelDF = pd.concat ([ allmodelDF , modelDF], axis=0, join=’outer’)

193

194 # In [1148]:

195 ################

196 ### STEP 2.3 ###

197 ################

198

199 # Define column order

200 colOrd =[’Precision ’, ’Recall ’, ’Params ’]

201 # Reorder columns

202 allmodelDF = allmodelDF[colOrd]

203 # Filename with model params & Dataset

204 filename = "RF_FG_RandParamSearch.xlsx"

205 # print(filename)

206 # Write data to excel

207 writer = pd.ExcelWriter(filename)

208 allmodelDF.to_excel(writer , ’Sheet1 ’)

209 writer.save()

210

211

212 # In [1150]:

213 ################

214 ### STEP 3.1 ###

215 ################

216

217 ################################
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218 ###### RFECV ON FOLD DATA ######

219 ### GENERATE FEATURE SETS ######

220 ################################

221

222 # Automating text output

223 f = open(’workings.txt’,’w’)

224 sys.stdout = f

225 bestDatasets = {} # stores all feature sets

226 noFeatures = [50, 50, 50, 50, 100] # min numbers of features to

extract

227 # applies a RF classifier to feature selection

228 i = 0

229

230 ######################################################

231 CHANGE VALUES OF estimator MODEL TO GENERATE FEATURE

232 SUBSETS TUNED TO BEST PARAMETERS FOR THIS FOLD ######

233 #### \/ \/ \/ \/ \/ \/ \/ ##########################

234 estimator = RandomForestClassifier(n_estimators =500,

235 min_samples_split =2,

236 min_samples_leaf =2,

237 max_features =50,

238 max_depth=3,

239 bootstrap=False)

240 ##### /\ /\ /\ /\ /\ /\ /\ ########################

241 ###################################################

242 ###################################################

243

244 # constructing best features sets with different numbers of features

245 for feat in noFeatures:

246

247 select = RFECV(estimator ,

248 step=1, # remove one feature at a time
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249 n_jobs=-1, # use all cores

250 cv=4,

251 # how many features to select

252 min_features_to_select=feat)

253

254 # change the fold number here in the square brackets to move on

to the next one

255 # fit the model to the correct outer fold

256 select.fit(X_trainval_dict[foldFocus],

257 y_trainval_dict[foldFocus ]. values.ravel ())

258

259 # visualize the selected features:

260 # mask becomes an index to the best features

261 mask = select.get_support(indices=True)

262 print(mask)

263

264 # save the index to features for future access

265 bestDatasets[i] = mask

266 print("Computed best features: ", feat)

267 print("Optimal number of features : %d" % select.n_features_)

268

269 i += 1

270

271 for key in bestDatasets:

272 print(bestDatasets[key])

273

274 print("BEST FEATURES")

275 print("Ignore the numbers - just the values from the first row.")

276 print(allData.iloc[0, bestDatasets [0]])

277

278 # remember when looking at each fold to pull data from the trainval

subset , NOT allData
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279 # print(X_trainval [1]. iloc[0, mask])

280

281 #select.ranking_ # prints the ranking of each feature in order

282

283 # In [1151]:

284 ################

285 ### STEP 3.2 ###

286 ################

287

288 ############################################################

289 ###### TAKE KEY FROM DATASETS AND ASSOCIATE WITH DATA ######

290 ############################################################

291

292 # Automating text output

293 f = open(’workings.txt’,’w’)

294 sys.stdout = f

295

296 FG_F4b_bestFeatures = {}

297 FG_F4b_testSounds = {}

298

299 for key in bestDatasets:

300 FG_F4b_bestFeatures[key] = X_trainval_dict[foldFocus ].iloc[:,

bestDatasets[key]]

301 FG_F4b_testSounds[key] = X_test_dict[foldFocus ].iloc[:,

bestDatasets[key]]

302 print(’FG_F4b_bestFeatures ’, [key],

303 ’ shape ’, FG_F4b_bestFeatures[key]. shape)

304 print(’FG_F4b_testSounds ’, [key],

305 ’ shape ’, FG_F4b_testSounds[key]. shape)

306

307 # In [1295]:

308 ################

251



Computer Code

309 ### STEP 4.1 ###

310 ################

311

312 #########################################################

313 ########## PARAMETER GRID FOR GRID SEARCH ###############

314 ######## USE MAX 15 OPTIONS HERE FOR BREVITY ############

315 ######## IF USING 200, 1000, 2000 ESTIMATORS ############

316 #########################################################

317

318 # Automating text output

319 f = open(’workings.txt’,’w’)

320 sys.stdout = f

321 # Number of trees in random forest

322 n_estimators = [10, 50, 100, 500]

323 # Number of features to consider at every split

324 max_features = [2, 10, 50]

325 # Maximum number of levels in tree

326 max_depth = [2, 3]

327 # Minimum number of samples required to split a node

328 min_samples_split = [2, 3, 4]

329 # Minimum number of samples required at each leaf node

330 min_samples_leaf = [1, 2] #[1, 2]

331 # Method of selecting samples for training each tree

332 bootstrap = [True , False]

333

334 # Create the random grid

335 param_grid = {’n_estimators ’: n_estimators ,

336 ’max_features ’: max_features ,

337 ’max_depth ’: max_depth ,

338 ’min_samples_split ’: min_samples_split ,

339 ’min_samples_leaf ’: min_samples_leaf ,

340 ’bootstrap ’: bootstrap}
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341

342 # classifier to use in parameter search

343 rf_GridSearch = RandomForestClassifier ()

344

345 # In [1296]:

346 ####################################

347 ### Change dataset here \/ \/ \/ ###

348 datasetFocus = 4

349 ####################################

350

351 FG_F4b_bestFeatures[datasetFocus ].shape

352 #FG_F4b_testSounds[datasetFocus ].shape

353

354 # In [1297]:

355 ################

356 ### STEP 4.2 ###

357 ################

358

359 #########################################################

360 ############## PARAMETER GRID SEARCH ####################

361 #########################################################

362

363 # Automating text output

364 f = open(’parameter_grid_search.txt’,’w’)

365 sys.stdout = f

366 modelRows = {} # to track different model parameters and scores

367 allmodelDF = pd.DataFrame ()

368

369 useThisDataset = FG_F4b_bestFeatures[datasetFocus]

370

371 scorers = {

372 ’precision ’: make_scorer(precision_score , pos_label="FG"),

253



Computer Code

373 ’recall ’: make_scorer(recall_score , pos_label="FG")

374 }

375

376 X_train = useThisDataset

377 y_train = y_trainval_dict[foldFocus]

378

379 # PARAMETER SEARCH

380 # Grid search of parameters , using 4 fold cross validation ,

381 # search across 100 different combinations , and use all available

cores

382 clf = GridSearchCV(estimator = rf_GridSearch ,

383 param_grid = param_grid , cv = 4,

384 n_jobs = -1, # using all cores

385 scoring=scorers , refit=False , iid=False ,

386 verbose = 2)

387

388 # Fit model

389 clf.fit(X_train , y_train.values.ravel ())

390

391 # Reporting which parameters perform best on this inner fold

392 means = clf.cv_results_[’mean_test_precision ’]

393 stds = clf.cv_results_[’mean_test_recall ’]

394

395 for mean , std , params in zip(means , stds , clf.cv_results_[’params ’]):

396 modelRows.update ({’Precision ’: means , ’Recall ’: stds , ’Params ’:

clf.cv_results_[’params ’]})

397

398 modelDF = pd.DataFrame(modelRows)

399 allmodelDF = pd.concat ([ allmodelDF , modelDF], axis=0, join=’outer’)

400

401 # In [1298]:

402 ################
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403 ### STEP 4.3 ###

404 ################

405

406 #########################################################

407 #################### FIX PARAMETERS #####################

408 #########################################################

409

410 # Define column order

411 colOrd =[’Precision ’, ’Recall ’, ’Params ’]

412 # Reorder columns

413 allmodelDF = allmodelDF[colOrd]

414 # Filename with model params & Dataset

415 filename = "RF_FG_ParamGridSearch.xlsx"

416 # Write data to excel

417 writer = pd.ExcelWriter(filename)

418 allmodelDF.to_excel(writer , ’Sheet1 ’)

419 writer.save()

420

421 # In [1330]:

422 ################

423 ### STEP 4.4 ###

424 ################

425

426 ###################################################

427 ########## INITIAL FIXED PARAMETERS ###############

428 ###################################################

429

430 # Number of trees in random forest

431 n_estimators = [10]

432 # Number of features to consider at every split

433 max_features = [10]

434 # Maximum number of levels in tree
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435 max_depth = [3]

436 # Minimum number of samples required to split a node

437 min_samples_split = [3]

438 # Minimum number of samples required at each leaf node

439 min_samples_leaf = [1]

440 # Method of selecting samples for training each tree

441 bootstrap = [False]

442

443 # In [1333]:

444 ################

445 ### STEP 4.5 ###

446 ################

447

448 ##################################################

449 ## RUNNING INITIAL PARAMETERS ON INNER CV FOLDS ##

450 ##################################################

451 # Stratified folds - inner split

452 skf_Inner = StratifiedKFold(n_splits=4, random_state =5, shuffle=True)

453 # Automating text output

454 f = open(’dimensionality_reduction.txt’,’w’)

455 sys.stdout = f

456 # Summary Results table - for comparing models

457 allSummaryData = pd.DataFrame(columns =[’FG_Prec ’, ’FG_Recall ’,

458 ’FG_F1 ’, ’notFG_Prec ’,

459 ’notFG_Recall ’, ’notFG_F1 ’,

460 ’Confusion Matrix ’, ’FG_Support ’,

461 ’notFG_Support ’, ’Inner Fold’,

462 ’Acc_Train ’, ’Acc_Val ’,

463 ’no_estimators_Param ’,

464 ’max_depth_Param ’,

465 ’max_features_Param ’,

466 ’min_samples_leaf_Param ’,
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467 ’min_samples_split_Param ’,

468 ’Bootstrap ’, ’featSet ’])

469

470 # to track classification success by sound - are some sounds more

difficult to categorise than others?

471 allCatResults = pd.DataFrame(columns =[’Sound_Name ’, ’EXP2_FGnotFG_CAT

’, ’Prediction ’])

472

473 j = 1 # to count inner CV folds

474

475 # change this to flip between different feature sets

476 #featSetNumber = datasetFocus

477 thisFeatureSet = FG_F4b_bestFeatures[datasetFocus] # <<<<<<<

478

479 # for matching names/index to important features

480 names = thisFeatureSet.columns

481 # will add importances in loop

482 featimportance = pd.DataFrame ([ names])

483

484 for train_index , val_index in skf_Inner.split(thisFeatureSet ,

y_trainval_dict[foldFocus ]):

485 print(’################## INNER ######################## ’)

486 print(’INNER FOLD {} of KFold {}’.format(j, skf_Inner.n_splits))

487 print(’################## INNER ######################## ’)

488

489 # To pull data from the trainval split

490 # by finding the original index (for the outer CV) from the index

for the inner CV

491 X_train =\

492 thisFeatureSet.loc[trainval_indices[foldFocus ][ train_index ]]

493 X_val =\

494 thisFeatureSet.loc[trainval_indices[foldFocus ][ val_index ]]
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495 y_train = y_trainval_dict[foldFocus ].loc[trainval_indices[

foldFocus ][ train_index ]]

496 y_val = y_trainval_dict[foldFocus ].loc[trainval_indices[foldFocus

][ val_index ]]

497

498 # TARGETED PARAMETER AND FEATURE SET SEARCH

499 for est in n_estimators:

500 for feat in max_features:

501 for dep in max_depth:

502 for split in min_samples_split:

503 for leaf in min_samples_leaf:

504 for boot in bootstrap:

505 # Train a random forest

506 clf = RandomForestClassifier(

507 n_estimators=est ,

508 max_features=feat ,

509 max_depth=dep ,

510 min_samples_split=split ,

511 min_samples_leaf=leaf ,

512 bootstrap=boot ,

513 random_state =0)

514

515 # Fit model

516 clf.fit(X_train ,

517 y_train.values.ravel())

518

519 # Get model parameters

520 ModPar = clf.get_params ()

521 print(’Model parameters are: ’,

522 ModPar)

523

524 # Predict on the validation set
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525 y_true , y_pred = y_val ,

526 clf.predict(X_val)

527 class_report =\

528 classification_report(y_true , y_pred ,

529 output_dict=True)

530 class_report_ =\

531 classification_report(y_true , y_pred)

532

533 print(’## CLASS REPORT ##’)

534 print(class_report_)

535

536 # Generate accuracy scores

537 acc = clf.score(X_train ,

538 y_train.values.ravel())

539 acc_2 = clf.score(X_val ,

540 y_val.values.ravel ())

541 print(’Mean model accuracy on

training set: ’,

542 acc)

543 print(’Mean model accuracy on

validation set: ’,

544 acc_2)

545

546 print(’########################### ’)

547 print(’########################### ’)

548

549 # Generate confusion matrix

550 conMat = confusion_matrix(y_true ,

551 y_pred)

552 print("Confusion matrix :\n{}".

