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Abstract

The application of data analytics to educational settings is an emerging and

growing research area. Much of the published works to-date are based on

ever-increasing volumes of log data that are systematically gathered in virtual

learning environments as part of module delivery. This thesis took a unqiue

approach to modelling academic performance; it is a first study to model indi-

cators of students at risk of failing in first year of tertiary education, based on

data gathered prior to commencement of first year, facilitating early engage-

ment with at-risk students.

The study was conducted over three years, in 2010 through 2012, and was

based on a sample student population (n=1,207) aged between 18 and 60 from

a range of academic disciplines. Data was extracted from both student enrol-

ment data maintained by college administration, and an online, self-reporting,

learner profiling tool developed specifically for this study. The profiling tool

was administered during induction sessions for students enrolling into the first

year of study. Twenty-four factors relating to prior academic performance,

personality, motivation, self-regulation, learning approaches, learner modality,

age and gender were considered.

Eight classification algorithms were evaluated. Cross validation model accura-

cies based on all participants were compared with models trained on the 2010

and 2011 student cohorts, and tested on the 2012 student cohort. Best cross

validation model accuracies were a Support Vector Machine (82%) and Neu-

ral Network (75%). The k-Nearest Neighbour model, which has received little

attention in educational data mining studies, achieved highest model accuracy

when applied to the 2012 student cohort (72%). The performance was simi-

lar to its cross validation model accuracy (72%). Model accuracies for other

algorithms applied to the 2012 student cohort also compared favourably; for

example Ensembles (71%), Support Vector Machine (70%) and a Decision Tree

(70%).



Models of subgroups by age and by academic discipline achieved higher accu-

racy than models of all participants, however, a larger sample size is needed to

confirm results. Progressive sampling showed a sample size > 900 was required

to achieve convergence of model accuracy.

Results showed that factors most predictive of academic performance in first

year of study at tertiary education included age, prior academic performance

and self-efficacy. Kinaesthetic modality was also indicative of students at risk

of failing, a factor that has not been cited previously as a significant predictor

of academic performance.

Models reported in this study show that learner profiling completed prior to

commencement of first year of study yielded informative and generalisable

results that identified students at risk of failing. Additionally, model accuracies

were comparable to models reported elsewhere that included data collected

from student activity in semester one, confirming the validity of early student

profiling.
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Chapter 1

Introduction

1.1 Study background

It is increasingly evident that significant numbers of college students do not complete the

courses on which they enrol, particularly for courses with lower entry requirements [ACT,

2012; Mooney et al., 2010]. Enrolment numbers to tertiary education are increasing, as is

the diversity in student populations [OECD, 2013; Patterson et al., 2014]. This adds to

the challenge of both identifying students at risk of failing, and provisioning appropriate

supports to enable all students to perform optimally [Mooney et al., 2010]. Tertiary

education providers collect a lot of data on students, particularly activity data from virtual

learning environments and other online resources [Drachsler and Greller, 2012]. As a result,

the application of data analytics to educational settings is emerging as an evolving and

growing research discipline [Mirriahi et al., 2014; Sachin and Vijay, 2012; Siemens and

Baker, 2012]. Its primary aim is exploring the value of data gathered in providing learning

professionals, and students, with actionable information that could be used to enhance

the learning environment [Chatti et al., 2012; Siemens, 2012]. A key challenge for learning

analytics is the need to develop capability to explore and identify data that will contribute

to improvement of learning models, including data that are currently not systematically

gathered by tertiary education providers [Buckingham Shum and Deakin Crick, 2012;

Tempelaar et al., 2013].

Learning is a latent variable, typically measured as academic performance in assess-

ment work and examinations [Mislevy et al., 2012]. Factors impacting on academic per-

formance have been the focus of research for many years, for example Allick and Realo

[1997]; Farsides and Woodfield [2003]; Hembree [1988]; Lent et al. [1994]; Moran and Crow-

ley [1979]; Powell [1973]. It still remains an active research topic [Buckingham Shum and
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Deakin Crick, 2012; Cassidy, 2011; Jayaprakash et al., 2014; Komarraju and Nadler, 2013;

Nandagopal and Anders Ericsson, 2012] indicating the inherent difficulty in both mea-

surement of learning [Knight et al., 2013; Tempelaar et al., 2013], and modelling learning

process, particularly in tertiary education [Pardos et al., 2011]. Cognitive ability remains

an important determinant of academic performance [Cassidy, 2011], often measured as

prior academic ability. Age has also been cited as significant [Naderi et al., 2009], as are

data gathered from learner activity on online learning systems [Bayer et al., 2012; López

et al., 2012]. In addition to the data systematically gathered by providers, there are

other non-cognitive factors that can be measured prior to commencing tertiary education,

which could be useful in modelling learner academic performance. For example, models

predicting academic performance that include factors of motivation (e.g. self-efficacy, goal

setting) with cognitive ability yield a lower error variance than models of cognitive abil-

ity alone (reviewed in Boekaerts [2001]; Robbins et al. [2004]). Research into personality

traits, specifically the Big Five factors of openness, conscientiousness, extroversion, agree-

ableness and neuroticism, suggests some personality factors are indicative of potential

academic performance [Chamorro-Premuzic and Furnham, 2004, 2008; De Feyter et al.,

2012]. For example, Chamorro-Premuzic and Furnham [2008] found conscientiousness

was correlated with academic performance, but not with IQ, suggesting conscientiousness

may compensate for lower cognitive ability. Learning approach (deep or shallow) and

self-regulated learning strategies are also relevant, and have been shown to mediate be-

tween other factors (such as factors of personality and factors of motivation) and academic

performance [Biggs et al., 2001; Entwhistle, 2005; Swanberg and Martinsen, 2010].

Many publications emanating from educational psychology report on statistical analy-

sis of academic performance metrics and their correlations with, or dependencies on, a wide

variety of cognitive and non-cognitive psychometric factors of learning [Dekker et al., 2009;

Herzog, 2006; Robbins et al., 2004]. However, measurement and analysis of non-cognitive

factors of learning has received limited attention from the learning analytics community

[Buckingham Shum and Deakin Crick, 2012] with the exception of factors inferred from on-

line behaviour (e.g. [Ali et al., 2014; Shute and Ventura, 2013]). A range of non-cognitive

psychometric factors have been associated with an effective learning disposition, such as

a deep learning approach, ability to self-regulate, setting learning goals, persistence, con-

scientiousness and sub-factors of openness, namely intellectual curiosity, creativity and

open-mindednesss [Buckingham Shum and Deakin Crick, 2012; Knight et al., 2013; Tish-

man et al., 1993]. An effective learning disposition describes attributes and behaviour

characteristic of a good learner [Buckingham Shum and Deakin Crick, 2012]. Inclusion of

non-cognitive factors of learning in models of academic performance can provide informa-
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tive feedback on malleable, effective learner dispositions [Knight et al., 2013].

Early modelling of students at risk of failing informs provisioning of supports and

modifications to learning environment, to enable more students perform optimally [Lauria

et al., 2013]. Colby [2004] identified week two as a critical point in identifying at-risk

students. Milne et al. [2012] reported successful results in predicting students at risk of

failing based on analysis of online behaviour in week one. This thesis details development

of an algorithmic model, based on cognitive and non cognitive factors of learning, that

predicts students at risk of failing based on data gathered prior to commencement of first

year of study [Gray et al., 2013, 2014a,b,c, 2015].

1.2 Rationale for research in this area

Social and policy changes in Ireland over recent years has resulted in greater access to

tertiary education. For example, admissions rose from 20% of 17 to 18 year olds in 1980

to 55% in 2008 [Clancy and Wall, 2000; HEA, 2008]. More recent analysis predicts a 29%

increase in enrolment numbers between 2013 and 2028 [Cassells, 2015]. The fourteen In-

stitutes of Technology (IoT) in Ireland provide 41% of the third level education [Patterson

et al., 2014], with a focus on the skill needs of the community they serve (www.ioti.ie).

Undergraduate courses are offered at level 6 (2-year certificate), level 7 (3-year ordinary

degree) and level 8 (4/5-year honours degree). Level 8 degrees have equivalent learning

outcomes to university level 8 degrees, as specified by the National Framework of Qualifi-

cations (NFQ, www.qqi.ie).

The IoT student profile differs from the university student profile. Mooney et al. [2010,

Appendix A] evidenced differences in prior academic ability: The majority of IoT students

attain between 200 and 400 points in the Leaving Certificate exam, the state exam at the

end of secondary school; The majority of university students attain over 400 points (up

to the maximum score of 600 points). The 2012-13 annual report on tertiary students

in Ireland concurred with previous years regarding greater diversity in the IoT student

population compared to universities, in terms of age profile, ethnicity and socio-economic

background [HEA, 2013; Patterson et al., 2014]. For example, 18% of new entrants to

IoTs in 2012 were mature, compared with 9% of new entrants to universities. Results of

a nation wide survey of undergraduate students (n=40,463) included in Patterson et al.

[2014] showed 12% of IoT students were from a minority ethnic background compared

to 8% of university students. In addition, higher percentage of IoT students are from a

manual skilled (15% versus 9.5%) or unskilled (3.3% versus 1.6%) socio-economic group

[Patterson et al., 2014, p. 26-27]. The report also noted a higher proportion of males
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(66%) in the IoTs, genders were equally represented in the university sector in the same

year.

Student drop out continues to be a challenge, particularly in the IoT sector where

course entry requirements are lower than corresponding courses in the university sector.

For example, the average drop out rate is 11% for level 8 courses across tertiary education

in Ireland, however, the average drop out rate for level 8 course in the IoT sector is

16%, while the average drop out rate for level 7 courses is 26% [Mooney et al., 2010].

Under-performance and student drop-out has adverse consequences for the student, society

and the education provider [Crosling and Heagney, 2009]. Degree completion has been

shown to be an important determiner of occupational status and income [Pascarella and

Terenzini, 2005, p. 373]. Degree completion also improves a student’s sense of self-worth

and enhances their academic and social competencies [Pascarella and Terenzini, 2005, p.

214], benefiting both the student and society [Crosling and Heagney, 2009]. Additionally,

retention rates have a direct financial impact on college funding; specifically, annual core

funding for the Irish IoT sector is based on the number of students registered on March

1st of the previous academic year.1

Tinto [2012] identified structured support during the early years of college life as one

of the essential components in improving retention rates. Supports may be informed by

early profiling of students at risk of failing. Dekker et al. [2009] and Smith et al. [2012]

agreed that data already gathered by colleges, such as prior academic performance, age,

and gender, was not sufficient on its own to identify at-risk students, additional factors

were needed to improve predictive accuracy. For example, Dekker et al. [2009] improved

model performance by including early tertiary level assessment results. The purpose of

this study was to identify and profile first year IoT students at risk of failing at the end

of year one of tertiary education, based on cognitive and non-cognitive factors of learning

measured prior to commencement of first year course work.

1.3 Study aim and objectives

The aim of this study was to investigate if factors of learning, measured prior to com-

mencement of first year, could accurately predict students at risk of failing at the end of

year one of tertiary education. The ensuing six study objectives were:

Ob1. To research factors predictive of academic performance in tertiary education, with a

focus on cognitive and non-cognitive factors of learning that can be measured prior

1Further details on funding are available at www.hea.ie/en/funding/institutional-funding.
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to commencement of first year of study.

Ob2. Review data modelling techniques prevalent in educational psychology and educa-

tional data mining.1

Ob3. Develop a learner profiling tool for administration during first year student induction

to collect data on non-cognitive factors of learning.

Ob4. Complete statistical analysis of cognitive and non-cognitive study factors for com-

parison with other published studies, and so validate early measurement of factors

of learning.

Ob5. Train and evaluate a range of classification models predicting students at risk of

failing.

Ob6. Identify the key cognitive and non cognitive factors of learning that are predictive

of first year students at risk of failing.

1.4 Study research questions

The primary research question was:

Q1. Can algorithmic student modelling accurately predict Irish IoT students at risk of

failing in first year of study based on factors that can be measured prior to com-

mencement of tertiary education?

The thesis also addressed the following secondary research questions:

Q2. Which classification algorithms are appropriate for modelling psychometric data

indicative of Irish IoT students at risk of failing?

Q3. Which cognitive and non-cognitive factors of learning are indicative of Irish IoT

students at risk of failing?

1.5 Uniqueness of this study

This study adds to existing knowledge in a number of ways:

1Educational data mining (EDM) and Learning analytics (LA) are similar in terms of the data analysed.
However, LA focuses on data exploration to empower students and educators while EDM focuses on model
development to support automated delivery [Baker and Salvador, 2014].
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1. This is a first study to predict students at risk of failing based on learner profiling

completed prior to commencement of first year of study.

2. The unique focus on the Institute of Technology sector in Ireland incorporated a

diverse student population in terms of age, socio-economic background and prior

academic ability.

3. A comparison of classification algorithms highlighted k-nearest neighbour had good

predictive accuracy, an algorithm that has received limited attention in learning

analytics to date.

4. The study evaluated a range of non-cognitive factors of learning, including learner

modality which has not been cited previously as predictive of academic performance.

The following sections elaborate on each of these.

1.5.1 Early models of academic performance

Many classification models of academic performance include factors relating to online

or classroom activity arising from course work (e.g. Baker et al. [2011]; Lauria et al.

[2012]; Romero et al. [2013]). In addition, studies that considered non-cognitive factors

of learning typically gathered data after course commencement; there is some rationale

for this timing. Instruments for non-cognitive factors of learning typically phrase items

in the context of course work. For example, ‘I expect to do very well on this course’ may

be hard to evaluate prior to course commencement. Similarly, expressions such as ‘I have

a regular place set aside for studying’ may be better assessed after experience of college

library facilities and time to establish a study pattern. However, as will be discussed in

Sections 5.2 and 6.4, correlations between factors of learning and academic performance

in this study were similar to results cited in other studies where data was gathered later

in the semester. Therefore, this study concluded that measurement of factors of learning

prior to commencement of first year of study can generate informative feedback on learner

disposition.

1.5.2 The Institute of Technology sector

A study of Irish students in tertiary education by Bergin [2006] showed that factors pre-

dictive of university students at risk of failing differed from factors predictive of Institute

of Technology (IoT) students at risk of failing. Her study focused on factors important for

the subject of software programming in year 1 of study; this study extended that research
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to focus on factors predictive of students at risk of failing across a range of disciplines in

the IoT sector. Evaluation of factors relevant to the academic performance of a student

profile typical of the IoT sector has received limited attention to date.

1.5.3 Evaluation of classification models

Algorithmic modelling of static student data that will be discussed in Section 2.8.2 typ-

ically cites performance based on Näıve Bayes, Decision Tree, Neural Network, Support

Vector Machine, Logistic Regression and their Ensembles. k-Nearest Neighbour (k-NN)

has received little attention in educational data mining studies. However, results from

this study highlighted that k-NN had consistently good performance both for models of

all participants and models of subgroups by course of study, gender and age. In addition,

k-NN results using cross validation had similar accuracies to models applied to a new

student cohort, suggesting k-NN models generalise well.

1.5.4 Non-cognitive factors of learning

As will be illustrated in Table 2.11, studies that include non-cognitive factors of learning

are often limited in the number of factors analysed. In comparison, the inclusion of fifteen

non-cognitive factors of learning in this study represented a comprehensive analysis of a

range of non-cognitive factors of learning. Salient outcomes from this study included:

• Kinaesthetic learner modality improved classification model accuracy, but has not

been previously cited as a predictor of academic performance.

• Openness also improved classification model accuracy for a number of algorithms in

spite of relatively low correlations with GPA.

• The difference in model accuracy with, and without, non-cognitive factors of learning

was not statistically significant. Therefore, the value of including non-cognitive

factors of learning was their contribution to feedback on learner disposition rather

than improvement in model accuracy.

1.6 Structure of the thesis

This section outlines the structure of the thesis, and identifies where each of the six study

objectives (Ob1 - Ob6 ) and three research questions (Q1 - Q3 ) will be addressed.

Chapter 2 will review published literature on both factors predictive of academic

performance in tertiary education (Ob1 ) and the statistical and data mining approaches
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typically used to model educational data (Ob2 ). The evidence that will be presented

confirms that both cognitive and non-cognitive factors of learning are correlated with

academic performance in tertiary education. An argument for greater use of empirical

data analysis on psychometric data will be discussed, followed by a review of classification

algorithms prevalent in educational data mining research.

Chapter 3 will detail the study methods used. Study participants will be described,

including descriptive statistics for each study factor. Addressing Ob3 , development of

the study’s online profiler will be discussed including items used to measure fifteen non-

cognitive factors of learning. Instrument reliability test results will indicate good reliability

for thirteen of the fifteen non-cognitive factors. Issues with two factors, intrinsic goal

orientation and study time, will be discussed both in Chapter 3 and in Chapter 6. The two

statistical approaches used to meet Ob4 will be detailed, namely correlation analysis and

linear regression. Analysis methods to identify group differences will also be discussed.

The eight classification algorithms used to model the data will be described. This will

include: parameter tuning done; model evaluation metrics used; and statistical tests used

to compare model performances, as required for Ob5 . Attribute subset selection techniques

used to address Ob6 will also be discussed.

Data quality will be discussed in Chapter 4 and justification provided for preprocess-

ing decisions made. Discreatisation of academic performance to a binary class label that

identifies at-risk students will be reviewed. Results from progressive sampling will indicate

the sample size (n=1,207) will be sufficient for model accuracy convergence. Solutions to

address class imbalance will be evaluated, and justification for attribute scaling using a

standard normal Z-transformation will be provided.

Data analysis results will be presented in Chapter 5. Correlation and regression re-

sults concurred with other published results, differences relating to self-efficacy and study

time will be highlighted (Ob4 ). To answer the three research questions, results from a

range of algorithmic models predicting students at risk of failing will be presented, includ-

ing models of all participants and models of subgroups by academic discipline, age and

gender. Model generalisability will be evaluated by comparing cross validation accuracies

with accuracies of models trained on the 2010 and 2011 students cohorts, and tested on the

2012 student cohort (Ob5 ). The study factors used by each model will also be presented

(Ob6 ).

Chapter 6 will synthesise and analyse study results. This will include: a review of

classification model accuracies (Q1 and Q2 ); an evaluation of students misclassified (Q1 );

an overview of the usefulness of study factors in predicting students at risk of failing

(Q3 ); and where justified, recommendations for future work. Study key findings and
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main conclusions will also be presented.

1.7 Publications emanating from this study

Invited book chapter:

Pb1. Gray, G., McGuinness, C. and Owende, P. (2016: In Press) Non-cognitive factors

of learning as early indicators of students at-risk of failing in tertiary education

In Khine, M. S. (Eds.) Non-cognitive Factors and Educational Attainment, Sense

Publishers, Netherlands.

Peer-reviewed journal publications:

Pb2. Gray, G., McGuinness, C., Owende, P., and Hofmann, M. (2016) Learning Factor

Models of Students at Risk of Failing in the Early Stage of Tertiary Education,

Journal of Learning Analytics, 3(2):330-372, 2016. Available online at https://fi

les.eric.ed.gov/fulltext/EJ1126865.pdf

Pb3. Gray, G., McGuinness, C., Owende, P., and Carthy, A. (2014) A review of psychome-

tric data analysis and applications in modelling of academic achievement in tertiary

education. Journal of Learning Analytics, 1(1):75-106, 2014. Available online at

https://learning-analytics.info/index.php/JLA/article/view/3255/4013

Conference papers:

Pb4. Gray, G., McGuinness, C., and Owende, P. (2014) An application of classification

models to predict learner progression in tertiary education. 4th IEEE International

Advanced Computing Conference, pages 549-554, February 2014. Available online at

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6779384

Pb5. Gray, G., McGuinness, C., and Owende, P. (2014) Non-cognitive factors of learning

as predictors of academic performance in tertiary education. In Gutierrez-Santos, S

and Santos O. C, editors, WSEDM 2014 co-located with the 7th International Con-

ference on Educational Data Mining (EDM 2014), London, July 4-7, 2014. Available

online at http://ceur-ws.org/Vol-1183/ncfpal2014_proceedings.pdf
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Pb6. G, Gray, C. McGuinness, and P. Owende (2013) An Investigation of Psychometric

Measures for Modeling Academic Performance in Tertiary Education. 6th Interna-

tional Conference on Educational Data Mining (EDM 2013), Memphis, July, 2013.

Available online at http://www.educationaldatamining.org/conferences/inde

x.php/EDM/2013/schedConf/presentations

Pb7. Gray, G., McGuinness, C., and Owende, P. (2013) Investigating the efficacy of al-

gorithmic student modelling in predicting students at risk of failing in tertiary ed-

ucation. Young researcher track, 6th International Conference on Educational Data

Mining (EMD 2013), Memphis, July, 2013. Available online at

http://www.educationaldatamining.org/conferences/index.php/EDM/2013/sc

hedConf/presentations

The abstracts from each study publication are included in Appendix A.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews a range of psychometric factors that could be used to predict academic

performance in tertiary education. Specifically, four key areas are reviewed: aptitude,

temperament, motivation and learning strategies. These were chosen on the basis of being

directly or indirectly related to academic performance, and can be measured prior to,

or during learner enrolment in tertiary education programmes. Available evidence on

correlations between individual attributes and academic achievement is outlined; unless

stated otherwise, studies cited were based on tertiary education. A review of pertinent data

analysis techniques is also presented, with an emphasis on empirical modelling approaches

prevalent in educational data mining.

The literature reviewed furthered four of the study’s objectives (Ob1 - Ob4 ) as follows:

• The review of factors predictive of academic performance supported the inclusion of

both cognitive and non-cognitive factors of learning in models predicting students

at risk of failing (Ob1 ). This in turn informed the selection of non-cognitive factors

for the study’s learner profiling tool (Ob3 ).

• A review of published statistical analysis results pertaining to factors relevant to

this study informed comparisons between results in this study and other published

results (Ob4 ).

• A review of data analysis approaches prevalent in educational data mining supported

adopting an algorithmic modelling approach to predict students at risk of failing,

specifically the use of classification algorithms (Ob2 ).
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2.2 Measurement of cognitive ability and correlation with

academic performance

Cognitive ability tests were originally developed to identify low academic achievers [Jensen,

1981; Munzert, 1980]. The first such test measured general cognitive intelligence, g, as

identified by Spearman [1904, 1927]. Test results for an individual across a range of cogni-

tive measures tend to correlate providing good evidence for a single measure of intelligence

[Jensen, 1981; Kuncel et al., 2004]. In addition to a general cognitive intelligence, there

is widespread evidence for a multi-dimensional construct of intelligence comprising of a

range of sub factors [Flanagan and McGrew, 1998]. Abilities in such sub factors vary from

one individual to another, and vary within an individual across factors, in other words

an individual can have higher ability in one sub factor than in another [Spearman, 1927,

p. 75]. Recently the Cattell-Horn-Carroll (CHC) theory of cognitive abilities has gained

recognition as a taxonomy of cognitive intelligence [McGrew, 2009]. The CHC is based

on ten broad cognitive categories, summarised in Table 2.1. As illustrated in Table 2.2,

cognitive ability tests vary in terms of the cognitive categories they measure, but typically

include Crystallised Intelligence (Gc), Short-Term Memory (Gsm) and Visual processing

(Gv) [Flanagan and McGrew, 1998].

Cognitive ability tests have been criticised on the basis of what is being measured.

Sternberg [1999] asserts that intelligence tests measure a developing expertise rather than

a stable attribute, and the typically high correlation between intelligence scores and aca-

demic performance is because they measure the same skill set rather than evidencing a

causal relationship. In an analysis of a range of IQ studies measuring IQ trends across

two generations, Flynn [1987] identified a significant rise in IQ from one generation to the

next. Since the observation (Flynn effect) is unlikely to be due to genetic changes in such

a short period of time, it would appear to be the result of acquired skills that improve per-

formance in IQ tests by subjects with the same IQ as the parent generation. This view is

supported by other studies that have compared children in western and non-western stan-

dards of education. These have shown that children tended to score well on tests which

measured skills that are valued by their parents [Sternberg, 1999, p. 8]. It is notable that

correlations between general intelligence and academic performance are stronger at sec-

ondary level than tertiary level education [Bartels et al., 2002; Cassidy, 2011; Colom and

Flores-Mendoza, 2007; Eysenck, 1994; Matarazzo and Goldstein, 1972]. Therefore, prior

academic performance such as high school GPA (HSGPA), and / or standardised tests like
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Table 2.1: Defining broad factors of intelligence [Flanagan and McGrew, 1998]

Factor Symbol Description

Fluid Intelligence Gf Ability to solve problems independently of knowledge
learned.

Crystallised
intelligence

Gc Acquiring and organising knowledge and skills, and abil-
ity to use such knowledge in solving problems.

