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Indirect Sliding Mode Control for
DC–DC SEPIC Converters

Hasan Komurcugil , Senior Member, IEEE, Samet Biricik , Senior Member, IEEE, and Naki Guler

Abstract—This article presents an indirect sliding mode
control (SMC) for single-ended primary-inductor convert-
ers (SEPIC). Unlike the conventional SMC methods, the
proposed SMC method employs a sliding surface function
based on the input current error only. The use of such slid-
ing surface function not only simplifies the implementation
but also reduces the cost of implementation. It is shown
that the output voltage control can be achieved indirectly.
The input current reference is generated by a proportional–
integral (PI) regulator. The existence condition and the re-
gion of the closed-loop system are determined for all pos-
sibilities of the PI gains. The performance of the proposed
SMC method is investigated on a laboratory prototype con-
verter, operated in buck and boost modes, in terms of the
voltage regulation ability under abrupt changes in the input
voltage and load resistance. Simulation and experimental
results are presented and discussed.

Index Terms—Proportional–integral (PI) control, single-
ended primary-inductor converter (SEPIC), sliding mode
control (SMC).

I. INTRODUCTION

DC–DC converters are power electronics devices that are
widely used in many applications including dc motor

drives, communication equipment, and power supplies for per-
sonal computers [1]. Among the dc–dc converters, Cuk [2]–[4]
and single-ended primary-inductor converters (SEPIC) [5]–[10]
are widely used in applications where low ripple current is
desired at the input and output terminals of the converter. These
converters with step-down and step-up capabilities are suitable
in the off-grid photovoltaic (PV) applications due to their inter-
connection ability with different batteries and PV modules. The
inverse polarity at the output terminals of the Cuk converter is
its major disadvantage. Furthermore, the low-power conversion
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efficiency resulting from the hard switching condition can be
considered as another drawback for the Cuk converter.

The SEPIC converter offers similar features as the Cuk
converter without inverting the polarity of the output voltage.
Moreover, the SEPIC converter provides great benefit for power
conversion since it can generate a wide range of output nonin-
verted voltage. The input impedance of a SEPIC converter can
be changed by regulating the duty cycle. On the other hand,
it is very suitable for either current or voltage applications as
controlled current or voltage sources. This property makes the
SEPIC converter an excellent candidate for PV applications
because it can match the entire voltage and current characteristic
curve [11], [12]. It can also be used in a variety of applications
such as a power factor correction rectifier [13], voltage-doubler
rectifier [14], PV charger [15], and motor drive [16]. However,
the controller design for the SEPIC converter is very compli-
cated due to its inherent fourth-order and nonlinear nature [17].
Furthermore, its behavior depends on operating conditions and
load variations [11]. A well-designed controller should meet the
desired objectives such as the fast dynamic response, robustness
to parameter variations, guaranteed stability, and good tracking
performance in case of input voltage and load variations. Various
nonlinear control methods such as backstepping and passivity
based control [18], fuzzy logic [19], and sliding mode control
(SMC) [11], [20]–[22] have been proposed to achieve these
objectives for the SEPIC converters.

Among these control methods, the SMC method merits atten-
tion owing to its excellent performance in satisfying the afore-
mentioned control objectives. However, despite the prominent
advantages of the existing SMC methods, they suffer from lack
of controller design methodology and complexity. The sliding
surface function formation of the SMC method presented in
[20] is based on the linear combination of the input current error,
output voltage error, and integral of these errors through suitable
constants. Eventually, this method requires four constants and
computation of the input current reference. However, there is
no information about the criteria for selecting these constants
and computing the input current reference. In [21], the sliding
surface function formation is based on the linear combination
of inductor current errors. Although no constant is required in
this method, the computation of two different inductor current
references is needed. The method presented in [22] is based
on the error of the sum of inductor currents. However, there
is no information about the computation of the desired current
reference. Also, the SMC methods proposed in [20] and [21] are
not verified experimentally.
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Fig. 1. Schematic diagram of the SEPIC converter.

