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Optimisation of the transmit beam parameters for generation of
subharmonic signals in native and altered populations of a commercial
microbubble contrast agent SonoVue®
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aNational Centre for Advanced Medical Imaging (CAMI), St James Hospital / School of Medicine, Trinity College Dublin, Ireland
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A R T I C L E I N F O
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A B S T R A C T

The aim of this work was to establish the optimum acoustic characterisation approach and insonation transmit
beam parameters for subharmonic signal generation with ‘native’ and ‘altered’ populations of a commonly-used
microbubble contrast agent. Dynamic contrast-enhanced (DCE) ultrasound is a non-invasive method of imaging
the microvasculature, typically implemented using harmonic imaging. Subharmonic imaging, in which echoes at
half the fundamental frequency are detected, detects signals which are generated by the ultrasound contrast
agents (UCAs) but not by tissue. However, optimal transmission parameters and furthermore, the optimum
acoustic characterisation method have not been established. The subharmonic response of ‘native’ and ‘altered’
UCA, altered through decantation, was investigated at transmit centre frequencies 1.8–5 MHz and pulse lengths
1–8 cycles. The ‘altered’ UCA had reduced polydispersity (1–4 µm: 82% bubble volume), compared to ‘native’
(4–10 µm: 57% bubble volume). A custom-built narrow-band acoustic characterisation system was found to be
more appropriate for acoustic characterisation compared to the commonly used broadband pulse-echo approach.
Both UCA generated the highest subharmonic signal at pulse length of 3-cycles. The maximum ‘native’ sub-
harmonic signal was generated at a transmit centre frequency of 1.9 MHz, corresponding to a subharmonic at
0.95 MHz. This optimal frequency increased in the ‘altered’ population to 2.3–2.5 MHz, bringing the sub-
harmonic above 1 MHz and hence into a range amenable to clinical abdominal imaging transducers. The use of
subharmonic signal detection coupled with a modified UCA size distribution has potential to significantly im-
prove the quantification sensitivity and accuracy of DCE ultrasound imaging.

1. Introduction

Ultrasound contrast agents (UCA) used in contrast-enhanced ultra-
sound imaging improve the contrast-to-tissue ratio, particularly for
difficult to image patients such as obese patients, via an increased
difference in acoustic impedance between tissue and the blood with
UCA compared to blood alone. SonoVue® (Bracco, Italy) is the only
UCA currently licensed in Europe. UCA enhance the amplitude of the
signal, resulting in an improved sensitivity to both deeper tissues and
small vessels which might otherwise be beyond the detection cap-
abilities of conventional ultrasound techniques. UCAs are micron-sized
bubbles, typically comprised of a perfluorocarbon gas encapsulated in a
phospholipid shell, and are thus highly compressible, producing

nonlinear oscillations above certain acoustic pressure thresholds. This
nonlinear behaviour leads to the generation of both harmonic and
subharmonic signal reflections from the UCA. Harmonic imaging has
been extensively researched and is implemented clinically for contrast-
enhanced ultrasound (CEUS) imaging, with applications to evaluate
cardiac function through assessing pulmonary transmit stretch [1], and
for characterisation of breast [2] and liver lesions [3,4]. However, in
vivo the sensitivity of CEUS harmonic imaging is limited by the fact that
there is also harmonic signal generation in tissue at the acoustic pres-
sure levels used clinically in ultrasound imaging.

Subharmonic imaging (SHI), in which echoes at half the funda-
mental frequency are detected, has been suggested as an alternative to
harmonic imaging for producing improved blood-to-tissue contrast, on
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the basis that tissue does not produce significant subharmonic content
[5–7]. Additionally, due to the frequency-dependent attenuation of
ultrasound beam energy in tissue, the lower frequency subharmonic
signals result in less attenuation of the signal. Early studies in-
vestigating the SHI approach have demonstrated that a significant
amount of subharmonic signal can be generated at pressures typically
used in conventional imaging, and with lower tissue attenuation of the
signal, resulting in increased penetration depth [5,6,8]. The sub-
harmonic response of UCAs depends on many factors, including con-
trollable transmit beam parameters such as: the transmit centre fre-
quency, the transmit pulse-length, and the applied acoustic pressure
[6,8–10]. Investigation of the SHI response of a particular UCA requires
full characterisation of its acoustic properties. However, there is no
standardised methodology for acoustic characterisation, with broad-
band [11] and narrowband [12] approaches, relating to the pulse
length of the excitation signal, described in the literature. A further
confound is whether these approaches are performed in pulse-echo
mode [13,14], where the transducer acts as both the transmitter and
receiver, or through-transmission mode [15], where both a transmit
and receive transducer are positioned co-axially.