Visual processing Gv Ability to process and analyse visual information

Auditory Processing Ga Ability to process and analyse auditory information

Processing Speed Gs Ability to perform automatic cognitive tasks quickly
(measure in minutes)

Reaction Time /
Decision speed

Gt Speed at which an individual can react to a stimulus, or
make decisions (measure in seconds).

Short-Term Memory Gsm Ability to hold information with immediate awareness
and use it again within a few seconds

Long-Term Retrieval Glr Ability to store and retrieve information over a longer
period of time.

Quantitative
Knowledge

Gq Ability to understand quantitative concepts and relation-
ships, and work with numeric symbols. This is a measure
of mathematical knowledge acquired, as distinct from
mathematical reasoning (Gf).

Reading-Writing Grw Basic reading and writing skills (considered by Cattell-
Horn to be part of Gc)

American College Testing (ACT)1 scores and Scholastic Aptitude Test (SAT)2 scores are

frequently used as measures of cognitive ability when modelling academic performance in

tertiary education.

Table 2.3 shows that correlations between ability and academic performance in ter-

tiary education are consistent and relatively strong for studies of standard students. For

example, a meta-analysis of 109 studies conducted by Robbins et al. [2004] found average

correlation between academic performance and SAT scores was r=0.388 (90% CI [0.353,

0.424]) and correlation between academic performance and HSGPA has a marginally higher

(r=0.448, 90% CI [0.409, 0.488]). Eppler and Harju [1997] found that correlations between

academic performance and SAT scores were not as strong for mature students. Brady-

Amoon and Fuertes [2011] attribute their lower correlations3 (r=0.16, 90% CI* [0.061,

1ACT tests are based on high school curriculum in English, Mathematics, Reading and Science (www.
act.org).

2SAT measures general intelligence in addition to mathematicss and verbal subscales [Frey and Detter-
man, 2003]. Frey and Detterman [2003] found scores were highly correlated with IQ (r=0.820, p<0.001).

3CI* denotes confidence intervals were not provided by the author, and were calculated in R version
3.0.2 using CIr in package psychometric which calculates confidence intervals based on a Fisher r-to-z
transformation.
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Table 2.2: Factors of intelligence measured by popular cognitive aptitude tests [Flanagan and
McGrew, 1998]

Factor Gc Gf Gv Ga Gs Gt Gsm Glr Gq Grw

WJ-R * * * * * * * *

WAIS * * * * *

SB4 * * * * *

DAS * * * *

K-ABC * * * *

KAIT * * * *

WJ-R: Woodcock-Johnson-Revised; WAIS: Wechslers Adult Intelligence
Scale; SB4: Stanford Binet Intelligence Scale, 4th Ed.; DAS: Differential
Ability Scale; K-ABC: Kaufman Assessment Battery for Children; KAIT:
Kaufman Adolescent and Adult Intelligence Test.

Table 2.3: Correlations between cognitive ability and academic performance

Study n Age Academic
performance

g SAT/
ACT

Prior
ability

[Brady-Amoon and
Fuertes, 2011]

271 m=21.26 GPA, self
reported

0.16

[Cassidy, 2011] 97 m=23.5 GPA 0.52***

[Chamorro-Premuzic
and Furnham, 2008]

158 m=19.2 GPA 0.24*

[Conrad, 2006] 300 m=19.5 GPA, self
reported

0.28*

[Duff et al., 2004] 146 m=24.3 GPA 0.27*

[Eppler and Harju,
1997]

212 m=19.2 GPA 0.37***

[Eppler and Harju,
1997]

25 m=29.8 GPA 0.09

[Furnham et al.,
2006]

64 [20-55] Mean exam
results

0.29*

[Kaufman et al.,
2008]

315 m=25.9 GPA 0.28***

[Kobrin et al., 2008] 151,316 18+ GPA 0.35*** 0.36***

[Ning and Downing,
2010]

581 m=20.2 GPA 0.10*

[Robbins et al., 2004] Meta-analysis GPA 0.39 0.45

*p<0.05; **p<0.01; ***p<0.001; m=mean.

14



0.256], n=271) to the fact that study participants included a more diverse group of stu-

dents from a variety of ethnic backgrounds, thereby supporting the findings of Schmitt

et al. [2009, p. 34] that the interaction between prior academic ability and GPA dif-

fers for students from different ethnic groups. The lower correlations reported by Ning

and Downing [2010] (r=0.1, p<0.05, 90% CI* [0.032, 0.167], n=581) could be attributed

to their measure of prior academic performance, which was based on A level1 scores in

two subjects chosen by the student. The relatively high level of correlation reported by

Cassidy [2011] could be attributed to a difference in how prior academic performance is

measured. Cassidy used GPA accrued in the first year of study as a measure of prior

academic performance to predict students’ final degree GPA.

2.3 Measurement of temperament and correlation with aca-

demic performance

Theories of temperament focus on aspects of personality that are discernible at birth [John

et al., 2008]. Historically, research linking temperament with academic achievement has

lacked in well-defined referential framework for the interactions between temperament and

academic performance. Studies have varied in their perspective of personality, with di-

verse views on the relevant traits to be considered as measures of temperament, such as

factors of persistence, factors relating to motivation and/or moral factors such as honesty

[de Raad and Schouwenburg, 1996]. While there are many factors associated with tem-

perament, factor analysis by a number of researchers, working independently and using

different approaches, has resulted in broad agreement of five main personality dimensions

[Ackerman and Heggestad, 1997; John et al., 2008]. These are commonly referred to as the

Big Five [Cattell and Mead, 2008; Goldberg, 1992, 1993; Tupes and Cristal, 1961] or the

related Five-Factor Model [Costa and McCrae, 1992]. The five factors include: openness,

agreeableness, extraversion, conscientiousness and neuroticism, and are described in Table

2.4. While the Big Five concept is empirical rather than a theory of personality [John

and Srivastava, 1999], good reliability and consistency has been reported [de Raad and

Schouwenburg, 1996; John et al., 2008].

Chamorro-Premuzic and Furnham [2004] found that personality attributes measured

using the Big Five construct accounted for up to 30% of the variance in academic per-

formance at tertiary level education. There is a consensus across studies that consci-

entiousness is the best personality based predictor of academic performance [O’Connor

1Hong Kong’s secondary school termination exam. Students can select from a range of subjects.

15



Table 2.4: Big Five personality dimensions and their labels in three commonly used scales
[Cattell and Mead, 2008; de Raad and Schouwenburg, 1996; Goldberg, 1993]

Big Five
(Costa and McCrae)

16PF
(Cattell)

Five-Factor Model
(Goldberg)

Explanation of each factor

Extraversion Introversion/
Extraversion

Surgency Tendency to move towards,
or away from human
interaction.

Neuroticism Low Anxiety/
High Anxiety

Emotional stability Temperamental, moody,
nervousness.

Openness Tough-
Mindedness/
Receptivity

Intellect or culture Openness to feelings,
emotions, new ideas and
imagination. Curiosity.
Creativity.

Agreeableness Independence/
Accommodation

Agreeableness Kindness, trust, warmth.

Conscientiousness Self-Control/
Lack of Restraint

Conscientiousness or
dependability

Organised, thorough,
reliable, work ethic.

and Paunonen, 2007; Swanberg and Martinsen, 2010], as illustrated in Table 2.5. Many

researchers have cited conscientiousness as compensating for lower cognitive intelligence

(see Chamorro-Premuzic and Furnham [2004, 2008]; Trapmann et al. [2007]) and it is a

consistent predictor of academic performance across assessment type [Allick and Realo,

1997; Kappe and van der Flier, 2010; Shute and Ventura, 2013].

Some significant correlations between openness and academic performance have been

reported, but correlations with academic performance are not as high as conscientiousness

(see Table 2.5). Openness is considered by Chamorro-Premuzic and Furnham [2008] to

be a mediator between ability and academic performance. Openness in turn is mediated

by learning approach, with open personalities being more likely to adopt a deep learning

strategy, which in turn improves academic performance [Swanberg and Martinsen, 2010].

Sub-factors of openness, namely intellectual curiosity, creativity and open-mindedness,

have been associated with effective thinking and learning dispositions [Buckingham Shum

and Deakin Crick, 2012; Tishman et al., 1993]. Knight et al. [2013] argued that assessment

design should nurture such dispositions. Kappe and van der Flier [2010] found that open

personalities tend to do better when assessment methods are unconstrained by submission

rules.

The relationship between neuroticism and academic performance is not as strong, and

like openness, is influenced by assessment type. Neuroticism can have a negative impact

on academic performance in stressful examination conditions such as end of year exams

with time limitation [Hembree, 1988]. Where academic performance is measured under

less stressful conditions such as continuous assessment work, the relationship between neu-
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Table 2.5: Correlations between personality and academic performance

Study n Age Academic
performance

Consci-

entous

Open Extro-
vert

Neuro-
ticism

Agree-
able

[Chamorro-
Premuzic and
Furnham, 2008]

158 [18,21] GPA 0.37** 0.21** 0.16 -0.05 0.02

[Chamorro-
Premuzic and
Furnham, 2003]

70 [17,21] Grades,
year 1

0.33** -0.06 0.05 -0.28** 0.34**

[Conrad, 2006] 300 m=19.48 GPA, self
reported

0.35* -0.02 0.00 -0.60 0.11

[Dollinger et al.,
2008]

338 m=21.9 Exam and
project

0.11* 0.14* -0.10 0.07 -0.05

[Duff et al.,
2004]

146 [17,52] GPA 0.21 0.06 0.06 -0.13 0.12

[Gray and
Watson, 2002]

300 [18,21] GPA, self
reported

0.36* 0.18* -0.09 0.00 0.15*

[Kappe and
van der Flier,
2010]+

133 [18,22] GPA 0.46** -0.08 0.05 -0.06 0.14

[Kaufman et al.,
2008]++

315 m=23.5 GPA 0.18 0.12 0.03 0.07 0.06

[Komarraju
et al., 2011]

308 [18,24] GPA, self
reported

0.29** 0.13* 0.07 0.00 0.22**

[O’Connor and
Paunonen, 2007]

Meta-analysis Various 0.24 0.05 -0.05 -0.03 0.06

[Trapmann
et al., 2007]

Meta-analysis GPA 0.22 0.08 0.01 -0.04 0.04

*p<0.05; **p<0.01.
+Matched exam technique to personality type.
++Used emotional stability, the reverse of neuroticism.

roticism and academic performance is less well defined [Chamorro-Premuzic and Furnham,

2006, p. 75]. Kappe and van der Flier [2010] found neuroticism to be positively correlated

with academic performance (r=0.18, 90% CI* [0.038, 0.315], n=133) when assessment is

free from time constraints and supervision.

Research is inconsistent regarding the remaining two personality dimensions of ex-

traversion and agreeableness and their relationship with academic performance. Introverts

tend to have better study habits and are less easily distracted ([Entwistle and Entwistle,

1970] cited by [Chamorro-Premuzic and Furnham, 2006, p. 78]), while extraverts tend to

perform better in class participation, oral exams, seminar presentations and multi-choice

style questions [Furnham and Medhurst, 1995; Kappe and van der Flier, 2010]. In their

meta-analysis of a number of studies investigating personality as a predictor of academic

performance, O’Connor and Paunonen [2007] concluded agreeableness is not associated
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with academic performance. Farsides and Woodfield [2003] found that agreeableness,

while not related to academic performance, was linked to other performance indicators

such as attendance record. Chamorro-Premuzic and Furnham [2003] agreed, and found

high correlations between academic performance and agreeableness were not replicated in

later years of the study, but agreeableness was highly correlated with absenteeism in the

first year of study.

The literature reviewed suggested the two most pertinent factors of personality for

learner profiling are: Conscientiousness, as the best personality based predictor of aca-

demic performance; and openness because of its association with an effective learning

disposition. There are a range of assessment methods used in ITB1; therefore, neuroti-

cism was less likely to be a useful predictor of academic performance in this study.

2.4 Theories of motivation that relate to academic perfor-

mance

Ryan and Deci [2000] define motivation simply as being ‘moved to do something’. Defining

how learners are motivated to behave in a certain way, and more specifically to learn, is

more complex, and is characterised by a range of complementary theories which aim to

explain both the level of individual motivation and the nature of the motivation [Steel and

Konig, 2006]. Current theories in turn encompass a number of factors, some of which are

relevant, directly or indirectly, to academic performance [Robbins et al., 2004]. Informed

by the categorisation of motivation theories relevant to academic achievement proposed

by Robbins et al. [2004], the following sections discuss three such theories, relating to

expectancy, goals and needs.

2.4.1 Measurement of expectancy motivation and correlation with aca-

demic performance

Expectancy models of motivation explore the extent to which a person regards outcome

as being a consequence of behaviour. Levels of expectancy motivation are influenced by

the extent to which a person believes they are in control of the outcome (locus of control)

[Cassidy, 2011]. There are two strands of expectancy motivation [Eccles and Wigfield,

2002; Pintrich and DeGroot, 1990]:

1The weighting given to continuous assessment (CA) varies between modules on a course, from 20%
CA to 100% CA.
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1. Outcome Expectation refers to a belief that a particular behaviour will lead to a

particular outcome, e.g active engagement in class work results in better grades.

2. Self-efficacy refers to a person’s belief that they can achieve that outcome e.g. I

can actively engage in class and so I can achieve better grades. High self-efficacy

is associated with setting more challenging goals, a willingness to work hard and

persistence with a task.

Table 2.6 gives a summary of correlations found between expectancy motivation and

academic performance. A meta analysis of a selection of studies investigating relation-

ships between expectancy motivation and academic performance found correlations var-

ied between 0.38 and 0.5 [Brown et al., 2008]. A number of studies found self-efficacy

specifically to be a useful predictor of academic performance [Brady-Amoon and Fuertes,

2011; Cassidy, 2011; Yusuf, 2011]. Indirect relationships between self-efficacy and aca-

demic performance mediated by either other motivational factors or learning strategies

are also cited [Brown et al., 2010; Yusuf, 2011]. On the other hand, Pintrich and DeGroot

[1990] found that self-efficacy was not significantly related to performance when cogni-

tive engagement variables such as engagement in the learning process, self-regulation and

learning strategies were also considered, thereby concluding that self-efficacy facilitates

cognitive engagement, but cognitive engagement itself is more directly linked to academic

performance. Nevertheless, study results suggest self-efficacy is an important indicator of

motivation in tertiary education.

Table 2.6: Correlations between expectancy motivation and academic performance

Study n Age Academic
performance

Self-
efficacy

Outcome
expectancy

[Brady-Amoon and
Fuertes, 2011]

271 m=21.3 GPA 0.22*

[Bruinsma, 2004] 117 18 Credits, year 1 0.26**

[Cassidy, 2011] 97 m=23.5 GPA 0.40*** 0.20

[DiBenedetto and
Bembenutty, 2013]

113 18+ Module grade 0.37** 0.08

[Diseth, 2011] 177 m=21.2 Specific exam 0.44**

[Klassen et al., 2008] 261 m=23.3 GPA, self
reported

0.36**

[Komarraju and Nadler,
2013]

257 m=20.5 GPA 0.30** 0.14*

[Robbins et al., 2004] Meta-analysis GPA 0.50

*p<0.05; **p<0.01; ***p<0.001.
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2.4.2 Measurement of achievement goals and correlation with academic

performance

High self-efficacy is associated with a student setting challenging goals in terms of their

academic achievements. Achievement goals fall into two categories: performance goals

where an individual is looking for favourable feedback, and learning goals where an indi-

vidual is looking to increase their competency [Covington, 2000; Dweck, 1986; Dweck and

Leggett, 1988; Eccles and Wigfield, 2002; Eppler and Harju, 1997]. Performance oriented

goals are associated with a tendency to engage in tasks in which a student is guaranteed

to excel, and avoid tasks that may highlight incompetence [Dweck, 1986]. This approach

can inhibit a student from challenging and enhancing existing competencies. It is also

associated with superficial cognitive processing and inefficient use of study time [Cov-

ington, 2000]. Learning goals are motivated by the need or desire to increase existing

competencies and master new skills and, therefore, tend to be more challenging in nature

[Covington, 2000]. Learning goals are associated with high self-efficacy, a belief that abil-

ity is dynamic, and a belief that increased effort will result in increased success (outcome

expectancy). This is regarded as an important learning disposition [Buckingham Shum

and Deakin Crick, 2012]. Interestingly, Dweck and Leggett [1988] found that there was

no relationship between a child’s academic ability (at age 14) and his or her goal ori-

entation. Instead, goal orientation was influenced by the perception of ability as being

fixed (resulting in a performance goal orientation) or dynamic (resulting in a learning goal

orientation).

Studies have found learning goals to be more strongly correlated with academic per-

formance than performance goals (see Table 2.7). A contributing factor to the exception

in the study conducted by Diseth [2011] could be in how academic performance was mea-

sured. Unlike the other cited studies, it was based on an exam grade (A-F) from a single

six-hour exam. Eppler and Harju [1997] found a statistically significant difference in the

average GPA of students with high learning goals (some of whom also had high perfor-

mance goals) and those with both low learning goals and low performance goals, with

learning goals accounting for 9% of the variance in academic performance. They also

found older students to be stronger in their endorsement of learning goals, while younger

students tended towards performance oriented goals.
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Table 2.7: Correlations between achievement goals and academic performance

Study n Age Academic
performance

Learning
goals

Performance
goals

[Diseth, 2011] 177 m=21.2 Single exam grade 0.21** 0.39**

[Dollinger et al., 2008]+ 338 m=21.9 Exam performance 0.21**

[Eppler and Harju, 1997] 212 m=19.2 GPA 0.30*** 0.13

[Eppler and Harju, 1997] 50 m=29.8 GPA 0.28* 0.08

[Robbins et al., 2004]+ Meta-analysis GPA 0.18

[Wolters, 1998] 115 m=19.1 Average grade 0.36*** -0.21*

*p<0.05; **p<0.01; ***p<0.001; m=mean.
+These studies cited correlations for achievement motivation in general, rather than learning
or performance goals specifically.

2.4.3 Measurement of self-determination and correlation with academic

performance

Self Determination Theory (SDT) focuses on our innate psychological need for competency

[Deci and Ryan, 2000], and aims to explore the difference in the types of goals learners

adopt, and the justification. SDT distinguishes between intrinsic motivation, where mo-

tivation arises from enjoyment of activity, and extrinsic motivation, where the outcome is

attractive [Ryan and Deci, 2000]. It has been argued that this is one factor represented

as a continuum from an intrinsic, behaviour oriented state, to an extrinsic, goal oriented

state [Apter, 1989; Entwhistle, 2005]. Alternatively, SDT has been viewed as two sepa-

rate factors that can both be present [Dweck and Leggett, 1988; Eppler and Harju, 1997].

Individuals can alter between intrinsic or extrinsic motivation, depending on the time or

situation, but will generally be predisposed to one or the other [Apter, 1989]. Cury et al.

[2002] found that both performance and learning goals are associated with improving a

student’s level of intrinsic motivation. For more detailed discussions see Apter [1989];

Entwhistle [2005] and Ryan and Deci [2000].

Correlations with academic performance tend to be higher for intrinsic motivation than

extrinsic motivation, but self-determination is not as strong, or as consistent, a predictor

of academic performance as either self-efficacy or learning goals (see Table 2.8). Goodman

et al. [2011] found both intrinsic and extrinsic motivation to be significantly correlated

with academic performance, however the selection of participants in this study could have

introduced bias. Students were invited to take part by email, with responders being en-

tered into a prize draw. There was a 6.3% response rate. Komarraju et al. [2009] found

significant correlation between intrinsic motivation and academic performance in a study

of participants from a variety of disciplines (n=308). The study included three sub fac-
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Table 2.8: Correlations between self-determination and academic performance

Study n Age Academic
performance

Intrinsic
motivation

Extrinsic
motivation

[Bruinsma, 2004] 117 m=18 credits, year 1 0.09

[Goodman et al., 2011] 254 [17,29] GPA 0.28** 0.21**

[Kaufman et al., 2008] 315 m=25.9 GPA 0.08 -0.05

[Komarraju et al., 2009] 308 [18,24] GPA, self reported 0.20** 0.11

[Komarraju and Nadler, 2013] 257 m=20.5 GPA, self reported 0.11 0.05

[Wolters, 1998] 115 m=19.1 average grade 0.14 0.05

**p<0.01.

tors of intrinsic motivation from the Academic Motivations Scale (AMS), motivation to

know (r=0.17, p<0.01, 90% CI* [0.077, 0.26]), motivation to accomplish (r=0.22, p<0.01,

90% CI* [0.129, 0.308]) and motivation to experience stimulation (r=0.13, p<0.05, 90%

CI* [0.037, 0.221]). In a later study, Komarraju and Nadler [2013] found the correlation

between intrinsic motivation and GPA was not significant when using a shorter 4-item

scale to measure intrinsic motivation, the Motivated Strategies for Learning Question-

naire (MSLQ, Pintrich et al. [1991]). Kaufman et al. [2008] in a study of non-standard

students from a diversity of ethnic backgrounds, did not find correlations to be significant,

suggesting that factors impacting on academic performance can vary for different student

groups.

2.4.4 Causal relationships between motivation and academic performance

While many studies cite correlations between academic performance and various measures

of motivation, particularly self-efficacy, learning goals and intrinsic motivation, evidence

supporting causal relationships between motivation and academic performance is less con-

sistent, and is influenced to some extent by the selection of factors included in any specific

study. For example, Chamorro-Premuzic and Furnham [2003] and Brown et al. [2010]

found motivation was a mediator between conscientiousness and performance, while Ko-

marraju et al. [2009] found conscientiousness mediated between intrinsic motivation and

performance. Komarraju et al. [2009] also report that motivation did not account for any

additional variance on academic performance beyond what was already explained by the

Big Five. Brown et al. [2008], on the other hand, in a study not including personality fac-

tors, found self-efficacy did have a causal relationship with academic performance. Diseth

[2011] and Sins et al. [2008] found learning strategy mediated between motivation (specifi-

cally self-efficacy and performance goals) and academic performance. Robbins et al. [2004]

found self-efficacy and achievement motivation to be the best predictors of GPA attained
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by learners. A number of studies investigating both personality and motivation argue that

personality based factors are a better predictor of academic performance than motivation

[De Feyter et al., 2012; Komarraju et al., 2009]. However, Zuffianó et al. [2013] found that

self-efficacy significantly contributed to the explained variance in academic performance

over and above ability and personality. It also has a more practical value in that self-

efficacy beliefs are more easily changed than ability or personality. This would suggest

that while there are correlations between factors of personality and motivation, measures

of personality, particularly conscientiousness, and measures of motivation, particularly self

efficacy and achievement goals, each have value, and are worth further consideration in

models of student learning. Therefore, it was decided to consider both factors of per-

sonality and factors of motivation in this study, specifically conscientiousness, openness,

self-efficacy, learning goals and achievement goals. Factors of self-determination were not

included as cited relationships with academic performance were weaker than other mea-

sures of motivation.

2.5 Learning strategies

A number of studies found the relationship between academic performance and temper-

ament or motivation is mediated by a students approach to the learning task itself. Im-

portant factors include learning approach (e.g. Bruinsma [2004]; Chamorro-Premuzic and

Furnham [2008]; Diseth [2011]; Sins et al. [2008]) and self-regulation (e.g. Nasiriyan et al.

[2011]; Ning and Downing [2010]). The following sections discuss both learning approach

and self-regulation.

2.5.1 Measurement of learning approach and correlation with academic

performance

Learning approach has its foundations in the work of Marton and Säljö [2005] who classi-

fied learners as shallow or deep. Deep learners aim to understand content, while shallow

learners aim to memorise content regardless of their level of understanding. Later studies

added strategic learners [Entwhistle, 2005, p. 19], whose priority is to do well, and will

adopt either a shallow or deep learning approach depending on the requisites for academic

success. Both personality and self-determined motivation are indicative of personal ap-

proaches to learning. Openness, conscientiousness and intrinsic motivation are correlated

with a deep learning approach, while neuroticism, agreeableness and extrinsic motivation

are associated with a shallow learning approach [Busato et al., 1999; Duff et al., 2004;
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Marton and Säljö, 2005].

Many studies concur with a negative correlation between a shallow learning approach

and academic performance (see summary in Table 2.9). Some studies show higher cor-

relations with a deep learning approach (e.g. Chamorro-Premuzic and Furnham [2008];

Snelgrove [2004]), while others cite marginally higher correlations with a strategic learn-

ing approach (e.g. Cassidy [2011]; Duff et al. [2004]). Volet [1996] found the importance

of learning approach varied with assessment type. A lack of correlation between a deep

learning approach and academic performance is in itself an insightful result, as it suggests

an assessment design that fails to reward an important, malleable learning disposition

[Buckingham Shum and Deakin Crick, 2012; Knight et al., 2013], and hence, may elicit

secondary, follow-up actions to improve assessment design. The literature reviewed sup-

ported the inclusion of learning approach in learner profiling.

