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H I G H L I G H T S

• A new concept for hybrid solar-biomass thermophotovoltaic is implemented in TRNSYS simulation environment.

• TPV algorithm is developed and analysed to compare and validate with related previous work.

• Validated TPV algorithm is simulated for two system configurations to evaluate their output parameters.

• Results show; a TPV system could recover surplus thermal energy gained from CSP power plant at mid-days.

A R T I C L E I N F O
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A B S T R A C T

Medium operating temperature hybrid solar-biomass TPV power plant design requires complex integration of
multiple high temperature processes with low band-gap TPV cells. A 0.72 eV band-gap GaSb TPV cell has been
used in thermophotovoltaic (TPV) systems operating at temperatures above 1400 °C. Low band-gap TPV cells,
such as InGaAs (Eg = 0.55 eV) and InAs (Eg = 0.36 eV) could enable a TPV system to operate optimally at
temperatures ≈1000 °C. To examine this, two hybrid solar-biomass TPV system configurations are studied using
TRNSYS simulation that incorporates a new algorithm for TPV. It is found that in a high solar fraction CSP power
plant, a TPV system could recover surplus thermal energy gained from solar energy at mid-days that would
otherwise be unused.

1. Introduction

The key components of a thermophotovoltaic (TPV) device are (i)
radiative heat energy source (ii) absorber, (iii) emitter and (iv) TPV cell
[1]. In a solar TPV (STPV) system, the absorber absorbs solar energy
[2]. On the obverse of the absorber with a direct conductive contact is
an emitter surface, emitting a thermal radiation spectrum [3]. Photons
emitted from the emitter are incident on, and absorbed by the TPV cell
to generate electricity [4,5]. TPV can be used in system applications
such as (i) stand-alone solar [6], (ii) hybrid solar energy with secondary
high temperature heat source [7], or (iii) in a stand-alone high tem-
perature process [8,9]. A hybrid solar-biomass TPV power generation
system flow diagram is shown in Fig. 1.

A particular TPV cell absorbs a specific emission spectrum to pro-
duce electricity [10,11]. To allow photons with energy in a TPV cell
band-gap to be emitted from an emitter while restricting photons with
sub-band-gap energy [12,13] requires (i) a spectrally matched emitter
attached to a high temperature heat source, or (ii) a spectral control

filter. Unutilized photons radiated from the emitter increase TPV cell
temperature, reducing its efficiency [14,15]. High conversion efficiency
ensures that a TPV maintains constant rated power output [16]. At a
specific temperature, different TPV cells produce different electric
power outputs with different conversion efficiencies [17,18]. De-
termining an appropriate thermal energy emission wavelength is es-
sential for successful TPV device operation [19,20], but has, to date,
been obtained by trial-and-error [21,22]. Simulation is used in this
study for analysing this for both stand-alone and hybrid TPV systems.
Previous studies have examined conventional CSP-biomass Rankine
cycle power plant simulation using different TRNSYS libraries [23,24].
TPV power plants have not been previously simulated using TRNSYS as
there was no TPV component in the TRNSYS library.

2. Methodology

A new TPV algorithm has been developed in TRNSYS 17 that en-
ables examination of the technical characteristics of hybrid
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solar–biomass TPV power plant. TRNSYS 17 simulation software en-
ables new system components to be introduced by:

(i) writing a new mathematical algorithm in a TRNSYS equation box
to connect to existing TENSYS component [25,26].

(ii) interfacing TRNSYS with new component developed in an external
program [27,28].

(iii) developing a new TRNSYS component [29,30].