SHI is not currently implemented in the clinical environment; a
necessary first step for its clinical implementation is to investigate op-
timal conditions for maximising the subharmonic signal from the UCA,
for example to determine the optimum transmit parameters yielding
maximum signal generation. Furthermore, commercial UCA are opti-
mised for the current clinical applications using harmonic imaging
approaches, with no prior attempt at optimisation for SHI. The aims of
this study were threefold: to investigate the optimum acoustic char-
acterisation method for the commercially available UCA used in the
study, to fully characterise the subharmonic signal emitted by this UCA

with a view to optimising the transmit beam properties to generate the
maximum SH signal, and to investigate the effect of the UCA’s micro-
bubble size distribution on the SH signal.

2. Methods

To investigate the optimal conditions for subharmonic signal gen-
eration, experiments focused on two aspects:

(i) UCA microbubble size distribution – the size distribution of a
commonly-available commercial UCA (SonoVue®, Bracco, Italy)
was modified, with experiments performed on ‘native’ and ‘altered’
distributions to investigate this effect on the frequency of maximum
subharmonic signal generation.

(ii) Transmit beam properties – the transmit centre frequency and
transmitted pulse length were varied to maximise the subharmonic
signal magnitude. In all cases, the acoustic pressure level was
maintained above the threshold for subharmonic signal generation
but below that at which appreciable microbubble destruction is
known to occur.

2.1. Preparation of the UCA

The preparation of the ‘native’ UCA solution was performed as per
the manufacturer’s instructions. The UCA was left to stand for ten
minutes after reconstitution to allow the bubbles to stabilise, before
samples were extracted from the main solution for subsequent char-
acterisation and measurement.

The decantation method [13] was used to alter the UCA’s size dis-
tribution and polydispersity. The size distribution of the ‘native’ and

Fig. 1. (a, b): Schematic of the systems for subharmonic characterisation of the UCA. The broadband system (a) included a pulser receiver device in transmit/receive
mode which allowed the transducer to work as a transceiver. A glass block reflected the transmitted signal which had travelled through the solution of interest and
the reflected signal was then received by the same equipment and digitised by the acquisition system. The narrowband system (b) included a pair of transmit and
receive transducers and allowed for control of the transmit beam parameters: centre frequency, pulse length and applied pressure. The insonated solution in both
systems was constantly stirred to ensure that microbubbles did not float to the top or settle.
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‘altered’ UCA populations were measured by electro-impedance volu-
metric zone sensing using a Coulter Counter™ (Beckman Coulter™, Life
Sciences, USA), with a measurement range of 1.3–10 μm. The mea-
surements were made for 3 vials with 5 sample measurements taken per
vial. The total concentration, the size distribution and the volume dis-
tribution (based on the assumption of a spherical bubble) were then
determined.

2.2. Design and comparison of characterisation techniques

A secondary aim of this study was to establish which type of system
is more applicable for the characterisation of UCA. Broadband and
narrowband transmit/receive bubble characterisation systems for in-
vestigating the bubble response to various transmit beam profiles were
designed to perform a comparison of these techniques (Fig. 1). For the
former, a broadband ‘substitution method’ pulse-echo system was de-
veloped. A pulser-receiver device (PR5052, Olympus, USA) was used to
provide a single excitation pulse to a selected single element transducer
(Olympus, USA); the signal passed through the UCA solution, was re-
flected by the glass block reflector and received by the same transducer.
The echo-signals received by the transducer were captured and re-
corded by the acquisition system, which comprised a data acquisition
card and code written in the LabVIEW programming environment
(PCI–5144/LabVIEW, National Instruments, USA). The diecast box
containing the UCA solution was positioned on a magnetic stirrer to
maintain a uniform UCA solution and avoid microbubble floatation.