Table 2.9: Correlations between learning approach and academic performance

Study n Age Academic
performance

Deep Shallow Strategic

[Cassidy, 2011] 97 m=23.5 GPA 0.31** -0.01 0.32**

[Chamorro-Premuzic
and Furnham, 2008]

158 m=19.2 GPA 0.33** -0.15 0.18*

[Duff et al., 2004] 146 [17,52] GPA 0.10 -0.05 0.15

[Snelgrove, 2004] 289 18+ GPA 0.20* -0.13 0.17*

[Swanberg and
Martinsen, 2010]

687 m=24.5 Single exam 0.16 -0.25

*p<0.05; **p<0.01.

2.5.2 Measurement of self-regulation and correlation with academic per-

formance

Self-regulated learning is recognised as a complex concept as it overlaps with a number of

other concepts including temperament, learning approach and motivation, specifically self-

efficacy and goal setting [Bidjerano and Dai, 2007; Boekearts, 1996]. While many students

may set goals, ability to self-regulate learning can be the difference between achieving, or

not achieving, goals set [Covington, 2000]. Self-regulated learners take responsibility for

setting and achieving their own learning goals. This is done by planning their learning,

having effective time management, using appropriate learning strategies, continually mon-

itoring and evaluating the quality of their own learning (metacognitive self-regulation) and

altering their learning strategies when required [Schunk, 2005; Zimmerman, 1990]. Such

learners regard learning as a process that they can control, but their motivation factors
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can vary [Pintrich and DeGroot, 1990]. To be motivated to self-regulate, a student must

be confident that they are able to set goals and organise their study, and in addition

be confident that the effort they spend on studying will result in good marks (high self-

efficacy). Such learners must also accept delayed gratification as self-regulation requires

students to focus on long-term gains for their efforts [Bembenutty, 2009; Zimmerman,

1990; Zimmerman and Kitsantas, 2005]. Volet [1996] argues that self-regulated learning is

more significant in tertiary level than earlier levels of education because of the shift from

a teacher-controlled environment to expected self-management of the learners own study.

Furthermore, Nicol and MacfarlaneDick [2006] argues that both training and formative

feedback can improve self-regulation, resulting in a more effective learning disposition.

A number of studies cite significant correlations between academic performance and

factors of self-regulation, see Table 2.10 for a summary. For example, a longitudinal study

of first year students (n=581) found self-test strategies (r=0.48, p<0.001, 90% CI* [0.426,

0.531]) and monitoring strategies (r=0.42, p<0.001, 90% CI* [0.426, 0.531]) were more

strongly correlated with academic performance than time & effort strategies (r=0.24,

p<0.01, 90% CI* [0.175, 0.303]) [Ning and Downing, 2010]. However, Komarraju and

Nadler [2013] found effort management (r=0.39, p<0.01, 90% CI* [0.299, 0.474], n=257)

had higher correlation with academic performance than other measures of self-regulation

and found that self-regulation (monitoring and evaluating learning) did not account for

any additional variance in academic performance over and above self-efficacy, but study

effort and time did account for additional variance. In a longitudinal study on the causal

dilemma between motivation and self-regulation, De Clercq et al. [2013] concluded that

a learning goal orientation results in a deep learning approach, which in turn results

in better self-regulation. A study comparing the relative importance of both learning

approach (deep or shallow) and learning effort, found that learning effort had a higher

impact on academic performance than learning approach [Volet, 1996].

All correlations cited in Table 2.10 were statistically significant. The available evidence

supported the inclusion of effort management and time management in learner profiling

in addition to factors of motivation and learning approach. Metacognitive self-regulation

was also included because of the importance of self-evaluation as an effective learning

disposition.

2.6 Regression models of academic performance

Table 2.11 presents examples of regression models with variance in academic performance

expressed as the co-efficient of determination (R2). R2 was relatively high for studies
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Table 2.10: Correlations between self-regulation and academic performance

Study n Age Academic
performance

Effort
regulation

Time
management

Metacognitive
self-regulation

[Bidjerano and Dai,
2007]

217 m=22 GPA, self
reported

0.33** 0.23**

[Dollinger et al., 2008] 338 m=21.9 Exam
performance

0.21**

[Goodman et al., 2011] 254 [17,29] GPA 0.28**

[Komarraju and
Nadler, 2013]

257 m=20.48 GPA 0.39** 0.31** 0.14*

[Ning and Downing,
2010]+

581 m=20.24 GPA 0.24** 0.42**

[Sundre and Kitsantas,
2004]

62 [18,24] Single essay 0.43**

*p<0.05; **p<0.01.
+ This study combined time management with concentration (effort regulation).

that included factors of cognitive ability combined with either factors of personality or

motivation, along with some additional factors such as age and time spent studying. Cas-

sidy [2011] reported an adjusted co-efficient of determination1 (R̄2) of 0.53 (R2=0.56) in

a regression model including prior academic performance, self-efficacy and age (n=97).

However, the relatively high R2 may be due to the measure of prior academic perfor-

mance used (first year GPA). Chamorro-Premuzic and Furnham [2008] reported R̄2=0.40

(R2=0.41) in a regression model that included prior academic ability, personality factors

and a deep learning strategy. A similar proportion of variance was reported by Dollinger

et al. [2008] (R2=0.44) in a regression model including prior academic ability, personality

factors, academic goals and study time.

Not all studies concurred with these results. Both Kaufman et al. [2008] and Swanberg

and Martinsen [2010] accounted for lower levels of variance when modelling non-standard

students. Kaufman et al. [2008] reported R2=0.14 in a model with prior academic per-

formance, personality factors and self-determined motivation, when modelling students

from a variety of ethnic backgrounds. Swanberg and Martinsen [2010] reported R2=0.21

in a model with prior academic performance, personality, learning strategy, age and gen-

der, when modelling students with an older average age (m=24.8). Lower variances were

also reported in studies not including cognitive ability. Komarraju et al. [2011] reported

R2=0.15 in a model including personality and learning approach. Eppler and Harju [1997]

reported R2=0.12 in a model including factors of motivation and work commitments,

1An adjusted co-efficient of determination (R̄2) compensates for the automatic increase in R2 when
additional dependent variables are added to the model.
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Table 2.11: Regression models of academic performance with significant standardised coefficients (p<0.05)

Ability Personality Motivation Learning Approach Self-regulation Other factors

Study n Age R2 g prior C O N A SE IM EM De Sh St Effort Time Age Gender Job

[Bidjerano and
Dai, 2007]

217 m=22 0.18 0.28 0.27

[Bidjerano and
Dai, 2007]

217 m=22 0.11 0.14 0.31

[Chamorro-
Premuzic and
Furnham,
2008]+

158 m=19.2 0.41 0.29 0.49 0.21

[Cassidy,
2011]+

97 m=23.5 0.56 0.54 0.26 0.36

[Dollinger
et al., 2008]

338 m=21.9 0.43 0.44 0.32 0.21 -0.10

[Duff et al.,
2004]

146 [17-52] 0.34 0.39 0.38 -0.21 0.31

[Eppler and
Harju, 1997]

216 m=19 0.22 0.30 0.34 -0.14

[Eppler and
Harju, 1997]

243 m=21.2 0.12 0.32 -0.16

[Kaufman
et al., 2008]

315 m=25.9 0.14 0.24 0.12 0.15 -0.16

[Komarraju
et al., 2011]

308 [18-24] 0.15 0.33 0.14 0.19 0.15

[Swanberg and
Martinsen,
2010]

687 m=24.5 0.21 0.30 0.15 -0.17 -0.14

g=General cognitive intelligence; C=Conscientiousness; O=Openness; N=Neuroticism; A=Agreeableness; SE=Self-efficacy; IM=Intrinsic motivation; EM=Extrinsic Motivation;
De=Deep; Sh=Shallow; St=Strategic.

+The paper cited R̄2 only, R2 is reported here for consistency with other cited results.
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while Bidjerano and Dai [2007] reported the same R2 in a model including factors of per-

sonality and self-regulation. These results suggest that cognitive ability is an important

determinant of academic performance, particularly in models of standards students. Au-

thors also cited that non-cognitive variables accounted for additional variance beyond what

was accounted for by prior academic performance [Cassidy, 2011; Chamorro-Premuzic and

Furnham, 2008; Dollinger et al., 2008; Kaufman et al., 2008; Swanberg and Martinsen,

2010]. This evidenced supported the inclusion of both cognitive and non-cognitive factors

of learning in models of students at risk of failing in year 1.

2.7 Data analysis techniques used on educational data

Statistical models have dominated data analysis in the social sciences, including edu-

cational psychology [Dekker et al., 2009; Freedman, 1987; Herzog, 2006]. For example,

studies cited in previous sections primarily used correlations analysis (78% of the studies)

and regression (54% of the studies), with some papers citing path analysis results (14%)

and structural equation models (11%) as detailed in Table 2.12. Statistical modelling has a

sound theoretical basis, allowing verifiable conclusions to be drawn from model coefficients,

therefore statistical models have made, and will continue to make, a valuable contribution

to the understanding of learners and the learning process. However, such models are based

on assumptions, including assumptions of normality, independency, linear additivity and

constant variance [Nisbet et al., 2009]. It is evident from current knowledge of the factors

influencing academic performance, that such factors are interdependent [Prinsloo et al.,

2012]. While each factor measures unique attributes, there are overlaps in the constructs

being measured. In addition, there is evidence to suggest variance is not constant for all

attributes. For example, Vancouver and Kendall [2006] found evidence that high levels of

self-efficacy can lead to overconfidence regarding exam preparedness, which in turn can

have a negative impact on academic performance. Similarly, Poropat [2009] cites evidence

of non-linear relationships between factors of personality and academic performance, in-

cluding conscientiousness and openness. Duff et al. [2004] observed that because academic

performance is itself a complex measure, calculated as an aggregate of a variety of assess-

ment types, this weakens the result of correlation analysis with other learning dimensions.

While recognising the continuing importance of statistical models, Freedman [1987] and

Breiman [2001] argued that alternative modeling approaches should be considered when

dimensionality is high and relationships are complex such as in the social sciences. Cox, in

a response to Breiman’s paper, notes the importance of the probabilistic base of standard

statistical modelling, but agrees with Breiman that in some circumstances, an empirical
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Table 2.12: Summary of analysis techniques used in 37 educational
psychology studies, published between 1998 and 2012

Statistical Technique Frequency of Use

Correlation Analysis 78%

Regression 54%

Path Analysis 14%

Structural Equation Modelling 11%

Anova 5%

approach is better [Breiman, 2001, p. 18]. It is therefore pertinent to ask if data mining’s

empirical modelling approach can add value to educational data analysis, in particular

their relevance to models of academic achievement.

Data mining is a relatively young field, that has evolved primarily to aid the extraction

of information from the vast amounts of data accumulated in databases and data repos-

itories in many domains [Larose, 2005]. The wide range of analytical techniques used in

data mining emanate from a variety of disciplines including database systems, statistics,

machine learning, visualisation, logic, spatial analysis, signal processing, image analysis,

information retrieval and natural language processing, thereby making data mining itself a

diverse, interdisciplinary field of study [Han and Kamber, 2006]. Data mining uses induc-

tive reasoning to find strong evidence of a conclusion. While suited to big data analysis, it

does not provide the statistical certainty offered by traditional statistical modelling [Nisbet

et al., 2009].

Algorithms typically used on educational data include: clustering techniques to identify

homogenous subgroups in a dataset; association analysis to identify values that frequently

co-occur; classification techniques to build models that predict membership of predefined

classes in a dataset; and visual analytics to facilitate human analysis via interactive visual

representations of the data [Baepler and Murdoch, 2010; Romero and Ventura, 2007, 2010].

A review of mining approaches used in educational data mining by Baker and Yacef [2010]

identified a predominance of classification techniques, which are reviewed next.

2.8 Classification algorithms used on educational data

2.8.1 An overview of classification models

A Decision Tree algorithm identifies patterns in a dataset as conditions, represented

visually as a decision tree [Quinlan, 1986]. For example, the following two conditions depict
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a branch of depth two that capture characteristics of instances in a class atRisk = false:

(if Conscientiousness > 5.6 and Self-Efficacy > 6.3 then atRisk = false). The size of

the tree (rule depth) is configurable, influencing the specificity of the resulting model

[Quinlan, 1986]. Simpler implementations (e.g. C5.0) limit each branch to value ranges

from a single attribute, making this a linear classifier with a further restriction that each

condition is an axis-parallel hyperplane [Tan et al., 2014]. Less restrictive implementations

can incorporate a greater range of patterns (e.g. CART, Breiman et al. [1984]). Model

interpretability makes Decision Trees a popular choice [Han and Kamber, 2006].

Rule based classifiers define class membership based on a set of if...then... rules.

Basic implementations generate models that are similar to a Decision Tree model [Tan

et al., 2014] despite the difference in search strategies used. Rule based classifiers im-

plement a depth first search, Decision Trees implement a breath first search [Gupta and

Toshniwal, 2011]. However, rule based classifiers can be extended to incorporate fuzzy

rules with less precise conditions, allowing an instance to match more than one class. For

example, the rule (if Conscientiousness is ‘very’ good and Self-Efficacy is ‘fairly’ good

then atRisk = False) uses the fuzzy sets ‘very’ and ‘fairly’ instead of specific value ranges.

This non-deterministic model of the data can represent more complex, non-linear class

boundaries [Otero and Sánchez, 2005; Tang et al., 2012].

A Back-propagation Neural Network (BPNN) is an empirical classifier that can

approximate any function mapping input values to an output value. Inspired by the

biological neural system, a Neural Network is a network of nodes, connected by weights,

which when multiplied by input values and summed, will approximate an output value

[Han and Kamber, 2006]. Each node can optionally apply an activation function to its

output, such as a logistic function, to model a non-linear mapping from inputs to output.

Training a network involves adjusting weights to bring the calculated output closer to the

actual output. The resulting model may not be optimal, particularly when the solution

is non-linear [Tan et al., 2014]. Nonetheless, BPNNs performance has been found to be

comparable with other approaches, particularly when approximating complex patterns

based on numeric input values [Groth, 2000; Sargent, 2001].

Models based on Bayes Theory include Näıve Bayes and Bayesian Networks. Näıve

Bayes builds a model of probabilities based on both the distribution of classes in a dataset,

and the distribution of attribute values present in each class. It then applies Bayes the-

orem to estimate the probability of class membership for any given combination of at-

tribute values [Ng and Jordon, 2001]. For example, a result could be P(atRisk=false |
gender=female and self-efficacy=0.7) = 0.063; P(atRisk=true | gender=female and self-

efficacy=0.7)=0.0001. Näıve Bayes works well with a variety of data types [Tan et al.,
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2014], and can converge to its optimal accuracy quickly, making it suitable for relatively

small datasets [Ng and Jordon, 2001]. However Näıve Bayes simplifies the learning task by

assuming all attributes are independent. If this assumption is invalid, conditional prob-

abilities between attributes can be modelled as a Bayesian Network [Bekele and Menzel,

2005]. Bayesian Knowledge Tracing (BKT), based on a Bayesian Network, is a popular

method for estimating student knowledge based on their behaviour on intelligent tutoring

systems. BKT models the probability that a student has learned a skill based on the

estimated likelihood that a correct answer is either a guess or knowledge learned, and an

incorrect answer is either a slip or lack of knowledge [Baker et al., 2011].

A Support Vector Machine (SVM) models class membership by approximating

a hyperplane that defines a linear boundary between two classes [Cortes and Vapnik,

1995]. In cases where the class boundary is non-linear, a kernel function can transpose

the dataset to a higher number of dimensions, which may provide a linear class boundary

[Nisbet et al., 2009, p. 13]. Training an SVM is a convex optimisation problem to which

a globally optimal solution can be found [Tan et al., 2014]. While SVMs are limited to

numeric attributes and binary classification tasks, Dixon and Brereton [2009] found SVMs

outperformed other learners when modelling attributes that are not normally distributed.

Ensembles aggregate the predictions of a collection of classification models [Banfield

et al., 2004; Breiman, 1996]. Individual models within an Ensemble can differ based on the

subset of data used to train each model, and/or the algorithms used to build each model.

There are also a variety of ways to aggregate predictions including averaging, using a

voting strategy, or training a learner to identify which model to use for a given instance

[Tan et al., 2014, p. 276]. While resource intensive in terms of training time, Ensembles

tend to outperform individual classifiers, particularly when the accuracies of individual

learners are relatively poor and their incorrect predictions are uncorrelated [Tan et al.,

2014].

2.8.2 Classification model accuracies when modelling academic perfor-

mance

Table 2.13 summarises a selection of educational data mining studies, classification algo-

rithms used, and accuracies achieved. A distinction is made between models of log data

capturing student actions over time, and models of static data such as prior academic per-

formance, demographic data and non-cognitive factors of learning, measured at a point in

time. Many publications on student modelling focus on log data gathered from Virtual

Learning Environments (VLEs) hosting educational resources and student interactions,
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or Intelligent Tutoring Systems (ITS) that are aimed towards curriculum adaptation to

each learner by monitoring progress and measuring skill levels [Baker and Yacef, 2010;

Tempelaar et al., 2013]. Less focus has been given to modelling non-temporal data from

outside virtual or online learning environments.

Both Pardos et al. [2011] and Minaei-Bidgoli et al. [2003] recommended an Ensemble

to predict performance on an ITS, particularly for larger datasets. However in a compari-

son of Ensembles with individual classifiers to track student knowledge, Baker et al. [2011]

concluded that an Ensemble was not statistically significantly better than the best individ-

ual classifier, a BKT model. Bekele and Menzel [2005], Conati et al. [2002], Jonsson et al.

[2005] and Mayo and Mitrovic [2001] argue that Bayesian networks are particularly suited

to student models because of the inherent uncertainty in interpreting student behaviour,

and the incompleteness of any dataset attempting to capture all factors relevant to classi-

fying students. However Yu et al. [2010] found that while Bayesian networks were suitable

for modelling the temporal nature of data from an online learning tool, when data was

converted into a single vector per student, more traditional classification approaches gave

more accurate results, such as a Decision Tree Ensemble. Romero et al. [2008] achieved

the best accuracy using fuzzy rule learning when modelling Moodle (VLE) usage data

converted to a single vector per student. Similarly, Merceron and Yacef [2005] achieved

high accuracy using a Decision Tree to predict exam performance based on a single student

vector aggregated from their behaviour on an ITS.

In a comparison of models based on prior academic performance and demographic

data, Herzog [2006] found Decision Trees and Neural Networks had similar performance

to Logistic Regression when modelling datasets with little collinearity between variables,

but outperformed Logistic Regression when modelling datasets with greater dependencies

between variables. Additionally, both Decision Tree and Neural Network models identified

significant predictor variables that had shown little statistical significance in a regression

model. In a comparison of Decision Tree, Logistic Regression and Support Vector Machine,

Lauria et al. [2013] reported comparable performance when modelling prior academic

performance, demographic data, and ITS usage data (n=6,445). However, working with

similar attributes, both Jayaprakash et al. [2014] and Lauria et al. [2012] reported Logistic

Regression outperformed a Decision Tree when modelling a larger dataset (n=15,150 and

n=18,968 respectively). Bergin [2006] achieved good accuracy with Näıve Bayes when

modelling a dataset of prior academic performance and non-cognitive factors, and observed

that while an Ensemble had marginally higher accuracy than Näıve Bayes, it did not justify

the additional effort involved in compiling the Ensemble.

A limited number of educational data mining studies have investigated the role of
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Table 2.13: Educational data mining models: factors used and accuracy achieved

Study Algorithm Accuracy n Class label Demo-
graphic
Data

Prior
Educa-

tion

Psycho-
metric
data

ITS

[Bergin, 2006] Ensemble 82% 102 Weak/strong x x

[Herzog,
2006]

Decision
Tree

83% 4,564 Degree
completion
time

x x

[Jayaprakash
et al., 2014]

Logistic
Regression

87% 15,150 Weak/strong x x x

[Dekker et al.,
2009]

Decision
Tree

79% 1,002 Drop out x

[Lauria et al.,
2013]

Decision 87% 6,445 Weak/strong x x x

Study Algorithm Accuracy n Class label VLE ITS

[Baker et al.,
2011]

Bayesian
Network

AUC:
0.70

76 Next question
correct

x

[Merceron
and Yacef,
2005]

Decision
Tree

87% 224 Pass/fail x

[Minaei-
Bidgoli et al.,
2003]

Ensemble 94% 227 Pass/fail x

[Pardos et al.,
2011]

Ensemble AUC:
0.77

5,422 Performance
on ITS

x

[Romero
et al., 2008]

Fuzzy Rule 62.11% 438 Module
performance

x

ITS: Intelligent Tutoring System; VLE: Virtual Learning Environment; AUC: Area under the Curve.

non-cognitive factors in models of learning [Buckingham Shum and Deakin Crick, 2012].

Bergin and Reilly [2006] found that including self-efficacy and study hours improved model

accuracy, but due to a small sample size (n=82) could not draw reliable conclusions from

the findings. Lauria et al. [2012] reports good model accuracy (88%) when modelling

prior academic performance, demographic factors and student effort inferred from student

activity on a VLE. Nelson et al. [2012] recommended including non-cognitive factors in

models of learning to provide useful feedback on the learning dispositions that assessment

design rewards. Buckingham Shum and Deakin Crick [2012] argue for greater recognition

of learning dispositions (e.g. persistence, curiosity, awareness of learning) as important

dimensions of learning that should be assessed in conjunction with discipline knowledge.

Shute and Ventura [2013] concur, and observe that important competencies such as persis-

tence, openness and self-efficacy are not currently taught or assessed, despite evidence of

their importance. Furthermore, Knight et al. [2013] argued that learning analytics should
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be more than just generating models, it should become part of the learning process it-

self. For example, supporting learners in self-regulating their learning through feedback

on actions taken. Such developments necessitate that analytics tools acquire data on

non-cognitive factors of learning to capture learner disposition and approaches to learning

task.

2.9 Conclusion

This review collated evidence on the importance of both cognitive and non-cognitive fac-

tors of learning in the modelling of academic achievement in tertiary level education. While

not accounting for all of the variance in the noted academic performance, prior academic

performance, personality, motivation and learning strategies have significant relationships

with academic performance, and overlap with noteworthy learning dispositions. There-

fore, factors measuring prior academic performance, personality, motivation and learning

strategies merited consideration in this study.

To date, the complementary disciplines of learning analytics and educational data min-

ing have focused predominantly on analysing data that has been systematically gathered

in educational settings, which at tertiary level includes factors of prior academic perfor-

mance, demographic data such as age and gender, and data gathered by logs recording

student behaviour on online learning environments. Though both are relatively new dis-

ciplines, initial results report good model accuracy across a variety of analysis techniques.

Cited studies reported comparable accuracies across a range of classification algorithms

used. Consequently, this study evaluated eight classification algorithms for models pre-

dictive of at-risk students. Chapter 3 will give details on the data collected for the study,

and the analysis techniques used to model the data.
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Chapter 3

Methods

3.1 Introduction

The primary research question (Q1 ) was: Can algorithmic student modelling accurately

predict Irish IoT students at risk of failing in first year of study based on factors that can

be measured prior to commencement of tertiary education? To answer this question, data

from a diverse student population was gathered and analysed. This chapter describes

the study participants and study factors used. Some data were gathered from on online

learner profiling tool developed specifically for this study (Objective Ob3 ). The tool itself

and questionnaire reliability are discussed. Finally, the statistical techniques applied and

classification models used are explained.

3.2 Description of study participants

The participants were first year students at Institute of Technology Blanchardstown (ITB),

Ireland. The admission policy at ITB supports the integration of a diverse student pop-

ulation in terms of age, disability and socio-economic background, as evidenced in ITB’s

mission statement (Appendix B.1). As was discussed in Section 1.2, course entry require-

ments are generally lower than corresponding university courses [Mooney et al., 2010].

Each September 2010 to 2012 all full-time, first year students at ITB were invited

to participate in the study by completing an online, self-reporting, learner profiling tool

administered during first year student induction. The tool included a request for permis-

sion to use student data in this study; students also signed a paper form consenting to

their details being used in this study (see Appendix B.2.1 and B.2.2). A total of 1,376

(53%) full-time, first year students completed the online questionnaire. Eliminating in-
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valid student IDs (n=100), those who did not give permission to be included in the study

(n=35), students under the age of 18 at the time of profiling (n=3) and other errors in the

dataset detailed in Section 4.2.1 (n=31), resulted in 46% of first year, full time students

participating in the study (n=1,207).