553 format(conMat))

554 print("y_true.shape is:",
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555 y_true.shape)

556 print("y_pred.shape is:",

557 y_pred.shape)

558

559 print(’## ##### ##’)

560

561 # How predictor matches with actual

562 newDf = pd.DataFrame(y_val ,

563 columns =[’EXP2_FGnotFG_CAT ’])

564 predDf = pd.DataFrame(y_pred ,

565 index=y_val.index ,

566 columns =[’Prediction ’])

567 result =\

568 pd.concat ([ soundNames.

569 iloc[y_val.index],

570 newDf , predDf], axis=1,

571 join=’outer ’)

572 print(result)

573

574 print(’########################## ’)

575

576 foldData =\

577 pd.DataFrame ({’FG_Prec ’:

578 [class_report[’FG’][’precision ’]],

579 ’FG_Recall ’:

580 [class_report[’FG’][’recall ’]],

581 ’FG_F1 ’:

582 [class_report[’FG’][’f1-score’]],

583 ’FG_Support ’:

584 [class_report[’FG’][’support ’]],

585 ’notFG_Prec ’:

586 [class_report[’notFG ’][’precision ’]],

260



A.2 Experiment 2

587 ’notFG_Recall ’:

588 [class_report[’notFG ’][’recall ’]],

589 ’notFG_F1 ’:

590 [class_report[’notFG ’][’f1 -score’]],

591 ’notFG_Support ’:

592 [class_report[’notFG ’][’support ’]],

593 ’Confusion Matrix ’:

594 [conMat],

595 ’Acc_Train ’: [acc],

596 ’Acc_Val ’: [acc_2],

597 ’no_estimators_Param ’:

598 clf.n_estimators ,

599 ’max_depth_Param ’:

600 [clf.max_depth],

601 ’max_features_Param ’:

602 [clf.max_features],

603 ’min_samples_leaf_Param

’:

604 [clf.min_samples_leaf],

605 ’min_samples_split_Param ’:

606 [clf.min_samples_split],

607 ’Bootstrap ’:

608 [clf.bootstrap],

609 ’Inner Fold’:

610 [j],

611 ’featSet ’:

612 [datasetFocus ]})

613

614 # Add data from this fold to that

615 # from previous folds

616 allSummaryData = pd.concat ([

617 allSummaryData , foldData],
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618 axis=0, join=’outer’)

619

620 # gather all the categorisations

621 # for each sound

622 allCatResults = pd.concat ([

623 allCatResults , result],

624 axis=0, join=’outer’)

625

626 # gather information on features

627 imps = pd.DataFrame(

628 clf.feature_importances_)

629 featimportance = pd.concat(

630 [featimportance , imps.T],

631 axis=0, join=’outer’)

632

633 j += 1

634

635 # In [1301]:

636 ################

637 ### STEP 4.6 ###

638 ################

639

640 ###################################################

641 ## EVALUATE INITIAL PARAMETERS ON INNER CV FOLDS ##

642 ###################################################

643

644 # Define column order

645 defCols = [’FG_Prec ’, ’FG_Recall ’, ’FG_F1 ’, ’FG_Support ’,

646 ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’, ’notFG_Support ’,

647 ’Acc_Train ’, ’Acc_Val ’, ’Confusion Matrix ’, ’Inner Fold’,

648 ’no_estimators_Param ’, ’max_depth_Param ’,

649 ’max_features_Param ’, ’min_samples_leaf_Param ’,
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650 ’min_samples_split_Param ’, ’Bootstrap ’, ’featSet ’]

651

652 # Reorder columns

653 allSummaryData = allSummaryData[defCols]

654 filename = "RF_FG_Dimensionality_Reduction.xlsx"

655 # Write data to excel

656 writer = pd.ExcelWriter(filename)

657 allSummaryData.to_excel(writer , ’Sheet1 ’)

658 # Comment in if you want to write to the same excel file

659 allCatResults.to_excel(writer , ’Sheet2 ’)

660 writer.save()

661

662

663 # In [1332]:

664 filename = "featimportance.xlsx"

665 # print(filename)

666 # Write data to excel

667 writer = pd.ExcelWriter(filename)

668 featimportance.to_excel(writer , ’Sheet1 ’)

669 writer.save()

670

671 # In [1211]:

672 ################

673 ### STEP 5.1 ###

674 ################

675

676 #############################################

677 ## PARAMETERS FOR DIMENSIONALITY REDUCTION ##

678 #############################################

679 # Number of trees in random forest

680 n_estimators = [50]

681 # Number of features to consider at every split
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682 max_features = [10]

683 # Maximum number of levels in tree

684 max_depth = [3]

685 # Minimum number of samples required to split a node

686 min_samples_split = [2]

687 # Minimum number of samples required at each leaf node

688 min_samples_leaf = [2]

689 # Method of selecting samples for training each tree

690 bootstrap = [False]

691

692 # In [1303]:

693 ################

694 ### STEP 5.2 ###

695 ################

696

697 ########################################################

698 ############# DIMENSIONALITY REDUCTION #################

699 ########## GENERATING NEW (SUB) DATASETS ###############

700 ########################################################

701 # Automating text output

702 f = open(’subFeatureSets.txt’,’w’)

703 sys.stdout = f

704

705 # change this to flip between different feature sets

706 # featSetNumber = 1

707 thisFeatureSet = FG_F4b_bestFeatures[datasetFocus] # <<<<<<<

708

709 subDatasets = {} # stores all feature set indices

710 #thisFeatureSet.shape [1]] # numbers of features to extract

711 noFeatures = [2, 5, 10, 20, 100, 200]

712

713 i = 0
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714

715 for est in n_estimators:

716 for feat in max_features:

717 for dep in max_depth:

718 for split in min_samples_split:

719 for leaf in min_samples_leaf:

720 for boot in bootstrap:

721 for feat in noFeatures:

722

723 select = RFE(RandomForestClassifier(

724 n_estimators=est ,

725 bootstrap=boot ,

726 max_depth=dep ,

727 max_features=feat ,

728 min_samples_leaf=leaf ,

729 min_samples_split=split ,

730 random_state =42),

731 n_features_to_select=feat)

732

733 # change the fold number here in the

734 # square brackets to move on to the

735 # next one

736 # fit the model to the correct outer fold

737 select.fit(thisFeatureSet ,

738 y_trainval_dict[foldFocus ]. values.ravel ()

)

739 # visualize the selected features:

740 # mask becomes an index to the best

741 # features

742 mask = select.get_support(indices=True)

743 print(mask)

744 # save the index to features for future
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745 # access

746 subDatasets[i] = mask

747

748 print("BEST FEATURES", i)

749 print("Ignore the numbers - just the

values from the first row.")

750 print(FG_F4b_bestFeatures[datasetFocus ].

iloc[0, subDatasets[i]])

751 print("RANKING")

752 # prints the ranking of each feature in

753 # order

754 print(select.ranking_)

755 print("Computed best features: ", feat)

756 print("i: ", i)

757 i += 1

758

759 # In [1304]:

760 ################

761 ### STEP 5.3 ###

762 ################

763

764 #####################################################

765 ## HOUSEKEEPING SO DATA AND LABELS CAN BE ACCESSED ##

766 ############ FOR EACH NEW DATASET ###################

767 #####################################################

768

769 newDatasets = {}

770 newTestSets = {}

771 # use the indices in the subDatasets dict to pull all those features

into new dicts so they can be called

772 for key in subDatasets:
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773 newDatasets[key] = FG_F4b_bestFeatures[datasetFocus ].iloc[:,

subDatasets[key]]

774 newTestSets[key] = FG_F4b_testSounds[datasetFocus ].iloc[:,

subDatasets[key]]

775

776 # In [1305]:

777 ################

778 ### STEP 6.1 ###

779 ################

780

781 ############################################

782 ### RUN FIXED PARAMETERS AGAINST EACH OF ###

783 ####### THESE NEW SUB DATASETS #############

784 ## COMPARE THE RESULTS TO CHOOSE THE BEST ##

785 ########## WORKING DATASET #################

786 ############################################

787

788 # Stratified folds - inner split

789 skf_Inner = StratifiedKFold(n_splits=4,

790 random_state =5,

791 shuffle=True)

792

793 # Automating text output

794 f = open(’train_validation.txt’,’w’)

795 sys.stdout = f

796

797 # Summary Results table - for comparing models

798 allSummaryData = pd.DataFrame(columns =[’FG_Prec ’, ’FG_Recall ’,

799 ’FG_F1 ’, ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’,

800 ’Confusion Matrix ’, ’FG_Support ’, ’notFG_Support ’,

801 ’Inner Fold’, ’Acc_Train ’, ’Acc_Val ’,

802 ’no_estimators_Param ’, ’max_depth_Param ’,
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803 ’max_features_Param ’, ’min_samples_leaf_Param ’,

804 ’min_samples_split_Param ’, ’Bootstrap ’, ’featSet ’])

805

806 # to track classification success by sound - are some sounds more

difficult to categorise than others?

807 allCatResults = pd.DataFrame(columns =[’Sound_Name ’,

808 ’EXP2_FGnotFG_CAT ’, ’Prediction ’])

809

810 # for matching names/index to important features

811 names = thisFeatureSet.columns

812 # will add importances in loop

813 featimportance = pd.DataFrame ([ names])

814

815 # change this to flip between different feature sets

816 for featSetNumber in newDatasets:

817 thisFeatureSet = newDatasets[featSetNumber] # <<<<<<<

818 # to count inner CV folds

819 j = 1

820 for train_index , val_index in skf_Inner.split(thisFeatureSet ,

821 y_trainval_dict[foldFocus ]):

822 print(’################## INNER ######################## ’)

823 print(’INNER FOLD {} of KFold {}’.format(j,

824 skf_Inner.n_splits))

825 print(’################## INNER ######################## ’)

826

827 # To can pull data from the trainval split

828 # by finding the original index (for the outer CV)

829 # from the index for the inner CV

830 X_train =\

831 thisFeatureSet.loc[trainval_indices[foldFocus ][ train_index ]]

832 X_val =\

833 thisFeatureSet.loc[trainval_indices[foldFocus ][ val_index ]]
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834 y_train =\

835 y_trainval_dict[foldFocus ].loc[trainval_indices[foldFocus ][

train_index ]]

836 y_val =\

837 y_trainval_dict[foldFocus ].loc[trainval_indices[foldFocus ][

val_index ]]

838

839 # TARGETED PARAMETER AND FEATURE SET SEARCH

840 for est in n_estimators:

841 for feat in max_features:

842 for dep in max_depth:

843 for split in min_samples_split:

844 for leaf in min_samples_leaf:

845 for boot in bootstrap:

846

847 # if max_features parameter >

848 # no. features in the dataset ,

849 # let max_features = no. features

850 # in the dataset as

851 if feat > int(thisFeatureSet.