The narrowband system comprised of interchangeable single ele-
ment transducers for transmit and receive functions, with their re-
spective centre frequencies matched as closely as possible to the re-
quired centre transmit (1.8–5 MHz) and receive (subharmonic;
0.9–2.25 MHz) frequencies (Table 1). Sinusoidal waveforms of variable
pulse-length (1–8 cycles) were produced using a waveform generator
(AFG3251, Tektronix, USA) and amplified by a radiofrequency ampli-
fier (75A250, Amplifier Research, USA) such that the maximum output
acoustic pressure did not exceed 150 kPa (the level found to not ad-
versely affect the microbubbles). After passing through the UCA sample
solution, the measured signal from the receive transducer was amplified
by a pulser-receiver device (PR5052, Olympus, USA) configured in the
‘isolated receive’ mode. Digitisation of the analogue-amplified signal
was carried out using a 250 MSample/s analogue-to-digital converter
using a PC-based data acquisition card (PCI–5144, LabVIEW™, National
Instruments, USA). A trigger signal from the waveform generator was
used to synchronise the data acquisition. Three independent samples of
each population were measured 30 times at each set of transmit para-
meters.

Prior to the UCA measurements, the output pressure, transmit
bandwidth and transmit/receive sensitivity of the single element
transducers were accurately characterised using a calibrated 0.5 mm
needle hydrophone (Precision Acoustics, UK). The hydrophone was
used to measure the output of the transducers following excitation
using the various transmit parameters, and a voltage-to-pressure con-
version [16] was carried out using:

= ⎧
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⎫
⎬⎭
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( ) ( ( ))
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where P is the pressure, V is the voltage recorded, M(f) the hydrophone
frequency response and F and F−1 are the Fourier and inverse Fourier
transforms (respectively). The transmit bandwidths defined by the full-
width at half-maximum and the full-width at tenth- maximum were
extracted from the transmit frequency spectra calculated using the
Welch Periodogram [17] from the measured hydrophone data. Ad-
ditionally, the measured signals from each transducer were corrected
for the transducers’ individual receive sensitivity profiles, as measured
using the hydrophone method [18], and the differences in inter-trans-
ducer sensitivity, due to manufacturing variability of these transducers,
was also taken into account by normalising the measured data to the
maximum amplitude of the most sensitive transducer.

The amplitude of the UCA-measured waveforms were subsequently
corrected for the transducer sensitivity, and spectral analysis of the
corrected waveforms was performed using in-house developed code in
MATLAB™ (The Mathworks, USA) for Welch Periodogram analysis.

Both the broadband pulse-echo and narrowband through-transmis-
sion acoustic characterisation systems employed the ‘substitution
method’ to measure the UCA attenuation (α) using:
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Where Isample is the mean of the power spectrum of the signal through
UCA solution, Iwater is the mean of the power spectrum of the signal
through deionised water, and d is the distance travelled by the pulse.
The commonly used broadband ‘pulse-echo’ system was compared to
the narrowband ‘through-transmission’ acoustic characterisation
system by measuring the attenuation as a function of concentration.
Narrow bandwidths were produced using 8 cycle pulse lengths.

2.3. Determination of the resonance frequency

The narrowband system was then used to investigate resonance
frequency by determining where the peak attenuation as a function of
frequency occurred for each UCA population. The UCA solutions were
stirred for approximately 30 s to ensure a homogeneous solution prior
to the measurements and continuously thereafter, to ensure the UCA
did not float or settle.

2.4. Determination of optimum subharmonic response as a function of
transmit centre frequency and pulse length

In order to gain an understanding of the relationship between the
subharmonic response and the various transmit parameters the sub-
harmonic characterisation experiments focused on the ‘native’ UCA
over a wide range of transmit parameters. The parameters investigated
were then tailored to those demonstrating a higher probability of
generating stronger subharmonic signals. The investigation of the ‘al-
tered’ UCA was then included, which was designed with a size dis-
tribution to produce maximum subharmonic signals in a clinically re-
levant frequency range. The impact of the ‘altered’ UCA size
distribution on optimising the subharmonic signals within the clinically
chosen frequency range was investigated.

The subharmonic response of the ‘native’ UCA as a function of
transmit beam pulse train length, corresponding to the inverse of the
transmit bandwidth, was investigated at frequencies of 2.25, 2.8, 3.4,
3.75, 4.5 and 5.0 MHz. These frequencies cover the range of those used
clinically for liver examinations, which was the clinical application
focused on for this investigation. Excitation pulse train lengths ranging
from 1 to 8 cycles were investigated, corresponding to 8 different
transmit bandwidths for each frequency. Samples of 150 µl of UCA in
300 ml of deionised water were measured for approximately 30 s at a
PRF (pulse repetition frequency) of 1 Hz. The UCA samples were

Table 1
Details of the single-element transducers used for UCA acoustic characterisation
measurements, with the corresponding transmit centre frequency ranges used
for the transmit and receive functions.

