
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Physics & Clinical & Optometric 
Science 

2019 

Ocular biometry, refraction and time spent outdoors during Ocular biometry, refraction and time spent outdoors during 

daylight in Irish schoolchildren daylight in Irish schoolchildren 

Síofra Harrington 

Veronica O'Dwyer 

Follow this and additional works at: https://arrow.tudublin.ie/scschphyart 

 Part of the Optometry Commons 

This Article is brought to you for free and open access by 
the School of Physics & Clinical & Optometric Science at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
gerard.connolly@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 
Funder: TU Dublin; Opticians Board; Association of 
Optometrists Ireland 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschphyart
https://arrow.tudublin.ie/scschphy
https://arrow.tudublin.ie/scschphy
https://arrow.tudublin.ie/scschphyart?utm_source=arrow.tudublin.ie%2Fscschphyart%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/730?utm_source=arrow.tudublin.ie%2Fscschphyart%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


RESEARCH

Ocular biometry, refraction and time spent outdoors during
daylight in Irish schoolchildren

Clin Exp Optom 2019 DOI:10.1111/cxo.12929

Síofra C Harrington Dip Ophthal Opt
FAOI
Veronica O’Dwyer PhD Dip Ophthal Opt
FAOI

School of Physics and Clinical and Optometric

Sciences, Technological University Dublin, Dublin,

Ireland

siofra.harrington@dit.ie

Submitted: 24 November 2018
Revised: 10 April 2019
Accepted for publication: 23 April 2019

Background: Previous studies have investigated the relationship between ocular biometry
and spherical equivalent refraction in children. This is the first such study in Ireland. The
effect of time spent outdoors was also investigated.
Methods: Examination included cycloplegic autorefraction and non-contact ocular biometric
measures of axial length, corneal radius and anterior chamber depth from 1,626 children in
two age groups: six to seven years and 12 to 13 years, from 37 schools. Parents/guardians
completed a participant questionnaire detailing time spent outdoors during daylight in sum-
mer and winter.
Results: Ocular biometric data were correlated with spherical equivalent refraction (axial
length: r = −0.64, corneal radius: r = 0.07, anterior chamber depth: r = −0.33, axial
length/corneal radius ratio: r = −0.79, all p < 0.0001). Participants aged 12–13 years had a
longer axial length (6–7 years 22.53 mm, 12–13 years 23.50 mm), deeper anterior chamber
(6–7 years 3.40 mm, 12–13 years 3.61 mm), longer corneal radius (6–7 years 7.81 mm,
12–13 years 7.87 mm) and a higher axial length/corneal radius ratio (6–7 years 2.89, 12–13
years 2.99), all p < 0.0001. Controlling for age: axial length was longer in boys (boys
23.32 mm, girls 22.77 mm), and non-White participants (non-White 23.21 mm, White
23.04 mm); corneal radius was longer in boys (boys 7.92 mm, girls 7.75 mm); anterior cham-
ber was deeper in boys (boys 3.62 mm, girls 3.55 mm, p < 0.0001), and axial length/corneal
radius ratios were higher in non-White participants (non-White 2.98, White 2.94, p < 0.0001).
Controlling for age and ethnicity, more time outdoors in summer was associated with a less
myopic refraction, shorter axial length, and lower axial length/corneal radius ratio. Non-
White participants reported spending significantly less time outdoors than White partici-
pants (p < 0.0001).
Conclusion: Refractive error variance in schoolchildren in Ireland was best explained by
variation in the axial length/corneal radius ratio with higher values associated with a more
myopic refraction. Time spent outdoors during daylight in summer was associated with
shorter axial lengths and a less myopic spherical equivalent refraction in White participants.
Strategies to promote daylight exposure in wintertime is a study recommendation.

Key words: Ireland, ocular biometry, refractive error, schoolchildren, time spent outdoors

Recent epidemiological studies involving
children reported that spherical equivalent
refraction (SER) distribution varies with
ethnicity,1 location,2 and environmental
factors such as daylight exposure.3,4 Lon-
ger axial lengths are associated with myo-
pic eyes with consequently increased odds
of pathological myopia.5 Moreover, an
association between axial elongation,
myopia progression, and reduced time
outdoors has been reported in several
studies.6,7 For example, axial elongation
and myopia progression are reportedly
slower in summer than in winter in Danish

and Chinese children,8,9 and young
Australian adults.10

With half of the population of the world
projected to be myopic by 2050,11 and a
confluence of studies in support of the
inverse relationship between light exposure
and myopia development,3,6,8 there has
been a focus by researchers to examine the
impact of daylight exposure on ocular devel-
opment in children. However, there is a pau-
city of contemporary population-based age
norms for ocular biometric measures in
northern European schoolchildren, and in
particular, their relationship with refractive

data and environmental factors such as day-
light. As daylight is a natural light source,
with a continuous spectral power distribu-
tion covering the full visible range, its attri-
butes alter with geographical location and
season, in particular day-lengths, and varia-
tions in light intensity with fluctuating
weather conditions.12 Furthermore, sea-
sonal changes in ambient light exposure
and axial length and SER changes have been
previously reported.4,10