Participants ranged in age from 18 to 60, with a mean (m) age of 23.27 (standard

deviation, s=7.3); of which 355 (29%) students were mature (23 and over1), 713 (59%)

were male and 494 (41%) were female. Students were enrolled on a range of courses in

the disciplines of Business (n=402, 33%), Humanities (n=353, 29%), Computing (n=239,

20%), Engineering (n=172, 14%) and Horticulture (n=41, 3%).

Participant age and gender by year is detailed in Table 3.1. There were variations in

the relative percentages profiled from each academic discipline by year even though first

year enrolment numbers in each discipline were consistent over the duration of the study,

as illustrated in Table 3.2. Most notable was a drop in Engineering students profiled

in 2011. This may be explained by the scheduling of engineering induction that year

which took place in the late afternoon. Profiling was the final session in their induction

schedule and numbers declined as the afternoon progressed. In 2010, computing and

engineering students were profiled during scheduled lab sessions in the first three weeks

of term which may account for increased numbers that year. Participant numbers from

humanities increased each year.

Table 3.1: Age and gender of participants by year

Age Gender
Year n Range m± s Over 23 Male Female

2010 418 [18,60] 24.0 ± 7.9 133 (32%) 261 (62%) 157 (38%)
2011 353 [18,59] 23.3 ± 7.3 106 (30%) 209 (59%) 144 (41%)
2012 436 [18,53] 22.6 ± 6.6 116 (27%) 243 (56%) 193 (44%)

Table 3.2: Participant numbers by discipline by year

Year Business Computing Engineering Horticulture Humanities

2010 139 (33%) 102 (24%) 82 (20%) 13 (3%) 82 (20%)
2011 143 (40%) 63 (18%) 28 (8%) 18 (5%) 101 (29%)
2012 120 (28%) 74 (17%) 62 (14%) 10 (2%) 170 (39%)

1This is a state-wide definition of a mature student. Their entry requirements are less strict.
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3.3 Study factors and instruments used

The study dataset included data from three sources: student registration; the study’s

online learner profiler; and exam results from first year of study at ITB, supplied by the

college. The following sections cover each of these in further detail. Study factor names

will be italicised when referenced in text.

3.3.1 Student registration data and measurement of prior academic per-

formance

Registration data included age, gender and prior academic performance. Access to full

time college courses in Ireland is based on academic performance in the leaving certificate

(or equivalent), a set of state exams at the end of secondary school. The leaving certifi-

cate includes four mandatory subjects, namely mathematics, English,1 Irish,2 a foreign

language, and typically an additional three elective subjects. Subjects can be studied at

higher or ordinary level, mathematics and Irish are also offered at foundation level. Col-

lege places are offered based on CAO3 points, an aggregate score based on points achieved

in a student’s best six leaving certificate subjects, range [0,600]. Table 3.3 maps exam

grades to points for higher level, ordinary level and foundation level examinations. The

Java code used to calculate CAO points is included in Appendix D.1.

The study dataset included CAO points, points in mathematics and points in English

for each student. Points achieved in additional subjects (53 in total) were included as aver-

age points achieved by subject category. The Department of Education in Ireland groups

leaving certificate subjects into six categories based on subject content, namely humanities,

social, artistic, practical, science and business4. However, average scores based on these

six categories resulted in significant subsets of students without points for categories of

non-mandatory subjects, namely social, business, artistic and practical subject categories.

Therefore, categories were combined to create three categories as follows: applied (artistic

and practical categories); humanities (humanities and social categories); and methodi-

cal (science and business categories). Table 3.4 lists subjects included in each category.

Electives from the humanities category were the most popular, for example 56% studied

1The Leaving Certificate English syllabus aims to develop: a mature and critical literacy; a respect
and appreciation for language; and an awareness of the value of literature (http://www.education.ie).

2The Leaving Certificate Irish syllabus aims to develop the students’ language skills and nurture a
respect and a positive attitude towards the Irish language.

3CAO refers to the Central Applications Office with responsibility for processing applications for un-
dergraduate courses in Ireland.

4Details of subject groups can be found at the Department of Education’s National Career Guidance
website: http://www.careersportal.ie.
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Table 3.3: Leaving certificate grades and their corresponding CAO points

Mark (%) Grade Higher level Ordinary level Foundation level

[90, 100] A1 100 60 20
[85, 90) A2 90 50 15
[80, 85) B1 85 45 10
[75, 80) B2 80 40 5
[70, 75) B3 75 35 0
[65, 70) C1 70 30 0
[60, 65) C2 65 25 0
[55, 60) C3 60 20 0
[50, 55) D1 55 15 0
[45, 50) D2 50 10 0
[40, 45) D3 45 5 0
[0, 40) E,F,NG 0 0 0

Bonus points for honours mathematics introduced by the Department of
Education in 2012 were not incorporated into CAO calculations.
[x, y) denotes a range inclusive of x but exclusive of y.

Table 3.4: Leaving certificate subject categories

Category Description

Applied Art, Building Construction, Craft Design & Technology, Engineering, Graphic & Tech
Design, Music, Music & Musicianship, Drama & Theatre Studies, Technical Drawing,
Technology, Leaving Certificate Link Modules

Humanities Classical Studies, Economic & Social History, English, Geography, History, Home Eco-
nomics, all Languages, Religious Studies

Methodical Accounting, Agricultural Economics, Agricultural Science, Applied Mathematics, Bi-
ology, Business (Organisation/Studies), Chemistry, Computer (Science/Studies), Eco-
nomics, Mathematics, Physics, Physics with Chemistry, Science/Environment Science

geography and 51% studied French. Many science and business subjects are numerate

based, however, the two most popular electives in the methodical category did not have a

significant mathematics component, namely biology (51% of students) and business (48%

of students). The next most popular elective in this category, accountancy, was taken by

12% of students. All subjects in the applied category had a significant practical compo-

nent, the most popular was building construction, taken by 17% of students. However,

43% of participants did not have a grade for this category, limiting its usefulness.

Descriptive statistics for study factors of prior academic performance in Table 3.5

confirmed a student sample with a weaker prior academic profile compared to university

students as reported in [Mooney et al., 2010]. Of particular note was the low average

points in mathematics (m=23.8, equivalent to 55%-65% in a pass level paper) which was

significantly lower than all other subject areas.
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Table 3.5: Descriptive statistics for study factors of prior academic performance

Subject n Average Points (m± s) Range

CAO points 1,018 259.5 ± 78.1 [0,475]

Mathematics 1,008 23.8 ± 13.9 [0,90]

English 1,015 46.4 ± 18.5 [0,90]

Humanities Average 1,016 40.0 ± 14.0 [0,80]

Methodical Average 1,016 32.1 ± 15.5 [0,83]

Applied Average 647 48.5 ± 19.5 [0,87.5]

Valid range for CAO points is [0,600], valid range for subjects and
subject categories is [0,100].

Means (m) and standard deviations (s) were calculated based on the
number of participants who had results in each category as indicated
by n.

3.3.2 Measurement of non-cognitive factors of learning

The following sections discuss the fifteen non-cognitive factors of learning included in the

study. Questionnaire items to measure non-cognitive factors were primarily taken from

validated instruments in the public domain and administered during first year student

induction using an online learner profiler developed for this study (http://www.howile

arn.ie). The wording of some questions was changed to suit the context as illustrated

in Table 3.6. Unless otherwise stated, items used a five-level Likert scale. Both positive

and negative questions were used. Questionnaire length can affect the quality of response

[Burisch, 1997; Galesic and Bosnjak, 2009]. Consequently, the number of items was reduced

for some scales by removing similar items despite the likely negative impact on internal

reliability statistics, discussed in Section 3.3.2.2. The full questionnaire is included in

Appendix B.2.3.

3.3.2.1 Learner profiler questionnaire design

Informed by the discussion in Section 2.3, two personality based factors were included in

the questionnaire, conscientiousness and openness. Items for both scales were taken from

the International Personality Item Pool (IPIP) scales for conscientiousness and openness,

available in the public domain [Goldberg et al., 2006]. Six items were selected from the

Conscientiousness Big Five Domain scale, and six items were selected from the Openness

to Experience, NEO Domain scale.

Motivation was assessed based on self-efficacy, and two achievement motivation scales,

intrinsic goal orientation (learning goal) and extrinsic goal orientation (performance goal),

chosen because research suggests these factors of motivation are most predictive of aca-
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Table 3.6: Changes made to published questionnaire items

Category Original text Revised Text Reason for change

Conscientious Follow a schedule. I like to do things
according to a plan or
schedule.

Improve clarity.

Openness I like art. I like art and creativity. Improve clarity.

Extrinsic goal
orientation

I want to do well in class
because it is important to
show my ability to my
family, friends, employers
and others.

I get great satisfaction
from doing well which
drives me to work hard.

More general.

Intrinsic goal
orientation

When I have the
opportunity, I choose course
assessment that I can learn
from even if they don’t
guarantee good grades.

When choosing a topic
for an essay I would pick
a topic I can learn from,
even if it means more
work.

Language adjusted
for context.

Self-efficacy I am confident I can do an
excellent job on assessments
and tests for this course.

I think I’ll be good at
completing assessment
work to a high standard.

Language adjusted
for context.

Self-efficacy I believe I will receive an
excellent grade in this class.

I expect to do very well
on this course.

Language adjusted
for context.

Metacognitive
self-regulation

During class time I often
miss important points
because I’m thinking of
other things.

During class I often miss
important points because
I’m thinking of something
else.

Language adjusted
for context.

Metacognitive
self-regulation

When I become confused
about something I am
studying for this class, I go
back and try to figure it
out.

When I’m confused by
something I am studying,
I try to go back and
figure it out.

Language adjusted
for context.

Metacognitive
self-regulation

I often find that I have been
reading for class but don’t
know what it was all about.

I often find that I have
been studying for class
but I don’t know what it
was all about.

Language adjusted
for context.

Metacognitive
self-regulation

When I study for this class,
I set goals for myself in
order to direct my studies
for each study period.

I set goals for each study
period in order to direct
my activities.

Language adjusted
for context.

Metacognitive
self-regulation

Before I study new course
material thoroughly, I often
skim it to see how its
organized.

Before studying a new
topic, I often skim
through it first to see how
its organised.

Language adjusted
for context.

Study time I attend class regularly. I plan to attend class
regularly.

Language adjusted
for context.

Study Effort I work hard to do well in
this class even if I don’t like
what we are doing.

I would work hard to do
well even if I don’t like
what I am doing.

Language adjusted
for context.
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demic performance, as discussed in Section 2.4. Scales were from the Motivation Strategies

for Learning Questionnaire (MSLQ) [Pintrich et al., 1991], available in the public domain.

All four items from each of the intrinsic goal orientation and extrinsic goal orientation

scales were included in the questionnaire. Three of the eight items from the self-efficacy

scale were included.

Three factors of self regulation were included in this study: metacognitive self-regulation;

study time; and study effort. The scales used were from MSLQ. To facilitate administration

during student enrolment, items were selected based on their relevance to prior academic

experiences. Five items were included from the twelve-item metacognitive self-regulation

scale, four items were included from the eight-item time & study environment scale (study

time), and three items were included from the four-item effort regulation scale (study ef-

fort). Items from the study time scale were changed to a three-item scale of: yes; no; I’m

not sure yet. This was done to adapt items to the context as students had not yet started

their course of study. For example, ‘I have a regular place set aside for study’ was asked

before students were familiar with the college library facilities.

Learning approach was assessed based on the Revised two-factor Study Process Ques-

tionnaire (R-SPQ-2F) published by Biggs et al. [2001] and available in the public domain.

The published questionnaire provided separate scales for shallow and deep learning ap-

proaches. Items used a five-level Likert scale. The question style was changed for this

study, forcing participants to choose between a deep, strategic or shallow learning ap-

proach. Each item on a four-item scale asked participants to pick one of three statements:

two statements, relating to deep and shallowing learning approach, were taken from R-

SPQ-2F; the third statement, relating to a strategic learning approach, was compiled in

collaboration with the National Learning Network Assessment Service1 (NLN). The style

of question matched the style of items on a learning styles profiler designed by NLN and

used by ITB in previous years.

In agreement with NLN, scales from their learning styles questionnaire were also in-

cluded. This covered learner modality (visual, auditory and/or kinaesthetic (VAK) [Flem-

ing, 1995]) which was scored from six questions, each offering two choices of modality,

resulting in four items per modality across the six questions. An additional three ques-

tions focused on preference for solo or group work, each offering two choices.

The choice of how many items to include in the online questionnaire was influenced

by a requirement to keep the questionnaire short, while gathering data on a diverse range

1The National Learning Network Assessment Service provides functional strategies and support for
children, adolescents and adults with specific learning difficulties. They are located on campus at ITB
(http://www.nln.ie).

41

http://www.nln.ie


Figure 3.1: Illustration of the learner profiling tool interface used in this study

of relevant factors. Level of interest and perceived importance can reduce the negative

impact on response quality when questionnaires are long [Herzog and Bachman, 1981].

Optimising interest was addressed in a number of ways: the user interface was designed

to be colourful and visually appealing by the inclusion of graphical images relating to

the questions being asked as illustrated in Figure 3.1; the tool gave immediate results

with explanations to participants; and the questionnaire was administered as part of an

information session on learning preferences and learning styles.

Table 3.7 details summary statistics for non-cognitive study factors. Attribute his-

tograms (see Appendix C, Figure C.1) illustrated varied distributions across attributes,

which is common in data relating to education and psychology [Kang and Harring, 2012;

Micceri, 1989].

3.3.2.2 Learner profiler questionnaire reliability

Questionnaire validity and internal reliability were assessed using a paper-based ques-

tionnaire that included both the revised wording of questions used on the profiling tool

(reduced scale), and the original questions from the published instruments (original scale).

The paper questionnaire was administered during scheduled first year lectures across all

academic disciplines, participation was optional. Each student completed one of five sub-

sections of the questionnaire, comprising of questions on either one or two non-cognitive

factors. Results are detailed in Table 3.8.

Pearson correlations (r) between scores calculated from the reduced scale, and scores
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Table 3.7: Descriptive statistics for non-cognitive study factors

Category & Instrument Factor m± s 95% CI

Personality, from IPIP
(ipip.ori.org)

Conscientiousness 5.95 ± 1.53 [5.86, 6.03]

Openness 6.07 ± 1.29 [5.99, 6.14]

Motivation, from MSLQ
[Pintrich et al., 1991]

Self-efficacy 6.85 ± 1.42 [6.77, 6.93]

Intrinsic goal orientation 7.09 ± 1.36 [7.03, 7.17]

Extrinsic goal orientation 7.81 ± 1.38 [7.73, 7.89]

Self-regulated learning,
from MSLQ [Pintrich et al.,
1991]

Metacognitive self-regulation 5.88 ± 1.36 [5.80, 5.95]

Study effort 5.93 ± 1.77 [5.83, 6.03]

Study time 6.17 ± 2.32 [6.04, 6.30]

Learning style, based on
R-SPQ-2F [Biggs et al.,
2001]

Deep learner 5.36 ± 2.91 [5.20, 5.53]

Shallow learner 1.33 ± 1.95 [1.22, 1.44]

Strategic learner 3.41 ± 2.48 [3.27, 3.55]

Preferred learning channel,
NLN Learning Styles
Questionnaire (www.nln.ie)

Visual 7.17 ± 2.06 [7.05, 7.28]

Auditory 3.13 ± 2.17 [3.04, 3.29]

Kinaesthetic 4.67 ± 2.42 [4.53, 4.80]

Group work 6.55 ± 3.36 [6.36, 6.74]

m:mean; s:standard deviation; Valid range for each factor is [0,10].

calculated from the original scale, were high for all factors (≥0.9) except intrinsic goal

orientation (r=0.81, 95% CI [0.68,0.89]1) and study time (r=0.79, 95% CI [0.65,0.87]).

Internal reliability was assessed using Cronbach’s Alpha Coefficient (α). α is a measure

of the split half correlation coefficients between items on a scale [Cronbach, 1951; Yu, 2001],

i.e. if the items on a scale were split into two halves, and the correlation calculated between

the aggregate score in each half, Cronbach’s Alpha estimates the mean of all such half split

correlations. A high α (>0.8) indicates good internal consistency between items on a scale

[Lance et al., 2006]. The coefficient is lower for scales with less items, even when the

correlation between those items is high [Cortina, 1993; Spector, 1992]. So for scales with

less items, α values closer to 0.7 are acceptable [Cooper et al., 2010; Tavakol and Dennick,

2011].

All factors had acceptable reliability (>0.7) given the small number of questions per

scale (between 3 and 6), with the exception again of intrinsic goal orientation and study

time. On the intrinsic goal orientation scale, three of the four items related to work that

was challenging but interesting, all three had statistically significant correlations with each

other, ranging from r=0.373 (95% CI [0.08, 0.0.61]) to r=0.406 (95% CI [0.12, 0.0.63]).

The fourth item focused on understanding: ‘I get the most satisfaction if I understand

what I am studying as thoroughly as possible’, and had a statistically significant correlated

1Correlation confidence intervals are based on a Fisher r-to-z transformation [Fisher, 1915].
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Table 3.8: Questionnaire validation: correlations and Cronbach alpha (α)

Reduced scale Original scale Correlations between
reduced and original scales

Published
αFactor n α Items α Items

Conscientiousness 42 0.69 6 0.80 10 0.95 (95% CI [0.91, 0.97]) 0.79

Openness 47 0.70 6 0.84 10 0.90 (95% CI [0.82, 0.94]) 0.82

Self-efficacy 48 0.82 3 0.81 7 0.93 (95% CI [0.89, 0.97]) 0.94

Intrinsic goal
orientation

43 0.63 4 0.53 4 0.81 (95% CI [0.68, 0.89]) 0.74

Extrinsic goal
orientation

48 0.69 4 0.58 4 0.90 (95% CI [0.82, 0.94]) 0.62

Metacognitive
self-regulation

38 0.70 5 0.70 12 0.90 (95% CI [0.81, 0.95]) 0.79

Study time 48 0.55 4 0.68 8 0.79 (95% CI [0.65, 0.87]) 0.76

Study effort 41 0.69 3 0.74 4 0.98 (95% CI [0.96, 0.99]) 0.69

Learning style 42 0.76 4

with just one other item: ‘If choosing a topic for an essay, I would pick a topic I can

learn from, even if it means more work’, (r=0.376, 95% CI [0.06, 0.61]). The study time

scale included items relating to: study environment; time spent studying; how that time

is used; and attendance. All respondents to the paper questionnaire planned to attend

regularly, however respondents were those in attendance at a lecture introducing bias to

the sample. There was no correlation between this item and others in the scale. Of the

remaining items on the reduced scale, the item relating to how time was used: ‘When I am

studying I make good use of my time’ had reasonable correlations with both the time item:

‘Its hard to find time to study because of other activities’ (r=0.44, 95% CI [0.168, 0.64]),

and the study environment item: ‘I have a regular place set aside for studying’, (r=0.41,

95% CI [0.14, 0.62]]). Correlation was not significant between the time and study items

(r=0.26, 95% CI [-0.03, 0.51]). Similarly in the full questionnaire, the highest correlations

(r=0.51 95% CI [0.27, 0.69] and r=0.47 95% CI [0.22, 0.67]) were between items about

time, but correlations were weaker between items relating to time and items relating to

study environment. Therefore, the low α may be a reflection of the item mix on the

reduced scale, and a bias in the sample used. Intrinsic goal orientation and study time

were not removed from the dataset, however, it is acknowledged that inferences based

on these factors may be unreliable. Interestingly, Komarraju and Nadler [2013] reported

similar difficulties with the intrinsic goal orientation scale when administered in the first

week of term.
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3.3.3 Measurement of year 1 academic performance

First year academic performance was measured as Grade Point Average (GPA), an ag-

gregate score of between 10 and 12 first year modules, range [0,4]. GPA is calculated

as a weighted average of grades achieved, where the weights are the number of credits

per module. For this study, GPA was calculated from the results of the first sitting of

each module. Appendix B.3 details the calculations done. A GPA<2.0, or a result of

fail in any individual module, results in an award of Fail overall. Otherwise a student

is awarded a pass result and may progress to the next academic stage. Table 3.9 shows

the academic profile of study participants across three GPA bands. Of the students with

GPA≥2.5 (n=558, 46%), 92% passed all modules indicating a low risk group that can

progress to year two. Of the students with GPA<2 (n=432, 36%), 91% failed three or

more modules, indicating a high risk group falling well short of progression requirements.

For the remaining students in the GPA band [2.0, 2.5)1 (n=217, 18%), 35% passed all

modules, 36% failed one module, 20% failed two modules, and 8% failed more than two

modules. This is a less homogenous group in terms of academic results, but could be

regarded as struggling academically (medium risk), either passing all modules with low

grades or required to repeat one or two modules to progress.

Histograms of first year GPA did not depict normal distribution as illustrated in Fig-

ure 3.2. Therefore, a two sample Kolmogorov-Smirnov non-parametric test2 was used to

compare GPA distribution (profiled sample) with the GPA distribution of the full cohort

of first year students for that year (reference sample). The recorded differences in the

distribution for 2010 (D=0.032, p=0.93), 2011 (D=0.036, p=0.90) and 2012 (D=0.042,

p=0.69) were not statistically significant. Profiled samples were also comparable with

each other, as were reference samples. The largest difference was between the 2010 and

2012 profiled samples (D=0.063, p=0.37) and was not significant. Therefore, it is rea-

sonable to expect models trained on first year students from one academic year would be

applicable to first year students in the other admission years. The following sections detail

the analysis techniques used to model the dataset.

3.4 Statistical methods used

Both statistical analysis and data mining techniques were used in this study. Details of sta-

tistical methods are included in this section. Correlation and regression analysis facilitated

comparison with other studies in educational psychology (Ob4 ). Analysis of subgroup dif-

1[x,y) denotes a range inclusive of x but exclusive of y.
2Kolmogorov-Smirnov does not make assumptions on the distribution of the data.
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Figure 3.2: Histograms of GPA for both profiled students and all students
in each academic year, including sample size (n) and GPA mean ± standard
deviation.
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ferences by GPA band, age group and gender aided interpretation of classification model

results. Classification models will be detailed in Section 3.5.

3.4.1 Correlation analysis

Pearson product-moment correlation coefficients (r) were calculated for all study factors

and GPA. The calculation is detailed in Equation 3.1 where x and y are the two variables,

xi and yi are the values of x and y in row i respectively, and x̄ and ȳ are the means of x

and y respectively [Chatfield, 1983, p. 187]. An assumption of calculating the statistical

significance of a Pearson’s correlation is that attributes are normally distributed. However,

all study attributes failed a Shapiro-Wilk normality test (p<0.05, see Appendix C, Figure

C.1 for histograms of each attribute). As was stated in Section 3.3.2.1, this is common

in data relating to education and psychology [Kang and Harring, 2012; Micceri, 1989]

which is likely to be skewed, have a heavy or light tail, and/or be multimodal [Smith

and Wells, 2006]. Therefore, significance was verified using 1,999 Bootstrap Confidence

Intervals using the Bias corrected and accelerated method (BCa) [Carpenter and Bithell,

2000] as implemented in R version 3.0.2. The code used is included in Appendix D.2.

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(3.1)

3.4.2 Analysis of group differences

Group differences were assessed for subgroups by GPA band (three groups), age group

(three groups) and gender (two groups). For each of the eight groups, applying a Shapiro-

Wilk test to attribute means of 50 bootstrap samples tested normality. A Brown-Forsythe

test compared variance in attribute means across GPA bands, age categories and genders.

Test results verified all attribute means were normally distributed but variances were un-

equal for most attributes. Therefore, results from Welch’s t-test are reported for group

differences by gender, although significances found concurred with the results from Stu-

dent’s t-test. The calculation is given in Equation 3.2 where x and y represent values in

Table 3.9: Count of participants by GPA band and number of failed modules

GPA band n Passed all
modules

Failed 1 to
2 modules

Failed 3 to
6 modules

Failed > 6
modules

[0.0, 2.0) 432 1 (0.2%) 39 (9%) 146 (34%) 245 (57%)

[2.0, 2.5) 217 77 (35%) 122 (56%) 18 (8%) 0 (0%)

[2.5, 4.0] 558 515 (92%) 38 (7%) 5 (1%) 0 (0%)
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two subgroups, x̄ and ȳ are the means of x and y respectively, s2
x and s2

y are the variances

of x and y respectively, and nx and ny are the group size for x and y respectively.