Transmit centre Frequency
Range [MHz]

Transmit:
model, centre
frequency [MHz]

Receive:
model, centre frequency
[MHz]

1.8–2.8 V306, 2.25 V303, 1.0
2.9–3.75 V382, 3.5 V306, 2.25
4.5–5 V309, 5.0 V382, 3.5
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replaced after each measurement, to ensure that the microbubbles were
not affected by the previous insonation.

The subharmonic signal amplitude was then extracted from the data
for all transmit frequencies investigated through integrating across the
bandwidths defined as: half the transmit frequency’s (i) full-width half-
maximum (henceforth called “SHFWHM”), and (ii) and full-width tenth-
maximum (“SHFWTM”). The ‘subharmonic-to-fundamental’ ratio was
calculated from the frequency spectra for transmit centre frequencies of
3.4, 3.75, 4.5 and 5.0 MHz, for both the FWHM and FWTM bandwidths.
Due to the sensitivity of the 1 MHz receive transducer used when
transmitting at 2.25 and 2.8 MHz, which did not capture the funda-
mental bandwidth, this was not possible for the lower frequencies.

To establish the frequency and bandwidth at which the ‘native’
population of the UCA produced the highest subharmonic signal,
measurements were made with a transmit centre frequency of 1.8 MHz
to 3.7 MHz in steps of 0.1 MHz with pulse lengths of 3 and 8 cycles. Due
to the decreased volume of UCA available, the subharmonic response of
the ‘altered’ population as a function of frequency in the range of
1.9–3.9 MHz was investigated in steps of 0.2 MHz at pulse lengths with
3 and 8 cycles. A 150 µl sample was diluted in 300 ml of deionised
water for each measurement and, due to differences in the initial con-
centrations of the UCA, the subharmonic response of the ‘native’ and
‘altered’ distributions were measured at concentrations of
6.5 × 105 mb ml−1 and 1.2 × 105 mb ml−1 respectively.

Once the optimum frequency ranges for subharmonic generation
were established, the subharmonic signal for the ‘altered’ population at
these frequencies was measured at the concentration used for the
characterisation of the ‘native’ population to allow for a direct com-
parison of the response of both populations.

2.5. Determination of measurements uncertainty

All measurements were repeated for three independent samples of
UCA (N = 3), with approximately 30 measurements taken per sample
solution (ni) for each transmit beam profile. A mean frequency spectrum
was calculated for each sample and the mean value of interest was
calculated (µi), e.g. for the subharmonic signal amplitude at SHFWHM.
The mean value (µT) of these measurements was then calculated across
the three solutions (Eq. (3)) and presented with the standard error, μΔ T

,
between the measurements as the error on the measurements, (Eq. (4),
where si is the unbiased standard deviation of the sample):
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3. Results

3.1. Preparation of the UCA

Decantation of the ‘native’ population successfully resulted in an
‘altered’ population, as shown in Fig. 2. UCA distribution measurements
showed the lower fraction of the vial contained mainly microbubbles of
diameter 1–4 µm, accounting for 99% of the bubble count and 82% of
the bubble volume. The increase in the number at the lower size range,
in comparison to the ‘native’, is a result of the larger bubbles floating to
the top of the available volume and pushing some of the smaller bub-
bles deeper into the vial. The average concentration of the ‘altered’
population was found to be 1.88 × 108 mb ml−1 (Table 2). The mean
size based on number is similar between the two populations 1.85/
1.8 μm for the ‘native’ and ‘altered’ UCA respectively. The mean size
based on the volume distribution indicated a larger difference changing

from 4.0 to 2.5 μm after decantation. The volume distribution has been
linked to the efficacy of SonoVue® for fundamental imaging [19] al-
though it remained to be established which estimation is more applic-
able for subharmonic efficacy. A variation in measured concentration
was noted which is thought to be a result of vial-to-vial variability
which has been noted in other studies [20].