In this article, an indirect SMC method is proposed for dc–dc
SEPIC converters. Unlike the existing SMC methods, the sliding
surface function formation is based on the input current error
only which requires no sliding constant. In such a case, the ne-
cessity of using sliding constants in the sliding surface function
is eliminated. Also, it is shown that the output voltage control can
be achieved indirectly. The existence conditions and existence
region of the proposed SMC method are determined. The validity
of the proposed SMC method is verified experimentally under
buck and boost operation modes.

II. MODELING OF THE SEPIC CONVERTER

Fig. 1 shows the schematic diagram of a SEPIC converter.
The differential equations describing the operation of the SEPIC
converter can be written as follows:

diL1

dt
=

vin
L1

− (1 − u)
(vC1 + vout)

L1
(1)

diL2

dt
=

vC1

L2
u− (1 − u)

vout
L2

(2)

dvC1

dt
= (1 − u)

iL1

C1
− iL2

C1
u (3)

dvout
dt

= (1 − u)
(iL1 + iL2)

C2
− vout

C2RL
(4)

where u is the control input which takes 1 for the ON state of
the switch Q and 0 for the OFF state. Clearly, the mathematical
model of the converter has four differential equations that are
dependent on each other.

III. VARIABLES IN THE STEADY STATE

The steady-state variables of the system corresponding to a
constant value of the average control input u can be obtained.
Assuming that the output voltage and inductor current are equal
to their references (vout = v∗out and iL1 = i∗L1

) and equating
the derivatives of differential equations (1)–(4) to zero, the
differential equations (1)–(4) can be written as

0 = vin − (1 − uss)(v
ss
C1

+ v∗out) (5)

0 = ussv
ss
C1

− (1 − uss)v
∗
out (6)

0 = (1 − uss)i
∗
L1

− issL1
uss (7)

0 = (1 − uss)(i
∗
L1

+ issL2
)− v∗out

RL
. (8)

Solving for uss, issL2
, i∗L1

, and vssC1
in terms of v∗out and vin

yields

uss =
v∗out

vin + v∗out
(9)

issL2
=

v∗out
RL

(10)

i∗L1
=

(v∗out)
2

vinRL
(11)

vssC1
= vin (12)

where uss, issL2
, and vssC1

denote the steady-state values of u, iL2 ,
and vC1 , respectively. It is important to note that uss is the duty
cycle of the converter which should satisfy 0 < uss < 1. From
(9), the voltage transfer ratio can be deduced as

v∗out
vin

=
uss

1 − uss
. (13)

Assuming that the converter operates in the continuous con-
duction mode, then uss can take the following values in each
operation mode:

uss

⎧
⎪⎨

⎪⎩

< 0.5 Buck mode

= 0.5 Neither Buck nor Boost mode

> 0.5 Boost mode

. (14)

Substituting the values presented in Table II (vin = 30 V,
vin = 60 V, and v∗out = 48 V) into (9), the values of uss in
the buck and boost modes are computed to be 0.44 and 0.61,
respectively.

By using the volt-second balance of L1 in one switching
period, one can obtain the expression for inductor current ripple
as [15]

ΔiL1 = 2iL1,min =
2Pin,min

vin
=

vin
L1

uss,maxTsw (15)

where Pin,min and Tsw denote the minimum input power and
switching period, respectively. Solving for L1 yields

L1 =
v2
inuss,max

2Pin,minfsw
. (16)

It should be noted that the value of L2 can be selected using
(16). Using the values of vin, vout, and fsw presented in Table II,
the value of L1 is computed as 794.3 μH. However, in the
experimental studies, both inductor values were selected as
800 μH.

On the other hand, the efficiency of the converter is given by

η =
Pout

Pin
=

Pout

Pout + Ploss
(17)

where Ploss denotes the total power loss in the converter due
to switch, diode, and the resistance of inductors and capacitors.
In [9], the equation of the power loss is presented. One can
calculate that the power loss in the boost mode (uss > 0.5)
is slightly less than that of the buck mode (uss < 0.5) for the
same converter parameters. This means that the efficiency of the
converter operating in the boost mode is slightly higher than that
in the buck mode.
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Fig. 2. State trajectory in phase plane for u = 0.