In this work, an InGaAsSb/InAsSbP TPV cell with an energy band-
gap Eg = 0.55 eV is used for all TPV system simulations. The TPV al-
gorithm is written in the equation box ‘‘Type TPV’’ to connect to the
solar central receiver component in the Solar Thermal Electric
Component (STEC) library to obtain the thermal energy gained from
solar energy conversion. The STEC library includes model for Rankine
cycles, central receiver and heliostat fields and thermal energy storage
systems [31,32]. This work used Rankine cycle, central receiver systems
and Brayton cycle sub-libraries for simulating TPV power generation
systems. Simulated TPV systems are;

(i) TPV Model-1: Stand-alone TPV configuration,
(ii) TPV Model-2: Hybrid solar-biomass with TPV system,
(iii) TPV Model-3: TPV retrofitted into a central receiver tower in a

hybrid solar- biomass power plant.

Block diagrams of TPV system models are presented in Fig. 2. TPV
Model-1 simulation results are verified through a validated analytical
TPV model. TPV Model-1 is simulated at three different operating
temperatures (i) 1000 °C, (ii) 1200 °C and (iii) 1400 °C to verify the
accuracy of thermal-to-electric energy conversion in the TPV system
model. TPV Model-2 and TPV Model-3 are simulations of possible fu-
ture applications of TPV systems.

3. TPV system model

The relation between a peak spectral wavelength and the

temperature of the surface emitting that radiation is given by Wein’s
Displacement Law;

= µT 2898 ( m K)Peak (1)

where λ is the wavelength in μm and T is the temperature in Kelvin.
TPV cell bandgap varies with wavelength [19]:

=E 1.24/ (eV) (2)

where E is the energy/band gap in eV and λ is the wavelength in μm.
The relationship in Eqs. (1) and (2) are summarized in Fig. 3. The TPV
operating temperature at 1000 °C, for example, requires a TPV cell
bandgap approximately 0.55 eV that has an emission wavelength of
2.25 μm.

For an ideal TPV system where emissivity, ε = 1 and reflectivity
ρ = 0, the maximum power output would be [18]:

= + +P 15 A T s [s 2s 2]emax 4 cell Em
4

bg bg
2

bg
s

(3)

where Acell is the surface area of TPV cell, σ is Stefan-Boltzmann con-
stant, TEm is emitter temperature, sbg is an integral constant given by
[15];

=s
E

kTbg
bg

Em (4)

where Ebg is the band-gap energy, k is Boltzmann constant.
Eq. (3) shows that the power output from TPV energy conversion

depends upon emitter temperature for a given combination of TPV
surface area, emitter emissivity and reflectivity.

Conversion efficiency is given by [15];

=
+ +

+ + +
s [s 2s 2]

[s 3s 6s 6]max
bg bg

2
bg

bg
3

bg
2

bg (5)

Unutilized photon energy increases TPV cell temperature, reducing
conversion efficiency. The operating temperature range for optimal
TPV cell efficiency requires a specific sbg value, so by selecting a ma-
terial that provides an appropriate emitted radiation spectrum, optimal
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Fig. 1. Hybrid solar-biomass TPV system.
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Fig. 2. TRNSYS models of TPV systems simulated.
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TPV system efficiency may be achieved [18].

3.1. TPV cell parameter analysis

For GaSb (Eg = 0.72 eV), InGaAsSb/InAsSbP (Eg = 0.55 eV) and
InAs (Eg = 0.36 eV) TPV cells, Fig. 4 illustrates the variation of output
power and conversion efficiency with the function of TPV cell tem-
perature Tcell and emitter temperature TE. High conversion efficiency
does not ensure large power output, as efficiency depends on the di-
mensionless bandgap sbg for an ideal TPV system where emissivity and
reflectivity are constant. As sbg is inversely related to temperature as
shown in Eq. (4), conversion efficiency decreases for all types of TPV
cells as temperature increases, as can be seen in Fig. 4.

As can be seen in Fig. 4, power output increases for all TPV cell
types as emitter temperatures are increased. High integral constant (i.e.
sbg in Eq. (4)) values correspond to low emitter temperatures that
produce significantly lower electric power output. In contrast a low sbg
produces a higher electric power output with comparatively low con-
version efficiency. An optimized sbg value indicates the best emitter
temperature range for optimal efficiency of a specific TPV cell.