852 shape [1]):

853 useThis = int(thisFeatureSet.

854 shape [1])

855 print("working !!!")

856 else:

857 useThis = feat

858

859 # Train a random forest

860 clf = RandomForestClassifier(

861 n_estimators=est ,

862 max_features=useThis ,

863 max_depth=dep ,
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864 min_samples_split=split ,

865 min_samples_leaf=leaf ,

866 bootstrap=boot ,

867 random_state =0)

868

869 # Fit model

870 clf.fit(X_train ,

871 y_train.values.ravel())

872

873 # Get model parameters

874 ModPar = clf.get_params ()

875 print(’Model parameters are: ’,

876 ModPar)

877

878 # How does this model do on the

879 # validation set?

880 y_true , y_pred = y_val ,

881 clf.predict(X_val)

882 class_report =\

883 classification_report(y_true , y_pred ,

884 output_dict=True)

885 class_report_ =\

886 classification_report(y_true , y_pred)

887

888 print(’## CLASS REPORT ##’)

889 print(class_report_)

890 # Generate accuracy scores

891 acc = clf.score(X_train ,

892 y_train.values.ravel())

893 acc_2 = clf.score(X_val ,

894 y_val.values.ravel ())

895 print(’Mean model acc.train:’,acc)
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896 print(’Mean model acc.valid:’,acc_2)

897 print(’########################## ’)

898

899 # Generate confusion matrix

900 conMat = confusion_matrix(y_true ,

901 y_pred)

902 print("Confusion matrix :\n{}".

903 format(conMat))

904 print("y_true.shape is:",

905 y_true.shape)

906 print("y_pred.shape is:",

907 y_pred.shape)

908 print(’## ##### ##’)

909

910 # Printing how the predictor matches

911 # with actual

912 newDf = pd.DataFrame(y_val ,

913 columns =[’EXP2_FGnotFG_CAT ’])

914 predDf = pd.DataFrame(y_pred ,

915 index=y_val.index ,

916 columns =[’Prediction ’])

917 result =\

918 pd.concat ([ soundNames.

919 iloc[y_val.index],

920 newDf , predDf],

921 axis=1,

922 join=’outer ’)

923 print(result)

924 print(’########################### ’)

925

926

foldData =\
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927 pd.DataFrame ({’FG_Prec ’:

928 [class_report[’FG’][’precision ’]],

929 ’FG_Recall ’:

930 [class_report[’FG’][’recall ’]],

931 ’FG_F1 ’:

932 [class_report[’FG’][’f1-score’]],

933 ’FG_Support ’:

934 [class_report[’FG’][’support ’]],

935 ’notFG_Prec ’:

936 [class_report[’notFG ’][’precision ’]],

937 ’notFG_Recall ’:

938 [class_report[’notFG ’][’recall ’]],

939 ’notFG_F1 ’:

940 [class_report[’notFG ’][’f1 -score’]],

941 ’notFG_Support ’:

942 [class_report[’notFG ’][’support ’]],

943 ’Confusion Matrix ’:

944 [conMat],

945 ’Acc_Train ’: [acc],

946 ’Acc_Val ’: [acc_2],

947 ’no_estimators_Param ’:

948 clf.n_estimators ,

949 ’max_depth_Param ’:

950 [clf.max_depth],

951 ’max_features_Param ’:

952 [clf.max_features],

953 ’min_samples_leaf_Param ’:

954 [clf.min_samples_leaf],

955 ’min_samples_split_Param ’:

956 [clf.min_samples_split],

957 ’Bootstrap ’:

958 [clf.bootstrap],
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959 ’Inner Fold’:

960 [j],

961 ’featSet ’:

962 [featSetNumber ]})

963

964 # Add data from this fold to that

965 # from previous folds

966 allSummaryData =\

967 pd.concat ([ allSummaryData , foldData],

968 axis=0, join=’outer’)

969

970 # gather all the categorisations for

971 # each sound

972 allCatResults =\

973 pd.concat ([ allCatResults , result],

974 axis=0, join=’outer’)

975

976 # gather information on features

977 imps =\

978 pd.DataFrame(clf.feature_importances_

)

979 featimportance =\

980 pd.concat ([ featimportance , imps.T],

981 axis=0, join=’outer’)

982

983 j += 1

984

985 # In [1306]:

986 ################

987 ### STEP 6.2 ###

988 ################

989
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990 ##################################################################

991 ## EVALUATE PARAM PERFORMANCE ON EACH SUB DATASET , TWEAK PARAMS ##

992 #################### IF NECESSARY ################################

993 ##################################################################

994 # Define column order

995 defCols = [’FG_Prec ’, ’FG_Recall ’, ’FG_F1 ’, ’FG_Support ’,

996 ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’, ’notFG_Support ’,

997 ’Acc_Train ’, ’Acc_Val ’, ’Confusion Matrix ’, ’Inner Fold’,

998 ’no_estimators_Param ’, ’max_depth_Param ’, ’max_features_Param ’,

999 ’min_samples_leaf_Param ’, ’min_samples_split_Param ’, ’Bootstrap ’,

1000 ’featSet ’]

1001

1002 # Reorder columns

1003 allSummaryData = allSummaryData[defCols]

1004 filename = "RF_FG_Train_Validation.xlsx"

1005 # Write data to excel

1006 writer = pd.ExcelWriter(filename)

1007 allSummaryData.to_excel(writer , ’Sheet1 ’)

1008 # Comment in if you want to write to the same excel file

1009 allCatResults.to_excel(writer , ’Sheet2 ’)

1010 writer.save()

1011

1012 # In [1310]:

1013 #####################################################

1014 ########## CHANGE SUBSET NUMBER HERE !!! #############

1015 #####################################################

1016

1017 subSetNo = 0 # <<<<<< BEST PERFORMING DATASET FROM 6.2

1018

1019 newDatasets[subSetNo ].shape

1020

1021
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1022 # In [1311]:

1023 ################

1024 ### STEP 6.3 ###

1025 ################

1026

1027 ###########################################

1028 ## PARAMETERS FOR TRAIN/VALIDATION TWEAK ##

1029 ###########################################

1030 # Number of trees in random forest

1031 n_estimators = [10, 25, 50, 200]

1032 # Number of features to consider at every split

1033 max_features = [2]

1034 # Maximum number of levels in tree

1035 max_depth = [2, 3, 4] #

1036 # Minimum number of samples required to split a node

1037 min_samples_split = [2, 3, 5]

1038 # Minimum number of samples required at each leaf node

1039 min_samples_leaf = [1, 2]

1040 # Method of selecting samples for training each tree

1041 bootstrap = [True , False]

1042

1043 # In [1312]:

1044 ################

1045 ### STEP 6.4 ###

1046 ################

1047

1048 #########################################################

1049 ## RUNNING A SLIGHTLY EXPANDED GRID SEARCH ON THE BEST ##

1050 ######### PERFORMING DATASET FROM 6.2 ###################

1051 ## USE RESULTS TO FINALISE BEST MODEL ON THIS DATASET ###

1052 #########################################################

1053 # Stratified folds - inner split
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1054 skf_Inner = StratifiedKFold(n_splits=4, random_state =5,

1055 shuffle=True)

1056 # Automating text output

1057 f = open(’train_validation.txt’,’w’)

1058 sys.stdout = f

1059

1060 # Summary Results table - for comparing models

1061 allSummaryData = pd.DataFrame(columns =[’FG_Prec ’, ’FG_Recall ’,

1062 ’FG_F1 ’, ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’,

1063 ’Confusion Matrix ’, ’FG_Support ’, ’notFG_Support ’,

1064 ’Inner Fold’, ’Acc_Train ’, ’Acc_Val ’,

1065 ’no_estimators_Param ’, ’max_depth_Param ’,

1066 ’max_features_Param ’, ’min_samples_leaf_Param ’,

1067 ’min_samples_split_Param ’, ’Bootstrap ’, ’featSet ’])

1068

1069 # to track classification success by sound - are some sounds

1070 # more difficult to categorise than others?

1071 allCatResults = pd.DataFrame(columns =[’Sound_Name ’,

1072 ’EXP2_FGnotFG_CAT ’, ’Prediction ’])

1073

1074 thisFeatureSet = newDatasets[subSetNo]

1075

1076 # to count inner CV folds

1077 j = 1

1078

1079 for train_index , val_index in skf_Inner.split(thisFeatureSet ,

y_trainval_dict[foldFocus ]):

1080 print(’################## INNER ######################## ’)

1081 print(’INNER FOLD {} of KFold {}’.format(j, skf_Inner.n_splits))

1082 print(’################## INNER ######################## ’)

1083

1084 # To pull data from the trainval split
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1085 # by finding the original index (for the outer CV)

1086 # from the index for the inner CV

1087 X_train =\

1088 thisFeatureSet.loc[trainval_indices[foldFocus ][ train_index ]]

1089 X_val =\

1090 thisFeatureSet.loc[trainval_indices[foldFocus ][ val_index ]]

1091 y_train =\

1092 y_trainval_dict[foldFocus ].

1093 loc[trainval_indices[foldFocus ][ train_index ]]

1094 y_val =\

1095 y_trainval_dict[foldFocus ].

1096 loc[trainval_indices[foldFocus ][ val_index ]]

1097

1098 # TARGETED PARAMETER AND FEATURE SET SEARCH

1099 for est in n_estimators:

1100 for feat in max_features:

1101 for dep in max_depth:

1102 for split in min_samples_split:

1103 for leaf in min_samples_leaf:

1104 for boot in bootstrap:

1105 # Train a random forest

1106 clf = RandomForestClassifier(

1107 n_estimators=est ,

1108 max_features=feat ,

1109 max_depth=dep ,

1110 min_samples_split=split ,

1111 min_samples_leaf=leaf ,

1112 bootstrap=boot ,

1113 random_state =0)

1114

1115 # Fit model

1116 clf.fit(X_train ,
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1117 y_train.values.ravel())

1118 # Get model parameters

1119 ModPar = clf.get_params ()

1120 print(’Model parameters are: ’,

1121 ModPar)

1122 # How does this model do on the

1123 # validation set?

1124 y_true , y_pred = y_val ,

1125 clf.predict(X_val)

1126 class_report =\

1127 classification_report(y_true ,

1128 y_pred , output_dict=True)

1129 class_report_ =\

1130 classification_report(y_true ,

1131 y_pred)

1132

1133 print(’## CLASS REPORT ##’)

1134 print(class_report_)

1135

1136 # Generate accuracy scores

1137 acc = clf.score(X_train ,

1138 y_train.values.ravel())

1139 acc_2 = clf.score(X_val ,

1140 y_val.values.ravel ())

1141 print(’Mean model acc. train: ’, acc)

1142 print(’Mean model acc , val: ’, acc_2)

1143 print(’############################ ’)

1144

1145 # Generate confusion matrix

1146 conMat = confusion_matrix(y_true ,

1147 y_pred)

1148 print("Confusion matrix :\n{}".
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1149 format(conMat))

1150 print("y_true.shape is:",

1151 y_true.shape)

1152 print("y_pred.shape is:",

1153 y_pred.shape)

1154

1155 print(’## ##### ##’)

1156

1157 # Printing how the predictor matches

1158 # with actual

1159 newDf = pd.DataFrame(y_val ,

1160 columns =[’EXP2_FGnotFG_CAT ’])

1161 predDf = pd.DataFrame(y_pred ,

1162 index=y_val.index ,

1163 columns =[’Prediction ’])

1164 result = pd.concat ([ soundNames.