3.2. Comparison of the characterisation techniques

The comparison of the narrowband versus broadband measurement
of attenuation as a function of concentration is shown in Fig. 3. Both
graphs show a linear increase in attenuation with concentration, in the
range investigated. The broadband graph displays approximately 3–4
times higher values than the narrowband. The narrowband measure-
ments are consistent with those previously published in the literature,
e.g. 1.2 dB/cm at 3 MHz and ~1.5 × 106 mb ml−1 [21]. Furthermore,
broadband measurements resulted in higher variability in the at-
tenuation measurements across all concentrations compared to the
narrowband measurements as indicated by the standard error of the
measurements represented by the error bars in the figure. The varia-
bility in the broadband measurements is thought to be a result of the
relation between UCA response and insonation frequency. UCA are not
monodisperse and the variability in the size distribution means that the
resonance frequency is not the same for each individual microbubble,
and therefore the response to any particular transmit frequency will not
be the same for each individual microbubble. The broadband mea-
surements included a wide range of frequencies, meaning that the re-
sponse of the UCA was more variable than the narrowband measure-
ments. The narrowband had less variation of transmit frequency and,
therefore, resulted in a less variable response of the UCA, allowing a
more accurate estimation of the attenuation of the UCA.

3.3. Determination of the resonance frequency

The attenuation as a function of frequency of ‘native’ and ‘altered’
UCA populations were measured using the narrowband system (Fig. 4).
There are two main attenuation peaks between 1.8 and 2.4 MHz and
3.1–3.6 MHz for the native population which correspond to the two
peaks observed at< 2 µm and 3–6 µm in the volume distribution data.
The peak in the attenuation spectrum indicates the resonance frequency
[14,22]. The maximum attenuation measured as a function of fre-
quency for the ‘native’ UCA population was found to be at 2.1 MHz. The
maximum attenuation measured as a function of frequency for the ‘al-
tered’ UCA population of 0.7 ± 0.1 dB cm−1 was measured at
2.5 MHz. This supports the theory that, as the mean size decreases, the
peak in attenuation coefficient occurs at a higher frequency, and that at
less polydisperse size distributions, the peak in attenuation occurs in a
narrower frequency range [23].

3.4. Determination of optimum subharmonic response as a function of
transmit centre frequency and pulse length

The subharmonic response as a function of excitation pulse train
length was then measured for the ‘native’ UCA. The measured sub-
harmonic amplitude was integrated over the bandwidths SHFWHM

(SHAmp FWHM) and for the wider frequency range at SHFWTM (SHAmp

FWTM). There was overlap of the fundamental and subharmonic band-
widths for the FWHM and FWTM 1 cycle pulse length and at 2 cycle
pulse length for the FWTM, and hence due to contamination of the
subharmonic signals this data could not be compared. Across the six
transmit centre frequencies, the response from the 3 cycle pulse length
consistently resulted in the highest subharmonic signal level compared
to the other pulse lengths investigated for both defined bandwidths.
The SHFWTM amplitude was significantly higher than the SHFWHM,
which is to be expected considering the FWTM included more of the
generated subharmonic signal. The subharmonic signal level increased
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with decreasing transmit centre frequency, the highest signals were
recorded at the lowest transmit frequency investigated (2.25 MHz).

The subharmonic-to-fundamental ratio was also determined from
the frequency spectra for the frequencies 3.4 MHz, 3.75 MHz, 4.5 MHz
and 5 MHz over both the FWHM and FWTM bandwidths. There was a
marginal increase in the subharmonic-to-fundamental ratio when the
bandwidth is defined by the FWTM. This data also supported that the 3
cycles transmit pulse length appears to result in greater subharmonic
signal generation for the ‘native’ UCA. The subharmonic-to-funda-
mental ratio (SH-F ratio) also increased with decreasing frequency.

The subharmonic signal amplitude across the bandwidth SHFWTM, as
a function of centre frequency and pulse length, corrected for the
transducer receive sensitivity, is presented in Fig. 5; the amplitude
across the SHFWHM bandwidth was also investigated but is not presented
here. For the ‘native’ population the peak signal amplitude was mea-
sured at 1.9 MHz for all pulse lengths and frequency bandwidths in-
vestigated. Similar to the ‘native’ measurements, the highest sub-
harmonic amplitude for the ‘altered’ UCA was consistently found for a 3
cycle pulse length with the subharmonic bandwidth defined as SHFWTM,
with a peak subharmonic signal amplitude between 2.3 and 2.5 MHz for
SHFWTM. The narrower bandwidth, an 8 cycle pulse length, also had a
peak in this frequency range near the resonance frequency given by the
peak in the attenuation curve. Altering the population successfully
narrowed the range of frequencies in which the subharmonic amplitude
was highest, confining it to the higher end of the range measured in the
native population (native: 1.9–2.5 MHz; and altered: 2.3–2.5 MHz).
Both UCA indicated maximum subharmonic generation near the mea-
sured resonance frequency based on the attenuation spectra. Unlike the
‘native’ UCA, the entire optimised subharmonic frequency range for the
‘altered’ UCA lies within the clinically detectable frequency range used
in abdominal imaging (> 1 MHz).