Welch’s t(x, y) =
x̄− ȳ√
s2
x

nx
+

s2
y

ny

(3.2)

For more than two groups, t-tests on all combinations of pairs increases the likelihood

of a Type I error1 (familywise error rate). A one way Analysis of Variance (ANOVA)

compensates for this, and gives the same result as a t-test for two groups [Rice, 1995,

p. 541]. In addition, ANOVA is robust with regard to assumptions of normality and

equality of variance except in extreme cases [Hair et al., 2010, p. 458] and so was used for

multiple group comparisons based on GPA bands and age groups. Post hoc comparison

was done using Tukey’s HSD test to compensate for familywise error. Tukey’s HSD test

identifies which subgroups differ significantly and is used after an ANOVA test identifies

that there are significant differences between subgroups [Tukey, 1949]. Equation 3.3 gives

the calculation for Tukey’s HSD where MSw is the mean square error within a group

given by ANOVA, and n is group size. As ANOVA assumptions were violated, results

were verified using Kruskal-Wallis, non-parametric test with post hoc Wilcoxon paired

tests using Holm adjustment, a non-parametric test to compensate for familywise error

[Holm, 1979; Kruskal and Wallis, 1952; Wright, 1992]. Results from ANOVA and Kruskal-

Wallis tests concurred. All tests were done in R, code is included in Appendix D.3.

HSD(x, y) =
x̄− ȳ√
MSw( 1

n)
(3.3)

3.4.3 Linear regression

Linear Regression models predict a continuous attribute, the dependent variable, by es-

timating the linear relationship mapping dataset attributes to the dependent variable.

Equation 3.4 depicts this linear relationship where y is the dependent variable, a is the

intercept and represents the mean value of y when all attributes equal 0, z is the num-

ber of attributes in the model, xz represents the value of attribute z, bz represents the

coefficient for attribute z, and ε is the error term calculated as the difference between the

estimated value of y (ŷ) and the actual value of y. Training a model involves solving for

1A Type I error rejects the null hypothesis when it is true [Rice, 1995, p. 300].
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a and b1 . . . bz to minimise ε.

y = a+ b1x1 + b2x2 + . . .+ bzxz + ε (3.4)

Regression models predicting GPA were based on optimal attribute subsets identified

using an exhaustive search as implemented in the regsubsets function in R V3.0.2 (leaps

package V2.9, see code in Appendix D.4). All attributes were scaled to a mean of 0 and

variance of 1. Two model fits are reported, adjusted coefficient of determination (R̄2) and

mean squared error (MSE). R̄2 is reported to facilitate comparison with other studies.

R̄2 compensates for the automatic increase in the coefficient of determination R2 when

additional dependent variables are added to the model. However, R2 is influenced by

variability in underlying independent variables. Consequently Achen [Achen, 1982, p. 58-

61] argued prediction error is a more appropriate fitness measure for psychometric data.

Therefore, MSE mean (m) and standard deviation (s) is also reported, as recommended

by Pelánek [2015] for student models. Equations 3.5 to 3.7 give the calculations for R2,

R̄2 and MSE respectively where yi is the actual value of y in row i, ŷi is the predicted

value of y in row i, ȳ is the average value of y, n is the sample size, and m is the number

of attributes in the model.

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

(3.5)

R̄2 = 1− (1−R2)
n− 1

n−m− 1
(3.6)

MSE =
1

n

∑
i

(yi − ŷi)2 (3.7)

Study results from regression models were compared using MSE mean and standard

deviation. Variances in MSE were unequal, so a Welch’s T-test was used (Equation 3.2).

Degrees of Freedom (df ) was estimated using Welch-Satterthwaite df estimate as detailed

in Equation 3.8 where s is standard deviation in MSE and n is sample size [Ruxton, 2006].

df =

(
s2
x

n2
x

+
s2
y

n2
y

)2

(
s4
x

n2
x

)
nx−1 +

(
s4
y

n2
y

)
ny−1

(3.8)
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3.5 Classification algorithms used and classification model

evaluation

Classification models were used to predict students at risk of failing (Objective Ob5 );

attribute subset selection techniques were used to identify factors predictive of at-risk

students (Objective Ob6 ). A binary class label of fail or pass was used, its definition will

be discussed in Section 4.3.1. Classification models were evaluated for all participants and

17 subgroups by age (3 groups), gender (2 groups) and course of study (12 groups). Two

training methods were compared for models of all participants: 10-fold cross validation

using stratified sampling (ModelXV al); and model accuracy when trained on 2010 and

2011 participants and tested on 2012 participants (Model2012). Subgroup models were

trained on 2010 and 2011 participants and tested on 2012 participants.

Model accuracy for six classification algorithms and two ensembles were compared.

Three classification algorithms were linear classifiers, namely: Decision Tree (DT), Näıve

Bayes (NB) and Logistic Regression (LR). Two were non-linear: Back-propagation Neural

Network (BPNN) and k-Nearest Neighbour (k-NN). A Support Vector Machine (SVM)

was trained both without (linear) and with (nonlinear) a kernel function. Two ensembles

were used, a Voting Ensemble and a Bagging Ensemble. RapidMiner version 5.3 (https:

//rapidminer.com) was used for classification modelling.

The following sections detail each algorithm used, parameter tuning options considered,

and optimal parameter settings when modelling all participants. Approaches to attribute

subset selection and model evaluation are also discussed.

3.5.1 Decision tree model

A Decision Tree (DT) represents patterns in a dataset as a simple tree structure. Each

non-leaf node represents an attribute to be tested, branches represent attribute values

or value ranges, and leaf nodes represent class allocation as illustrated in Figure 3.3.

Dataset instances are allocated to a leaf node based on matching the corresponding branch

conditions. DTs are easy to interpret, and patterns found tend to be robust provided the

tree is kept small [Han and Kamber, 2006, p.304]. However, as was discussed in Section

2.8.1, DTs are limited in the type of patterns identified. Each branch represents a subgroup

within the dataset, but subgroup boundaries are linear and parallel to the axis.

The DT algorithm grows the tree top down, starting with a single node that matches

all instances in a dataset. If all instances matching a node are in the same class the

node becomes a leaf node and is labelled with the class name. Otherwise the algorithm
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Figure 3.3: Decision Tree example

selects an attribute to split the instances matching that node and so grow the tree. For

nominal attributes, a branch is created for each known value of the attribute. For numeric

attributes, two disjoint ranges are selected based on a bin boundary that minimises entropy

in each subgroup. This process is repeated recursively until a stopping criteria is met,

determined by configurable parameters. Leaf nodes are labelled with the majority class

amongst matching instances.

There are a range of heuristic measures for selecting the best attribute at each node

of the tree. Preference is given to attributes that generate pure or almost pure branches,

i.e. matching instance belong to the same class. Three were considered in this study:

information gain (based on entropy); Gini index; and gain ratio. Information gain and

Gini index are popular measures but have been criticised for bias in favour of attributes

with multiple values generating many branches [Han and Kamber, 2006; Raileanu and

Stoffel, 2004]. Gain ratio reduces this bias by dividing information gain by a weighting

that gives preference to attributes that generate less branches [Han and Kamber, 2006].

The study dataset had numeric attributes only, limiting the tree to binary splits. However,

initial tests using cross validation on the full dataset found that gain ratio achieved higher

accuracy (66.1%) than information gain (61.6%), and marginally higher accuracy than

Gini index (65.3%) but Gini index generated a larger tree. Therefore, gain ratio was

used in this study. Equations 3.9 - 3.12 give the calculations for gain ratio where a is an

attribute, k is the number of branches generated, d is the parent node before splitting, n

is the sample size, t is a node on the tree, j is the number of classes in the dataset, and
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p(j|t) is the proportion of rows in class j at node t [Han and Kamber, 2006].

gainRatio(a) =
InfoGain(a)

SplitInfo(a)
(3.9)

SplitInfo(a) = −
∑
k

nk
nd
log2

nk
nd

(3.10)

InfoGain(a) = Entropy(d)−
∑
k

nk
nd

Entropy(k) (3.11)

Entropy(t) = −
∑
j

p(j|t) log2 p(j|t) (3.12)

Algorithm stopping criteria influence tree size. Two stopping criteria were tuned for

this study: gain ratio threshold limiting attributes considered at each branch to those

that improve gain ratio by a minimum threshold value; and minimum leaf size limiting

tree growth to only include leaf nodes that match a minimum number of instances. The

Decision Tree required a gain ratio threshold < 0.05 to train. Therefore, models were

trained for gain ratio thresholds in the range [0.0, 0.05] and minimum leaf size in the

range [2, 20]. Optimal ModelXV al accuracy used a gain ratio threshold of 0.009 and

minimum leaf size of 10; optimal Model2012 accuracy used a gain ratio threshold of 0.016

and minimum leaf size of 5.

3.5.2 Näıve Bayes model

Bayesian classifiers are based on probabilities as defined by Bayes Theorem. The prob-

ability that an instance (X) is in a particular class (Cj) is based on the distribution of

attribute values in Cj as calculated from the training dataset. X is allocated to the class

with the highest probability for P (Cj |X). Equation 3.13 gives the formula to calculate

P (Cj |X) where z is the number of attributes, xz is the value of attribute z in instance

X, P (Cj) represents the proportion of rows in the training dataset that are in class Cj ,

P (X) is the probability of X which is the same for each Cj so it can be ignored, and

P (X|Cj) represents the combined probability that each attribute value in X could occur

in class Cj . Näıve Bayes assume attributes are independent. This simplifies the calcula-

tion of P (X|Cj) as the probability of all attribute values occurring together is the product

of their individual probabilities. For nominal attributes, the individual probability for an

attribute value (xz) occurring in class Cj is calculated as the proportion of rows in Cj that

have the value xz. This is estimated from the training dataset. Numeric attributes are
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assumed to have a Gaussian distribution. The probability of xz occurring in Cj is based

on the probability distribution characterised by the mean (mzj) and standard deviation

(szj) of variable z in class Cj . The calculation is given in Equation 3.14 where g is the

class-conditional probability defined by Equation 3.15 [Tan et al., 2014, p. 233].

P (Cj |X) =

∑
z P (xz|Cj)P (Cj)

P (X)
(3.13)

P (xz|Cj) = g(xz,mzj , szj) (3.14)

g(xj ,mzj , szj) =
1√

2πszj
e
−

(x−mzj)2

2s2
zj (3.15)

If attributes are truly independent, Näıve Bayes accuracy is optimal [Domingos and

Pazzani, 1997]. Attributes are rarely independent in practice, however, empirical evi-

dence shows Näıve Bayes can also achieve good predictive accuracy when assumptions are

violated [Domingos and Pazzani, 1997].

3.5.3 Logistic regression model

As was detailed in Section 3.4.3, Linear Regression predicts a continuous dependent at-

tribute (Equation 3.4). Similarly, Logistic Regression models the probability of an event

occurring as a linear function, where an event is class membership [Han and Kamber,

2006, p. 358]. Linear regression assumes the error ε is normally distributed. In Logis-

tic Regression, the error typically follows a logistic distribution. The resulting regression

formula is given in Equation 3.16 where ln is natural logarithm, p̂ is the probability that

membership of a class is true; 1-p̂ is the probability that membership of a class is false.

ln(
p̂

1− p̂
) = a+ b1x1 + b2x2 + . . .+ bzxz + ε (3.16)

The implementation in Rapidminer is based on Shevade and Keerthi [2003]. Like SVM,

their algorithm considers a complexity constants (C) representing the cost of misclassifi-

cation. Best accuracy was achieved at C ≥ 1 for both ModelXV al and Model2012.

3.5.4 Back-propagation neural network model

A Back-propagation Neural Network (BPNN) classification model comprises of connections

between input neurons and output neurons where inputs are attribute values and outputs
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are classes. Connections represent weights to be applied to inputs to calculate output.

Optionally there can be any number of hidden neurons representing interim values in the

calculation from inputs to outputs. Figure 3.4 represents a Neural Network with three

input neurons, two output neurons and four hidden neurons. Weights associated with

connections between each input and the top hidden neuron are also illustrated.

Figure 3.4: Neural Network example

The value for each input neuron is the attribute value from the row of data currently

in the network. The value calculated at each hidden and output neuron is given in Equa-

tion 3.17 where yj represents the output at neuron j, g is the activation function, i is a

count of the inputs to yj excluding the bias, xi is the value of input i, and bj is the bias

weight for neuron j. Excluding the activation function gives the formula for a straight line

or plane. An activation function, typically sigmoid, is applied to approximate a non-linear

mapping from input to output. BPNNs are limited to numeric attributes. The value cal-

culated at each output neuron, i.e. the predicted output, is also numeric. However, this

can be mapped to a nominal value by comparison with a threshold value at each output

neuron, for example ‘ypass > 0.7 =⇒ class = pass’.

yj = g(
∑
i

wij ∗ xi + bj) (3.17)

Initially all model weights are set to random values in the range [-1,1]. Training a net-

work involves adjusting each weight in the network so that predicted output approximates

actual output. Weights are adjusted at each iteration. An iteration represents feeding one

row of data into the network. Instances in a dataset are fed into the network consecutively;

a single epoch is each instance fed into the network once. Training is done over a number
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of epochs which is a configurable parameter.

At each iteration, error is calculated as (actual output - predicted output). This error

term is used to adjust weights within the network, an activity termed back-propagation.

Equation 3.18 illustrates weight adjustment for an output neuron (j) following iteration

k where wk+1
i is the weight for input i at iteration k + 1, wk

i is the weight for input i at

iteration k, yj is the actual output at node j, ŷj is the predicted output at node j, xi

is the value of input i, and wk
adj is the weight adjustment made in the previous iteration

[Tan et al., 2014, p. 248]. λ is the learning weight which is a configurable parameter

set in the range [0,1]. A high value for λ represents a larger weight adjustment at each

iteration which may result in the network oscillating between a positive and negative

error. A low value for λ represents smaller weight adjustments, and so a network that is

slower to train [Larose, 2005, p. 139]. Rapidminer allows the value of λ to be decreased as

predicted output converges towards actual output. α is the momentum, also a configurable

parameter set in the range [0,1]. α controls the influence of previous weight adjustments,

implementing exponential smoothing for weight adjustments. A higher value for α means

previous weight adjustments have more influence, corresponding to a higher smoothing

factor [Larose, 2005, p. 141].

wk+1
i = wk

i + λ(yj − ŷj)xi + αwk
adj (3.18)

The weight adjustment formula is altered for hidden layer neurons as their actual

output is unknown. Therefore, actual output is estimated as a proportion of the error in

the subsequent layer, determined by connection weight. Thus Equation 3.18 is replaced

with Equation 3.19 for weight adjustment at each hidden neuron (h) where o is the number

of neurons h is connected to, erro is the error calculated for neuron o, and wk
o is the

connection weight between j and o.

wk+1
i = wk

i + λ
∑
o

(erro ∗ wk
o )xi + αwk

adj (3.19)

Best accuracy for BPNN was achieved with learning rate (λ) of 0.25, momentum

(α) of 0.3, 500 epochs and the default configuration of one hidden layer with number of

hidden neurons set to: 1 + number of attributes + number of classes
2 . The activation function

was sigmoid; attributes were scaled to the range [-1,1].
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3.5.5 k-Nearest neighbour model

The k -NN model was the only lazy learner used in the study. Rather than compressing

a dataset into a model representing its predictive pattern, k -NN classifies data directly

from instances in the training dataset. A new instance is allocated to the majority class

amongst its nearest neighbours in the training dataset, selected based on a distance mea-

sure. Neighbourhood size and distance measure are configurable.

Neighbourhood size (k) affects model performance. If k is too large, classification may

be influenced by adjoining clusters in a different class; if k is too small, classification may

be influenced by unusual cases not typical of the class allocation for the neighbourhood.

k -NN models were trained on values of k in the range [2,50]. The most common distance

measures for numeric attributes is Euclidean distance [Larose, 2005, p. 99] as given in

Equation 3.20, where i and j are rows of data, xi1 represents attribute 1 in row i, and z

is the number of attributes.

dEuclidean(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + . . .+ (xiz − xjz)2 (3.20)

The simpler Manhattan distance was also considered, where the difference between at-

tribute values is not squared, reducing the influence of larger distances [Witten and

Frank, 2005, p. 129]. Best ModelXV al accuracy used Euclidean distance with k=18;

best Model2012 accuracy used Euclidean distance with k=15.

3.5.6 Support vector machine model

A Support Vector Machine (SVM) model is a linear hyperplane representing a decision

boundary between two classes. An SVM algorithm solves for the optimal boundary where

optimal means the decision boundary with the maximum margin between it and the classes

at either side. As illustrated in Figure 3.5, a hard margin refers to a margin that does

not permit misclassifications and can result in a decision boundary with a small margin

that may overfit the data. A soft margin on the other hand permits some points to be

misclassified resulting in a more general model with a wider decision boundary [Tan et al.,

2014, p. 257-258]. A complexity constant (C) is a configurable parameter representing

the cost of misclassifying an instance. Lower values for C result in softer margins.

Equation 3.21 represents the decision boundary where x is a vector on the boundary

and b and w are parameters of the model. The decision boundary width can be expressed

as Equation 3.22. Training an SVM involves estimating parameters b and w such that

margin width is maximised and Equation 3.23 holds for each instance (xi) in the dataset

56



Figure 3.5: Illustration of an SVM decision boundary

where yi is the class label for xi. The classes of the binary class label are represented by

-1 and 1 respectively.

w · x− b = 0 (3.21)

Margin width =
2

||w||
(3.22)

yi =

{
1, if w · xi + b ≥ 1;

−1, if w · xi + b ≤ −1.
(3.23)

SVM is limited to numeric data, a binary class label and a linear decision boundary. If

the decision boundary between classes is non-linear, a kernel functions (Φ) can be applied

to the dataset. This is equivalent to mapping the dataset to a higher number of dimensions

which may result in a linear class boundary. Rapidminer offers a range of kernel functions,

each providing an alternative mapping to a higher dimension.

SVM models were trained on three complexity constants (C) in the range [0-5] and

four kernel functions, namely dot (none), radial, polynomial and ANOVA. Best ModelXV al

accuracy used a radial kernel function and C=0; best Model2012 accuracy used a dot kernel

function and C=0.

3.5.7 Ensemble models

Ensembles combine the predictions of a number of classifiers, each referred to as a base

classifier. Ensembles differ based on both the configuration of base classifiers and how
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their predictions are aggregated. Two types of Ensembles were used in this study, a

Voting Ensemble and a Bagging Ensemble.

A Voting Ensemble combines the prediction of a number of base classifiers by a simple

majority vote. Any number of base classifiers can be used. Experimenting with the six

classifiers detailed in Sections 3.5.1 to 3.5.3, best Model2012 accuracy was achieved using

SVM, DT, BPNN, NB and two k-NN classifiers trained on different bootstrap samples of

the training dataset, each with a sample ratio of 0.8. Including LR as a base classifier

reduced overall model accuracy. Best ModelXV al accuracy was achieved using seven learn-

ers, the same six learners used in Model2012 and LR. In both cases, parameter settings

for the constituent base algorithms were as detailed in Sections 3.5.1 to 3.5.3. A stacking

ensemble was also evaluated. Rather than using a majority vote aggregate, a stacking en-

semble trains a classification model to classify instances based on the predictions of base

classifiers. However, a stacking ensemble failed to improve on the accuracy of a simple

majority vote aggregate when tested on all participants (Model2012).

A Bagging Ensemble uses a single base algorithm to create a number of base classifiers,

each trained on a different bootstrap sample of the dataset. Results are aggregated using a

simple majority vote. For each dataset modelled, the classification algorithm that achieved

the highest accuracy for that dataset was selected as the base algorithm, typically k-NN.

Parameter settings for the constituent base algorithm was as detailed in Sections 3.5.1 to

3.5.3. Configurable parameters include the size of each bootstrap sample (sample ratio)

and the number of base classifiers used (iterations). Bagging ensembles were tested with

iteration values in the range [2,15] and sample ratios in the range [0.5,1]. Optimal bagging

accuracy used 8 iterations and a sample ratio of 0.9, although all iteration values gave

similar results. Adaptive Boosting (AdaBoost) was also evaluated. It is an iterative form

of bagging. After each iteration, instance weights are adjusted to increase the probability

that misclassified instances are selected in the bootstrap sample of the next iteration.

However, AdaBoost failed to improve on Bagging model accuracy when tested on all

participants (Model2012).

3.5.8 Attribute subset selection techniques used

Attribute subset selection techniques can improve model accuracy and identify relevant

attributes [Hall and Homes, 2003]. Three wrapper methods were used when training

each model, namely forward selection, backward selection and a genetic algorithm. The

two most popular approaches, forward selection and backward selection, generally give

good results [Hall and Homes, 2003] but can converge on a local optimum [Baumann,
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2003]. Therefore, a genetic algorithm (GA) was also used as recommended by Yang and

Honavar [1998]. In an analysis of 144 optimal Model2012 models across algorithms and

dataset subgroups, forward selection identified the best model most frequently (65% of

models), followed by Genetic algorithm (33% of models). Forward selection identified

82% of the best k-NN models, where best model referred to the model with the highest

overall accuracy.

3.5.9 Reporting of model accuracy

The class label was binomial (pass or fail), as will be discussed in Section 4.3.1. Table

3.10 illustrates the confusion matrix generated by a binary classification model where class

recall is the percentage of instances in the class that were predicted correctly, and class

precision is the number of predictions that were correct.

Table 3.10: Confusion matrix for a binary classifier

Predicted Fail Predicted Pass Recall

Actual Fail True Fail (TF) False Pass (FP) TF
(TF+FP )

Actual Pass False Fail (FF) True Pass (TP) TP
(FF+TP )

Precision TF
(TF+FF )

TP
(TP+FP )

Two results are reported for each model, accuracy and geometric mean (GM), both

calculated from the confusion matrix as illustrated by Equations 3.24 and 3.25 respectively.

GM is more appropriate than accuracy for unbalanced datasets; it combines the precision

and recall of each class and so compensates for the greater influence of the majority class

in accuracy calculations [Akbani et al., 2004; Kubat and Matwin, 1997; Romero et al.,

2008]. As will be discussed in Section 4.3.4, the degree of class imbalance varied across

subgroups in the dataset, and was addressed by over-sampling the minority class. Accuracy

was calculated from the confusion matrix of the balanced dataset. GM was calculated from

the confusion matrix of the original, unbalanced, dataset, i.e. after removal of bootstrap

replicas.

Accuracy =
(TF + TP )

(TF + TP + FF + FP )
(3.24)

GM =

√(
TF

TF + FP

)(
TP

TP + FF

)
(3.25)
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3.5.10 Comparing classification model accuracies

Model accuracies were compared based on their confusion matrices. Two tests were used,

McNemar’s test and Fisher’s exact test (FET). Tests were run in R, the code is included

in Appendix D.5.

McNemar’s test, based on chi squared (χ2), can be used to compare the results of two

classification models applied to the same dataset [Dietterich, 1998]. The contingency table

to compare the two models (M1 and M2) is given in Table 3.11. The null hypothesis is

that both models should have the same error variance, this means n10 = n01 as defined in

Table 3.11. McNemar’s test compares the distribution of counts under the null hypothesis

to the observed distribution of counts. The test statistic is given in Equation 3.26. When

comparing several algorithms, p-values were adjusted using Holm correction to account

for familywise error.

Table 3.11: Contingency table for McNemar’s test

(n11) Number of examples correctly classi-
fied by both M1 and M2.

(n10) Number of examples correctly classi-
fied by M1 but incorrectly classified by M2.

(n01) Number of examples incorrectly clas-
sified by M1 but correctly classified by M2.

(n00) Number of examples incorrectly clas-
sified by both M1 and M2.

χ2 =
(n01 − n10)2

n01 + n10
(3.26)

FET was used to compare model accuracies when applied to different datasets, for

example, comparing an algorithm’s performance for ModelXV al and Model2012. The cor-

responding contingency table is given in Table 3.12. The null hypothesis assumes that

totals are fixed, therefore knowing any interior count allows the other numbers to be cal-

culated. FET calculates the probability that one of the counts is equivalent to a random

distribution as illustrated in Equation 3.27, calculated from the contingency table [Rice,

1995, p. 484].

Table 3.12: Contingency table for Fisher’s exact test

Correct Incorrect Total

XVal n11 n12 n1.

2012 n21 n22 n2.

Total n.1 n.2 n..
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p(n11) =

(
n1.

n11

)(
n2.

n21

)(
n..

n.1

) (3.27)

3.6 Summary

A total of 1,376 students were profiled during first year student induction over three years,

2010 through 2012, using an online learner profiling tool developed for this study. Details

of the learner profiler tool and its validation were presented. Profiling data was combined

with registration data from the college which included leaving certificate results, age and

gender. The class label was based on an aggregate GPA calculated at the end of first year

of study, which was supplied by the college. Descriptive statistics were included for all

study attributes.