In this context, understanding the rela-
tionships between ocular biometric parame-
ters, refractive status and seasonal light
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exposure are important in the Republic of
Ireland (henceforth Ireland) where there is
considerable variation in day length
(7.5 hours in winter to 17 hours in
summer),13 and as significant levels of
refractive error exist.14 Notably, the Ireland
Eye Study (present study) findings for myo-
pia prevalence (6–7 years 3.3 per cent,
12–13 years 19.9 per cent) were broadly in
line with the Northern Ireland Childhood
Errors of Refraction (NICER) study in the UK
(6–7 years 2.8 per cent, 12–13 years 17.7 per
cent).14 In comparison, significantly lower
levels of myopia were reported in the Syd-
ney Myopia Study (six years 1.6 per cent,
12 years 12.8 per cent).2

French et al. postulated one reason for
the significantly lower myopia prevalence in
the Sydney Myopia Study might be due to
the difference in daylight exposure, as
bright sunlight exposure is greater in Syd-
ney, particularly in winter, when compared
to Northern Ireland (UK).2 Epidemiological
longitudinal studies reported time outdoors
may prevent or delay the onset of myo-
pia.15,16 Furthermore, clinical trials in Asia
found increased time outdoors was associ-
ated with a reduced incidence of
myopia,17,18 and less myopic shift in refrac-
tion.3,19 However, the precise biological
mechanisms which underpin the protective
effect of time spent outdoors against myo-
pia remain unclear; theories include light
exposure, depth of focus and dopamine
release in the retina.20–22

This paper is the first to report the distri-
bution of ocular biometric parameters, and
their relationship with SER status and time
outdoors during daylight in both summer
and winter in schoolchildren in Ireland.

Methods

The Technological University Dublin
Research Ethics Committee granted ethics
approval, and the study was carried out in
compliance with the tenets of the Declara-
tion of Helsinki.
Data collection was conducted between

June 2016 and January 2018; the methodol-
ogy and study response rate were previ-
ously described.14 This study involved 1,626
participants in Ireland: 728 participants aged
6–7 years (377 boys and 351 girls) and
898 participants aged 12–13 years (504 boys
and 394 girls).
The study protocol included cycloplegic

autorefraction (Dong Yang Rekto ORK 11

Auto Ref-Keratometer; Everview Corp., Seoul,
Korea) to determine the refractive error. In
order to produce adequate cycloplegia with
minimum systemic side effects, one drop of
topical anaesthetic (Minims proxymetacaine
hydrochloride 0.5% w/v; Bausch & Lomb,
Kingston upon Thames, UK), was followed by
one drop of cyclopentolate hydrochloride
(Minims 1% w/v; Bausch & Lomb) for White
participants; non-White participants were
administered two drops of cyclopentolate
hydrochloride five minutes apart. While a sin-
gle drop of 1% cyclopentolate hydrochloride
has been reported to produce adequate
cycloplegia when compared to using two or
three drops,23 two drops of cyclopentolate
hydrochloride were found more effective for
hyperopic South Asian participants with dark
irides.24

Once it was established cycloplegia had
been achieved (pupillary reactions non-
responsive to light and accommodation
amplitude less than 2D on push-up test), at
least 20 minutes after instillation of the eye-
drops, autorefraction was carried out. The
representative value for SER – sphere plus
half the cylindrical value – was used in sub-
sequent analysis.
The Zeiss IOLMaster 500 (Carl Zeiss,

Meditec Inc., Jena, Germany) was used to
measure axial length (three measurements),
anterior chamber depth (five measurements)
and corneal radius (three measurements).
The mean corneal radius was calculated as
the average of the steepest and flattest cor-
neal radius. The axial length/corneal radius
ratio was defined as the axial length divided
by the mean corneal radius.
Parents/legal guardians of participants

completed a standardised lifestyle question-
naire (previously described),25 reporting
inter alia, time outdoors during daylight
hours in summer and in winter; the
response options were as follows: less than
one hour; one to two hours; two to four
hours; or more than four hours.
The study co-ordinator assessed partici-

pant ethnicity and confirmed using the
parent/guardian self-report. Participants
were categorised as either White (88 per
cent), or non-White (11 per cent) (Black five
per cent, East Asian three per cent, South
Asian two per cent and Arab one per cent
subjects combined).

Statistical methodology
Data were analysed using the Statistics
Package for Social Sciences version 24.0
(IBM, Armonk, NY, USA).

Analysis of the distribution of SER, and
biometrics involved were undertaken using
descriptive statistics (mean, standard error
of mean, standard deviation of the mean,
median, range). Measures of skewness and
kurtosis were calculated for distributions.
Distributions for SER and ocular biometric
measures were tested for normality using
the Kolmogorov–Smirnov test and were con-
sidered normal when p > 0.05 (Table 1). Lin-
ear regression models were constructed to
assess the effect of age, ethnicity and gen-
der on the distribution of SER and biometric
parameters.
Correlations between SER and biometric

measures were calculated with Pearson cor-
relation analysis. Linear regression models
were created to examine the relationships
between biometric parameters and SER
while controlling for age, and ethnicity. The
regression co-efficient (B) and the 95 per cent
confidence interval for B were calculated.
Time spent outdoors in summer and win-

ter data satisfied the assumptions required
to perform multinomial logistic regression.
The relationship between time spent out-
doors with age, ethnicity and gender was
examined using logistic regression analysis,
with participants reporting over four hours
outdoors in daylight as the reference cate-
gory. Controlling for age and ethnicity, gen-
eral linear models were applied to examine
the relationship between time outdoors dur-
ing daylight and SER, and time outdoors
during daylight and ocular biometric
parameters.
The right and left eyes were significantly

correlated for SER and ocular biometric
measures (Pearson correlation: SER r = 0.89,
axial length r = 0.95, corneal radius r = 0.96,
anterior chamber depth r = 0.96, axial
length/corneal radius r = 0.89, all
p < 0.0001); therefore, results are presented
for the right eye only. The five per cent level
of significance was used throughout. Confi-
dence intervals were 95 per cent.