It was predicted that the maximum subharmonic signal generated

using the ‘altered’ UCA would be greater than that from the ‘native’, due
to more of the UCA sample being insonated at or near the optimum
transmit centre frequency (i.e. the resonance frequency) in the less
polydisperse ‘altered’ UCA. With the optimum transmit frequencies
established both UCA were interrogated at the same concentration to
compare the subharmonic signal generation. However, the absolute
maximum subharmonic amplitude at the individual transmit centre

Fig. 2. The measured size (left) and volume (right) distributions of ‘native’ (blue) and ‘altered’ (red) UCA, the vertical dot-dashed line indicating the ideal cut-off
point of the ‘altered’ UCA (1–4 µm) according to calculations made using the Stokes equation.

Table 2
The measured concentration and mean size of the ‘native’ and ‘altered’ SonoVue® UCA formulations.

Formulation Concentration
[mb ml−1]

Mean Size [μm]

Vial 1 Vial 2 Vial 3 Mean based on number based on volume

‘native’ UCA 1.48 ± 0.1 × 109 3.47 ± 0.2 × 109 1.21 ± 0.1 × 109 2.05 ± 0.2 × 109 1.85 4.00
‘altered’ UCA 1.69 ± 0.2 × 108 5.81 ± 0.5 × 107 3.44 ± 0.7 × 108 1.88 ± 0.7 × 108 1.80 2.8

Fig. 3. Attenuation of the ‘native’ UCA measured as a function of concentration
using a broadband and a narrowband characterisation system. Both systems
show a linear increase in attenuation with concentration. The narrowband
system shows less variability in the measurements (error bars) and resulted in
attenuation values consistent with those published in literature.
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frequencies was higher in the ‘native’ (466 ± 3 V2/MHz) than the
‘altered’ UCA (400 ± 3 V2/MHz), with the peaks occurring at 1.9 MHz
and 2.3 MHz respectively. Fig. 6 shows the two regions of highest
subharmonic generation and it can be seen that the ‘altered’ UCA re-
sulted in similar subharmonic amplitudes to the ‘native’ UCA at
2.3–2.5 MHz.

4. Discussion

The generation of subharmonic signals from UCAs has been known
for many years, although optimum transmit parameters have not yet
been established for subharmonic abdominal imaging, nor indeed have
UCA formulations been designed with subharmonic imaging in mind.

The current study aimed to address these limitations by characterising
the subharmonic generation from ‘native’ and ‘altered’ populations
generated by a commercially available clinical UCA, using a custom-
built narrowband characterisation system, operating over the frequency
range 1–6 MHz typically used in abdominal imaging. The method of
defining the generated subharmonic bandwidth was also optimised.

An ‘altered’ UCA, containing microbubbles in the size range of
1–4 μm, was obtained through decantation [13], it was expected that
this narrower size range would have two main effects on the sub-
harmonic generation. Firstly, that the frequency at which the highest
subharmonic signal was generated would be shifted up into the clini-
cally-detectable range for abdominal imaging, namely, between 1 and
6 MHz. Secondly, that the more monodisperse size distribution of the

Fig. 4. Narrowband characterisation of the UCA attenuation with frequency across the range 1.8–3.7 MHz at a concentration of 6.5 × 105 mb ml−1 for the ‘native’
UCA (left- black) and the range 1.9–3.9 MHz at a concentration of 1.2 × 105 mb ml−1 for the ‘altered’ UCA (right-red). The difference in UCA concentrations is
reflected in the different range of attenuation values measured in each population.