Three statistical approaches and eight classification algorithms were detailed. The

analysis approach taken was explained, as well as details of each method used and param-

eter tuning done on classification algorithms. Two methods for comparing classification

model accuracies were discussed, McNemar’s test was used to compared models applied

to the same datasets, Fisher’s exact test was used to compare models applied to different

datasets. Chapter 4 details the approaches used for data cleaning and preprocessing in

preparation for data analysis, resulting in a study dataset of 1,207 participants.
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Chapter 4

Data Cleaning and Preprocessing

4.1 Introduction

Data cleaning and preprocessing was required before completing statistical analysis and

classification modelling. This chapter details data quality issues that arose and how they

were handled. Justification for data preprocessing decisions is presented, including dis-

cretisation of GPA, attribute scaling, class imbalance and evaluation of sample size.

4.2 Data cleaning required

The following sections discuss assessment of data quality. Quality issues resulted in the

removal of 131 instances from the dataset.

4.2.1 Errors in the dataset

The online questionnaire requested an ITB student ID, email address and course name

to facilitate merging learner profiling data with college registration and results data. A

total of 403 student IDs did not match with college registration data. ITB student IDs

start with ‘B000’ followed by a five-digit unique code. Converting ‘b’ to ‘B’ and enforcing

three preceding 0’s (‘000’) prior to the last five digits corrected 175 student IDs. For the

remaining students, if a name was entered as the ID or incorporated in the email address,

unique names were matched with registration data and verified by either a matching course

name, or a matching student ID with two digits transposed (n=128). A remaining 113

student IDs could not be matched with registration data, their details were deleted from

the dataset.
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Nine participants appeared in the dataset twice. Of those, five enrolled on two different

courses between 2010 and 2012. Details of their first course were deleted as learner profiling

data related to their most recent year. The remaining four participants completed the

online questionnaire twice using different email addresses. In two cases, answers were

similar on both attempts so one row was deleted at random. In the other two cases, scores

were not consistent across the two attempts so both were removed from the dataset.

Three participants had grades from two different courses in one academic year affecting

GPA calculation and were deleted. In all three cases the student had changed course having

failed modules on their first course, so their academic record included module grades from

both courses.

Four participants had a score of 0 for all psychometric factors indicating non completion

of the online questionnaire, and were removed from the dataset.

4.2.2 Missing data

Prior academic performance was unavailable for 189 (16%) of the remaining 1,207 study

participants. The data was not available to the college as these students were either over

23 and so did not need a leaving certificate, or qualified under ITB’s disability access

scheme applied on a case by case basis. An additional 20 students (2%) had less than the

required six leaving certificate subjects, so prior academic performance, measured as CAO

points, was underestimated. Both subgroups represented non-standard students of interest

to the study and remained in the dataset. However, an additional factor, leaving cert

average (m=38.4, s=11.9, n=1,018) was added to indicate average points achieved across

all leaving certificate subjects attempted. Interestingly, a ten year study of university

students in Ireland found an average grade calculated across all leaving certificate subjects

was more predictive of first year academic performance than CAO points based on the

best six grades [Kelly and Marshall, 2012].

4.2.3 Outlier identification

To assess if data quality was affected by outliers, both univariate and multivariate outlier

detection was used. Univariate outliers are attribute values that are unlikely to occur as

part of the attribute’s distribution model [Han and Kamber, 2006, p. 452]. However, study

attributes had unknown distribution models (discussed in Section 3.4.1) making univariate

outlier detection unreliable. A simple discordancy test of a value more than three times

the standard deviation from the mean [Tan et al., 2014, p. 659] identified 21 participants

with unusually low or high scores in factors of intrinsic goal orientation, extrinsic goal
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orientation, self-efficacy or metacognitive self-regulation. These four attributes had rela-

tively high kurtosis (≥3) as illustrated in Figure C.1, so a less extreme value would fail a

discordancy test. A flag was added to the dataset indicating a potential outlier value to

inform analysis of model results.

Multivariate outliers are rows of data with value combinations that are inconsistent

with the data’s model [Han and Kamber, 2006, p. 451]. Multivariate outlier detection

using Local Outlier Factor (LOF) as implemented in Rapidminer V5.3 [Breunig et al.,

2000; Kriegel et al., 2009] suggested the dataset did not have multi-variate outliers. LOF

compares the local density of an object with the local density of its nearest neighbours

and has an advantage over other outlier detection techniques because it provides a score

of the degree to which a point is an outlier [Breunig et al., 2000]. Additionally, it can

detect outliers in a dataset with varying cluster densities [Kriegel et al., 2009].

The calculations for LOF are explained in Equations 4.1 - 4.3 where: MinPts is a user

defined parameter for the number of nearest neighbours that define the local neighbour-

hood of each object; LOFMinPts(p) defines LOF for point p based on its MinPts nearest

neighbours; k-distance(p) is the distance between p and its kth nearest neighbour where

k = MinPts; NMinPts(p) is the number of objects who’s distance from p is not greater than

k-distance(p). NMinPts(p) may be greater than MinPts if there are two or more points at

k-distance from p; lrdMinPts(p) is the local reachability density of a point p as defined by

Equation 4.2; and reach-distMinPts(p,o) is the reachable distance of object p with respect

to object o and is defined as the max of k-distance(o) and distance(p,o) (Equation 4.3).

k-distance(o) acts as a smoothing factor for distances where p is close to o. An outlier is

identified as an LOF � 1 while LOF close to 1 indicates an object with a similar density

to its neighbours [Breunig et al., 2000]. Testing all MinPts in the range [5,50] gave a

maximum LOF of 1.68. Figure 4.1 illustrates a histogram of LOF scores using the default

MinPts range of [10,20] where the maximum LOF is returned from all values of MinPts

in this range.

LOFMinPts(p) =

∑
o∈N

MinPts(p)

lrdMinPtso

lrdMinPtsp

|NMinPts(p) |
(4.1)

lrdMinPts(p) = 1/


∑

o∈N
MinPts(p)

reach-distMinPts(p,o)

|NMinPts(p) |

 (4.2)

reach-distk(p,o) = max{k-distance(o), distance(p, o)} (4.3)
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Figure 4.1: Histogram of Local Uutlier Factor (LOF) scores

4.3 Data preprocessing

4.3.1 Discretising academic performance

The class label needed to identify students at risk of failing. Experimenting with various

ways to discretise GPA, Minaei-Bidgoli et al. [2003] found that higher numbers of bins (up

to nine) resulted in higher errors because of low sample size in some bins (n=227). They

recommended using either two (GPA≤2.0 and GPA>2) or three (GPA≤2; 2<GPA<3.5

and GPA≥3.5) bins. A total of 30% of their participants achieved a GPA of 3.5 or higher.

Romero et al. [2008] binned module grades into four categories based on final course mark,

range [0,10]: fail [0,5), pass [5,7), good [7,9) and excellent [9,10]. However, they reported

excellent and good students were frequently classified as pass, again citing lower sample

sizes in those groups as a possible cause (n=438). Thai-Nghe et al. [2007] achieved best

recall for failed students (64%) using two bins based on end of year GPA, range [2,4],

namely fail [2,2.5) and pass [2.5,4] (n=20,492).

Both two and three GPA bins were considered for this study. To evaluate boundaries

using two bins, seventeen GPA bin boundaries in the range [1.7, 2.5] were assessed using

Näıve Bayes (NB)1 with 10-fold cross validation. Optimal accuracy was achieved with a

1Early models of the data suggested Näıve Bayes gave comparable accuracies to other learners, con-

65



boundary of GPA=2.0 (accuracy: 68.5%, recall on fail: 71%) confirming a boundary be-

tween a passing and failing GPA. Models predicting three GPA bins were less successful.

Sixteen models were tested using lower GPA boundary values in the range [1.0, 2.0] and

upper GPA boundary values in the range [2.5, 3.25]. Models had difficulty distinguish-

ing between medium and low risk students. The highest overall accuracy was achieved

with GPA boundaries of 1.8 and 3.25 (accuracy: 53.5%, recall on fail: 64%), which was

marginally better than a random guess (κ=0.3).1 Superby et al. [2006] had similarly poor

results predicting three classes. Therefore, two GPA bins were used for classification mod-

els in this study, GPA<2.0 (class=fail) and GPA≥2 (class=pass). This distinguished high

risk students from other students, as discussed in Section 3.3.3.

4.3.2 Evaluation of sample size

Progressive sampling indicates if combinations of attribute values likely to occur amongst

study participants are sufficiently represented in a sample [Provost et al., 1999]. Each of

the six classification algorithms was trained on fifty sample sizes between the sampling

fractions of 0.3 (n=362) and 1 (n=1,207), using 10-fold cross validation with stratified

sampling. Variance in NB model accuracy converged for sample factions > 0.75 (n=905).

In addition, the slope of the LOESS regression line for NB model accuracy was approxi-

mately zero for sample fractions >0.8 (n=966) indicating convergence of model accuracy,

as illustrated in Figure 4.2. NB can converge to optimal accuracy on a smaller sample

size than other algorithms (Mitchell [2015]; Ng and Jordon [2001]). Variance in model ac-

curacy for DT, BPNN and k-NN converged for sample fractions > 0.8 (n=966). Variance

in SVM model accuracy converged for sample fractions > 0.85 (n=1,026) and LR model

accuracy appeared to converge for sample fractions > 0.93 (n=1,123), however, a larger

dataset would be needed to confirm accuracy convergence for LR.

4.3.3 Attribute scaling

Value ranges for study attributes varied from [0,10] to [0,600]. Attributes with larger

ranges have a greater impact on models based on distance calculations such as k-NN

[Larose, 2005, p. 100]. Two scaling options were considered, scaling to the range [0,1]

and standard normal Z-transformation (m=0, s=1). Resulting improvements in model

curring with Bergin [2006] as discussed in Section 2.8.2.
1Cohens Kappa coefficient (κ) is a measure of the extent to which this result could have occurred by

chance, range [-1,1]. κ in the range [-0.2,0.2] suggests a performance similar to a random guess [Kundel
and Polansky, 2003].
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Figure 4.2: Model accuracy for progressive sampling using Näıve Bayes, generated
using the scatterplot function in the R package car, version 2.0-21

accuracy1 were statistically significant for Z-transformation only. For example, a k-NN

model of all participants had an accuracy of 67.86% without attribute scaling when trained

using 10-fold cross validation based on all study attributes. Accuracy increased to 69.27%

when attributes were scaled to range [0,1] which was not statistically significant (Mc-

Nemar’s χ2 (1, n=1207)=2.5128, p=0.113). Accuracy increased to (71.67%) using a Z-

transformation which was statistically significantly higher than no scaling (McNemar’s

χ2 (1, n=1,207)=7.42, p=0.006). Therefore, all attributes were scaled using a standard

normal Z-transformation.

4.3.4 Class imbalance

A total of 38% of all participants were in class fail. The relative class size for fail varied

across dataset subgroups by age, gender and course of study, ranging from 15% to 56% (see

notched box plots of GPA by course in Appendix C, Figure C.3). Results from progressive

sampling indicated the dataset was too small to under-sample the majority class, therefore,

two class balance options were considered, basic over sampling of the minority class and

synthetic minority over-sampling (SMOTE). Basic over-sampling of the minority class

has been criticised for not addressing the issue of lack of data, and for over-fitting the

data [Weiss, 2004]. Chawla et al. [2002] proposed SMOTE as an alternative over-sampling

approach that generates synthetic instances along line segments joining nearest neighbours

1Accuracy was based on models of the original, unbalanced dataset. Class imbalance was considered
after evaluation of attribute scaling.
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in the minority class.

Both approaches were assessed by training models on the 2010 and 2011 student cohort

and tested on the 2012 student cohort. This allowed training and test datasets to be bal-

anced separately reducing the risk of overfitting, i.e. instances from the training dataset

were not available when resampling test instances, and vice versa. To test SMOTE,

additional instances of the minority class were generated using the SMOTE function im-

plemented in R (package DMwR version 0.4.1). The code is included in Appendix D.6.

SMOTE resulted in lower model accuracies than simple over-sampling for all learners,

therefore, simple over-sampling of the minority class was used. However, it is worth noting

that a comparison of model accuracies using SMOTE versus simple over-sampling showed

the differences were not statistically significant. For example, Decision Tree (DT) models

had the largest difference in accuracy; DT model accuracy was 63.12% using SMOTE,

and 69.97% using basic over-sampling. A comparison of labelled test instances common to

both models showed the difference in predictive accuracy was not statistically significant

(McNemar’s χ2 (1, n=436)=3.03, p=0.082). This comparison excluded synthetic instances

generated using SMOTE.1

4.4 Summary

Following data cleaning, 1,207 instances remained in the dataset including 209 (17%) par-

ticipants for whom prior academic performance was unknown or incomplete. An additional

attribute was added, leaving cert average, calculated as the average of all leaving certifi-

cate exams attempted. Results from both univariate and multivariate outlier detection

suggested a small portion of the dataset (n=21, 2%) may contain outlier values.

Analysis of bin boundaries supported using two classes, fail (GPA< 2) and pass

(GPA≥ 2). With the exception of Logistic Regression, n=1,026 was sufficient for classifica-

tion model accuracy convergence. Class imbalance was resolved by over-sampling the mi-

nority class; in addition, attributes were scaled using a standard normal Z-transformation.

Chapter 5 will detail data analysis results.

1A Fishers exact test (FET) comparing the same DT model accuracies indicated a statistically signifi-
cant difference (p=0.02). While SMOTE’s synthetic instances could be included in this comparison, FET
assumes samples are independent. The number of test instances common to both datasets violated this
assumption.
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Chapter 5

Results

5.1 Introduction

Following data cleaning and preprocessing, the dataset was analysed using both statistical

analysis and classification models as discussed in Sections 3.4 and 3.5. Results of statistical

analysis exploring relationships between study factors and GPA are given to facilitate both

comparison with other studies, and inform the discussion of classification model results

in Chapter 6. This includes correlation analysis, analysis of group differences and linear

regression models. Results from classification models predicting a binary class label of fail

(GPA< 2.0) and pass (GPA≥ 2.0) are presented, including identification of key attributes

used across classification models.

The results presented in this Chapter addressed the following three study objectives:

• Complete statistical analysis of cognitive and non-cognitive study factors for com-

parison with other published studies (Ob4 ).

• Train and evaluate a range of classification models predicting students at risk of

failing (Ob5 ).

• Identify the key cognitive and non cognitive factors of learning that are predictive

of first year students at risk of failing (Ob6 ).

5.2 Correlations between study factors, including year 1

academic performance

All measures of prior academic performance had significant correlations with each other

and lower but significant correlations with GPA (p<0.05) as illustrated in the heat map in
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Figure 5.1. Methodical average (r=0.302, 95% B-CI [0.24, 0.36]), CAO points (r=0.285,

95% B-CI [0.22, 0.34]) and mathematics (r=0.274, 95% B-CI [0.21, 0.33]) had highest

correlations with GPA.1 Results concurred with correlations between prior academic per-

formance and GPA cited in other studies that included mature students [Conrad, 2006;

Duff et al., 2004; Kaufman et al., 2008]. Dekker et al. [2009] also reported that a science

aggregate, an overall aggregate and mathematics results were most predictive of degree

completion.

Intervals are 95% Confidence Intervals based on 1,999 bootstrap samples. Only students with school leaving

certificate results were included (n=1,018). Applied average results are based on the subset of students who did

applied subjects (n=647, 64%).

Figure 5.1: Heat map of correlations between factors of prior academic performance, includ-
ing GPA

With the exception of visual and auditory modality, all non-cognitive factors of learning

were significantly correlated with GPA (p<0.05). Figure 5.2 is a heat map visualisation of

correlations between non-cognitive study factors. Correlations with 95% confidence inter-

vals are given in Appendix C (Figure C.2) indicating statistical significance. Age (r=0.25,

95% B-CI [0.2, 0.3]), a deep learning approach (r=0.234, 95% B-CI [0.18, 0.29]) and study

effort (r=0.187, 95% B-CI [0.14, 0.24]) had highest correlations with GPA. Openness

(r=0.084, 95% B-CI [0.03, 0.14]) and group work (r=-0.08, 95% B-CI [-0.13, -0.02]) had

the weakest significant correlations with GPA. Correlations were comparable with other

studies of diverse student populations with the exception of self-efficacy (r=0.12, 95%

B-CI [0.06, 0.18])) which was lower than expected (for example Cassidy [2011]: r=0.397;

Diseth [2011]: r=0.44; Komarraju and Nadler [2013]: r=0.30).

1B-CI: Bootstrap confidence interval as discussed in Section 3.4.1
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Con:Conscientiousness; Open:Openness; SE:Self-efficacy; IM:Intrinsic goal orientation; EM:Extrinsic goal orientation; SR:Metacognitive

self-regulation; StE:Study effort; StT:Study time; Deep:Deep learner; Shal:Shallow learner; Stra:Strategic learner; Group:Group work;

Gen:Gender; Vis:Visual modality; Aud:Auditory modality; Kin:Kinaesthetic modality.

Figure 5.2: Heat map of correlations between non-cognitive factors of learning, including GPA
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The relatively low internal reliability of intrinsic goal orientation was not reflected in

correlations with other attributes. All factors of motivation were significantly correlated

with each other. The highest correlation was between intrinsic goal orientation and self-

efficacy (r=0.421, 95% B-CI [0.37, 0.47]), which concurred with Diseth [2011] (r=0.46)

and was marginally lower than Komarraju and Nadler [2013] (r=0.53). Also of note was

the significant correlation between intrinsic and extrinsic goal orientation (r=0.381, 95%

B-CI [0.33, 0.43]) as correlations cited in other studies were inconsistent [Diseth, 2011;

Eppler and Harju, 1997; Komarraju and Nadler, 2013]. Correlations between factors

of motivation and factors relating to learning strategy were also significant, particularly

intrinsic goal orientation and a deep learning approach (r=0.417, 95% B-CI [0.37, 0.47]).

Study time had relatively low internal reliability as discussed in Section 3.3.2.2. While

correlations with metacognitive self-regulation (0.452, 95% B-CI [0.4, 0.49]) and study

effort (r=0.378, 95% B-CI [0.33, 0.43]) were significant, they were lower than results cited

in other studies, for example Bidjerano and Dai [2007] (r=0.55 and r=0.64 respectively)

which was based on a similar participant profile.

The high negative correlation between a deep and strategic learning approach (r=-

0.791, 95% B-CI [-0.81, -0.77]) reflected that most participants reported they were not

shallow learners (m=1.3, s=1.9, range=[0,10]), selecting either deep or strategic state-

ments. As expected, a shallow learning approach was negatively correlated with other

non-cognitive factors. However, a strategic learning approach was also negatively corre-

lated with other factors of learning and GPA (r=-0.158, 95% B-CI [-0.22, -0.10]), contra-

dicting other studies, for example Duff et al. [2004] and Swanberg and Martinsen [2010].

The difference may be explained by their questionnaire design which facilitated selection of

both strategic and deep learning approaches, resulting in a significant positive correlation

between the two learning approaches.

As discussed in Section 3.2, computing and engineering students from the 2010 cohort

were profiled during the first three weeks of term rather during student induction. To

assess the impact of later administration of the learner profiler, correlations between study

factors and GPA for the 2010 engineering students were compared with correlations for

the 2010 general business students, selected because a t-test showed both cohorts had

similar GPA distributions. Correlations between study factors and GPA were similar for

both groups, indicating learner profiling administrated in the early weeks of semester 1

yielded similar results to learner profiling during student induction.
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Key finding: With the exception of study time, correlations between study factors

concurred with results cited in other studies. Also of note was the relatively low

correlation between self-efficacy and GPA.

5.3 Analysis of group differences

Comparison of group means highlighted some statistically significant differences across

subgroups. Results from three categories of subgroups are presented, namely GPA bands,

age groups and gender.

5.3.1 Group differences by discretised year 1 academic performance

Group differences were assessed for the three GPA bands discussed in Section 3.3.3, namely

high risk (GPA< 2.0), medium risk (2.0 ≤GPA< 2.5) and low risk (GPA≥ 2.5) students.1

A deep learning approach was the only attribute with statistically significant differences

across the three groups (F(2, 1,204)=25.95, p<0.001). High risk students had significantly

lower prior academic performance than either medium or low risk students, particularly

in methodical average (F(2, 1,015)= 59.98, p<0.001), CAO points (F(2, 1,015)=50.33,

p<0.001) and mathematics (F(2, 1,015)= 46.02, p<0.001). Low risk students were signif-

icantly different from the other two groups in some effective learning dispositions. They

had higher scores in intrinsic goal orientation (F(2, 1,015)=50.22, p<0.001), study effort

(F(2, 1,204)=17.76, p<0.001), conscientiousness (F(2, 1,204)=11.42, p<0.001) and open-

ness (F(2, 1,204)=5.77, p=0.003). For the remaining non-cognitive factors, there were

statistically significant differences between high and low risk students only, but medium

risk students did not differ significantly from the other two groups. Groups did not differ

significantly in visual or auditory modality. Group means are given in Table 5.1.

Key finding: Group differences by GPA band confirmed that both prior academic

performance and non-cognitive factors associated with an effective learning dis-

position differentiated high risk from low risk students.

1Analysis of groups differences for two GPA bands corresponding to the class label (GPA< 2.0; GPA≥
2.0) gave the same results in terms of statistically significant differences with two exceptions: differences
in group work were not significant (p=0.06) but differences in visual modality were significant (p=0.03).
Three bands are shown here to provide a more detailed picture of group differences.
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Table 5.1: Group differences by GPA band, m± s

Study factor Range Low risk Medium risk High risk p

(n=558) (n=190) (n=459)

CAO points [0,600] 223.5 ± 137.1 221.1 ± 117.6 212.2 ± 91.4 ***

Leaving cert average [0,100] 33.4 ± 20.6 33.1 ± 17.4 30.9 ± 13.5 ***

Mathematics [0,100] 21.6 ± 17.1 21.4 ± 15.4 17.1 ± 13.1 ***

English [0,100] 39.1 ± 26.3 40.6 ± 24.0 38.3 ± 21.0 ***

Applied average [0,100] 24.8 ± 29.4 26.4 ± 28.6 27.4 ± 26.3

Methodical average [0,100] 29.1 ± 20.8 28.8 ± 18.2 23.8 ± 14.7 ***

Humanities average [0,100] 34.2 ± 22.3 34.0 ± 19.0 33 ± 15.7 ***

Conscientiousness [0,10] 6.2 ± 1.5 5.8 ± 1.4 5.7 ± 1.6 ***

Openness [0,10] 6.2 ± 1.3 5.9 ± 1.2 6.0 ± 1.4 **

Self-efficacy [0,10] 7.0 ± 1.4 6.9 ± 1.3 6.7 ± 1.5 ***

Extrinsic goal
orientation

[0,10] 8.0 ± 1.3 7.8 ± 1.3 7.6 ± 1.4 ***

Intrinsic goal
orientation

[0,10] 7.3 ± 1.3 6.9 ± 1.4 6.9 ± 1.4 ***

Metacognitive
self-regulation

[0,10] 6.0 ± 1.3 5.9 ± 1.3 5.7 ± 1.4 **

Study effort [0,10] 6.2 ± 1.7 5.9 ± 1.7 5.6 ± 1.8 ***

Study time [0,10] 6.3 ± 2.2 6.4 ± 2.3 5.9 ± 2.4 *

Deep learner [0,10] 6.0 ± 2.9 5.3 ± 2.8 4.7 ± 2.8 ***

Shallow learner [0,10] 1.0 ± 1.8 1.4 ± 1.9 1.7 ± 2.1 ***

Strategic learner [0,10] 3.1 ± 2.4 3.5 ± 2.5 3.8 ± 2.5 ***

Gender [0,10] 0.4 ± 0.5 0.5 ± 0.5 0.3 ± 0.5 ***

Group work [0,10] 6.2 ± 3.5 7.2 ± 2.9 6.8 ± 3.3 ***

Age [18,60] 25.1 ± 8.4 22.5 ± 6.7 21.4 ± 5.5 ***

Visual [0,10] 7.3 ± 2.0 7.3 ± 2.0 7.0 ± 2.1

Auditory [0,10] 3.2 ± 2.2 3.0 ± 2.0 3.1 ± 2.2

Kinaesthetic [0,10] 4.5 ± 2.4 4.7 ± 2.3 4.9 ± 2.4 *

*p<0.05,**p<0.01, ***p<0.001.
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5.3.2 Group differences by age group

Study factor mean and standard deviations were initially compared for ten age categories:

18, 19, 20, 21, 22-23, 24-25, 26-28, 29-32, 33-39 and ≥40. Age groups were combined to

ensure at least 60 students per group.1 Analysis of differences in group means reduced the

ten categories to three, namely: 18-23 (n=875); 24-28 (n=131); and 29-60 (n=201). This

was based on a lack of statistically significant differences for study factors in age groups

within these three age categories. Analysis of differences across the three age categories

showed average GPA score increased significantly with age (F(2, 1,204)=48.95, p<0.001),

as did many non-cognitive factors associated with an effective learning disposition, namely

a deep learning approach (F(2, 1,204)=68.54 , p<0.001), intrinsic goal orientation (F(2,

1,204)=51.6, p<0.001), metacognitive self-regulation (F(2, 1,204)=39.19, p<0.001), study

effort (F(2, 1,204)=32.57, p<0.001), conscientiousness (F(2, 1,204)=16.06, p<0.001) and

extrinsic goal orientation (F(2, 1,204)=5.287, p<0.01). As expected, CAO points de-

creased with age (F(2, 1,015)=54.08, p<0.001) as entry requirements are lower for stu-

dents aged 23 and over. This difference in prior academic performance was reflected in

all subject areas except mathematics (F(2, 1,015)=0.271, p=0.763). These results concur

with a number of studies reporting a better learning disposition and academic performance

amongst older students, for example Cassidy [2011]; Eppler and Harju [1997] and Hoskins

et al. [1997]. The middle age category, age 23-28, was significantly higher than younger

and older students in openness (F(2, 1,204)=8.173, p<0.001). Group means are given in

Table 5.2.