Results

Table 1 presents descriptive statistics,
including measures of spread, of SER, and
ocular biometric parameter measures by
age, gender and ethnicity for study partici-
pants. The distribution for SER was non-nor-
mal. Ocular biometric measures were in the
main normally distributed for the popula-
tion overall with some exceptions in sub-
groups (see the final column in Table 1).
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The SER mean � standard deviation in
study participants (6–7 years 1.44 � 1.25 D,
12–13 years 0.38 � 1.61 D, p < 0.0001) were
previously reported.14 The SER mean
� standard deviation for non-White partici-
pants (6–7 years 0.83 � 1.00 D, 12–13 years
−0.64 � 1.98 D) were lower than White

participants (6–7 years 1.51 � 1.26 D,
12–13 years 0.51 � 1.51 D, p < 0.0001), with
no gender differences (p = 0.09).
The axial length mean � standard devia-

tion was shorter in 6–7-year-olds (22.53
� 0.79 mm) than in 12–13-year-olds (23.50
� 0.89 mm) (p < 0.0001) (Figure 1), longer in

boys (23.32 � 0.95 mm) than girls
(22.77 � 0.92 mm) (p < 0.0001), and longer
in non-White participants (23.21 � 1.11)
than White participants (23.05 � 0.95 mm)
(p = 0.006).
The corneal radius mean � standard devia-

tion was lower in 6–7-year-olds (7.81 �

Mean SEM SD Median Range Kurtosis Skewness K-S
Min, max

Spherical equivalent (D)

6–7 years (n = 728) 1.44† 0.05 1.25 1.25 −4.50, 9.00 6.09 1.62 < 0.0001

12–13 years (n = 898) 0.38 0.05 1.61 0.50 −10.25, 8.25 5.88 −0.50 < 0.0001

Boys (n = 881) 0.90‡ 0.05 1.52 0.75 −5.00, 8.00 3.73 0.48 < 0.0001

Girls (n = 745) 0.80 0.06 1.59 0.75 −10.25, 9.00 8.00 −0.52 < 0.0001

White (n = 1,441) 0.96 0.04 1.49 0.75 −5.00, 9.00 4.61 0.56 < 0.0001

Non-White (n = 185) 0.00§ 0.41 1.78 0.25 −10.25, 3.00 7.74 −0.22 < 0.0001

Axial length (mm)

6–7 years (n = 728) 22.53† 0.03 0.79 22.52 19.24, 25.73 0.93 −0.15 0.20

12–13 years (n = 898) 23.50 0.03 0.89 23.46 20.37, 27.65 0.98 0.25 0.01

Boys (n = 881) 23.32‡ 0.03 0.95 23.35 19.14, 26.47 0.64 0.01 0.20

Girls (n = 745) 22.77 0.03 0.92 22.75 19.69, 27.65 1.56 0.37 0.01

White (n = 1,441) 23.05 0.03 0.95 23.04 19.69, 26.27 0.38 0.15 0.20

Non-White (n = 185) 23.21§ 0.08 1.11 23.26 19.14, 27.66 1.64 0.26 0.20

Corneal radius (mm)

6–7 years (n = 728) 7.81† 0.01 0.27 7.80 7.10, 8.69 0.05 0.27 0.20

12–13 years (n = 898) 7.87 0.01 0.26 7.87 6.95, 8.71 0.22 −0.05 0.20

Boys (n = 881) 7.92‡ 0.01 0.26 7.92 7.10, 8.71 0.08 0.05 0.20

Girls (n = 745) 7.75 0.01 0.25 7.75 6.76, 8.68 0.20 0.11 0.20

White (n = 1,441) 7.85 0.01 0.27 7.84 7.09, 8.71 0.08 0.12 0.10

Non-White (n = 185) 7.80 0.02 0.27 7.83 6.95, 8.45 −0.22 −0.18 0.20

Axial length/corneal radius

6–7 years (n = 728) 2.89 0.003 0.09 2.89 2.50, 3.24 1.79 −0.36 0.20

12–13 years (n = 898) 2.99† 0.004 0.11 2.98 2.59, 3.56 2.11 0.43 0.01

Boys (n = 881) 2.95 0.004 0.11 2.95 2.59, 3.39 1.05 0.07 0.01

Girls (n = 745) 2.94 0.004 0.11 2.93 2.50, 3.56 2.74 0.63 0.01

White (n = 1,441) 2.94 0.001 0.11 2.94 2.50, 3.39 1.29 0.15 0.01

Non-White (n = 185) 2.98§ 0.01 0.12 2.95 2.73, 3.56 3.32 1.28 0.01

Anterior chamber depth (mm)

6–7 years (n = 728) 3.40 0.02 0.21 3.40 2.45, 3.91 3.31 −0.81 0.05

12–13 years (n = 898) 3.61† 0.01 0.25 3.62 2.26, 4.33 2.62 −0.67 0.07

Boys (n = 881) 3.63‡ 0.01 0.26 3.63 2.26, 4.33 3.84 −0.94 0.02

Girls (n = 745) 3.55 0.01 0.25 3.55 2.45, 4.26 0.70 −0.24 0.02

White (n = 1,441) 3.60 0.01 0.26 3.61 2.26, 4.33 2.49 −0.67 0.10

Non-White (n = 185) 3.54 0.02 0.23 3.53 2.85, 4.08 0.12 −0.13 0.20

D: dioptre, K-S: Kolmogorov–Smirnov test for normality, max: maximum, min: minimum, mm: millimetre, n: number of participants,
SD: standard deviation, SEM: standard error of mean.
†Significant difference between age groups.
‡Significant difference between boys and girls.
§Significant difference between White and non-White participants.