Fig. 5. Subharmonic signal amplitude at SHFWTM

(SHAmp FWTM) for the ‘native’ UCA at concentration
6.5 × 105 mb ml−1 at pulse length 3 cycles (a) and 8
cycles (b) and the ‘altered’ UCA at concentration
1.2 × 105 mb ml−1 at pulse length 3 cycles (c) and 8
cycles (d) measured at an applied pressure 150 kPa.
The data represents a mean of 3 solutions, insonated
approximately 30 times at each transmit centre fre-
quency. The data has been corrected for intra-trans-
ducer and inter-transducer sensitivity.
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UCAs would result in a higher subharmonic signal close to their re-
sonance frequency, where the maximum subharmonic generation was
expected, compared to the polydisperse ‘native’ UCA for the same ap-
plied pressure and concentration.

UCA microbubbles’ exhibit an inherent resonance frequency which
is a function of various physical and ambient parameters, such as:
bubble radius; ambient pressure; liquid density; and viscoelastic
stresses generated in encapsulation, effective surface tension and in-
terfacial dilational surface viscosity [24]. The resonance frequency has
been reported to affect the transmit centre frequency at which the
maximum subharmonic signal is generated, where the subharmonic
generation threshold is at a minimum. This was reported to be at twice
the resonance frequency in both computational studies and experi-
mentally [25,26]. However, more recently, in a numerical investigation
Katiyar et al. [24] discussed a minimum threshold for subharmonic
generation, which is not necessarily at the resonance frequency, but can
occur in the range of the resonance frequency to twice the resonance
frequency.

Although the resonance frequency is a fundamental parameter
dictating the generation of efficient UCA response, there is disagree-
ment in the literature of the resonance frequency for many commercial
UCAs. The range of resonance frequencies for SonoVue® reported in the
literature may be attributable to variations in measurement techniques.
Using optical methods the resonance frequency of individual SonoVue®
microbubbles with diameters 4, 3.2 and 2.6 μm [27] have been re-
ported as 1.6, 2.1 and 3.1 MHz, respectively. Other techniques include
using backscatter measurements and attenuation measurements, the
same group have reported a resonance frequency of 3 MHz and 1.6 MHz
[21,22] for these techniques respectively. Another study determined
that the resonance frequency of SonoVue®was at 1.75 MHz [28] using a
narrowband through transmission system, although the authors did not
state how they measured the resonance frequency.

It is also likely that measurement of the resonant frequency is
strongly influenced by the polydispersity of commercial UCA; for ex-
ample, Parrales et al. attributed such difficulties in identifying the re-
sonance peak from attenuation measurements made using a broadband
‘pulse-echo’ system similar to that described herein to polydispersity
[14]. SonoVue® is an extremely nonlinear agent which shows sub-
stantial harmonics/subharmonics at very low acoustic pressure
(< 50 kPa). This could particularly complicate broadband attenuation
measurements because of the poor control of frequency-dependent

transmit pressure [29].
In the current study, significant differences in attenuation mea-

surements were measured using the broadband and narrowband sys-
tems, highlighting the importance of establishing a standardized mea-
surement approach. The data presented herein support the preferential
use of narrowband techniques for UCA characterization, in particular
for the current commercial UCAs with a high degree of polydispersity.
The narrowband attenuation measurements as a function of frequency
indicated that the ‘altered’, more monodisperse population, UCA had a
narrower attenuation spectrum. The peak of the attenuation spectrum
indicates the resonance frequency [14,23] which was found to increase
from 2.1 MHz for the ‘native’ UCA to 2.5 MHz for the ‘altered’ UCA.

The subharmonic data measured using the narrowband approach
did not include any overlap between the fundamental and subharmonic
bandwidth which tends to be present in broadband transmit fre-
quencies. In the literature, there is little discussion of the manner in
which the subharmonic frequency bandwidth is determined, and rather
the centre frequency is usually only reported. When the frequencies of
interest, i.e. the fundamental and subharmonic bandwidths, are defined
on the basis of the FWTM, in general there was a notable increase in the
subharmonic signal amplitude and a slight rise in the subharmonic-to-
fundamental ratio. The increases noted when the FWTM definition was
used, particularly the significant increase in the subharmonic ampli-
tude, suggests that more of the generated subharmonic was included in
this wider definition of the subharmonic frequencies.