1165 iloc[y_val.index],

1166 newDf , predDf],

1167 axis=1, join=’outer’)

1168 print(result)

1169 print(’####################### ’)

1170

1171 foldData =\

1172 pd.DataFrame ({’FG_Prec ’:

1173 [class_report[’FG’][’precision ’]],

1174 ’FG_Recall ’:

1175 [class_report[’FG’][’recall ’]],

1176 ’FG_F1 ’:

1177 [class_report[’FG’][’f1 -score’]],

1178 ’FG_Support ’:

1179 [class_report[’FG’][’support ’]],

1180 ’notFG_Prec ’:
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1181 [class_report[’notFG ’][’precision ’]],

1182 ’notFG_Recall ’:

1183 [class_report[’notFG ’][’recall ’]],

1184 ’notFG_F1 ’:

1185 [class_report[’notFG ’][’f1 -score’]],

1186 ’notFG_Support ’:

1187 [class_report[’notFG ’][’support ’]],

1188 ’Confusion Matrix ’:

1189 [conMat],

1190 ’Acc_Train ’: [acc],

1191 ’Acc_Val ’: [acc_2],

1192 ’no_estimators_Param ’:

1193 clf.n_estimators ,

1194 ’max_depth_Param ’:

1195 [clf.max_depth],

1196 ’max_features_Param ’:

1197 [clf.max_features],

1198 ’min_samples_leaf_Param ’:

1199 [clf.min_samples_leaf],

1200 ’min_samples_split_Param ’:

1201 [clf.min_samples_split],

1202 ’Bootstrap ’:

1203 [clf.bootstrap],

1204 ’Inner Fold’:

1205 [j],

1206 ’featSet ’:

1207 [subSetNo ]})

1208

1209 # Add data from this fold to that

1210 # from previous folds

1211 allSummaryData =\

1212 pd.concat ([ allSummaryData ,

280



A.2 Experiment 2

1213 foldData],

1214 axis=0, join=’outer’)

1215

1216 # gather all the categorisations for

1217 # each sound

1218 allCatResults =\

1219 pd.concat ([ allCatResults , result],

1220 axis=0, join=’outer’)

1221

1222 # gather information on features

1223 imps = pd.DataFrame(clf.

1224 feature_importances_)

1225 featimportance =\

1226 pd.concat ([ featimportance , imps.T],

1227 axis=0, join=’outer’)

1228

1229 j += 1

1230

1231 # In [1313]:

1232 ################

1233 ### STEP 6.5 ###

1234 ################

1235

1236 #################################################

1237 ## EVALUATE PARAM PERFORMANCE ON BEST DATASET , ##

1238 ########### CHOOSE FINAL MODEL ##################

1239 #################################################

1240

1241 # Define column order

1242 defCols = [’FG_Prec ’, ’FG_Recall ’, ’FG_F1 ’, ’FG_Support ’,

1243 ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’, ’notFG_Support ’,

1244 ’Acc_Train ’, ’Acc_Val ’, ’Confusion Matrix ’, ’Inner Fold’,
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1245 ’no_estimators_Param ’, ’max_depth_Param ’,

1246 ’max_features_Param ’, ’min_samples_leaf_Param ’,

1247 ’min_samples_split_Param ’, ’Bootstrap ’, ’featSet ’]

1248

1249 # Reorder columns

1250 allSummaryData = allSummaryData[defCols]

1251 filename = "RF_FG_Train_Validation_FIX.xlsx"

1252 # Write data to excel

1253 writer = pd.ExcelWriter(filename)

1254 allSummaryData.to_excel(writer , ’Sheet1 ’)

1255 # Comment in if you want to write to the same excel file

1256 allCatResults.to_excel(writer , ’Sheet2 ’)

1257 writer.save()

1258

1259 # In [1324]:

1260 ################

1261 ### STEP 7.1 ###

1262 ################

1263

1264 ########################################

1265 ####### FINALISED FEATURE SET - ########

1266 ####### TRAINING ON TRAIN/TEST #########

1267 ########################################

1268

1269 # Automating text output

1270 f = open(’final_train_test.txt’,’w’)

1271 sys.stdout = f

1272

1273 # Summary Results table - for comparing models

1274 allSummaryData = pd.DataFrame(columns =[’FG_Prec ’, ’FG_Recall ’,

1275 ’FG_F1 ’, ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’,

1276 ’Confusion Matrix ’, ’FG_Support ’, ’notFG_Support ’,
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1277 ’Acc_Train ’, ’Acc_Val ’, ’no_estimators_Param ’,

1278 ’max_depth_Param ’, ’max_features_Param ’,

1279 ’min_samples_leaf_Param ’, ’min_samples_split_Param ’,

1280 ’Bootstrap ’, ’featSet ’])

1281

1282 # to track classification success by sound - are some sounds

1283 # more difficult to categorise than others

1284 allCatResults = pd.DataFrame(columns =[’Sound_Name ’,

1285 ’EXP2_FGnotFG_CAT ’, ’Prediction ’])

1286

1287 # change this to flip between different feature sets

1288 featSetNumber = subSetNo

1289 thisFeatureSet = newDatasets[featSetNumber] # <<<<<<<

1290 # also changes data for test sounds

1291 testSoundsData = newTestSets[featSetNumber]

1292 trainval_index = trainval_indices[foldFocus]

1293 test_index = test_indices[foldFocus]

1294 X_train = thisFeatureSet.loc[trainval_index]

1295 X_test = testSoundsData.loc[test_index]

1296 y_train = y_trainval_dict[foldFocus]

1297 y_test = y_test_dict[foldFocus]

1298

1299 print(’trainval_index: ’, trainval_index)

1300 print(’test_index: ’, test_index)

1301 print(’X_train.shape: ’, X_train.shape)

1302 print(’X_test.shape: ’, X_test.shape)

1303 print(’y_train.shape: ’, y_train.shape)

1304 print(’y_test.shape: ’, y_test.shape)

1305

1306 # Train a random forest

1307 clf = RandomForestClassifier(n_estimators =10,

1308 max_depth=3,
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1309 max_features =2,

1310 min_samples_leaf =2,

1311 min_samples_split =5,

1312 bootstrap=False ,

1313 random_state =0)

1314

1315 # Fit model

1316 clf.fit(X_train , y_train.values.ravel ())

1317

1318 # Get model parameters

1319 ModPar = clf.get_params ()

1320 print(’Model parameters are: ’, ModPar)

1321

1322 # How does this model do on the validation set?

1323 y_true , y_pred = y_test , clf.predict(X_test)

1324 class_report = classification_report(y_true ,

1325 y_pred ,

1326 output_dict=True)

1327 class_report_ = classification_report(y_true , y_pred)

1328

1329 #with open(’text_filename.txt ’, ’a ’) as f:

1330 print(’################ CLASS REPORT ############### ’)

1331 print(class_report_)

1332

1333 # Generate accuracy scores

1334 acc = clf.score(X_train , y_train.values.ravel ())

1335 acc_2 = clf.score(X_test , y_test.values.ravel())

1336 print(’Mean model accuracy on training set: ’, acc)

1337 print(’Mean model accuracy on test set: ’, acc_2)

1338 print(’################################################## ’)

1339

1340 # Generate confusion matrix
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1341 conMat = confusion_matrix(y_true , y_pred)

1342 print("Confusion matrix :\n{}".format(conMat))

1343 print("y_true.shape is:", y_true.shape)

1344 print("y_pred.shape is:", y_pred.shape)

1345

1346 print(’################## ##### ######################## ’)

1347 print(’################## ##### ######################## ’)

1348 print(’################## ##### ######################## ’)

1349

1350 # Printing how the predictor matches with actual

1351 newDf = pd.DataFrame(y_test , columns =[’EXP2_FGnotFG_CAT ’])

1352 predDf = pd.DataFrame(y_pred , index=y_test.index ,

1353 columns =[’Prediction ’])

1354 result = pd.concat ([ soundNames.iloc[y_test.index], newDf , predDf],

1355 axis=1, join=’outer’)

1356 print(result)

1357

1358 print(’################################################## ’)

1359 print(’################################################## ’)

1360

1361

1362 foldData = pd.DataFrame ({

1363 ’FG_Prec ’: [class_report[’FG’][’precision ’]],

1364 ’FG_Recall ’: [class_report[’FG’][’recall ’]],

1365 ’FG_F1 ’: [class_report[’FG’][’f1-score’]],

1366 ’FG_Support ’: [class_report[’FG’][’support ’]],

1367 ’notFG_Prec ’: [class_report[’notFG’][’precision ’]],

1368 ’notFG_Recall ’: [class_report[’notFG’][’recall ’]],

1369 ’notFG_F1 ’: [class_report[’notFG’][’f1 -score ’]],

1370 ’notFG_Support ’: [class_report[’notFG’][’support ’]],

1371 ’Confusion Matrix ’: [conMat],

1372 ’Acc_Train ’: [acc],
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1373 ’Acc_Val ’: [acc_2],

1374 ’no_estimators_Param ’: clf.n_estimators ,

1375 ’max_depth_Param ’: [clf.max_depth],

1376 ’max_features_Param ’: [clf.max_features],

1377 ’min_samples_leaf_Param ’: [clf.min_samples_leaf],

1378 ’min_samples_split_Param ’: [clf.min_samples_split],

1379 ’Bootstrap ’: [clf.bootstrap],

1380 ’featSet ’: [featSetNumber ]})

1381

1382 # Add data from this fold to that from previous folds

1383 allSummaryData = pd.concat ([ allSummaryData , foldData], axis=0,

1384 join=’outer ’)

1385 # gather all the categorisations for each sound

1386 allCatResults = pd.concat ([ allCatResults , result], axis=0,

1387 join=’outer ’)

1388

1389 i += 1

1390

1391 # In [1325]:

1392 ################

1393 ### STEP 7.2 ###

1394 ################

1395

1396 ###############################################################

1397 ## PRINT MODEL RESULTS AND DATASETS - TRAINING ON TRAIN/TEST ##

1398 ########### PRINT CONTAINS ALL SUB DATASETS USED ##############

1399 ###############################################################

1400

1401 # Define column order

1402 defCols = [’FG_Prec ’, ’FG_Recall ’, ’FG_F1 ’, ’FG_Support ’,

1403 ’notFG_Prec ’, ’notFG_Recall ’, ’notFG_F1 ’, ’notFG_Support ’,

1404 ’Acc_Train ’, ’Acc_Val ’, ’Confusion Matrix ’,

286



A.3 Experiment 3

1405 ’no_estimators_Param ’, ’max_depth_Param ’, ’max_features_Param ’,

1406 ’min_samples_leaf_Param ’, ’min_samples_split_Param ’,

1407 ’Bootstrap ’, ’featSet ’]

1408

1409 # Reorder columns

1410 allSummaryData = allSummaryData[defCols]

1411

1412 filename = "RF_FG_Final_Train_Test.xlsx"

1413

1414 # Write data to excel

1415 writer = pd.ExcelWriter(filename)

1416 allSummaryData.to_excel(writer , ’Model’)

1417 # Comment in if you want to write to the same excel file

1418 allCatResults.to_excel(writer , ’Cat_bySound ’)

1419

1420 for key in newDatasets:

1421 dSet_fname = ’FeatSet_%d’ % (key)

1422 newDatasets[key]. to_excel(writer , dSet_fname)

1423

1424 writer.save()

A.3 Experiment 3

A.3.1 Experiment 3 - EGAL Python Code

Python code to implement EGAL algorithm for Experiment 3.