IV. SLIDING MODE CONTROL

A. Direct Voltage Control

Let x1 = vout − v∗out and ẋ1 = x2 = v̇out be the state vari-
ables used to control vout. The derivative of x2 is given by

ẋ2 = v̈out. (18)

Substituting (4) into (18) yields

ẋ2 = − x2

RLC2
+

x1(u− 1)
C2

(
L1 + L2

L1L2

)

+
(1 − u)

L1C2
(vin − vC1 − v∗out) . (19)

The trajectories of the state variables can be observed by
considering the ON (u = 1) and OFF (u = 0) states of the
switch Q. Fig. 2 shows the trajectory in the phase plane for
u = 0 obtained with L1, L2, C1, and C2 presented in Table II
(see Section V),RL = 10 Ω, vin = 30 V, and v∗out = 48 V. The
initial values of x1 and x2 are assumed to be zero.

In the steady state, since x2 = 0 and vC1 = vin (see
Section III), then the solution of x1 can be obtained from (19)
as follows:

x1 = − L2v
∗
out

(L1 + L2)
. (20)

It is evident from Fig. 2 that the trajectory exhibits a damped
oscillation starting from initial point at (x1 = 0, x2 = 0) and
reaching to an equilibrium point at (x1 = −24 V, x2 = 0). The
final value of x1 (x1 = −v∗out/2 = −24 V) is in agreement with
(20) since L1 = L2 in Table II. On the other hand, the state
trajectory for u = 1 does not exist as can be predicted from
(19). In this case, it is not appropriate to select the sliding surface
function as the linear combination of the state variables x1 and
x2. Hence, it can be concluded that the closed-loop system with
the direct voltage control is not stable.

B. Indirect Voltage Control

The output voltage is controlled indirectly by controlling the
input current iL1 . In order to achieve such control, the sliding
surface function and its derivative are defined as follows:

S = iL1 − i∗L1
,
dS

dt
=

diL1

dt
− di∗L1

dt
(21)

where i∗L1
denotes the reference of iL1 . Unlike the method pre-

sented in [23], the inductor current reference can be generated by
using a proportional–integral (PI) controller without employing
the compensation term as follows:

i∗L1
= −kpx1 − ki

∫

x1dt (22)

where kp and ki are the proportional and integral gains, respec-
tively. The derivative of (22) can be written as

di∗L1

dt
= −kpx2 − kix1. (23)

Substituting (1) and (23) into the second equation in (21) gives

dS

dt
=

1
L1

(L1ki + u− 1)x1 + kpx2

+
1
L1

(vin + vC1(u− 1) + v∗out(u− 1)) . (24)

When the system enters into the sliding mode, its dynamics
can be determined from dS

dt = 0. In this case, the following
equation can be written:

ẋ1+

(
L1ki−1 + u

L1kp

)

x1=

(
(vC1 + v∗out)(1 − u)− vin

L1kp

)

.

(25)
Clearly, (25) is a first-order differential equation whose solu-

tion is given by

x1(t) =

(
(vC1 + v∗out)(1 − u)− vin

L1ki + u− 1

)

+ Ce
−(L1ki+u−1)

L1kp
t
.

(26)
Assuming that x1(0) = −v∗out, the constant C in (26) can be

obtained as

C =
u(vC1 + v∗out)− (vC1 + v∗out) + vin

L1ki + u− 1
− v∗out. (27)

It can be shown that the first term in (26) is zero in the steady
state. In order to show this, u should be replaced with its steady-
state expression in (9) and vC1 should be replaced with vin in
accordance with (12). On the other hand, the exponential term
should converge to zero as t → ∞. Hence, x1(t) tends to zero
exponentially if the following condition is satisfied:

(L1ki + u− 1)
L1kp

> 0. (28)

Since (u − 1) is always negative, the condition in (28) can
be satisfied using kp and ki with appropriate signs such as
kp > 0 and ki > 0, kp > 0 and ki < 0, kp < 0 and ki > 0,
and kp < 0 and ki < 0.

Now, let the control input be defined as

u =
1
2
(1 − sign(S)) =

{
1 if S < 0

0 if S > 0
(29)

where sign(.) denotes the sign function. The stability of the
sliding mode is ensured if the following condition is satisfied
[24]:

S
dS

dt
< 0. (30)
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Then, using (29) and (30), one can obtain the following
existence conditions.