It was found that SonoVue® responded with the highest sub-
harmonic signal when insonated at 3 cycles, in agreement with Liu
et al.’s study using a clinical scanner [10]. This may be due to a trade-
off between insonating the UCA with sufficient cycles to generate the
subharmonic component and potential bubble shell alteration caused
by insonating with longer pulse lengths. It was also noted that the
subharmonic signal increased with decreasing centre frequency, sup-
porting the theory that there is a lower subharmonic generation
threshold near the measured resonance frequency rather than at twice
the resonance frequency [30,31]. Similarly the subharmonic-to-funda-
mental ratio, another measure of subharmonic signals [32], was found
to give the highest ratio at 3 cycles with increasing values as the centre
frequency decreased.

Chomas et al. [7] defined the two subharmonic generation regimes:
transmitting at resonance frequency (TR) and twice the resonance fre-
quency (T2R). In the TR subharmonic regime, the microbubble is
compressed below its resting radius every cycle of insonation but ex-
hibits a maximum expansion on every other cycle, whereas in the T2R
regime, the bubble is compressed below resting radius and exhibits
maximum expansion every other cycle. Strong subharmonic generation
was predicted theoretically and shown experimentally to be present in
the T2R regime, when UCA were insonated at twice the resonance
frequency [33]; more recently, it has been reported that there is a
minimum threshold for subharmonic generation at twice the resonance
frequency [34]. However, further studies have also shown lower sub-
harmonic generation thresholds in the TR regime rather than in the T2R
regime [30,31], which also depends on the bubble size distribution
[24]. Shekhar found that there was a vial-to-vial variability in contrast
agent’s size distributions lead to considerable differences in sub-
harmonic imaging performance, and suggested that the subharmonic
response could be considerably improved by modifying the size dis-
tribution [35]. In the current study, it was expected that altering the
UCA to a narrower size distribution and insonating at the centre fre-
quency with the highest subharmonic component would result in a
higher signal level compared to the more disperse ‘native’ UCA, as more
of the microbubbles would be insonated close to their resonance fre-
quency. However, when comparing the signals generated using the
optimum transmit parameters on each UCA, the subharmonic signal
levels in the frequency range of 2.3–2.5 MHz were found to be similar
for both UCA populations. The subharmonic generation for both UCA
populations was greatest when transmitting near the resonance

Fig. 6. Subharmonic amplitude at SHFWTM (SHAmp FWTM) for the ‘Native’ and
‘Altered’ UCA at the transmit centre frequencies which gave the highest sub-
harmonic signal, 1.9–2.5 MHz and 2.3–2.5 MHz, respectively. The data re-
presents a mean of 3 solutions, insonated approximately 30 times at each
transmit centre frequency.
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frequency based on the attenuation measurements, supporting the
theory of a lower subharmonic generation threshold at this frequency.

The requirement to tailor UCA such that their optimum sub-
harmonic frequency ranges falls within that of clinical scanners was
demonstrated in this study. The alteration of the SonoVue® formulation
to a smaller bubble size and narrower size distribution succeeded in
shifting the frequency at which the optimum subharmonic signal was
generated to above 1 MHz, traditionally the lower limit for abdominal
transducers. The narrower frequency range of the attenuation peak and
the subharmonic peak may give rise to more reproducible and quanti-
fiable signals in the future development of clinically applicable sub-
harmonic imaging techniques, due to the reduction in the uncertainty
in the Time Intensity Curve analysis and parameter measurement from
a population of polydisperse UCA.

5. Conclusions

This study presents a comprehensive investigation of the char-
acterisation and subharmonic response of both ‘native’ and ‘altered’
populations of a commonly-used UCA. A narrowband ‘through-trans-
mission’ characterisation technique was found to be more appropriate
for UCA characterisation than the commonly employed broadband
‘pulse-echo’ technique. The attenuation data presented herein indicated
that a narrower attenuation peak is present for less polydisperse po-
pulations, which furthermore is at a maximum at the resonance fre-
quency of the UCA. For both UCA populations, the largest subharmonic
response was present when insonated with a transmitted 3 cycle pulse
length near the resonance frequency of the particular contrast agent
population. Reducing the mean size of the altered population, resulted
in an increased resonance frequency and hence a shift in the frequency
at which the maximum subharmonic occurred to the clinically detect-
able range for abdominal imaging. The established optimum transmit
parameters and defined bandwidth for subharmonic signal detection
can be readily translated to a clinical set-up, thereby allowing for a
clinically applicable subharmonic imaging technique to be developed
for the ultrasound contrast agent, SonoVue®.
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