In previous research, a maximum conversion efficiency (ɳMax) of
78% was found for a GaSb TPV cells when sbg ≈ 5 [18]. This study also
found that for InGaAsSb/InAsSbP and InAs TPV cells, when the sbg ≈ 5
could produce approximately 78% of thermal to electric conversion
efficiency, although the power output varies depending on the band-
gap of the TPV cell, as shown in Table 1.

Variation of the integral constant (sbg) has a significant effect on
power output as it decreases when sbg increases. Efficiency however,
increases as the sbg increases. For the GaSb, InGaAsSb/InAsSbP and
InAs TPV cells, emitter temperatures with approximately 78% conver-
sion efficiency at sbg ≈ 5 are found to be 1400 °C, 1000 °C and 550 °C
respectively as shown in Fig. 5.

3.2. TPV model validation

Hosani et al. [33] examined power output of a Germanium (Ge) TPV
cell (Eg = 0.76 eV) with a tungsten photonic crystal emitter material
with a 0.195 emissivity. It was found that the conversion efficiency was
11.9% at an emitter temperature of approximately 1000 °C. The model
proposed in this work calculated the TPV conversion efficiency to be of
9.3% when applied emitter emissivity of 0.195 at 1000 °C as it shown in
Table 2.

For a Ga based TPV cell, TPV conversion efficiency has been found
to reduce by less than 1% for every 20 °C [34]. TPV efficiency decreased
linearly for the temperature range 30–130 °C. Although this work also
found a linear decrement of TPV conversion efficiency, the rate of
temperature change was not as sharp as 1% per 20 °C. However, in a
broader temperature range as shown in Fig. 4 illustrated significant
change of efficiency as the temperature rises, where conversion effi-
ciency dropped 0.3% per 20 °C for Ga based TPV cell whereas, a 0.5%
efficiency drop was observed per 20 °C for an InAs TPV cell.

Nam et al. [35] showed that the power output of InGaAsSb is greater
than GaSb TPV cell at the same temperature. The model in this study
also found that at the same temperature InGaAsSb TPV cell with
0.55 eV of band-gap produced higher power output than GaSb TPV cell
with 0.72 eV band-gap. The normalized power output from derived
model is compared with those experimental results [35] as shown in
Fig. 6. The modelled power is overestimated compared with the ex-
perimental results as it is derived from ideal case TPV characteristics
that excluded thermal energy losses.

In this work, the output power profile of the modelled TPV system is
compared with the simulation results and experimental results pro-
duced by Schlenker et al. [36]. As shown in Fig. 7, two graphs have
been obtained from the modelled TPV system with (i) 0.1 emissivity
[36] and (ii) 0.195 emissivity from previous studies [33]. In case of 0.1
emittance, presented TPV model produced an underestimated power
output in comparison with the experimental result. A maximum of 40%
deviation is observed for the output power at a temperature of 700 °C.
For modelled results with 0.195 emissivity, a maximum deviation of
18% is found from TPV simulations.

Fig. 4. Variation of TPV cell power output and conversion efficiency with temperature change.

Table 1
Variation of parameters of different TPV cell at sbg ≈ 5 [18].

TPV cell Band-Gap (eV) Efficiency (%) Power Output(W)

GaSb 0.72 78.2 2,190,000
InGaAsSb/InAsSbP 0.55 78.2 728,000
InAs 0.36 78.5 123,000

C.M.I. Hussain, et al. Applied Energy 259 (2020) 114181
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4. TPV system performance