Case I:
When S < 0 ⇒ u = 1 and the condition for dS

dt > 0 should
be

l1 = kix1 + kpx2 +
vin
L1

> 0. (31)

Case II:
When S > 0 ⇒ u = 0 and the condition for dS

dt < 0 should
be

l2 =
1
L1

(L1ki − 1)x1 + kpx2 +
1
L1

(vin − vC1 − v∗out) < 0.

(32)
Equations (31) and (32) denote two straight lines which

constitute the borders of the stability region of the system. The
slopes of these lines are given by

Slopel1 = 1 − ki and Slopel2 = − ki
kp

. (33)

It is obvious from (33) that the slope of l1 depends only on
ki. However, the slope of l2 depends on both kp and ki. The
signs of kp and ki can change the slopes of these lines and,
hence, the stability region accordingly. Therefore, considering
the condition in (28) and the slopes in (33), there exist four
different stability regions for each kp and ki pair, as shown in
Fig. 3. Close inspection to the stability regions shows that the
inductor L1 plays significant role in determining the size of the
region. Although increasing L1 decreases the ripple component
of iL1, the size of the stability region is also decreased. Hence,
L1 should be selected to make a compromise between the ripple
of iL1 and stability region.

On the other hand, the necessary condition for the existence of
a sliding motion on the sliding surface can also be verified if the
transversality, reachability, and equivalent control conditions are
satisfied [25]. The transversality condition as follows constitutes
the necessary condition for the existence of a sliding motion on
the sliding surface:

∂

∂u

(
dS

dt

)

�= 0. (34)

Equation (34) guarantees that the control input u is present in
dS/dt, which is needed to govern the sliding mode dynamics of
the system.

The transversality condition can easily be verified by substi-
tuting (24) into (34) which yields

∂

∂u

(
dS

dt

)

=
vC1 + vout

L1
�= 0. (35)

Clearly, the transversality condition is satisfied since vC1 ,
vout, and L1 are all positive.

The expression for the equivalent control input can be ob-
tained by imposing dS

dt = 0 and u = ueq in (24) and solving for
ueq results in

ueq =
vC1 + vout − vin

vC1 + vout
. (36)

Fig. 3. Stability regions of the system with the proposed SMC method.
(a) kp > 0 and ki > 0. (b) kp > 0 and ki < 0. (c) kp < 0 and ki > 0.
(d) kp < 0 and ki < 0.
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It is worth noting that ueq is a continuous signal which should
be constrained between the maximum and minimum values of
the discontinuous control input u. In the case of dc–dc converters,
ueq is constrained between 1 and 0. Now, let us show that
0 < ueq < 1. Using (1) and (21), the condition in (30) can be
expressed as

1
L1

S

[

(vin − vC1 − vout) + (vC1 + vout)u− di∗L1

dt

]

< 0.

(37)
Substituting (29) into (37) and by making use of S =

|S|sign(S), one can obtain

1
2L1

|S|
{

sign(S)

[

(2vin − vC1 − vout)− 2L1
di∗L1

dt

]

−(vC1 + vout)

}

< 0. (38)

The inequality in (38) holds if the following condition is
satisfied:

∣
∣
∣
∣(2vin − vC1 − vout)− 2L1

di∗L1

dt

∣
∣
∣
∣ < (vC1 + vout). (39)

In the steady state, di∗L1
dt = 0 since i∗L1 is constant. Hence, (39)

can be written as

−(vC1 + vout) < (2vin − vC1 − vout) < (vC1 + vout). (40)

Now, adding (vC1 + vout) to inequality (40) and dividing all
terms of the resulting equation by 2 yields

0 < vin < (vC1 + vout). (41)

Multiplying (41) by −1 and then adding (vC1 + vout) to the
resulting equation yields

0 < (vC1 + vout − vin) < (vC1 + vout). (42)

Now, dividing all terms of (42) by (vC1 + vout), we obtain

0 <

(
vC1 + vout − vin

vC1 + vout

)

︸ ︷︷ ︸
ueq

< 1. (43)

Since vC1 = vin and vout = v∗out are in the steady state, ueq

reduces to uss given in (9).
It is important to note that the direct implementation of (29)

gives rise to high switching frequency and chattering which are
not desired in practice. As a remedy to this problem, the sliding
surface function is forced to move between the upper and lower
thresholds known as the hysteresis bands as follows:

u =
1
2
(1 − sign(S)) =

{
1 if S < −h

0 if S > +h
. (44)

Block diagram of the proposed control strategy with the
SEPIC converter is depicted in Fig. 4.