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue Jun 4 17:15:03 2019

5
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6 @author: billcoleman

7

8 ###############################################

9 ########### EGAL IMPLEMENTATION ###############

10 ###############################################

11

12 CALCULATE DENSITY MEASURE FOR EVERYTHING

13 The sum of the distances from each instance to all other instances

within radius alpha

14

15 CALCULATE DIVERSITY MEASURE FOR EVERY INSTANCE NOT IN S1

16 The distance between each unlabelled instance and its closest

labelled neighbour

17 (member of S1)

18

19 CALCULATE CANDIDATE SET (CS)

20 All unlabelled instances where diversity measure is greater than beta

21 """

22

23 import trainTest_functions

24

25 import numpy as np

26 import pandas as pd

27 from sklearn.metrics.pairwise import euclidean_distances#,

cosine_similarity

28 from sklearn.svm import SVC # SVM model

29

30 #################

31 #### DENSITY #### "The sum of the distances from the instance to all

32 ################# other instances within radius alpha ."

33
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34 # returns the sum of all the similarities where the similarity value

<= alpha

35 def get_sum_of_density_values(similarities_i , _alpha_):

36 """

37 similarities_i: similarity matrix - my equivalent of this is

pairwiseDist

38 alpha: threshold of the density radius

39 """

40 # check the instances conform to the rule first

41 # return similarities_i[similarities_i <= alpha]

42 # then return the density for the instance

43 return np.sum(similarities_i[similarities_i <= _alpha_ ])

44

45 def get_sorted_density_values(_pairwiseDist , _U, _alpha_):

46 # construct a dict to hold density values for each instance its

required for

47 _density_dict = {}

48

49 for i in range(len(_U)):

50

51 # feed each row in pairwiseDist into a function that filters

52 # for values <= alpha

53 _density_dict[_U[i]] =\

54 get_sum_of_density_values(_pairwiseDist[i, :], _alpha_)

55

56 # may not actually need this because these may get filtered out

in

57 # find_candidate_set ()

58 _denseVals_sort = dict(sorted(_density_dict.items(),

59 key=lambda kv: kv[1],

60 reverse=False))

61

289



Computer Code

62 return _denseVals_sort , _density_dict

63

64

65 ###################

66 #### DIVERSITY #### "The distance between the unlabelled instance and

67 ################### its nearest labelled neighbour ."

68

69 # Implementing functionality to make the batch sizes consistent

70 def find_candidate_set_vIII(L_,

71 U_ ,

72 density_dict ,

73 U,

74 beta_ ,

75 beta_old ,

76 NoL ,

77 w,

78 stop_all ,

79 loop_counter ,

80 S1_index ,

81 chroma_X_df):

82

83 # find distance values between labelled and unlabelled sets

84 s = euclidean_distances(L_ , U_)

85

86 # not dividing 1 by the result here because I can take care of

87 # that in the next step taking the minimum here because I need

88 # the distance to the NEAREST labelled neighbour

89 div = np.min(s, axis =0)

90

91 # making a dataframe that holds density and diversity values

92 # per instance in U, we can use this to sort and pick

93 # instances by density/diversity values
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94 filtered_dict = list(filter(lambda item: item [0] in U,

95 density_dict.items()))

96 # strips away index

97 filtered_dict_dense = [i[1] for i in filtered_dict]

98 filtered_dict_idx = [i[0] for i in filtered_dict]

99

100 make_dict = {’dense’:filtered_dict_dense ,

101 ’check_idx ’:filtered_dict_idx ,

102 ’U’:U,

103 ’diverse ’:div}

104 _df_denseDiv = pd.DataFrame(make_dict , index=U)

105

106 # if w = 0 then selection is purely diversity based , so take the

107 # largest diversity values

108 if w == 0:

109 print("w = 0 $$$$$$$$$$$$$$$$$$$$$$$$$ PURE DIVERSITY")

110

111 cs_df = _df_denseDiv

112 cs_df_idx = cs_df.nlargest(NoL , ’diverse ’, keep=’first ’)

113

114 # if w is between 0 and 1 then selection is controlled by the

115 # value of w

116 elif w > 0 and w < 1:

117 print("w = ", w, " $$$$$$$$ BTW 0 and 1 $$$$$$$$")

118

119 # Filtering to Candidate Set where diverse value falls within

120 # bounds controlled by beta_

121 cs_df = _df_denseDiv [( _df_denseDiv.diverse > beta_) &\

122 (_df_denseDiv.diverse <= beta_old)]

123

124 # Find the NoL instances with the largest density values

125 # the index of this dataframe is the index for instances to
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126 # take from U and put into L

127 if cs_df.shape [0] >= NoL:

128 cs_df_idx = cs_df.nlargest(NoL , ’dense’, keep=’first ’)

129

130 # This is therefore the last batch of instances to be

131 # labelled , So get a mini batch that is this size

132 # this is to keep the batch sizes uniform , so if we set NoL

133 # to 10, all the batches for the run will be of size 10

134 # (except the last one)

135 else:

136 mini_NoL = NoL - cs_df.shape [0]

137 incomplete_batch = cs_df

138

139 if mini_NoL > len(U):

140 mini_NoL = len(U)

141 print("LAST BATCH OF INSTANCES TO BE LABELED")

142

143 # there are no more instances in the candidate set , so we

144 # need to update beta_ before we continue

145 beta_old = beta_

146 beta_ = update_beta(beta_ , NoL , w, div)

147

148 print("beta_ changed to: ", beta_ , "<<<<<")

149 print("Mini batch size = ", mini_NoL , "< < < < < <")

150

151 # minibatch to add to cs_df - keep batch sizes uniform

152 # beta is updated so:

153 # remove instances in incomplete_batch from what you

154 # supply to next function

155 # setup temporary L_ and U_ so we can fill this batch

156 S1_temp = S1_index.copy()

157 S1_temp.extend(incomplete_batch.index)
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158 mini_L_data = chroma_X_df.loc[S1_temp]

159

160 mini_U_idx = U.copy()

161 # remove these instances from U

162 for j in incomplete_batch.index:

163 # delete the element by value NOT index

164 mini_U_idx.remove(j)

165

166 mini_U_data = chroma_X_df.loc[mini_U_idx]

167

168 print("Shape of mini_L_data = ", mini_L_data.shape ,

169 "Shape of mini_U_data = ", mini_U_data.shape ,

170 "Length of mini_U_idx = ", len(mini_U_idx))

171

172 # Send mini_L_ and mini_U_ to function to find candidate

173 # set for this minibatch if required

174 if len(mini_U_idx) < 1:

175 cs_df_idx = incomplete_batch

176 else:

177 mini_batch_instances =\

178 complete_this_batch(mini_L_data ,

179 mini_U_data ,

180 density_dict ,

181 mini_U_idx ,

182 beta_ ,

183 beta_old ,

184 mini_NoL)

185

186 cs_df_idx =\

187 pd.DataFrame(pd.concat ([ incomplete_batch ,

188 mini_batch_instances],

189 # make sure no duplicate
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190 # index values

191 verify_integrity=True))

192

193 # check to make sure beta is changing , if it’s not then

194 # stop the run

195 if beta_old == beta_:

196 print("Beta_ isn’t changing. %%%%%%%%%")

197 stop_all = True

198

199 # when w = 1 we don’t need to control for beta_

200 # so just grab the next NoL instances with the smallest density

201 # values in _df_denseDiv

202 else:

203 print("w = ", w, " $$$$$$$$$$$$ PURE DENSITY")

204 cs_df = _df_denseDiv

205 cs_df_idx = cs_df.nlargest(NoL , ’dense’, keep=’first ’)

206

207 return div , s, _df_denseDiv , cs_df , cs_df_idx , beta_ , stop_all ,\

208 loop_counter

209

210 # Implementing minibatch functionality

211 def complete_this_batch(L_ , U_, density_dict , U, beta_ , beta_old ,

212 NoL):

213 # find distance values between labelled and unlabelled sets

214 s = euclidean_distances(L_ , U_)

215 # not dividing 1 by the result here because I can take care

216 # of that in the next step taking the minimum here because

217 # I need the distance to the NEAREST labelled neighbour

218 div = np.min(s, axis =0)

219

220 # making a dataframe that holds density and diversity values

221 # per instance in U
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222 filtered_dict = list(filter(lambda item: item [0] in U,

223 density_dict.items()))

224 # strips away index

225 filtered_dict_dense = [i[1] for i in filtered_dict]

226 filtered_dict_idx = [i[0] for i in filtered_dict]

227

228 make_dict = {’dense’:filtered_dict_dense ,

229 ’check_idx ’:filtered_dict_idx ,

230 ’U’:U,

231 ’diverse ’:div}

232 _df_denseDiv = pd.DataFrame(make_dict , index=U)

233

234 cs_df = _df_denseDiv [( _df_denseDiv.diverse > beta_) &\

235 (_df_denseDiv.diverse <= beta_old)]

236

237 mini_batch_instances = cs_df.nlargest(NoL , ’dense ’, keep=’first ’)

238

239 return mini_batch_instances

240

241 ’’’

242 After running this function CS_sort_filt will hold an index to the

243 next instances to be used for labelling. Take the NoL first

244 instances as these are the densest , most diverse (outside radius of

245 beta_) there are.

246

247 Update S1. Retrain model. Log score for plot. Get more labels.

248

249 Recalculate CS - because we have new instances which will mean the

250 diversity measure for possible candidates will change. Take the

251 densest instances of the new CS for labelling.

252

253 Keep repeating this until there are no instances in CS.
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254

255 Adjust beta_. Recalculate CS.

256

257 Repeat until beta_stops changing. Stop process.

258 ’’’

259

260 def update_beta(beta_ , NoL , w, diversity_values_U_L):

261 ’’’

262 When w = 0, EGAL defaults to pure diversity based

263 When w = 1, EGAL defaults to pure density based

264 ’’’

265 # the numeric in the [::1] controls the order of the sort

266 # slice notation [start here , end here , step (or order)]

267 # change numeric to -1 for reverse order

268 # adding .sort() on the end sorts

269 diversity_values_U_L [:: -1]. sort()

270

271 # sw roughly gives the index for the slot in the structure that

272 # will have new beta_

273

274 # Letting _sw = the index relevant to the list of diversity values

275 # This value is controlled by w

276 # It’s the index to the new value for beta

277 _sw = w * (len(diversity_values_U_L) + 1)

278

279 # If the index value is < NoL , let beta_ equal to 0

280 # because there are very few instances left in U

281 if _sw < NoL:

282 beta_ = 0

283

284 # let beta_ equal to the value in the slot that splits instances

285 # in U to the proportion dictated by w
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286 else:

287 beta_ = diversity_values_U_L[round(_sw)]

288

289 if beta_ is None:

290 beta_ = 0

291 print("## beta_ POPPED TO None , RESET to 0 ##")

292

293 return beta_

294

295 # Use EGAL algorithm to select instances for labelling

296 def egal_loop_vII(loop_counter , stop_all , U, S1_index , chroma_X_df ,

297 D, L, y_true_list , y_pred_list , trainAcc , testAcc ,

298 labelled_instances , density_dict , beta_ , beta_old ,

299 NoL , w, ft , al , y_pred_dec_list , test_data):

300

301 # convert U to a list so I can use .remove ()

302 U = U.tolist ()

303

304 # while there are instances in diversity_values_U_L and stop_all

is True

305 while len(U) > 0 and not stop_all:

306

307 print("EGAL LOOP: ", loop_counter , " ::: Feature Set: ", ft,

" ::: Alpha Method: ", al)

308 print("------------------------------------")