Table 1. Measures of spread for spherical equivalent refraction, and ocular biometric parameters by age, gender and ethnicity, in
the right eyes of study participants
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0.27 mm) than 12–13-year-olds (7.87
� 0.26 mm) (p < 0.0001) (Figure 1), lower for
girls (7.75 � 0.25 mm) than boys (7.92 �
0.26 mm) (p < 0.0001), with no ethnic differ-
ences (p = 0.06).
The anterior chamber depth mean �

standard deviation was shallower in 6–7-year-
olds (3.40 � 0.21 mm) than 12–13-year-olds
(3.61 � 0.11 mm) (p < 0.0001), shallower in
girls (3.55 � 0.25 mm) than in boys

(3.62 � 0.26 mm) (p < 0.0001), with no ethnic
differences (p = 0.13).
The axial length/corneal radius ratio

mean � standard deviation was lower in
6–7-year-olds (2.89 � 0.09) than 12–13-
year-olds (2.99 � 0.11) (p < 0.0001), lower
for White participants (2.94 � 0.11) than
non-White participants (2.98 � 0.12)
(p < 0.0001), with no gender differenc-
es (p = 0.30).

Relationships between SER and
ocular biometric parameters
The relationships between SER and ocular
biometric parameters were examined using
linear regression analysis (Table 2).

AXIAL LENGTH
An inverse relationship was found between
axial length and SER (r = −0.64, R2 = 0.41,
p < 0.0001). The linear regression equation
was represented by:

Axial length=23:41 SERð Þ [1]

The per-unit change in axial length had
less impact on SER in 6–7-year-old non-
White participants compared to White
participants (6–7 years White: β co-effi-
cient = −0.77 D, non-White: β co-effi-
cient = −0.33 D, p < 0.0001). The reverse
was found in the 12–13-year-olds, whereby
the per-unit change in axial length had less
impact on SER in White participants com-
pared to non-White participants (12–
13-year-old Whites: β co-efficient = −1.12 D,
non-White β co-efficient = −1.36 D,
p < 0.0001). For example, in White 6–7-year-
olds axial length explained 23 per cent of
the variability in SER (R2 = 0.23); this
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Figure 1. Distribution of axial length in 6–7-year-olds (top left image) and 12–13-year-
olds (bottom left image). Distribution of mean corneal radius in 6–7-year-olds (top
right image) and 12–13-year-olds (bottom right image).

Pearson correlation β co-efficient (95% CI)† Model R2 F statistic p-value

6–7 years (White)

Axial length (mm) −0.48 −0.77 (−0.88 to −0.66) 0.23 187.71 < 0.0001

Corneal radius (mm) 0.09 0.42 (0.06 to 0.77) 0.007 5.26 0.02

Axial length/corneal radius −0.65 −9.34 (−10.10 to −8.48) 0.42 454.01 < 0.0001

Anterior chamber depth −0.26 −1.16 (−2.34 to −0.08) 0.05 4.61 0.04

12–13 years (White)

Axial length (mm) −0.64 −1.12 (−1.22 to −1.03) 0.41 549.36 < 0.0001

Corneal radius (mm) 0.14 0.80 (0.39 to 1.20) 0.02 15.07 < 0.0001

Axial length/corneal radius −0.82 −11.99 (−12.58 to −11.40) 0.67 1,575.33 < 0.0001

Anterior chamber depth −0.34 −1.90 (−2.32 to −1.47) 0.12 77.86 < 0.0001

6–7 years (non-White)

Axial length (mm) −0.27 −0.33 (−0.60 to −0.06) 0.06 6.1 0.02

Corneal radius (mm) −0.01 −0.05 (−0.97 to 0.87) −0.01 0.01 0.91

Axial length/corneal radius −0.47 −6.78 (−9.72 to −3.85) 0.21 21.19 < 0.0001

Anterior chamber depth −0.07 −0.70 (−5.11 to 3.71) 0.01 0.11 0.74

12–13 years (non-White)

Axial length (mm) −0.72 −1.36 (−1.62 to −1.11) 0.52 111.03 < 0.0001

Corneal radius (mm) 0.08 0.54 (−0.89 to 1.98) 0.01 0.57 0.45

Axial length/corneal radius −0.86 −13.70 (−15.33 to −12.07) 0.73 277.98 < 0.0001

Anterior chamber depth −0.32 −2.62 (−4.33 to −0.92) 0.10 9.36 0.003
†In the regression model, spherical equivalent refractive error was the dependant variable, with each biometric variable as an explan-
atory variable. mm: millimetres.

Table 2. Association of ocular biometric parameters and spherical equivalent refraction in the right eyes of 6–7-year-old and
12–13-year-old study participants
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dropped to six per cent in non-White
6–7-year-olds (R2 = 0.06). In contrast, axial
length explained 41 per cent of the variabil-
ity in SER (R2 = 0.41) in White 12–13-year-
olds, which increased to 52 per cent in
non-White 12–13-year-olds (R2 = 0.52).