The existing sliding mode controlled topologies (with buck–
boost ability) similar to the SEPIC converter are compared with
the proposed SMC. The comparison is in terms of the state
variables and constants in the sliding surface function. For the
sake of implementation cost, the required number of sensors is

Fig. 4. Block diagram of the proposed controller with the SEPIC
converter.

TABLE I
COMPARISON OF THE EXISTING TOPOLOGIES WITH PROPOSED SMC

Fig. 5. Experimental setup.

considered as well. According to Table I, the proposed SMC is
based on the simplest sliding surface function with no constant
leading to reduced implementation complexity.

V. SIMULATION AND EXPERIMENTAL RESULTS

The theoretical considerations are verified by simulations
and experimentally. The experimental results are obtained using
the setup shown in Fig. 5. The input and output voltages are
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TABLE II
SYSTEM AND CONTROL PARAMETERS

measured by using LEM LV25-P. The input and output currents
are measured by using LEM LA55-P current transducer. The
proposed SMC strategy modeled in Simulink and embedded into
TMS320F28379D by using the MATLAB/Simulink and code
composer studio software. The performance of the proposed
control method is tested in terms of voltage regulation ability
under variable input voltage and different load conditions. The
system and control parameters used in the experimental studies
are given in Table II.

A. Steady-State Performance

Fig. 6 shows the steady-state results of input voltage (vin),
output voltage (vout), and inductor currents (iL1 and iL2) under
RL = 100 Ω in the buck and boost modes. It is clear from Fig. 6
that the output voltage is 48 V which means that the controller
regulates the output voltage at its reference. In addition, the con-
verter with the proposed control method successfully operates
both in buck and in boost modes, as shown in Fig. 6(a) and (b),
respectively.

B. Performance Under Input Voltage Variations

Fig. 7 shows the dynamic responses of vout, iL1, and iout
currents for an abrupt change in vin under v∗out = 48 V and
RL1 = 100 Ω. The results presented in Fig. 7(a) and (b) cor-
respond to the input voltage variation from 60 to 30 V and
from 30 to 60 V. It is worth noting that, initially, the converter
operates in the buck mode for vin = 60 V. However, when the
input voltage is changed from 60 to 30 V, the operation mode
of the converter is changed from buck mode to boost mode.
Similarly, when the input voltage is changed from 30 to 60 V,
the converter’s operation is changed from boost mode to buck
mode. In these operating mode changes, the input current is also
changed accordingly so that the power delivered to the load is
unchanged. It can be noticed that the output voltage tracks its
reference successfully and regulated at 48 V in both operating
modes. In Fig. 8(b), there exist small undesired ripples on the

Fig. 6. Experimental steady-state responses of the input voltage, out-
put voltage, and inductor currents under RL = 100 Ω in (a) buck mode
and (b) boost mode.

output current which occur due to the noise disturbance in the
experimental system [29].

The results presented in Fig. 7(c) and (d) correspond to the
input voltage variation from 30 to 60 V and back to 30 V. Initially,
the converter operates in the boost mode for vin = 30 V. When
the input voltage is changed from 30 to 60 V, the converter’s
operation is changed to buck mode. When the input voltage is
changed from 60 to 30 V, the converter’s operation is changed
to boost mode again. Clearly, the output voltage is regulated at
48 V in both operating modes. Again, in order to maintain the
load power against this input voltage variations, the input power
should also be changed which is possible if the input current is
changed.

C. Performance Under Load Variations

The performance of the proposed control strategy is also
tested under 100% load variations. Fig. 8 shows the dynamic
responses of output voltage, and input and output currents for an
abrupt change in the load resistance when v∗out = 48 V. The load
change was from 100 to 50Ω and from 50 to 100Ω. Fig. 8(a) and
(b) shows the dynamic responses due to these load changes when
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Fig. 7. Simulated and experimental dynamic responses of the output voltage, and input and output currents for the abrupt change in the input
voltage. (a) and (b) From 60 to 30 V and from 30 to 60 V. (c) and (d) From 30 to 60 V and from 60 to 30 V.