Key finding: Group differences by age concurred with other studies that older stu-

dents had higher GPA and a more effective learning disposition.

5.3.3 Group differences by gender

Engineering and computing courses were predominantly male and had low entry require-

ments. Humanities courses were predominantly female and had high entry requirements.

Therefore, it was unsurprising that males had significantly lower CAO points than females

(t(918)= -4.077, p<0.001). This difference was reflected in all subject areas, the least sig-

nificant difference was in mathematics (t(913)= -2.081, p=0.038). GPA scores were also

1Applying both a Wilcoxon Rank Sum non-parametric test and a parametric t-test to a range of
distributions common in psychometric data, Kang and Harring [2012] reported t-tests inflated Type I
errors (incorrect finding of significance) for sample sizes less than 60 only, but performed well for larger
samples.
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Table 5.2: Group differences by age group, m± s

Study factor Range [18, 23] [24, 28] [29, 60] p

(n=875) (n=131) (n=201)

CAO points [0,600] 266.0 ± 76.0 147.9 ± 127.6 59.9 ± 102.2 ***

Leaving cert average [0,100] 39.1 ± 11.8 22.3 ± 19.2 9.7 ± 16.1 ***

Mathematics [0,100] 23.4 ± 13.7 15.4 ± 17.3 7.4 ± 14.9

English [0,100] 47.6 ± 18.2 27.5 ± 25.4 9.3 ± 17.6 ***

Applied average [0,100] 31.5 ± 28.2 18.6 ± 26.5 7.0 ± 17.2 **

Methodical average [0,100] 32.5 ± 15.5 19.0 ± 18.8 8.3 ± 15.5 ***

Humanities average [0,100] 41.1 ± 13.9 22.6 ± 20.1 8.8 ± 15.8 ***

Conscientiousness [0,10] 5.8 ± 1.5 6.0 ± 1.5 6.5 ± 1.4 ***

Openness [0,10] 6.0 ± 1.3 6.5 ± 1.3 6.1 ± 1.3 ***

Self-efficacy [0,10] 6.8 ± 1.4 7.0 ± 1.4 7.0 ± 1.5

Extrinsic goal
orientation

[0,10] 7.7 ± 1.4 7.9 ± 1.3 8.1 ± 1.4 **

Intrinsic goal
orientation

[0,10] 6.9 ± 1.3 7.5 ± 1.2 7.8 ± 1.3 ***

Metacognitive
self-regulation

[0,10] 5.7 ± 1.3 6.1 ± 1.3 6.6 ± 1.2 ***

Study effort [0,10] 5.7 ± 1.8 6.2 ± 1.7 6.8 ± 1.5 ***

Study time [0,10] 6.2 ± 2.3 5.8 ± 2.4 6.5 ± 2.2 *

Deep learner [0,10] 4.8 ± 2.8 6.5 ± 2.8 7.1 ± 2.5 ***

Shallow learner [0,10] 1.6 ± 2.1 0.8 ± 1.5 0.6 ± 1.3 ***

Strategic learner [0,10] 3.7 ± 2.5 2.8 ± 2.3 2.4 ± 2.1 ***

Gender [0,10] 0.4 ± 0.5 0.4 ± 0.5 0.4 ± 0.5

Group work [0,10] 6.6 ± 3.3 6.1 ± 3.6 6.5 ± 3.4

Visual [0,10] 7.1 ± 2.1 7.3 ± 2.0 7.3 ± 2.1

Auditory [0,10] 3.1 ± 2.1 3.1 ± 2.2 3.2 ± 2.2

Kinaesthetic [0,10] 4.7 ± 2.4 4.6 ± 2.5 4.4 ± 2.4

GPA [0,4] 1.9 ± 1.1 2.3 ± 1.0 2.7 ± 0.9 ***

*p<0.05; **p<0.01; ***p<0.001.
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significantly lower for males (t(1,158)= -3.595, p<0.001). Gender differences in academic

performance were not reflected in factors of temperament or motivation. Females had

higher mean scores for study time (t(1,065)= -2.988, p=0.003), a deep learning approach

(t(1,107)= -3.038, p=0.002) and auditory modality (t(1,079)= -7.3, p<0.001) while males

had higher mean score for a shallow learning approach (t(1,170)= 4.723, p<0.001) and ki-

naesthetic learning modality (t(1,131)= 5.175, p<0.001). Group means are given in Table

5.3.

Table 5.3: Group differences by gender, m± s

Study factor Range Male Female p

(n=713) (n=494)

CAO points [0,600] 209.9 ± 117.4 231.7 ± 119.1 ***

Leaving cert average [0,100] 31.0 ± 17.5 34.4 ± 17.8 **

Mathematics [0,100] 19.1 ± 15.5 21.1 ± 15.6 *

English [0,100] 36.8 ± 24.0 42.3 ± 23.6 ***

Applied average [0,100] 27.1 ± 28.5 24.5 ± 27.4 *

Methodical average [0,100] 24.6 ± 17.6 30.5 ± 18.9 ***

Humanities average [0,100] 32.2 ± 19.3 35.9 ± 19.6 ***

Conscientiousness [0,10] 6.0 ± 1.5 5.9 ± 1.6

Openness [0,10] 6.0 ± 1.3 6.1 ± 1.2

Self-efficacy [0,10] 6.9 ± 1.4 6.8 ± 1.4

Extrinsic goal orientation [0,10] 7.8 ± 1.4 7.9 ± 1.3

Intrinsic goal orientation [0,10] 7.1 ± 1.4 7.1 ± 1.4

Metacognitive self-regulation [0,10] 5.9 ± 1.4 5.9 ± 1.4

Study effort [0,10] 5.9 ± 1.8 6.0 ± 1.7

Study time [0,10] 6.0 ± 2.3 6.4 ± 2.3 **

Deep learner [0,10] 5.2 ± 3.0 5.7 ± 2.8 **

Shallow learner [0,10] 1.5 ± 2.1 1.0 ± 1.7 ***

Strategic learner [0,10] 3.4 ± 2.5 3.4 ± 2.5

Group work [0,10] 6.5 ± 3.3 6.7 ± 3.4

Age [18,60] 23.5 ± 7.7 22.9 ± 6.8

Visual [0,10] 7.2 ± 2.1 7.1 ± 2.0

Auditory [0,10] 2.8 ± 2.2 3.7 ± 2.1 ***

Kinaesthetic [0,10] 5.0 ± 2.5 4.2 ± 2.2 ***

GPA [0,4] 2.0 ± 1.1 2.2 ± 1.0 ***

*p<0.05; **p<0.01; ***p<0.001.
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5.4 Regression models predicting year 1 academic perfor-

mance

Regression models predicting GPA were run for three groups: all participants; participants

with prior academic history (CAO Points>0); and younger participants (age:[18,21]). The

best regression model for all participants predicting GPA (R̄2 = 0.186, MSE = 0.934 ±
1.235) was based on eight factors, namely age, CAO points, mathematics, study effort, deep

learner, extrinsic goal orientation, gender and group work. Model fit and standardised

coefficients are given in Table 5.4. Model fit remained the same when mathematics was

replaced with methodical average or CAO points was replaced by either leaving cert average

or humanities average. Prior academic performance was unavailable for some participants

(n=189) but was statistically significant in the model. Modelling participants with CAO

points > 0 improved R̄2 (0.237), although the improvement in MSE (0.863 ± 1.151) was

not significant (t(2200)=1.402, p=0.161). R̄2 was comparable to other reported models of

a diverse student population [Bidjerano and Dai, 2007; Kaufman et al., 2008; Komarraju

et al., 2011; Swanberg and Martinsen, 2010]. Modelling younger students further improved

model fit. For example, a model of participants aged [18,21], for whom CAO points

were available (n=800), had R̄2=0.301 concurring with results from other studies that

excluded mature students [Chamorro-Premuzic and Furnham, 2008; Dollinger et al., 2008;

Robbins et al., 2004]. Improvement in MSE (0.764 ± 1.009) was not significant when

compared to the model of all participants with CAO points>0 (t(1794)=1.951, p=0.051),

but was statistically significantly better than the model of all participants (t(1919)=3.376,

p<0.001).

Age was statistically significant in all three regression models. Factors of prior aca-

demic performance were also statistically significant, particularly overall performance

(CAO points or leaving cert average) and mathematics. The most significant non-cognitive

attribute was a deep learning approach. Extrinsic goal orientation was also statistically

significant across regression models.

Key finding: Regression model results concurred with other studies; models of younger

students had higher coefficient of determination than models that included ma-

ture students.
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Table 5.4: Regression models predicting GPA

All participants All ages; Age [18,21];

CAO points > 0 CAO points > 0

R2 0.191 0.243 0.306

R̄2 0.186 0.238 0.301

MSE 0.934 ± 1.235 0.863 ± 1.151 0.764 ± 1.009

n 1,207 1,018 800

Standardised model co-efficients

Intercept 0 0 0

Age 0.431*** 0.315*** 0.127***

CAO points 0.271*** 0.343***

Leaving cert average 0.442***

Mathematics 0.123** 0.117*** 0.105**

Conscientiousness 0.070* 0.117***

Extrinsic goal orientation 0.094*** 0.089** 0.075*

Study effort 0.095***

Deep learner 0.142*** 0.111*** 0.086*

Group work -0.088** -0.048

Gender 0.076** 0.098*** 0.118***

*p<0.05; **p<0.01; ***p<0.001.

5.5 Classification models predicting students at risk of fail-

ing

The following sections detail results for classification models of all participants including

model accuracy, attributes used and analysis of misclassifications. Models of subgroups

by course of study, gender and age are also discussed.

5.5.1 Classification accuracy for models of all participants

Figure 5.3 gives classification model accuracies for models of all participants as a heat

map. Two training methods were compared, 10 fold cross validation (ModelXV al) and

models trained on the 2010 and 2011 cohorts and tested on the 2012 cohorts (Model2012).

As discussed in Section 4.3.4, the dataset was balanced by oversampling the minority

class. Reported model accuracies are based on the resulting balanced dataset. However,

geometric mean (GM) was calculated after removal of replicated instances from the labelled

dataset as explained in Section 3.5.9. This is indicated by the sample size (n) included

in Figure 5.3. Contingency tables for McNemar’s test (χ2) and Fisher’s exact test (FET)

also excluded replicated instances.

Best Model2012 accuracy was k-NN (accuracy: 71.98%, GM: 70.35%). However, a

comparison of Model2012 accuracies using McNamer’s test with Holm correction for fam-
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ilywise error indicated model performance was comparable across algorithms. The only

statistically significant difference was between LR (accuracy: 65.38%, GM: 61.12%) and

k-NN (χ2 (1, n=436)=15.95, p<0.001). The difference between LR and Voting Ensem-

ble (accuracy: 71.06%, GM: 68.89%) was χ2 (1, n=436)=4.845 (p=0.03) which was not

statistically significant following Holm adjustment for family wise error.

In contrast with Model2012 results, best ModelXV al accuracy was SVM (81.62%). Its

lower GM (72.18%) reflected a higher recall on pass (88.24%) than fail (59.04%). Given

the objective of identifying students at risk of failing, models with a high recall on fail are

preferable. BPNN also had good accuracy (75.33%) but a lower GM (69.32%) reflecting a

higher precision on pass (78.53%) than fail (57.48%). A comparison of ModelXV al accura-

cies using McNamer’s test with Holm correction showed SVM had statistically significantly

higher accuracy than all other algorithms. In addition, LR accuracy was statistically sig-

nificantly lower than other algorithms (accuracy: 66.64%, GM: 63.06%). Differences in

the accuracies of the remaining six algorithms was not statistically significant.

ModelXV al accuracy was higher than Model2012 accuracy for each algorithm used.

However, a comparison of the Model2012 and ModelXV al accuracy for each algorithm

found a statistically significant difference for SVM only (p<0.001 FET).

Extensive search strategies were used for optimal attribute subset selection as discussed

in Section 3.5.8. This can result in model overfitting [Baumann, 2003; Saeys et al., 2007].

A comparison of cross validation accuracies with (ModelXV al), and without (Modelall),

attribute subset selection found the difference was statistically significant for two algo-

rithms only, k-NN (χ2 (1, n=1207)=20.1, p<0.001) and a k-NN Bagging Ensemble (χ2

(1, n=1207)=6.7, p<0.01). Modelall accuracies are included in Figure 5.3.

Key finding: Models of students at risk of failing based on factors measured prior to

commencement of first year of study achieved good predictive accuracy. Model

accuracies were comparable across a number of classifiers.

5.5.2 Comparison of model predictions

A review of Model2012 predictions highlighted that models generally concurred on partic-

ipant classification, particularly the four models with the highest accuracy, namely k-NN,

SVM, BPNN and DT, as illustrated in Figure 5.4. LR and SVM had the highest level of

agreement, 79% of their respective predictions concurred. LR and DT has the lowest level

of agreement, 66% of their respective predictions concurred.
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Figure 5.3: Heat map of classification model accuracies for all participants

Figure 5.4: Concurrence between classification algorithms, measured as the percentage
of instances with the same predicted class label

5.5.3 Optimal attribute subsets used

Table 5.5 illustrates optimal attribute subsets for each of the eight Model2012 classification

algorithms. The five factors most frequently used were age, methodical average, leaving

cert average, self-efficacy and kinaesthetic modality. English and auditory modality were

ignored by all algorithms while CAO points, mathematics, conscientiousness and study

time were each selected by just one algorithm.

Classification algorithms differ with respect to insights provided on how instances

are classified. Decision trees are relatively easy to interpret [Tan et al., 2014, p. 169],

however the numeric attributes in the study dataset generated a relatively large decision

tree incorporating many split points on each attribute which limited is usefulness as an

descriptive tool (see Appendix C, Figure C.6). The relative magnitude of attribute weights

in NN, SVM and LR models also provide insight into the influence of each attribute on how

instances were classified; weights close to zero indicate redundant features while higher

positive or negative weights indicate a greater influence in model predictions [Tan et al.,
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2014]. Table 5.5 includes attribute weights from SVM, BPNN1 and LR; a visualisation

of BPNN model weights is included in Appendix C (Figure C.7). However, correlations

between study attributes meant some model attributes could be replaced without effecting

model fit. For example, replacing conscientiousness (SVM weight=0.17) with both study

effort and study time in the SVM model gave the same model accuracy and a weight of

-1.3 for study effort. Therefore, exclusion of an attribute did not indicate a weight close

to 0.

To compare the predictive accuracy of non-cognitive factors of learning with the predic-

tive accuracy of factors available from student registration, three models were compared:

a k-NN model trained on factors of prior academic performance, age and gender only

(ModelPrior), a k-NN model trained on non-cognitive learning factors, age and gender

only (ModelNCog) and a k-NN model trained on all attributes (Model2012). Models were

trained on 2010 and 2011 data and tested on the 2012 data. Forward selection was used

for attribute subset selection and models were trained on values of k in the range [10,

30]. Accuracies were compared using McNemar’s test with Holm correction. ModelPrior

accuracy (70.33%) was marginally lower than Model2012 accuracy (71.88%), the difference

was not statistically significant (p=0.44). ModelNCog accuracy (64.10%) was statistically

significantly lower than Model2012 (p=0.04) but was not statistically significantly lower

than ModelPrior (p=0.12). A subset of four attributes was used in ModelPrior, namely

leaving cert average, methodical average, age and gender. A subset of nine attributes were

was in the ModelNCog, namely conscientiousness, self-efficacy, intrinsic and extrinsic goal

orientation, study effort, deep and shallow learning approaches, age and gender.

Key findings:

The five attributes most predictive of students at risk of failing were age, methodical

average, leaving cert average, self-efficacy and kinaesthetic modality.

Improvement in model accuracy attributed to non-cognitive factors of learning

was not statistically significantly.

1Attribute weights for BPNN in Table 5.5 depict the highest weight for that attribute.
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Table 5.5: Attributes used by Model2012 models with model weights

Weights

Attribute SVM Vote BPNN k-NN DT LR Bagging NB Total SVM BPNN∗ LR

Age x x x x x x x 7 1.14 21.02 1.04

Methodical average x x x x x x 6 0.50 23.07

Leaving cert average x x x x x x 6 0.34 20.31 1.04

Self-efficacy x x x x x x 6 0.09 0.05

Kinaesthetic x x x x x x 6 -0.07 7.61 -0.06

Humanities average x x x x x 5 0.06 19.92 -0.31

Intrinsic goal orientation x x x x x 5 0.19 9.65 0.18

Openness x x x x 4 0.08 4.32

Gender x x x x 4 0.19 17.22 0.17

Deep learner x x x 3 13.31 0.32

Applied average x x 2

Extrinsic goal
orientation

x x 2 0.03

Metacognitive
self-regulation

x x 2 -0.09 -0.06

Study effort x x 2

Shallow learner x x 2 -0.04 14.87

Group work x x 2 0.01

Visual x x 2

Strategic learner x x 2 8.21

Mathematics x 1

CAO points x 1

Conscientiousness x 1 0.17

Study time x 1

Auditory 0

English 0

Total 14 12 11 9 9 9 6 2

*Maximum weight across 8 hidden neurons; x: Attribute was included in the model; Dashed lines were added to improve
readability.
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5.5.4 Group differences between misclassifications and correct predic-

tions

As discussed in Section 5.5.2 algorithm predictions generally concurred, this included

participants misclassified. For example, 75% of participants misclassified by k-NN were

misclassified by at least four of the eight algorithms used. Therefore, student misclassi-

fication was defined as an instance misclassified by at least four of the eight algorithms.

The resulting confusion matrix identified four groups as illustrated in Table 5.6: 166 stu-

dents correctly predicted as fail (True Fail); 186 students correctly predicted as pass (True

Pass); 87 students incorrectly predicted as fail (False Fail); and 47 students incorrectly

predicted as pass (False Pass). Group differences detailed below concurred with a similar

analysis of k-NN misclassifications.

Of specific interest was each misclassified group and how they differed from correctly

classified participants. A Shapiro-Wilk test of fifty bootstrap samples of each group verified

group means were normally distributed for each study factor but a Levene’s test found

variances were unequal. Therefore, Welch’s t-test was used to compare each misclassified

group with correctly classified participants. Results and group means are given in Table

5.7. False Pass had similar mean scores to True Pass in all study attributes. However,

False Pass had statistically significantly higher mean scores than True Fail in a number

of non-cognitive factors of learning, methodical average and mathematics. False Fail had

similar mean scores to True Fail in all factors except CAO points, humanities average and

English, and had a statistically significantly lower GPA than True Pass.

Outliers were not a factor in misclassifications. Outlier detection suggested a small

portion of the dataset (n=21, 2%) may contain outlier values as discussed in Section

4.2.3. Just one univariate outlier was misclassified, an instance with a low self-efficacy

score was misclassified as fail. Misclassified instances had the the same average LOF score

(1.09±0.92) as correctly classified instance (1.09±0.98). LOF calculations were detailed

in Section 4.2.3.

Table 5.6: Confusion matrix illustrating misclassifications

Predicted Fail Predicted Pass Recall

Actual Fail 116 47 71.17%

Actual Pass 87 186 68.13%

Precision 57.14% 79.83% 69.27%
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Table 5.7: Group differences for misclassified participants, including group means (m± s)

Attribute True Fail False Fail False Pass True Pass False Pass compared with: False Fail compared with:

(n=116) (n=87) (n=47) (n=186) True Fail True Pass True Fail True Pass

CAO points 207.80±66.27 235.98±60.94 236.40±130.92 236.27±141.43 **

Mathematics 16.45±11.51 17.76±12.08 23.00±16.67 23.72±17.28 * **

English 40.66±18.81 45.81±15.19 37.34±25.64 42.63±27.09 *

Methodical average 21.41±10.50 24.28±10.59 33.15±19.61 32.97±20.96 *** ***

Creative average 31.69±26.67 32.98±27.95 25.53±26.65 22.31±29.39 **

Humanities average 32.77±12.49 37.22±11.55 36.45±22.00 35.94±23.01 **

Conscientiousness 5.89±1.68 5.90±1.45 6.38±1.55 6.47±1.42 **

Openness 5.94±1.42 5.82±1.13 6.14±1.37 6.20±1.35 *

Self-efficacy 6.72±1.35 6.83±1.39 7.32±1.30 7.27±1.27 ** *

Intrinsic goal 6.76±1.46 6.7±1.33 7.45±1.26 7.32±1.25 ** ***

Extrinsic goal 7.46±1.50 7.79±1.24 8.01±1.23 8.01±1.15 *

Metacognitive
self-regulation

5.66±1.51 5.55±1.18 6.28±1.33 6.24±1.31 * ***

Study effort 5.39±1.94 5.65±1.64 6.35±1.54 6.26±1.74 ** **

Study time 6.06±2.49 6.04±2.07 6.14±2.27 6.53±2.18

Deep learner 4.78±2.61 5.06±2.61 6.22±2.32 6.22±2.96 *** **

Strategic learner 3.73±2.43 3.79±2.44 2.71±2.07 2.81±2.51 ** **

Shallow learner 1.49±1.84 1.15±1.74 1.06±1.54 0.97±1.58

Age 20.06±2.12 20.40±2.14 24.34±8.05 24.73±8.41 *** ***

Group work 7.09±3.35 6.32±3.23 6.81±3.16 6.60±3.29

Visual 7.13±2.04 7.27±2.14 7.18±1.78 7.16±2.08

Auditory 3.06±2.11 3.36±2.15 3.14±2.24 3.07±2.15

Kinaesthetic 4.81±2.38 4.37±2.70 4.68±2.31 4.77±2.49

GPA 0.83±0.70 2.64±0.37 1.03±0.76 2.83±0.41 *** *** ***

*p<0.05; **p<0.01; ***p<0.001.
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Key finding: The misclassifications of most concern are false pass. Analysis of group

differences between instances incorrectly predicted as pass and instances cor-

rectly predicted as pass showed a lack of statistically significant differences be-

tween the two groups. Conversely, differences between instances incorrectly

predicted as pass and instances correctly predicted as fail were statistically sig-

nificant in a number of effective learning dispositions and measures of prior

academic performance.

5.5.5 Classification models of subgroups

Classification models were trained for subgroups by academic course of study (12 sub-

groups), gender (2 groups) and age (3 subgroups). As with the full dataset, eight classifi-

cation algorithms were trained on 2010 and 2011 data and tested on 2012 data. Subgroup

model accuracies were higher than models trained on the full dataset, particularly for

smaller groups as illustrated in the heat map in Figure 5.5. k-NN achieved the highest

accuracy, or close to the highest accuracy, for each subgroup. Optimal values for k varied,

but were predominantly in the range [7,18]. As discussed in Section 4.3.4 class imbalance

varied, the relative size of the minority class varied from 15% to 48%.

All subgroups had n < 900 and so were below the minimum sample size required to

accurately model study factors as discussed in Section 4.3.2. Therefore, to assess if insuf-

ficient data contributed to high model accuracies, model accuracy for each subgroup was

compared to the mean accuracy of models trained on 50 random bootstrap samples of the

same size, selected from all participants. The random samples were constructed to match

the class balance of their corresponding subgroup, i.e. the numbers of passes and fails

matched for test datasets (ntest) and training datasets. Models of random samples were

trained using k-NN with forward selection for attribute subset selection, and values of k

in the range [2, 20]. As illustrated in Table 5.8, average model accuracies for random sam-

ples (Modelran) were also higher than models of all participants, and in many cases were

similar to their corresponding subgroup model accuracy. Fisher’s exact tests1 comparing

the highest accuracy for each subgroup (Modelsub) with Modelran found differences were

not statistically significant for any subgroup, however the power of the test was low for

small sample sizes. For example, the largest difference in accuracy was between students

in the age group [24,28] (89.66%, ntest=44) and random samples of the same size (83.07%,

p=0.42 FET), however the power of this test was 0.09, indicating a 9% chance of detecting

1Fishers exact test (FET) assumes independent samples. It’s possible that some instances from
ModelXV al were replicated in Modelran, violating the assumptions of FET. Significance concurred with
results from a selection of other statistical tests including chi-squared and Z-score probability.