CORNEAL RADIUS
There was a significant, albeit weak, rela-
tionship between corneal radius and SER
(r = 0.07, R2 = 0.005, p = 0.005). Overall, cor-
neal radius explained only 0.5 per cent of
the variation in SER. The linear regression
equation was represented by:

Corneal radius=7:83+0:01 SERð Þ [2]

Corneal radius was not correlated with
SER in non-White participants in either age
group (Table 2).

ANTERIOR CHAMBER DEPTH
Anterior chamber depth was negatively cor-
related with SER and overall, explained 11
per cent of the variability in SER (r = −0.33,
R2 = 0.11, p < 0.0001). The linear regression
equation was:

Anterior chamber depth=3:61 –0:06 SERð Þ [3]

AXIAL LENGTH/CORNEAL RADIUS RATIO
The axial length/corneal radius ratio was
strongly correlated with SER (r = −0.79,
R2 = 0.63, p < 0.001). The linear regression
equation was:

Axial length=corneal radius ratio=2:99
–0:06 SERð Þ [4]

The relationship between the axial
length/corneal radius ratio varied with eth-
nicity. Among White 6–7-year-olds, the axial
length/corneal radius ratio explained vari-
ance in SER to a greater extent than among
non-White participants (White 42 per cent
versus non-White 21 per cent); however,
among the older-age cohort the reverse was
found (White 67 per cent versus non-White
73 per cent).
A linear regression model was calculated

to examine the relationship between SER
(dependent variable) with covariates axial
length, corneal radius and anterior chamber
depth jointly, while controlling for age and
ethnicity. The covariates could significantly
predict the SER (r = 0.84 and R2 = 0.73,
F5,1,602 = 625.9, p < 0.001); 73 per cent of
the variance in SER was explained by

variance in axial length, corneal radius and
anterior chamber depth.
The linear regression equation was repre-

sented by:

SER=6:32 –1:91 axial lengthð Þ
+4:27 corneal radiusð Þ
+1:45 anterior chamber depthð Þ [5]

30.0%

20.0%

20.0%

10.0%

10.0%

0.0%

0.0%
< 1 1–2 2–4 > 4

Time outdoors during daylight in summer

(hours per day)

Time outdoors during daylight in winter

(hours per day)

30.0%

20.0%

10.0%

0.0%

30.0%

20.0%

10.0%

0.0%

30.0%

Non-white

White

< 1 1–2 2–4 > 4

P
e
rc

e
n
ta

g
e
 o

f 
p
a
rt

ic
p
a
n
ts

P
e
rc

e
n
ta

g
e
 o

f 
p
a
rt

ic
p
a
n
ts

6–7 years 6–7 years

12–13 years12–13 years

0.6

10.3

3.1

20.5

16.9

10.3

24.5

2.7

3.8

1.6

15.1

6.6

24.3
22.4

13.0

24.3
22.2

14.1

8.6

24.3 25.2

2.7

9.9

2.7 1.4

14.0

28.1
29.9

4.9

9.5

1.1 1.6

Figure 2. The percentage of participants in each category of time spent outdoors in
summer (left images) and winter (right images), by age group (6–7-years top images,
12–13 years bottom images) and ethnicity (White participants light grey bars, non-
White participants dark grey bars)

Average daily
time spent
outdoors
during daylight

β Standard
error

95% CI t p-value

Spherical equivalent refraction (D)

< 1 hour −1.04 0.23 −1.48 to −0.60 −4.60 < 0.0001

1–2 hours −0.41 0.12 −0.64 to −0.17 −3.36 0.001

2–4 hours −0.11 0.08 −0.26 to 0.05 −1.38 0.167

> 4 hours 0†

Axial length (mm)

< 1 hour 0.31 0.13 0.06 to 0.57 2.29 0.012

1–2 hours 0.17 0.07 0.03 to 0.31 2.40 0.016

2–4 hours 0.12 0.05 0.03 to 0.21 2.62 0.009

> 4 hours 0†

Axial length / corneal radius ratio

< 1 hour 0.05 0.02 0.02 to 0.08 3.37 < 0.0001

1–2 hours 0.02 0.01 0.01 to 0.03 2.12 0.01

2–4 hours 0.01 0.01 −0.01 to 0.02 1.83 0.068

> 4 hours 0†

β: beta co-efficient, D: dioptre, mm: millimetre.

p-values < 0.05 are shown in bold.
†This parameter is set to zero because it is redundant.

Table 3. Relationship between spherical equivalent refraction, axial length, axial
length/corneal radius ratio and time spent outdoors during daylight in summer cate-
gories, controlling for age and ethnicity in all analysis
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Time spent outdoors during
daylight in summer and winter
Participants reported spending more time
outdoors during daylight in summer than in
winter (p < 0.001). Participants aged 6–7
years spent more time outdoors during day-
light than 12–13-year-olds in summer
(p < 0.001) and winter (p = 0.01). White partic-
ipants spent more time outdoors during day-
light than non-White participants in summer
(6–7 years p < 0.001; 12–13 years p < 0.001),
and winter (6–7 years p = 0.002; 12–13 years
p = 0.001). Time spent outdoors was not
associated with gender during winter
(p = 0.11) or summer (p = 0.053). Figure 2 dis-
plays the percentage of participants in each
time outdoors category by age and ethnicity.