TABLE III
SIMULATED AND EXPERIMENTAL EFFICIENCY AND POWER LOSSES UNDER BUCK AND BOOST OPERATIONS

the converter operates in the buck mode. As can be seen clearly,
the output voltage is almost not affected from these load changes.
This means that the proposed controller is able to regulate the
output voltage under load variations.

Fig. 8(c) and (d) shows the dynamic responses due these load
changes when the converter operates in the boost mode. Again,

it can be seen that except for the small overshoot and undershoot
occurring during the transition period, the output voltage is not
affected from the load changes.

Fig. 9 shows the experimental dynamic responses of output
voltage, and input and output currents obtained with the SMC
method presented in [10] for an abrupt change in the input
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Fig. 8. Simulated and experimental dynamic responses during load
change from 100 to 50 Ω and back to 100 Ω. (a) and (b) Buck mode.
(c) and (d) Boost mode.

Fig. 9. Experimental dynamic responses of the output voltage, and
input and output currents for the abrupt change in the input voltage from
60 to 30 V and from 30 to 60 V using control method in [10].

Fig. 10. Experimental dynamic responses during load change from
100 to 50 Ω and back to 100 Ω obtained by the control method presented
in [10]. (a) Buck mode. (b) Boost mode.

voltage when v∗out = 48 V andRL1 = 100 Ω. Comparing Fig. 9
with Fig. 7(b), one can see that the proposed control is much
faster. As can be seen from Fig. 9, there are some oscillations
in the output voltage that occur during the transient of input
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Fig. 11. Simulated and measured efficiency and power losses of the
SEPIC converter with the proposed controller under buck and boost
operation. (a) Efficiency. (b) Power losses.

voltage change from 60 to 30 V. Such undesired oscillations do
not occur in the output voltage obtained by the proposed control
method as shown Fig. 7(b). This means that the proposed control
is much faster than the control presented in [10].

Fig. 10 shows the experimental dynamic responses of out-
put voltage, and input and output currents obtained with the
SMC method presented in [10] for an abrupt change in the
load resistance when v∗out = 48 V. The load change was from
100 to 50 Ω and from 50 to 100 Ω. Although the controller
regulates the output voltage at the desired level (48 V), its
dynamic response is slow. This fact is evident when Fig. 10
is compared with Fig. 8. The undershoot and overshoot in the
output voltage in Fig. 10 are discernible.

D. Efficiency Analysis

The main power losses in the converter are due to the switch-
ing losses, diode losses, inductor losses, and snubber circuit
losses. The efficiency of converter (η) becomes maximum if
these power losses are minimized. In order to investigate the
efficiency of the converter, the input and output powers are
simulated and measured in boost and buck modes under seven
different resistive loads. Then, the power losses and efficiency
are computed. The results are tabulated in Table III and plotted
in Fig. 11.

In the buck mode operation, the maximum efficiency can
be achieved at load 5 (16 Ω). The simulated and experimental
efficiency values at this load are 93.51% and 92.9%, respectively.
In the boost mode, the maximum efficiency exists at load 4
(25 Ω). The simulated and experimental efficiency values at 25
Ω are 95.38% and 95.41%, respectively. It is clear from Table III
that the simulated power, losses, and efficiency values are in
good agreement with their counterpart obtained experimentally.
Also, it is worth noting that the boost mode has slightly
higher efficiency than the efficiency attained in the buck mode
operation.

VI. CONCLUSION

In this article, an indirect SMC with simplified sliding surface
function was proposed for dc–dc SEPIC converters. It was shown
that the output voltage control could be achieved indirectly by us-
ing the sliding surface function based on the input current error.
The use of such a sliding surface function not only simplified the
design but also reduced the implementation cost. The existence
region of the sliding mode was determined for various PI gains.
The input current reference was generated via a PI regulator.
The performance of the proposed SMC method was tested on a
laboratory prototype converter, operated in the buck and boost
modes, in terms of the voltage regulation ability under abrupt
changes in the input voltage and load resistance. The theoreti-
cal considerations were validated by the experimental results.
These results showed that the proposed SMC method offers
advantages in terms of reduced implementation complexity and
cost.
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