309

310 # update diversity values

311 diversity_values_U_L , eucl_distanceS_U_L , CS , CS_sort ,\

312 CS_sort_filt , beta_ , stop_all , loop_counter =\

313 # vIII maintains cohesive batch sizes

314 find_candidate_set_vIII(chroma_X_df.loc[S1_index],

315 chroma_X_df.loc[U], density_dict , U, beta_ ,
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316 beta_old , NoL , w, stop_all , loop_counter ,

317 S1_index , chroma_X_df)

318

319 # update S1

320 S1_index.extend(CS_sort_filt.index)

321 print("Number of labels being added = ",

322 CS_sort_filt.shape [0])

323 print("Size of S1_index now = ", len(S1_index))

324

325 # remove these instances from U

326 for j in CS_sort_filt.index:

327 # delete the element by value NOT index

328 U.remove(j)

329

330 print("Number of unlabelled instances , U = ", len(U))

331

332 # Sanity stop check

333 if len(U) < 1:

334 stop_all = True

335

336 if stop_all:

337 print("STOP ALL - Getting one last score - loop = ",

338 loop_counter)

339

340 print("-----------------------------------------")

341 print(":::::::: Getting a score ::::::::::::::::")

342 print("-----------------------------------------")

343

344 # train a model using selected instances to track progress

345 U, L, loop_counter , y_true_list , y_pred_list , trainAcc ,\

346 testAcc , labelled_instances , y_pred_dec_list = \

347 trainTest_functions.train_Test_EGAL(chroma_X_df ,
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348 S1_index , D, U, L,

349 loop_counter , y_true_list ,

350 y_pred_list , trainAcc ,

351 testAcc ,

352 labelled_instances ,

353 y_pred_dec_list ,

354 test_data)

355

356 if stop_all:

357 break

358

359 loop_counter = loop_counter + 1

360

361 return U, L, loop_counter , y_true_list , y_pred_list , trainAcc ,\

362 testAcc , labelled_instances , diversity_values_U_L ,\

363 eucl_distanceS_U_L , CS , CS_sort , CS_sort_filt , beta_ ,\

364 y_pred_dec_list

365

366 print("########## EGAL Loop ENDED #############")

A.4 Experiment 4

A.4.1 Experiment 4 - SVM Python Code

Python code to fit parameters to train/validation splits for the SVM algorithm in Experiment

4.

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue Oct 8 15:14:09 2019

5 @author: billcoleman
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6 """

7

8 import pickle

9 import pandas as pd

10 import numpy as np

11 from sklearn.model_selection import GridSearchCV

12 from sklearn.svm import SVC # SVM model

13 from sklearn.metrics import make_scorer , recall_score

14 from sklearn.metrics import f1_score , accuracy_score , precision_score

15 from sklearn.metrics import balanced_accuracy_score

16 # execution time

17 import sys

18 import timeit

19

20 start_time = timeit.default_timer ()

21

22 ’’’

23 PSEUDOCODE:

24 Load in svm zero order data

25 Load in different labels (all_labels)

26 Load in 3 x random stratified test splits

27 Declare scorers - include precision and recall for nonFG

28 Declare function to run grid search

29 Run grid search in each split

30 Generate DF with results of grid search per split

31 ’’’

32

33 # load lpms data (flattened and scaled)

34 # local location: ’/Volumes/COLESLAW_1TB/ESC/

LPMS_flat_scaled_EGAL_data_10000.data’

35 # Kevin Street: ’/data/d15126149/datasets/

LPMS_flat_scaled_EGAL_data_10000.data’
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36 with open(’/Volumes/COLESLAW_1TB/ESC/LPMS_flat_scaled_EGAL_data_10000

.data’, ’rb’) as filehandle:

37 # read the data as binary data stream

38 allData = pickle.load(filehandle)

39

40 allData = pd.DataFrame(allData)

41 print("Shape of allData: ", allData.shape)

42

43 # labels

44 # local location: ’/Volumes/COLESLAW_1TB/scaled_data/all_labels.data’

45 with open(’/data/d15126149/datasets/all_labels.data’,

46 ’rb’) as filehandle:

47 # read the data as binary data stream

48 all_labels = pickle.load(filehandle)

49

50 print("Shape of all_labels: ", all_labels.shape)

51

52 # indices for 3 random stratified test splits

53 # local location: ’/Users/billcoleman/NOTEBOOKS/EXPERIMENT_4/backup/

svm_10000_train_val_indices.csv’

54 train_val_indices = \

55 pd.read_csv(’/data/d15126149/datasets/svm_10000_train_val_indices.csv

’)

56 train_val_indices = pd.DataFrame(train_val_indices)

57 print("Shape of train_val_indices: ", train_val_indices.shape)

58 print("Columns of train_val_indices: ", train_val_indices.columns)

59

60 # local location: ’/Users/billcoleman/NOTEBOOKS/EXPERIMENT_4/backup/

svm_10000_test_indices.csv’

61 test_indices = \

62 pd.read_csv(’/data/d15126149/datasets/svm_10000_test_indices.csv’)

63 test_indices = pd.DataFrame(test_indices)
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64 print("Shape of test_indices: ", test_indices.shape)

65 print("Columns of test_indices: ", test_indices.columns)

66

67 ’’’

68 Storage and scorers

69 ’’’

70 # objects to track scores

71 modelRows = {} # to track different model parameters and scores

72 allmodelDF = pd.DataFrame ()

73

74 # classifier to use in parameter search

75 svmMod = SVC(class_weight=’balanced ’)

76

77 scorers = { # setting up recall and precision as the metrics

78 ’precision ’: make_scorer(precision_score , pos_label =1),

79 ’recall ’: make_scorer(recall_score , pos_label =1),

80 ’accuracy ’: make_scorer(accuracy_score),

81 ’balanced_accuracy ’: make_scorer(balanced_accuracy_score),

82 ’f1’: make_scorer(f1_score , pos_label =1)

83 }

84

85 # define function for randomised grid search

86 def do_svm_GridSearch(train_data , train_labels):

87

88 ’’’

89 Function to execute grid search. The train data and labels need

90 to be fed to the function indexed from the allData and

91 all_labels objects

92 ’’’

93 # Make this available in local scope

94 global allmodelDF

95
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96 # Assign data and labels , so we can feed different splits

97 X_train = train_data

98 y_train = train_labels

99 y_train = y_train.astype(’int’)

100

101 # Grid search of parameters , using 5 fold cross validation ,

102 clf = GridSearchCV(estimator = svmMod , param_grid = param_grid ,

103 cv = 5, n_jobs = -1, # using all cores

104 scoring=scorers , refit=False , iid=False ,

105 return_train_score=True , verbose = 2)

106

107 # Fit model

108 clf.fit(X_train , y_train)

109

110 test_Prec_means = clf.cv_results_[’mean_test_precision ’]

111 test_Prec_stds = clf.cv_results_[’std_test_precision ’]

112 test_Rec_means = clf.cv_results_[’mean_test_recall ’]

113 test_Rec_stds = clf.cv_results_[’std_test_recall ’]

114 test_f1s = clf.cv_results_[’mean_test_f1 ’]

115 test_accs = clf.cv_results_[’mean_test_accuracy ’]

116 test_balAccs = clf.cv_results_[’mean_test_balanced_accuracy ’]

117 train_accs = clf.cv_results_[’mean_train_accuracy ’]

118 train_balAccs = clf.cv_results_[’mean_train_balanced_accuracy ’]

119

120 for te_P_m , te_P_s , te_R_m , te_R_s , te_f1 , te_ac , te_bAc , tr_ac ,\

121 tr_bAc , params in zip(test_Prec_means , test_Prec_stds ,

122 test_Rec_means , test_Rec_stds ,

123 test_f1s , test_accs ,

124 test_balAccs , train_accs ,

125 train_balAccs ,

126 clf.cv_results_[’params ’]):

127
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128 modelRows.update ({’Test_Precision ’: test_Prec_means ,

129 ’Test_Prec_STD ’: test_Prec_stds ,

130 ’Test_Recall ’: test_Rec_means ,

131 ’Test_Rec_STD ’: test_Rec_stds ,

132 ’Test_F1_Score ’: test_f1s ,

133 ’Test_Accuracy ’: test_accs ,

134 ’Test_Bal_Accuracy ’: test_balAccs ,

135 ’Train_Accuracy ’: train_accs ,

136 ’Train_Bal_Accuracy ’: train_balAccs ,

137 ’Params ’: clf.cv_results_[’params ’]})

138

139 modelDF = pd.DataFrame(modelRows)

140 allmodelDF = pd.concat ([ allmodelDF , modelDF], axis=0, join=’outer

’)

141

142 return allmodelDF

143

144 ’’’

145 Assign data and labels

146 ’’’

147 splits = [’0’, ’1’, ’2’]

148 for i in splits:

149 print("Beginning split: ", i)

150 ’’’

151 Set data and labels

152 ’’’

153 train_val_data = allData.loc[train_val_indices[i]]

154 train_val_labels = all_labels.loc[train_val_indices[i]]

155

156 ’’’

157 Set Linear Grid

158 ’’’
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159 param_grid = {’kernel ’: [’linear ’],

160 ’C’: [0.001 , 0.01, 0.1, 1, 10, 100, 1000]}

161 ’’’

162 Call Function

163 ’’’

164 pSearch_svm_10000 = do_svm_GridSearch(train_val_data ,

165 train_val_labels)

166 # Save File

167 pSearch_svm_10000.to_csv(’results/psearch_svm_10000.csv’)

168 print("Linear kernel complete for split: ", i)

169

170 ’’’

171 Set RBF Grid

172 ’’’

173 param_grid = {’kernel ’: [’rbf’],

174 ’gamma ’: [1, ’scale ’, 1e-1, 1e-2],

175 ’C’: [0.001 , 0.01, 0.1, 1]}

176 ’’’

177 Call Function

178 ’’’

179 pSearch_svm_10000 = do_svm_GridSearch(train_val_data ,

180 train_val_labels)

181 # Save File

182 pSearch_svm_10000.to_csv(’results/psearch_svm_10000.csv’)

183 print("RBF kernel complete for split: ", i)

184

185 ’’’

186 Set Poly Grid

187 ’’’

188 param_grid = {’kernel ’: [’poly’],

189 ’gamma ’: [1, ’scale ’, 1e-1, 1e-2],

190 ’C’: [0.001 , 0.01, 0.1, 1],
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191 ’degree ’: [3, 4]}

192 ’’’

193 Call Function

194 ’’’

195 pSearch_svm_10000 = do_svm_GridSearch(train_val_data ,

196 train_val_labels)

197 # Save File

198 pSearch_svm_10000.to_csv(’results/psearch_svm_10000.csv’)

199 print("Poly kernel complete for split: ", i)

200

201 # Track time taken per split

202 now_time = timeit.default_timer ()

203 split_time = now_time - start_time

204 # output running time in a nice format.

205 mins , secs = divmod(split_time , 60)

206 hours , mins = divmod(mins , 60)

207 print("Time for this split from start: %d:%d:%d.\n" % (hours ,

mins , secs))

208

209 ’’’

210 Export final result

211 ’’’

212 pSearch_svm_10000.to_csv(’results/psearch_svm_10000.csv’)

213

214 ’’’

215 Timing script

216 ’’’

217 # Track the time it took to run the script

218 stop_time = timeit.default_timer ()

219 total_time = stop_time - start_time

220

221 # output running time in a nice format.
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222 mins , secs = divmod(total_time , 60)

223 hours , mins = divmod(mins , 60)

224

225 sys.stdout.write("Total running time: %d:%d:%d.\n" % (hours , mins ,

secs))

226 print("(print)Total running time: %d:%d:%d.\n" % (hours , mins , secs))

A.4.2 Experiment 4 - CNN Python Code

Python code to experimenting with architecture and other model parameters for the CNN

algorithm in Experiment 4.