Relationship between SER,
ocular biometry and time
outdoors
As time spent outdoors was significantly
associated with both age group and ethnic-
ity, in order to further investigate the rela-
tionship between time spent outdoors with
SER and ocular biometric parameters, gen-
eral linear models were constructed, con-
trolling for both age and ethnicity in all
analyses (Table 3).

SER
Participants in the least time outdoors
group (< 1 hour per day) were more myo-
pic by −1.04 D (CI −1.48 D to −0.60 D,
p < 0.0001), and participants in the 1–2 hours
outdoors group were more myopic by −0.41
D (CI −0.64 D to −0.17 D, p = 0.001) when
compared to participants in the most time
outdoors category (> 4 hours per day).
There was no significant difference in SER
between participants in the 2–4 hours out-
doors category and > 4 hours outdoors cat-
egory (p = 0.17).

AXIAL LENGTH
Axial length was 0.31 mm (CI 0.06 mm to
0.57 mm, p = 0.01) longer in the least time
outdoors cohort; 0.17 mm (CI 0.03 mm to
0.31 mm, p = 0.02) longer in the 1–2 hours
outdoors category; and 0.12 mm (CI 0.03
mm to 0.21 mm, p = 0.01) longer in the
2–4 hours outdoors per day category, when
compared to participants in the most time
outdoors category (> 4 hours per day).

AXIAL LENGTH/CORNEAL RADIUS RATIO
The axial length/corneal radius ratio was
0.05 (CI 0.02 to 0.08, p < 0.0001) higher in
the least time outdoors category (< 1 hour

per day), and 0.02 (CI 0.01 to 0.03, p = 0.01)
higher in the 1–2 hours outdoors per day
category when compared to participants in
the most time outdoors category (> 4 hours).
There was no significant difference in the
axial length/corneal radius ratio between
participants in the 2–4 hours outdoors cate-
gory and those in the most time out-
doors (p = 0.07).
Neither corneal radius (p = 0.34) nor ante-

rior chamber depth (p = 0.10) were associ-
ated with time outdoors during daylight in
summer.
While increased time spent outdoors was

significantly associated with a less myopic
SER among 12–13-year-old White partici-
pants (p < 0.0001), when analysed sepa-
rately, time outdoors was not associated
with SER among non-White participants in

either age cohort (6–7 years p = 0.42,
12–13 years p = 0.52). Figure 3 displays
boxplots which illustrate the distribution of
SER in the various time spent outdoors cate-
gories in 6–7-year-old and 12–13-year-old
White and non-White participants. The
mean SER increased with increasing time
outdoors in the White 12–13-year-old group.
Similarly, increased time outdoors was

associated with shorter axial length in White
participants (p < 0.0001), but not in non-
White participants (p = 0.35). Figure 4 dis-
plays boxplots which illustrate the distribu-
tion of axial length data in each time
outdoors category by age and ethnicity
categories.
The means for SER and ocular biometric

parameters are presented by age (6–7 years
and 12–13 years), ethnicity (White, non-

Figure 3. Boxplots showing the distribution of spherical equivalent refraction
(dioptre) in time spent outdoors during daylight in summer categories in 6–7-year-
olds (non-White participants top left image and White participants top right image),
and 12–13-year-olds (non-White participants bottom left image and White partici-
pants bottom right image). In White 12–13-year-olds mean spherical equivalent
refraction (SER) was significantly less myopic with increased time outdoors category
(bottom right image). From top to bottom the five horizontal bars represent maxi-
mum, 75th percentile, median, 25th percentile; the whiskers mark the range of the
data with the outliers (< 5th percentile or > 95th percentile) shown as grey dots.
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White) and time outdoors during daylight in
summer categories in Table 4.
Time spent outdoors during daylight in

wintertime was not associated with SER
(p = 0.49), axial length (p = 0.64), corneal
radius (p = 0.33), axial length/corneal radius
ratio (p = 0.71), or anterior chamber
depth (p = 0.56).

Discussion

This is the first population-based study to
analyse the association between SER and
ocular biometrics, and associations between
these parameters with time spent outdoors
during daylight in schoolchildren in Ireland.
Similar to many previously published stud-
ies when compared to White participants,
the mean SER was significantly more myopic
in non-White participants in both age
cohorts and negatively associated with axial

length, with a longer axial length associated
with more negative SER.1,2,26 For example,
the longer axial length found in non-White
participants in this study, mirrors the Aston
Eye Study and the Child Heart and Health
Study in England, where South Asian partici-
pants had longer axial length and a more
myopic SER than White participants.1,26

The extent to which axial length explained
the variability in SER in this study increased
with age (6–7 years 21 per cent, 12–13 years
43 per cent), which concurs with the NICER
study (6–7 years 30 per cent, 12–13 years
47 per cent),2 and contrasts with the Sydney
Myopia Study (6–7 years 20 per cent,
12–13 years 10 per cent), which reported a
lower prevalence of both hyperopia and
myopia.2

In agreement with previous studies, the
relationship between corneal radius and
SER in the present study was weak.2,5 How-
ever, the significantly longer corneal radius

found in the older-age cohort compared to
the younger-age cohort in this study con-
trasts with both the NICER study and the
Sydney Myopia Study where no difference
with age was found.2