4.1. Model implementation of ‘‘Type TPV’’ in TRNSYS

Eqs. (1)–(3) are used for a TPV system algorithm in a ‘TPV’ equation
box in TRNSYS that is connected to a solar central receiver component.
The algorithm processed input solar energy to generate electricity in
simulation TPV Model-1. For hybrid TPV operation in TPV Model-2, the
TPV algorithm is connected with a biomass combustion system that
simulates to maintain the required process temperature when solar
energy is inadequate. TPV Model-3 simulates a conceptual hybrid
power plant configuration where a TPV system could be retrofitted to

an existing hybrid solar central receiver-biomass power plant. The Di-
rect Normal Irradiance (DNI) input data for all presented models is set
to be 1800 kWh/m2 for an average eight hours in a typical summer day.
The simulated solar field consists of 390 to 670 two axis tracking he-
liostat mirrors with a 120 m2 surface area, depending on required
process temperatures of Model-1, Model-2 and Model-3 [37].

4.2. TPV Model-1 simulation

The TRNSYS deck file for standalone TPV operation (i.e. Model-1) is
presented in Fig. 8. The electric power output of InGaAsSb/InAsSbP
TPV cell is first simulated at 1000 °C temperature using 390 heliostat
mirrors. The absorber area and a TPV cell surface area are set to 25 m2

[38]. Simulated peak electric power output for an ideal case TPV cell at
1000 °C is found to be 0.73 MW, illustrated in Fig. 9. As shown in Fig. 4,
modelled TPV output power shows a linear relationship to temperature.
In the ideal case, the thermal energy to electricity conversion efficiency
is simulated to be approximately 78% as Fig. 4 illustrated, with a si-
mulated corresponding dimensionless TPV cell band gap; sbg ≈ 5 (as
also analysed in Fig. 5).

Fig. 5. Temperature variation with the integral constant (sg) for (i) GaSb, (ii) InGaAsSb/InAsSbP and (iii) InAs TPV cells.

Table 2
Comparison of modelled and experimental TPV cell performance [33].

System parameters Experimental result Modelled result

Emissivity 0.195 0.195
Pmax (W/cm2) 0.34 4.5
η (%) 11.9 9.3
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To obtain a process temperature of 1200 °C, the simulated solar field
requires 520 heliostats. The simulated peak output power is found to be
1.75 MW as shown in Fig. 10, significantly above that in Fig. 9. How-
ever, calculated conversion efficiency is approximately 75%, which is
3% less than the previous result. The sbg is found to be 4.3. The simu-
lation results can be compared with TPV analysis as illustrated in Figs. 4
and 5.

A temperature of 1400 °C is produced by a solar field consisting of
670 heliostat mirrors. As shown in Fig. 11., 3.53 MW of peak output
electricity is obtained. This is the largest power output among the three
stand-alone TPV systems. In contrast the calculated 72% conversion
efficiency is the lowest among the three stand-alone systems with a sbg
of 3.8. These simulation results comply with the TPV model analysis
presented in Figs. 4 and 5.

4.3. TPV Model-2 simulation

Model-2 is a simulation of a solar-biomass hybrid power plant with
InGaAsSb/InAsSbP TPV cell at the rated biomass combustion tem-
perature of 1000 °C. The inlet air temperature of biomass system is set
to 1000 °C in day times when biomass unit operates at minimum load.
The inlet temperatures dropped to 300 °C at night when biomass sys-
tems operate at full mode. The inlet air flow rate is 75,000 kg/h, where
inlet air pressure is 1500 kPa. The solar heliostat system consisting of
390 mirrors has a pressurised air receiver (TRNSYS Type 222). The
TRNSYS TPV system component is connected to the biomass combus-
tion unit to receive continuous thermal energy. This model could also
be applied to a small scale hybrid solar-biomass TPV system that uses
high concentration solar concentrator such as parabolic dish with a
smaller biomass fired combustion system. The hybrid system deck file
in TRNSYS is illustrated in Fig. 12.
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The simulated thermal energy output and electric power obtained
from a hybrid TPV system is shown in Fig. 13. The process temperature
is maintained at 1000 °C by the biomass combustion system which
operates in full mode when solar energy is inadequate. The biomass
system operates at a minimum load during effective solar periods. The

overall daily solar fraction in this plant is approximately 80%. The fuel
consumption of the biomass combustion system reduces linearly as the
solar energy (DNI) increases. The simulated power output is 0.72 MW
for a 1000 °C emitter temperature, with a conversion efficiency of 78%.