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Fri Sep 13 08:54:26 2019

5 @author: billcoleman

6 CNN for Auditory Hierarchy

7 Local: /Users/billcoleman/NOTEBOOKS/EXPERIMENT_4/

EXP_4_CNN10k_DELTA_testSplits_slurm.py

8 Implemented to train and test the CNN on 100k instances on the same

splits used

9 on SVM for comparative purposes.

10 """

11

12 from __future__ import absolute_import , division , print_function ,

unicode_literals

13 import tensorflow as tf

14 from sklearn.metrics import classification_report , confusion_matrix ,

balanced_accuracy_score

15 import numpy as np

16 import pandas as pd
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17 # file management

18 import pickle

19 # execution time

20 import sys

21 import timeit

22 # for making directories

23 import os

24 from os import path

25

26 # train/test splits

27 from sklearn.model_selection import train_test_split

28

29 start_time = timeit.default_timer ()

30

31 print("This is a script to run CNN models!")

32

33 # For 100 _000 instances - includes augmented data

34 # load data (flattened and scaled)

35 # local location: ’/Volumes/COLESLAW_1TB/scaled_data/

data_cnn_ALLbatches_zOrder.data’

36 # Kevin Street: ’/data/d15126149/datasets/data_cnn_ALLbatches_zOrder.

data’

37 with open(’/data/d15126149/datasets/data_cnn_ALLbatches_zOrder.data’,

’rb’) as filehandle:

38 # read the data as binary data stream

39 CNN_tensor = pickle.load(filehandle)

40

41 # Testing by augmentation batch - index to zero order data

42 CNN_tensor = CNN_tensor [:,:,:,0]

43 print("Shape of input data , CNN_tensor , is:", CNN_tensor.shape)

44

45 # labels
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46 # local location: ’/Volumes/COLESLAW_1TB/scaled_data/all_labels_100k.

data’

47 # Kevin Street: ’/data/d15126149/datasets/all_labels_100k.data’

48 with open(’/data/d15126149/datasets/all_labels_100k.data’,

49 ’rb’) as filehandle:

50 # read the data as binary data stream

51 all_labels = pickle.load(filehandle)

52 print("Shape of input labels , all_labels , is:", all_labels.shape)

53

54 ’’’

55 Use this for optimising models - vary the random_state if desired

56 Switch to .csv indices for results generation

57 ’’’

58 # TRAIN/TEST SPLIT

59 X_train , X_test , y_train , y_test = train_test_split(CNN_tensor ,

60 all_labels ,

61 test_size =0.2,

62 random_state

=3799,

63 shuffle=True ,

64 stratify=

all_labels)

65

66 # =============================================================

67 # # comment back in to generate results

68 # # indices for 3 random stratified test splits

69 # # local location: ’/Users/billcoleman/NOTEBOOKS/EXPERIMENT_4/backup

/svm_100k_train_val_indices.csv’

70 # # Kevin Street: ’/data/d15126149/datasets/

svm_100k_train_val_indices.csv’

71 # train_val_indices = \
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72 # pd.read_csv(’/data/d15126149/datasets/svm_100k_train_val_indices.

csv ’,

73 # index_col =[0])

74 # train_val_indices = pd.DataFrame(train_val_indices)

75 # print("Shape of train_val_indices: ", train_val_indices.shape)

76 # print(" Columns of train_val_indices: ", train_val_indices.columns)

77 #

78 # # local location: ’/Users/billcoleman/NOTEBOOKS/EXPERIMENT_4/backup

/svm_100k_test_indices.csv’

79 # # Kevin Street: ’/data/d15126149/datasets/svm_100k_test_indices.csv

’

80 # test_indices = \

81 # pd.read_csv(’/data/d15126149/datasets/svm_100k_test_indices.csv ’,

82 # index_col =[0])

83 # test_indices = pd.DataFrame(test_indices)

84 # print("Shape of test_indices: ", test_indices.shape)

85 # print(" Columns of test_indices: ", test_indices.columns)

86 #

87 # # to index to different splits

88 # splits = [’0’, ’1’, ’2’]

89 #

90 # this_split = 0

91 #

92 # X_train = CNN_tensor[train_val_indices[splits[this_split ]]]

93 # y_train = all_labels.loc[train_val_indices[splits[this_split ]]]

94 # X_test = CNN_tensor[test_indices[splits[this_split ]]]

95 # y_test = all_labels.loc[test_indices[splits[this_split ]]]

96 # ============================================================

97

98 ’’’

99 We will print training sample shape , test sample shape and total

100 number of classes present. There are 2 classes.
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101 ’’’

102

103 print(’Training data shape : ’, X_train.shape , y_train.shape)

104 print(’Testing data shape : ’, X_test.shape , y_test.shape)

105

106 # Find the unique numbers from the train labels

107 classes = np.unique(y_train)

108 nClasses = len(classes)

109 print(’Total number of outputs : ’, nClasses)

110 print(’Output classes : ’, classes)

111

112 ’’’

113 Find the shape of input image then reshape it into input format for

114 training and testing sets. After that change datatypes into floats.

115 ’’’

116

117 # reshaping to provide right shape to model

118 nRows ,nCols ,nDims = 40, 157, 1

119 train_data = X_train.reshape(X_train.shape[0], nRows , nCols , nDims)

120 test_data = X_test.reshape(X_test.shape [0], nRows , nCols , nDims)

121 input_shape = (nRows , nCols , nDims)

122

123 train_data = train_data.astype(’float32 ’)

124 test_data = test_data.astype(’float32 ’)

125

126 # My data is already categorical so probably don’t need this

127 train_labels_one_hot = tf.keras.utils.to_categorical(y_train)

128 test_labels_one_hot = tf.keras.utils.to_categorical(y_test)

129 print(’Original label 0 : ’, y_train.iloc [0])

130 print(’After conversion to categorical ( one -hot ) : ’,

131 train_labels_one_hot [0])

132
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133 # Create Model

134 def createModel ():

135

136 ’’’

137 Now create our model. We will add up Convo layers followed by

138 pooling layers. Then we will connect Dense(FC) layer to predict

139 the classes. Input data fed to first Convo layer , output of

140 that Convo layer acts as input for next Convo layer and so on.

141 Finally data is fed to FC layer which try to predict the

142 correct labels.

143

144 Initial architecture based on Chen2019 , a CNN which achieved

145 first place in the DCASE Acoustic Scene Classification

146 challenge 2019.

147 ’’’

148

149 model = tf.keras.models.Sequential ()

150

151 # Convolution 1

152 # The first layer with 14 filters of window size 5x5

153 model.add(tf.keras.layers.Conv2D (12, (5, 5), padding=’same’,

154 activation=’relu’, strides =(2 ,2), input_shape=input_shape))

155 model.add(tf.keras.layers.BatchNormalization ())

156 model.add(tf.keras.layers.Dropout (0.2))

157 model.add(tf.keras.layers.Conv2D (24, (3, 3), padding=’same’,

158 activation=’relu’, strides =(1 ,1)))

159 model.add(tf.keras.layers.BatchNormalization ())

160 model.add(tf.keras.layers.MaxPooling2D(pool_size =(2, 2)))

161

162 # Convolution 2

163 model.add(tf.keras.layers.Conv2D (48, (3, 3), padding=’same’,

164 activation=’relu’, strides =(1 ,1)))
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165 model.add(tf.keras.layers.BatchNormalization ())

166 model.add(tf.keras.layers.Dropout (0.0))

167 model.add(tf.keras.layers.Conv2D (48, (3, 3), padding=’same’,

168 activation=’relu’, strides =(1 ,1)))

169 model.add(tf.keras.layers.BatchNormalization ())

170 model.add(tf.keras.layers.MaxPooling2D(pool_size =(2, 2)))

171

172 # Convolution 3

173 model.add(tf.keras.layers.Conv2D (56, (3, 3), padding=’same’,

174 activation=’relu’, strides =(1 ,1)))

175 model.add(tf.keras.layers.BatchNormalization ())

176 model.add(tf.keras.layers.Dropout (0.0))

177 model.add(tf.keras.layers.Conv2D (56, (3, 3), padding=’same’,

178 activation=’relu’, strides =(1 ,1)))

179 model.add(tf.keras.layers.BatchNormalization ())

180 model.add(tf.keras.layers.Dropout (0.0))

181 model.add(tf.keras.layers.Conv2D (56, (3, 3), padding=’same’,

182 activation=’relu’, strides =(1 ,1)))

183 model.add(tf.keras.layers.BatchNormalization ())

184 model.add(tf.keras.layers.Dropout (0.0))

185 model.add(tf.keras.layers.Conv2D (56, (3, 3), padding=’same’,

186 activation=’relu’, strides =(1 ,1)))

187 model.add(tf.keras.layers.BatchNormalization ())

188 model.add(tf.keras.layers.Dropout (0.0))

189 model.add(tf.keras.layers.Conv2D (96, (3, 3), padding=’same’,

190 activation=’relu’, strides =(1 ,1)))

191 model.add(tf.keras.layers.BatchNormalization ())

192 model.add(tf.keras.layers.Dropout (0.0))

193 model.add(tf.keras.layers.Conv2D (96, (3, 3), padding=’same’,

194 activation=’relu’, strides =(1 ,1)))

195 model.add(tf.keras.layers.BatchNormalization ())

196 model.add(tf.keras.layers.Dropout (0.0))
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197 model.add(tf.keras.layers.Conv2D (96, (3, 3), padding=’same’,

198 activation=’relu’, strides =(1 ,1)))

199 model.add(tf.keras.layers.BatchNormalization ())

200 model.add(tf.keras.layers.Dropout (0.0))

201 model.add(tf.keras.layers.Conv2D (96, (3, 3), padding=’same’,

202 activation=’relu’, strides =(1 ,1)))

203 model.add(tf.keras.layers.BatchNormalization ())

204 model.add(tf.keras.layers.Dropout (0.0))

205 model.add(tf.keras.layers.MaxPooling2D(pool_size =(2, 2)))

206

207 # Convolution 4

208 model.add(tf.keras.layers.Conv2D (128, (3, 3), padding=’same’,

209 activation=’relu’, strides =(1 ,1)))

210 model.add(tf.keras.layers.BatchNormalization ())

211 model.add(tf.keras.layers.Dropout (0.0))

212 model.add(tf.keras.layers.Conv2D (128, (3, 3), padding=’same’,

213 activation=’relu’, strides =(1 ,1)))

214 model.add(tf.keras.layers.BatchNormalization ())

215 model.add(tf.keras.layers.Dropout (0.0))

216 model.add(tf.keras.layers.MaxPooling2D(pool_size =(2, 2)))

217

218 # Pooling

219 model.add(tf.keras.layers.Flatten ())

220 model.add(tf.keras.layers.Dense (128, activation=’relu’))

221 model.add(tf.keras.layers.BatchNormalization ())

222 # model.add(tf.keras.layers.Dropout (0.5)) # added in for 210

223 model.add(tf.keras.layers.Dense(nClasses , activation=’sigmoid ’))

224

225 return model

226

227 # Checking GPU

228 print("Num GPUs Available: ",
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229 len(tf.config.experimental.list_physical_devices(’GPU’)))

230

231 # To print diagnostics in slurm output

232 # tf.debugging.set_log_device_placement(True)

233

234 # Create model and set some parameters

235 model1 = createModel ()

236 batch_size = 128

237 lr = 0.01

238 epochs = 1

239

240 # assign a name to this model - to keep them seperate

241 name = "CNN100k_zORDER_optimising_no100_" # + str(this_split)

242 namepath = name

243

244 # create the folder to hold model objects if it doesn’t already exist

245 if not os.path.exists(os.path.join(’models ’, namepath)):

246 os.mkdir(os.path.join(’models ’, namepath))

247

248 # Declare optimiser - remember ’rmsprop ’ worked well for 10_000

249 optimiser = tf.keras.optimizers.Adam(learning_rate=lr,

250 beta_1 =0.9,

251 beta_2 =0.999 ,

252 amsgrad=False)

253

254 # Compile the model

255 model1.compile(optimizer=optimiser ,

256 # use ’categorical_crossentropy ’ for multi -class

257 loss=’binary_crossentropy ’,

258 metrics =[’accuracy ’])

259

260 ’’’
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261 Checkpoint

262 ’’’

263 # filepath ="weights -improvement -{epoch :02d}-{ val_accuracy :.2f}.hdf5"

264 weightspath = os.path.join(’models ’,

265 namepath ,

266 namepath + ’.best.hdf5’)

267 checkpoint = tf.keras.callbacks.ModelCheckpoint(weightspath ,

268 monitor=’val_accuracy ’,

269 verbose=1,

270 save_best_only=True ,

271 mode=’max’,

272 save_freq=’epoch ’)

273 callbacks_list = [checkpoint]

274

275 ’’’

276 model.summary () is used to see all parameters and shapes in each

layers in our

277 models

278 ’’’

279 model1.summary ()

280

281 ’’’

282 After compiling our model , we will train our model by fit() method ,

then

283 evaluate it.