Anterior chamber depth in 6–7-year-olds
(3.40 mm) in the present study was
shallower than reported in 6–7-year-old
Australian children, where significantly
shallower anterior chamber readings were
found pre-cycloplegia (3.36 mm) when com-
pared to post-cycloplegia (3.54 mm).27 As
anterior chamber depth was not measured
prior to cycloplegia in this study, findings
are likely to overestimate anterior chamber
depth in the natural state. Further analysis
of anterior chamber depth in the Irish popu-
lation merits investigation due to the associ-
ation between shallow anterior chambers
with angle closure glaucoma.28 Longer ante-
rior chamber depth was associated with a
more myopic SER in this study; this could be
due to longer eyes having deeper anterior
chambers although the resultant refractive
effect of a longer anterior chamber is
toward a less myopic SER.27

The relationship between the axial
length/corneal radius ratio and SER was lin-
ear and negatively associated with SER in
the current study. Moreover, the axial
length/corneal radius ratio best explained
the variance in SER and this relationship
strengthened with age. In contrast, a higher
mean axial length/corneal radius ratio (over
3.00), was reported in Singaporean
7–9-year-olds and associated with a more
negative SER,5 which more closely aligns
with that found in non-White participants in
the present study (6–7 years 2.99,
12–13 years 3.03).
The lowest mean axial length/corneal

radius ratio in the present study was found
among 6–7-year-old White participants
(2.88) and associated with the highest mean
SER (1.51 D). In comparison, the highest
axial length/corneal radius ratio was found
in non-White 12–13-year-olds (3.03) where
the lowest SER was found (−0.61 D). While
the axial length/corneal radius ratio has
received considerable attention with regard
to myopia progression in non-White
communities,29 its association with hyper-
opia found in Ireland is important and con-
curs with a previous study involving Saudi
Arabian children aged 5–16 years, where the
relationship persisted even in hyperopic
amblyopic eyes.30 For instance, the axial
length/corneal radius ratio provides valu-
able information regarding refractive status

Figure 4. Boxplots of axial length (mm) in time spent outdoors during daylight in
summer categories (x-axis) and axial length (y-axis) in 6–7-year-olds (non-White partic-
ipants top left image and White participants top right image) and 12–13-year-olds
(non-White bottom left image and White participants bottom right image). White par-
ticipants aged 12–13 years had significantly shorter mean axial lengths with increas-
ing time outdoors (bottom right image). The line in the grey box marks the median,
the lower and upper edges of the box mark the lower and upper quartiles and the
whiskers mark the range of the data with the outliers (< 5th percentile or > 95th per-
centile) shown as grey dots.
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(myopia, hyperopia progression), particu-
larly in situations where cycloplegic agents
are not appropriate.29

Effect of time spent outdoors
during daylight
Ireland is situated between 51 to 55 degrees
of north latitude, and day length varies from
a minimum of 7.5 hours in winter to a maxi-
mum of 17 hours during summer.13 In Ire-
land, school holidays last between two to
three months in summer (June, July and
August), two weeks in winter (the last week
in December and first week in January) and
two weeks in spring to coincide with Easter
(March, April). The relationship between
SER, ocular biometric parameters and time
spent outdoors during daylight in winter
was not significant, which aligns with previ-
ous studies where daylight hours were lim-
ited during winter.8,31

Conversely the relationship between time
outdoors and SER during summer was
strong, with increased time outdoors associ-
ated with a less myopic SER, and shorter
axial length, in agreement with earlier stud-
ies.8,10 In the present study spending less
than two hours outdoors per day in sum-
mer resulted in significantly more myopic

SER and higher axial length/corneal radius
ratio when compared to participants in the
‘more than four hours outdoors per day’
cohort. In contrast to the Danish study
where time outdoors was associated with
increased corneal power,8 the present study
did not find a relationship between corneal
curvature and time outdoors in summer.
The current study did not find an associ-

ation between time outdoors and SER and
time outdoors and axial length in non-
White participants. Notably, non-White par-
ticipants in the current study reported
spending significantly less time outdoors,
during both winter and summer, than
White participants. Likewise, a recent study
reported children in Singapore were on
average exposed to five hours less light
exposure per week than children living in
Brisbane, despite 12-hour days in both
locations.32

While the relationship between light expo-
sure and ocular growth is not fully under-
stood, it has been suggested that
sunlight/bright light could trigger retinal
dopamine release which slows axial elonga-
tion.33 Circadian rhythms have been
demonstrated in ocular structures with
corresponding diurnal variation in ocular

biometric measurements.34 Hence, ocular
diurnal rhythms may be involved in
ocular growth regulation.35

Daylight is a natural ‘zeitgeber’ (or time
cue) for synchronising the internal circadian
rhythm, due to temporal fluctuations in day-
light intensity and spectral distribution;36

however, artificial lighting disrupts circadian
rhythms (circadian entrainment),36 which
may affect ocular growth.21 For example,
studies involving chickens and monkeys
established that altering the dark/light cycle
resulted in significant changes in ocular
growth with exposure to bright light during
the day providing a protective effect against
experimentally induced form-deprivation
myopia.37,38 Moreover, light levels indoors,
even in rooms with windows, are lower
indoors than outdoors,39 with an association
between the use of light-emitting diode
lamps and longer axial lengths reported.40

Hence, there may be a minimum level of
ambient illumination appropriate to school
class rooms to prevent myopia development
or progression. For example, one school-
based intervention study increased ambient
luminance to > 300 lux on desks and > 500
lux on blackboards, and found that axial
elongation was slowed with a less myopic

Mean
(SE)

< 1 hour 1–2 hours 2–4 hours > 4 hours p-value < 1 hour 1–2 hours 2–4 hours > 4 hours p-value