DNI 

Receiver Output    
Temperature 

   TPV Output 
Power 

Fig. 9. TPV conversion at 1000 °C temperature.
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Receiver Output    
Temperature 

TPV Output 
Power 

Fig. 10. TPV conversion at 1200 °C temperature.
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TPV Output 
Power 

Fig. 11. TPV conversion at 1400 °C temperature.
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Fig. 12. TRNSYS deck file for TPV Model-2.
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Fig. 13. Model-2 conversion at 1000 °C temperature.

Fig. 14. TRNSYS deck file for TPV Model-3.
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4.4. TPV Model-3 simulation

In Model-3 a TPV system is integrated with an existing CSP-biomass
Brayton Cycle power plant. TPV cell is located in the absorber of the
solar tower, thus connected to the solar receiver directly as shown in
Fig. 14. The temperature gained from the solar field is absorbed pri-
marily by the TPV cell. Thermal energy unutilized by TPV cell is then
transferred to the biomass combustion system that rotates a turbine
electric generator. A cumulative output power is calculated from the
outputs of the TPV and Brayton cycle power generating systems.

Simulated temperature from the solar field is found to be higher
than the rated combustion temperature as shown in Fig. 15. Simulated
peak temperature obtained from the solar field is 1200 °C where the
combustion system maintained the temperature at 1000 °C (Fig. 15). As
can be seen, solar energy is dumped as there is an overproduction of
thermal energy beyond the rated power block capacity.

In contrast, a reduced electric power output is observed in the si-
mulation result when the solar energy increases as shown in Fig. 16.
This reduced electric output is due to less total air mass flow produced
by solar energy system and delivered into the turbine in a hybrid
Brayton Cycle CSP-fuel power plant [32]. Solar thermal energy
dumping, leading to a reduced electric power output could be

addressed by retrofitting a TPV system in a hybrid CSP-biomass power
generation system so that the additional electricity produced by a TPV
system recovers a significant amount of solar energy that would
otherwise be unused. This maintains the plant rated power output
during the solar period, thus improving overall solar fraction of the
hybrid power plant as shown in Fig. 17.

5. Discussion and conclusion

It is difficult to synchronize CSP power plant input temperatures and
pressures to utilize optimum solar energy during effective solar periods
as the temperatures of working fluids usually become higher than the
rated power block input at midday. Having thermal energy exceeding
power block capacity causes solar energy to be dumped. This surplus
thermal energy is not easily recovered due to the cost and complexity of
the power plant configuration. However, a TPV system could increase
power generation capacity by utilizing the solar energy produced by
solar collators at midday. Integration of a TPV system with low band-
gap TPV cell (such as InGaAsSb/InAsSbP or InAs) in a hybrid CSP-
biomass power plant may thus increase the solar fraction leading to
improved plant economic viability. A TPV system enables a solar power
plant to recover the waste heat without integrating any additional

DNI 
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Temperature 

Receiver Output    
Temperature 

Biomass Fuel 
Flow 

Fig. 15. Hybrid solar-biomass TPV conversion at 1000 °C temperature.

TPV Power Output 

Electric Generator 
Power Output 

Fig. 16. Individual power output of TPV and Electric turbine generator.
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moving parts (as would be required in Rankine/Brayton cycle system)
thus incurring less operating and maintenance expenditure.

Solar-biomass TPV systems differ from conventional solar-biomass
Rankine/Brayton cycle power plant in their operating principles. At a
medium operating temperature, it has been shown that a TPV system
could be applied to a hybrid solar-biomass power plant to reduce bio-
mass fuel consumption as well as increase the solar fraction of a CSP
power plant.
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