284 ’’’

285 mod_history = model1.fit(train_data ,

286 train_labels_one_hot ,

287 batch_size=batch_size ,

288 epochs=epochs ,

289 verbose=1,

290 validation_split =(0.2) ,
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291 callbacks=callbacks_list)

292

293 mod_evaluate = model1.evaluate(test_data ,

294 test_labels_one_hot ,

295 verbose =2)

296

297 # save history object for plotting loss and accuracy

298 with open(os.path.join(’models ’, namepath ,

299 namepath + ’_hist.data’), ’wb’) as file_hi:

300 pickle.dump(mod_history.history , file_hi)

301

302 print("History object saved")

303

304 # serialize model to JSON

305 model_json = model1.to_json ()

306 with open(os.path.join(’models ’, namepath ,

307 namepath + ’_model.json’), ’w’) as json_file:

308 json_file.write(model_json)

309 print("Model saved to json")

310

311 print("Loading best model weights from training run , to evaluate ...")

312 # https :// machinelearningmastery.com/save -load -keras -deep -learning -

models/

313 # just want to seperate these to load best weights to best_model

314 best_model = model1

315 best_model.load_weights(weightspath)

316 print("Loaded model from disk")

317

318 # evaluate loaded model on test data

319 best_model.compile(optimizer=optimiser ,

320 loss=’binary_crossentropy ’,

321 metrics =[’accuracy ’])
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322 score = best_model.evaluate(test_data ,

323 test_labels_one_hot ,

324 verbose =2)

325 print("Best Validation %s: %.2f%%" % (best_model.metrics_names [1],

326 score [1]*100))

327

328 # save evaluate object

329 with open(os.path.join(’models ’, namepath ,

330 namepath + ’_eval.data’), ’wb’) as file_ev:

331 pickle.dump(score , file_ev)

332 print("Evaluate object saved")

333

334 # predict using model and measure precision , recall etc ...

335 y_pred = model1.predict(test_data , batch_size =64, verbose =2)

336 y_pred_bool = np.argmax(y_pred , axis =1)

337 print(classification_report(y_test , y_pred_bool))

338

339 # Confusion Matrix

340 print("Confusion matrix :\n{}".format(confusion_matrix(y_test ,

341 y_pred_bool)))

342 bal_acc = balanced_accuracy_score(y_test , y_pred_bool)

343

344 print("---------------------------------------------------------")

345 print(’Balanced accuracy on validation set (y_true Vs y_pred): %.2f%%

’ % (bal_acc * 100))

346 print("---------------------------------------------------------")

347

348 print("This model is: ", namepath)

349 # Export true and predicted labels for Mcnemar statistical test

350 y_pred = pd.DataFrame(y_pred , index=y_test.index)

351 y_pred_bool_ = pd.Series(y_pred_bool , index=y_test.index)

352 truePred = pd.DataFrame(pd.concat ([y_test , y_pred , y_pred_bool_],
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353 axis=1,

354 join=’outer ’))

355 truePred.columns =[’true’, ’pred0’, ’pred1 ’, ’pred_bool ’]

356 truePred.to_csv(os.path.join(’models ’, namepath ,

357 namepath + ’_truePred.csv’))

358 print("Predicted Labels Saved")

359

360 # Track the time it took to run the script

361 stop_time = timeit.default_timer ()

362 total_time = stop_time - start_time

363

364 # output running time in a nice format.

365 mins , secs = divmod(total_time , 60)

366 hours , mins = divmod(mins , 60)

367

368 print("(print)Total running time: %d:%d:%d.\n" % (hours , mins , secs))
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Model Evaluation

In a supervised learning categorisation task such as that proposed in this work, the

classification of isolated sounds on a BG — N — FG scale, the end product of the ML

process will be a table that outlines categorisation success and failure which is known as a

confusion matrix. This table will compare predicted labels with actual labels and identify

whether the model has successfully categorised the test instances or not. An example of

a confusion matrix for a binary classifier for 165 instances is provided in Figure B.1 for

elucidation.

The relevant values are known as:

• True Positive (TP) — Prediction of YES values for actual YES instances

• True Negative (TN) — Prediction of NO values for actual NO instances

• False Positive (FP) — Prediction of YES values for instances that are actually NO

• False Negative (FN) — Prediction of NO values for instances that are actually YES

Various metrics can then be calculated from these values which give insight into the

strengths and weaknesses of the model. This involves the computation of the row and column
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Actual: 
NO

Actual: 
YES

TN = 50

FN = 5

FP = 10

TP = 100

60

105

55 110

n = 165 Predicted: 
NO

Predicted: 
YES

Fig. B.1 An example of a confusion matrix for a binary classifier.

totals which are used in tandem with the categorisation scores. The following scores equate

to the example figures given in Figure B.1.

• Accuracy — In total, what percentage of predictions made by the model are correct?:

T P+T N
Total Instances

=
100+50

165
= 91%

• Average Class Accuracy (ACA) — Sometimes referred to as ‘balanced’ accuracy,

where individual class accuracies are averaged.

(
T P

Total Y ES +
T N

Total NO
2

)
=

(
100
105 +

50
60

2

)
= 89%
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• Precision — What percentage of instances predicted as YES are correct?

T P
Predicted Y ES

=
100
110

= 91%

• Recall/True Positive Rate — What percentage of YES instances are correctly pre-

dicted as YES?

T P
Actual Y ES

=
100
105

= 95%

• False Positive Rate — What percentage of NO instances are incorrectly predicted as

YES?

FP
Actual NO

=
10
60

= 17%

• True Negative Rate — What percentage of NO instances are correctly predicted as

NO?

T N
Actual NO

=
50
60

= 83%

• False Negative Rate — What percentage of YES instances are incorrectly predicted

as NO?

FN
Actual Y ES

=
5

105
= 5%
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• Misclassification Rate/Error Rate — What percentage of model predictions are in-

correct?

FP+FN
Total

=
10+5

165
= 9%

• F Score — A weighted average of the Recall and Precision.

2
1

Recall +
1

Precision

=
2

1
0.91 +

1
0.95

=
2

2.1515
= 93%

Other popular evaluation approaches include the Receiver Operating Characteristic

(ROC) and the Area Under the Curve (AUC) metrics. Given a model whose output is a

probability distribution between 0 and 1, a decision can be made as to which value is used

as a threshold to classify positive and negative instances. A ROC curve is a plot of TP rate

against FP rate for the range of different thresholds. The ROC curve then demonstrates

how TP and FP rates vary for different threshold values and facilitates choice of the optimal

threshold for the application. An AUC value summarises the entire ROC into a single number

by calculating the area underneath a ROC curve [180]. The strongest models will appear in

the top left hand corner of the ROC curve with more pronounced curves indicating better

models and larger AUC scores. This facilitates comparison of classifiers by providing a single

digit metric. ROC curves are only applicable to binary classification problems, however, this

can be tackled by treating each class performance separately as a binary class membership

problem [215].

The decision on which evaluation metric to use will vary on the particular application

concerned. In certain cases the overall classification accuracy will be most important, while in

other cases it may be far more important to have a highly accurate YES prediction score with
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less emphasis on other categories. With regard to the application of hierarchical classification

for audio sounds it may arguably be the case that successfully predicting FG sounds is the

most important task of the classifier as these sounds may fulfil the requirement for any

application in terms of variable audio object delivery.
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List of Publications

C.1 Journal Papers

The following publications directly exploit work presented in this document.

1. Coleman, W., Delany, S. J., Yan, M., & Cullen, C. (2020). A Machine Learning

Approach to Hierarchical Categorisation of Auditory Objects. Journal of the

Audio Engineering Society. 68(1/2), 48–56.

C.2 Conference Papers

The following publications directly exploit work presented in this document.

1. Coleman, W., Delany, S. J., Cullen, C & Yan, M. (In Review). Active Learning for

Auditory Hierarchy. Cross Domain Conference for Machine Learning and Knowl-

edge Extraction (CD-MAKE), Dublin, Ireland; 25-28 August, 2020.

2. Coleman, W., Cullen, C., & Yan, M. (2018). Categorisation of Isolated Sounds on a

Background - Neutral - Foreground Scale Proceedings of the 144th Convention of

the Audio Engineering Society, Milan, Italy; May 23-26, 2018.
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3. Coleman, W., Adams, L., Cullen, C., & Yan, M. (2017). Perception of Auditory

Objects in Complex Scenes: Factors and Applications. Institute of Acoustics - 21st

Century Developments in Musical Sound Production, Presentation and Reproduction

(pp. 1–16), Nottingham, UK; November 21st, 2017.

C.3 Other Papers

The following publications constitute other work which has informed the context of this

research.

1. Coleman, W., O’Sullivan, L., Cullen, C., & Yan, M. (2017). sonicPainter: Mod-

ifications to the Computer Music Sequencer Inspired by Legacy Composition

Systems and Visual Art. International Festival and Conference on Sound in the Arts.

Science and Technology (ISSTA 2017), Dundalk, Ireland; 8-9 September, 2017.

2. Coleman, W., O’Sullivan, L., Cullen, C., & Yan, M. (2017). iPhone FM Tilter: A Fre-

quency Modulation Instrument for Improvisational Performance using iPhone

and Arduino. International Festival and Conference on Sound in the Arts. Science

and Technology (ISSTA 2017), Dundalk, Ireland; 8-9 September, 2017.

3. Cullen, C., & Coleman, W. (2016). Human Pattern Recognition in Data Sonifica-

tion. 6th International Workshop on Folk Music Analysis, Dublin, Ireland; 15th-17th

June, 2016.

328



Appendix D

List of Employability and Discipline

Specific Skills

• Semester 2, 2015/16 - PH6022 Reporting Results in Physical Science - 5 ECTS

• Semester 1, 2016/17 - MED9003 Authoring Principles - 10 ECTS

• Semester 1, 2016/17 - MATH 9102 Probability and Statistical Inference - 5 ECTS

• Semester 2, 2016/17 - GRSO1001 Research Methods - 5 ECTS

• Semester 1, 2017/2018 - MENS 9106 Ensemble 1 - 5 ECTS

• Semester 2, 2017/2018 - SPEC 9270 Machine Learning - 10 ECTS

• Semester 2, 2018/2019 - COMP 9001 Deep Learning - 5 ECTS
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