White 6–7 years Non-White 6–7 years

n = 9 n = 44 n = 240 n = 347 – n = 5 n = 19 n = 38 n = 19 –

SER 1.21 (0.21) 1.62 (0.20) 1.53 (0.09) 1.53 (0.06) 0.86 0.70 (0.74) 0.71 (0.14) 0.74 (0.18) 1.16 (0.19) 0.44

AL/CR 2.88 (0.02) 2.86 (0.01) 2.88 (0.01) 2.89 (0.01) 0.36 2.93 (0.04) 2.90 (0.02) 2.92 (0.01) 2.90 (0.04) 0.45

AL 22.65 (0.28) 22.41 (0.10) 22.60 (0.06) 22.47 (0.04) 0.17 22.34 (0.42) 22.58 (0.26) 22.78 (0.12) 22.23 (0.17) 0.12

CR 7.86 (0.08) 7.84 (0.05) 7.84 (0.02) 7.79 (0.01) 0.14 7.62 (0.14) 7.86 (0.04) 7.79 (0.04) 7.67 (0.07) 0.09

ACD 3.28 (0.03) 3.22 (0.20) 3.45 (0.05) 3.35 (0.03) 0.08 3.48 (0.08) 3.44 (0.05) 3.43 (0.05) 3.38 (0.03) 0.80

White 12–13 years Non-White 12–13 years

n = 22 n = 94 n = 317 n = 345 – n = 7 n = 28 n = 45 n = 24 –

SER −1.14 (0.45) 0.05 (0.17) 0.52 (0.05) 0.72 (0.07) < 0.0001 0.29 (0.56) −0.95 (0.38) −0.57 (0.31) −0.70 (0.39) 0.52

AL/CR 3.09 (0.52) 3.01 (0.01) 2.99 (0.01) 2.97 (0.01) < 0.0001 2.93 (0.02) 3.03 (0.02) 3.03 (0.02) 3.04 (0.02) 0.19

AL 24.00 (0.25) 23.70 (0.10) 23.45 (0.05) 23.40 (0.04) < 0.0001 23.16 (0.32) 23.67 (0.17) 23.87 (0.16) 23.57 (0.25) 0.35

CR 7.77 (0.07) 7.87 (0.03) 7.86 (0.01) 7.89 (0.01) 0.12 7.90 (0.06) 7.83 (0.06) 7.88 (0.01) 7.89 (0.01) 0.22

ACD 3.70 (0.05) 3.68 (0.03) 3.63 (0.02) 3.60 (0.02) 0.08 3.38 (0.13) 3.57 (0.05) 3.57 (0.04) 3.60 (0.06) 0.35

ACD: anterior chamber depth, AL/CR: axial length/corneal radius ratio, AL: axial length, CR: corneal radius, n: number of participants,
SE: standard error of mean, SER: spherical equivalent refraction.

Significant associations between time outdoors during daylight and spherical equivalent refraction and biometry are highlighted in
bold (one-way analysis of variance, Bonferroni post hoc tests were run for axial length and SER and the AL/CR for the 12–13-year-old
White participants which revealed SER increased, axial length shortened and the AL/CR decreased significantly with each outdoors
category; however, there was no significant difference between 2–4 hours and > 4 hours outdoors during daylight for SER [p = 0.50]
and AL [p > 0.99] and AL/CR [p = 0.06]), p-values < 0.05 are shown in bold.

Table 4. Relationship between spherical equivalent, ocular biometric parameters and time spent outdoors during daylight in
summer time in the right eyes of study participants
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shift in SER in the intervention group when
compared to a control group.41

As to what degree the protective effect of
daylight exposure against a more myopic
SER is due to being outdoors, during day-
light, or simply not being indoors and
engaged in near vision activities, is as yet
not fully understood.20 Thus, the results in
this study support earlier studies that time
spent outdoors during daylight is an impor-
tant modifiable factor.3,4,17 Also similar to
previous studies, the present study found
non-White participants may be engaged in a
more indoor-centric lifestyle.32,42 Due to the
limited number of non-White participants in
this study, further multi-ethnic studies
involving larger populations born and living
in a northern European setting are crucial
due to the limited day length in winter, and
changeable weather systems which affect
light intensity. In addition, precise quantifi-
cation of light exposure would be facilitated
by the use of wearable devices to objectively
measure not only time spent outdoors but
also light intensity exposure which would be
more revealing than the questionnaire-
based data involving daylight categories
used in the present study.32,43

Conclusion

The distribution of ocular biometric parame-
ters in schoolchildren in Ireland mirrors
many other studies involving mainly White
children. The axial length/corneal radius
ratio was highly correlated with SER, and
this correlation strengthened with age. Eth-
nic differences in SER corresponded with
ethnic differences in ocular biometry. Of
particular interest, compared to White par-
ticipants, non-White participants had longer
axial length, corresponding with a more
myopic SER. Also, non-White participants
spent significantly less time outdoors during
daylight than White participants.
While study findings are not longitudinal,

the age-specific data provide some insights
into refractive error patterns and how they
change with age. The correlates of these
biometric variables and their interactions
were variable and multifaceted, and their
relationship with SER appeared to stre-
ngthen with increasing age. However, longi-
tudinal studies in Ireland examining the
association between ocular biometry, SER,
and time spent outdoors in daylight across
seasons are required to confirm study
findings.

School intervention programs promoting
time outdoors during winter of not less than
two hours per day, when daylight hours are
limited and coincide with school hours,
ought to be considered in Ireland.
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