86



IT: Computing (IT); CDM: Creative Digital Media; Elec: Electronic and Computer Engineering; EngC:

Engineering Common Entry; Hort: Horticulture; BGen: Business General; BwIT: Business with IT; BInt:

International Business; Sports: Sports Management & Coaching; ASC: Applied Social Care; EC&E: Early

Childcare & Education; SCD: Social and Community Development.

Figure 5.5: Heat map of classification model accuracies (%) for subgroups by course of
study, gender and age

a difference.1

Key finding: Sample sizes were too small to draw conclusions on subgroup model

accuracies.

1Power was calculated using power.fisher.test in the statmod package V1.4.20 for R. A lower power
increases the chance of a Type II error, i.e. failing to recognise a statistically significant difference [Chatfield,
1983, p 158].
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Table 5.8: Comparison of subgroup model accuracies with random samples of the same size

Subgroup nsubgroup ntest Modelsub (%) Modelran m± s (%)

Computing (IT) 137 38 88.10 84.28 ± 4.54

Creative Digital Media 102 36 84.48 85.88 ± 4.61

Electronic & Computer Engineering 52 20 96.15 92.06 ± 4.83

Engineering Common Entry 73 32 90.00 89.04 ± 5.02

Horticulture 41 10 100.00 96.49 ± 4.68

Business General 183 40 87.50 81.67 ± 3.37

Business with IT 60 26 96.67 90.51 ± 4.86

International Business 64 20 92.31 89.17 ± 5.14

Sports Management & Coaching 95 43 85.94 87.37 ± 5.02

Applied Social Care 146 74 82.20 82.52 ± 3.95

Early Childcare & Education 80 40 81.25 87.70 ± 4.67

Social & Community Development 127 56 81.43 84.68 ± 4.57

Males 713 243 73.79 72.95 ± 1.83

Females 494 193 76.56 74.98 ± 3.08

Age group: [18,23] 875 334 74.87 72.98 ± 2.08

Age group: [24,28] 131 44 89.66 83.07 ± 4.09

Age group: [29,60] 210 58 81.91 80.20 ± 3.50

nsubgroup: Subgroup size (test and training dataset); ntest: Test dataset size.

5.6 Summary

Correlations between study attributes concurred with other studies with the exception of

correlations between factors of self-regulation and the correlation between self-efficacy and

GPA. Group differences by GPA band confirmed that both prior academic performance

and non-cognitive factors associated with an effective learning disposition differentiated

high risk from low risk students. Older students also had higher mean scores for fac-

tors associated with an effective learning disposition. Male participants had lower prior

academic performance and a lower GPA than female participants, however, results may

have been influenced by low entry points for male dominated courses. Regression models

confirmed that models of younger participants (age≤21) had higher R2 than models of all

participants. Factors of prior academic performance, age, a deep learning approach and

extrinsic goal orientation were significant in regression models.

Cross validation results indicated SVM had highest cross validation model accuracy

(82%) when modelling all participants using a binary class label of pass or fail ; this

was statistically significantly higher than other models although recall on fail (59%) was
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relatively poor. k-NN had highest accuracy (72%) when models were trained on 2010

and 2011 student cohorts and tested on the 2012 student cohort, which was similar to

its cross validation accuracy (72.4%). The most significant attributes in classification

models were age, methodical average, leaving cert average, self-efficacy and kinaesthetic

modality. A comparison of the group means of all study attributes showed participants

incorrectly classified as pass did not differ significantly from participants correctly classified

as pass. Participants incorrectly predicted as fail had a statistically significantly lower

GPA than participants correctly predict as pass. Classification model accuracy was higher

for subgroups by course of study, gender and age. However, relative accuracies for each

subgroup were similar to the mean model accuracy of 50 random samples of the same size.

Key findings cross referenced to study objectives are as follows:

• Ob4 : Correlations and regression analysis of cognitive and non-cognitive study fac-

tors concurred with other studies with the exception of correlations between factors

of self-regulation, and the correlation between self-efficacy and GPA.

• Ob5 : Results from training and evaluation of a range of classification models pre-

dicting students at risk of failing found that models predicting students at risk of

failing, based on factors measure prior to commencement of first year of study,

achieved good predictive accuracy. Participants incorrectly classified as pass did not

differ significantly from participants correctly classified as pass; participants incor-

rectly predicted as fail had statistically significantly lower GPA than participants

correctly predict as pass.

• Ob6 : A review of key cognitive and non cognitive factors of learning that are predic-

tive of first year students at risk of failing found both prior academic performance and

non-cognitive factors associated with an effective learning disposition differentiated

high risk from low risk students. Age, methodical average, leaving cert average, self-

efficacy and kinaesthetic modality were selected by most classification models. How-

ever, improvement in model accuracy attributed to non-cognitive factors of learning

was not statistically significantly.

A discussion of these results, and recommendations for future work, are presented in

Chapter 6.
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Chapter 6

Discussion

6.1 Introduction

The key research question this study addressed was: (Q1 ) Can algorithmic student mod-

elling accurately predict Irish IoT students at risk of failing in first year of study based on

factors that can be measured prior to commencement of tertiary education? Results from

this study indicated that algorithmic student modelling can accurately predict students

at risk of failing in first year of study based on factors that can be measured prior to com-

mencement of tertiary education. Models trained on data collected prior to, or during,

first year student induction achieved good predictive accuracy when applied to a different

student cohort. The following sections discuss the salient outcomes from this study, and

suggest directions for future work. The study’s two secondary research questions are also

addressed, namely: (Q2 ) Which classification algorithms are appropriate for modelling

psychometric data indicative of Irish IoT students at risk of failing? and (Q3 ) Which

cognitive and non-cognitive factors of learning are indicative of Irish IoT students at risk

of failing?

6.2 Classification models of students at risk of failing

The study dataset was diverse in terms of student age, prior academic ability and course

of study (illustrated in Tables 3.1, 3.2 and 3.5). Modes of assessment also varied across

courses. For example, modules on humanities courses were more likely to give a higher

weighting to end of term examinations, modules on other courses were more likely to give

equal or higher weighting to continuous assessment work. Assessment methods can affect

academic performance [Pérez-Mart́ınez et al., 2009] and its relationships with factors such
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as openness and learning approach as discussed in Sections 2.3 and 2.5.1. Notwithstanding

these sources of variability, classification model accuracy was high (71.98%) when applied

to a different student cohort (Model2012).

As reported in Section 2.8.2, a number of studies modelling educational data have

cited comparable accuracies between classification algorithms, although there are incon-

sistencies regarding which algorithms achieve optimal predictive accuracy when modelling

educational data. For example, Jayaprakash et al. [2014] reported SVM and LR had

comparable accuracy predicting high risk students based on factors including SAT scores,

enrolment data and data from an online learning environment, but DT had poorer recall

(n=15,150). On the other hand, Lauria et al. [2013] reported DT had comparable accu-

racy with both SVM and LR when distinguishing between strong and weak students, also

based on prior academic performance, demographic data and log data from an intelligent

tutoring system (n=6,445). Herzog [2006] found DT and BPNN had similar performance

to LR provided independent variables had little co-linearity, but LR had lower accuracy

when variables with greater dependencies were included in the model (n=4,564). Bergin

[2006] found NB and a Stacking Ensemble outperformed DT, BPNN, k-NN (k=3) and

LR when classifying students as strong or weak based on prior academic performance and

psychometric data (n=102). Results from this study concurred that a number of classifi-

cation algorithms achieved similar accuracy. It was expected that some algorithms would

concur on the predicted class label. For example, the implementation of LR used in this

study was based on an adaption of an SVM algorithm proposed by Keerthi et al. [2005],

explaining the high concurrence between LR and SVM predictions as illustrated in Figure

5.4; SVM’s higher accuracy can be explained by its use of structural risk minimisation

guaranteeing a globally optimal solution [Tan et al., 2014, p. 276]. On the other hand, a

DT’s approach to the classification task is quite different from SVM as discussed in Sec-

tions 2.8.1 and 3.5, nevertheless, both algorithms concurred on 73% of predictions when

applied to a different student cohort. (Misclassifications are discussed further in Section

6.3.)

The models with the highest accuracies when applied to a different student cohort

were k-NN, a Voting Ensemble, SVM, a k-NN Bagging Ensemble and a DT, as illustrated

in Figure 5.3. LR had the lowest accuracy when modelling all participants. Additionally,

progressive sampling failed to confirm convergence of LR model accuracy. k-NN and a

Bagging ensemble had the highest average accuracy for models of subgroups, although a

larger sample size was needed to confirm subgroup model accuracies.

While model accuracy estimated using 10-fold cross validation (ModelXV al) was higher

than model accuracy when tested on a different student cohort (Model2012), the increase
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was statistically significant for one algorithm only, SVM. As discussed in Section 3.5.6, a

kernel function improved SVM model accuracy for ModelXV al, generating a more com-

plex model than Model2012 where a kernel function failed to improve model accuracy. In

contrast, optimal parameter settings for both Model2012 and ModelXV al were similar for

other algorithms, for example k in k-NN (15 and 18 respectively). Therefore, results indi-

cated that cross validation provided a good estimate of model accuracy with the exception

of a nonlinear SVM model.

Baumann [2003] reported that attribute subset selection techniques used in combina-

tion with cross validation resulted in model over-fitting, particularly when a large range

of alternatives were assessed, but this was not observed in this study. A comparison of

cross validation accuracies with and without attribute subset selection observed that in-

creases in model accuracy were not significant with the exception of k-NN based models, as

illustrated in Figure 5.3. k-NN used a Euclidean distance measure calculated from all at-

tributes in the dataset; unlike the other classification algorithms, each attribute had equal

influence on the outcome [Han and Kamber, 2006, p. 349]. This, rather than over-fitting,

may explain accuracy improvement when using an attribute subset.

In response to research question Q2 , study results suggested k-Nearest Neighbour with

attribute subset selection is the most appropriate algorithm for modelling psychometric

data indicative of IoT students at risk of failing. However, it must be acknowledged that

with the exception of LR, other classifiers achieved comparable accuracies. Ensembles

failed to improve on base model accuracies.

6.3 Analysis of misclassifications

The misclassifications of particular interest were participants incorrectly predicted as pass.

Group comparisons of study attributes failed to identify differences between this group and

those correctly predicted as pass. There may be a number of reasons for this. Firstly, a

number of factors relevant to retention and progression arise after student induction, such

as academic and social integration, change in circumstance resulting in economic pressure

[Tinto, 2006], and classroom related affects on academic performance such as teaching

methods [Ganyaupfu, 2013; Hake, 1998]. Such factors may explain why prior academic

performance and learning disposition alone are insufficient to predict academic perfor-

mance in all cases. Secondly, it could be argued that profiling learners during first year

student induction is too early in the semester to accurately measure some study attributes.

For example, intrinsic and extrinsic goal orientation may vary depending on the time or

situation [Apter, 1989]. Similarly, students may be unsure of study expectations during
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the initial period of induction; Winters et al. [2008] concluded both learner and task char-

acteristics influenced levels and methods of self-regulation. On the other hand, factor

correlations in this study (discussed in Section 5.2) concurred with evidence cited in other

studies where data were gathered later in the semester. Therefore, it was more likely that

factors not included in the study explained incorrect predictions of pass. Individual dif-

ferences dictate that any deterministic model of human behaviour will have some level of

pure error [Eysenck and Keane, 2005, p. 5]; further work is needed to accurately determine

the potential improvements in model accuracy if additional data gathered after student

induction were included.

Analysis of participants incorrectly predicted as fail showed they had a lower GPA

than students correctly predicted as pass. Scores in a range of effective learning dispo-

sitions and prior academic performance were also lower, characterising a group of lower

academic achievers that may benefit from additional support to develop an effective learn-

ing disposition.

6.4 Impact of study attributes

The recorded significant correlations between many study attributes meant different at-

tribute subsets achieved comparable accuracies when predicting GPA. Consequently, no

common subset of attributes could be isolated for use in this project. For example, a

deep learning approach is associated with intrinsic learning goals (see Section 2.5.1) and

correlations between the two factors in this study were relatively good (r=0.417, 95%

B-CI [0.37,0.47]). Six of the eight models used either a deep learning approach or intrinsic

goal orientation, but just two models, BPNN and LR, used both. The k-NN model used

neither of these, but instead used self-efficacy, which had a relatively high correlation with

intrinsic goal orientation (r=0.421, 95% B-CI [0.37,0.47]), and study effort, which had a

relatively high correlation with a deep learning approach (r=0.360, 95% B-CI [0.31,0.41]).

How models identify patterns also impacts on attributes used. For example, in the regres-

sion models, conscientiousness could be replaced by study effort without effecting model

fit (see Section 5.4). However, those attributes were not interchangeable in a k-NN model

as their respective effects on distance calculations were not equivalent. Nevertheless, it

is clear from reviewing attribute subsets used (Table 5.5) that some attributes achieved

higher accuracy in prediction of students at risk of failing than others. The following sec-

tions outline the study factors and assess their relative usefulness in predicting students

at risk of failing, responding to research question Q3 .

93



6.4.1 Age and gender

Existence of correlations between age and academic performance is well cited in literature

(Cassidy [2011]; Hoskins et al. [1997]; Wigfield et al. [1996]), and is also supported by

evidence from this study. It is evident from analysis of group differences discussed in

Section 5.3 that older students have a more effective learning disposition: they are more

likely to adopt a deeper learning approach, set learning goals and regulate their learning.

Both classification and regression models concurred that age was a good predictor of

academic performance in first year of study (see Table 5.4 and Figure 5.3).

A number of studies reported that gender is not a significant factor in predicting

academic performance in tertiary education ([Dollinger et al., 2008; Hoskins et al., 1997;

Naderi et al., 2009]). Four of the eight algorithms included gender, in spite of its relatively

low correlation with GPA (r=0.1, 95% B-CI [0.05,0.15]). Gender group differences high-

lighted males as having lower prior academic performance, lower GPA, and lower scores in

a number of effective learning dispositions. However, it should be noted that the dataset

contained bias: courses that were predominantly male had lower entry requirements than

courses that were predominantly female. Therefore, further work is needed to assess if the

significance of gender in classification models was reflective of their course of study rather

than actual gender differences.

6.4.2 Prior academic performance

Aggregate scores of prior academic performance, particularly methodical average and over-

all average (leaving cert average), were found to be more predictive of students at risk of

failing first year of study than individual school leaving certificate grades in either English1

or mathematics. Methodical average had the highest correlation with GPA, and was used

by most classification models. While methodical average could replace mathematics in

regression models without changing model fit (see Section 5.4), the same replacement in

classification models reduced model accuracy. For example, k-NN model accuracy dropped

from 71.98% to 66.29% when methodical average was replaced by mathematics (McNe-

mar’s χ2 (1, n=436)=7.33, p<0.01). Therefore, while both factors displayed comparable

correlations with GPA, methodical average, an aggregate covering results in mathematics,

science and business subjects, achieved significantly higher accuracy statistically, when

predicting students at risk of failing, than mathematics alone.

1As explained in Section 3.3.1, English refers to grades in a subject aimed at developing: a mature
and critical literacy; a respect and appreciation for language; and an awareness of the value of literature
(www.education.ie).
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A number of classification models included the factor humanities average, particularly

models with higher accuracies such as k-NN, Voting Ensemble, SVM and BPNN. Analysis

of correlations with GPA by course of study showed humanities average to be more predic-

tive of GPA in business and humanities courses than courses in engineering and computing

(see Appendix C, Figures C.4 and C.5). Correlations between leaving certificate English

and GPA also varied by discipline. English had a statistically significant positive correla-

tion with GPA for humanities courses and some business courses, but had a statistically

significant negative correlation with GPA for Computing (IT). Correlations between En-

glish and GPA for other technical disciplines were not statistically significant (p>0.05).

Therefore, it was unsurprising that leaving certificate English was not a significant factor

in classification or regression models of all participants.

An aggregate of points attained in school leaving cert examinations (CAO points)

dictate entry requirements for most tertiary courses in Ireland. Results from this study

suggested other prior academic performance aggregates were better predictor of students

at risk of failing in year 1. Further work is needed to investigate which aggregates are most

appropriate for predicting at-risk students. The study sample size was too small to draw

conclusions on prior academic performance predictors for subgroups by course of study.

However, correlation results by course of study (Figure C.5) indicated an investigation of

appropriate aggregates by course of study is also warranted.

6.4.3 Factors of personality

As discussed in Section 2.3, conscientiousness is the best personality based predictor of

academic performance in tertiary education particularly for younger students [Allick and

Realo, 1997; Chamorro-Premuzic and Furnham, 2008; Kappe and van der Flier, 2010;

Kaufman et al., 2008]. While correlation results from this study concurred with the avail-

able evidence, all classification models except SVM ignored the factor conscientiousness.

This suggested that other study factors accounted for conscientiousness, and there was no

additional predictive value in measuring conscientiousness specifically.

Openness was used by four classification models (k-NN, BPNN, SVM and voting),

suggesting it was a useful predictor of students at risk of failing as evidenced by statis-

tically significant group differences in openness for low risk students (GPA> 2.5). The

mix of assessment methods used across courses and within courses may explain the low

correlation between openness and GPA and its absence in regression models. Openness

is the most controversial of the Big Five personality factors, in terms of defining both

meaning and sub-factors [de Raad and Schouwenburg, 1996, p. 321]. The six-question
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scale used in this study covered four sub-factors: creativity (2 questions), intellect (2

questions), imagination and openness to new experience (1 question each). Creativity,

specifically, is frequently cited as an effective learning disposition that is to be encouraged

and promoted in assessment design [Buckingham Shum and Deakin Crick, 2012]. Further

work is required to investigate if sub-factors inherent in openness may be more appropriate

predictors of academic performance than generalised openness itself.

6.4.4 Factors of motivation

Results from this study support findings by Robbins et al. [2004] regarding the importance

of self-efficacy ; it was the single most predictive non-cognitive factor of students at risk

of failing. Interestingly, Deakin Crick and Goldspink [2014] observed that being able to

express confidence in learning ability was also a strong indicator of an effective learning

disposition. However, while self-efficacy was important in classification models, in contrast

with other studies (e.g. Bergin and Reilly [2005]) it had lower than expected correlations

with GPA and was not significant in regression models. Self-efficacy is partly informed

by prior academic achievements [Diseth, 2011]. Participants in this study represented

a student cohort that had relatively weak prior academic performance as discussed in

Section 3.3.1. Further work is needed to determine if the participant profile explains the

insignificance of self-efficacy in statistical models.

Intrinsic goal orientation was also indicative of good academic performance, however,

inferences on its relative importance must consider the poor reliability for that factor as

discussed in Section 3.3.2.2.

6.4.5 Learning strategies

Classification models largely ignored factors of self-regulation, although study effort was

significant in a regression model of all participants, as illustrated in Table 5.4. The im-

portance of self-regulated learning is well cited (see Zimmerman [1990]), however, self-

regulation is related to a number of other factors of learning. For example, in a longitudi-

nal study on the causal dilemma between motivation and self-regulation, De Clercq et al.

[2013] concluded that a learning goal orientation resulted in a deep learning approach,

which in turn resulted in better self-regulation. Self-regulation, as measured in this study,

failed to improve classification model performance over and above factors of motivation

and approaches to learning. In addition, the poor reliability for study time discussed in

Section 3.3.2.2 may have diminished its usefulness as a predictor of students at risk of

failing.
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A deep learning approach yielded a higher correlation with GPA than other non-

cognitive study factors (see Figure 5.2) and was the only non-cognitive factor of learn-

ing with a statistically significant difference in mean score across all three GPA bands

of high risk, medium risk and low risk participants (Table 5.1). However, only half of

classification models used learning approach: BPNN, SVM, LR and a Voting Ensemble

(Table 5.5). Volet [1996] found that goal setting influences self-regulation, which in turn

influences learning approach adopted. Similarly in this study, a deep learning approach

had strongest correlations with intrinsic goal orientation (r=0.417), metacognitive self-

regulation (r=0.431) and study effort (r=0.360) as illustrated in Figures 5.2 and C.2.

With the exception of a Bagging Ensemble, all models that found approaches to learning

to be unimportant, showed that either goal orientation or study effort were significant.

Additionally, apart from a Voting Ensemble, no model used both learning approaches and

study effort, although a number of models used learning approaches with learning goals.

6.4.6 Learner modality

While awareness of learner modality by student and lecturer can improve student-learning

experience [Duffin and Gray, 2009a; Gilakjani, 2012], there is no evidence to suggest that

learner modality is predictive of academic performance [Gilakjani, 2012; Kablan, 2014].

Correlation results (Figure 5.1) and analysis of group differences (Table 5.1) concurred

with this observation for both visual and auditory modality. However kinaesthetic modality

(learn by doing) had a weak but statistically significant correlation with GPA (r=-0.059,

p <0.05). In addition, there were statistically significant group differences for kinaesthetic

modality by GPA band (p<0.05). Kinaesthetic modality was significant in six of the

eight classification models. Kinaesthetic learners were more likely to be male, more likely

to have registered poor prior academic performance and displayed a weak but negative

correlation with factors related to an effective learning disposition. Further work is needed

to determine the real importance of kinaesthetic modality, i.e. if it was used as a proxy

for a poor learning disposition, or was itself indicative of failure. In addition, study

results justify a review of potential improvements in academic performance achievable

from greater use of ‘learn by doing’ activities in the classroom.

6.5 Malleable learner dispositions

Comparison of models with and without non-cognitive factors of learning suggested that

the addition of non-cognitive factors of learning provided limited improvement in pre-

dictive accuracy in spite of their significant correlations with GPA (see Section 5.5.3).
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Therefore, their value in learner profiling at student induction merits consideration. Sev-

eral studies have reported that learning disposition is malleable. For example, Miller-Reilly

[2006] evidenced that teaching approaches can change adult learners’ self-efficacy in math-

ematics. Similarly, a meta analysis of studies on self-regulation reported improvements

in self-regulation, and consequently learning goals, following self-regulation training and

support [Winters et al., 2008]. It could be argued that all students at risk of failing re-

quire further support in developing effective learning dispositions regardless of individual

profiles. However, a profiling tool facilitates feedback to both students and lecturers that

may support other interventions. The profiler used in this study gave immediate feedback

to students on their learner profile. Duffin and Gray [2009b] found that 56% of students

understood their learning profile based on online feedback, and this rose to 83% when

profiling was followed up by explanatory workshops. Jayaprakash et al. [2014] found that

simply making students aware that they may be at risk of failing significantly increased

the numbers passing and number of withdrawals; however, provision of further course sup-

ports did not effect additional change in either outcome. Therefore, further work is needed

to assess the impact of timely feedback on learner disposition, specifically on subsequent

optimal use of that feedback.

6.6 Conclusion

Models of learning developed in this study predicted students at risk of failing in first

year of study with an accuracy of 72% when applied to a different student cohort. The

dataset was diverse in terms of age, academic discipline and assessment strategies used

(n=1,207). Informed by a review of factors predictive of academic performance in tertiary

education, study factors related to prior academic performance, personality, motivation,

learning strategies, learner modality, age and gender. The twenty-four study factors were

measured prior to commencement of first year of study. Correlations between study factors

were similar to results reported in other studies with the exception of study time. In

addition, self-efficacy had a lower correlation with GPA compared with other studies.

A review of educational data mining studies highlighted a predominance of classifica-

tion algorithms, although there was a lack of consensus on which algorithms yielded the

best accuracy when modelling non-temporal datasets. Consequently, eight classification

algorithms were evaluated for this study, namely: k-Nearest Neighbour (k-NN); a Voting

Ensemble; Support Vector Machine (SVM); k-NN Bagging Ensemble; Decision Tree; Back-

Propagation Neural Network; Näıve Bayes and Logistic Regression (LR). k-NN achieved

the highest accuracy when models were applied to a difference student cohort, although ac-
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curacies achieved by other algorithms were comparable; LR achieved the lowest accuracy.

As expected, 10-fold cross validation model accuracies were higher than models applied

to a different student cohort, however, the increase in model accuracy was statistically

significant for SVM only.

Analysis of misclassifications showed that fails misclassified as pass did not differ in

learning disposition or prior academic performance, from those correctly classified as pass.

Factors measurable later in the semester, such as academic and social integration, economic

pressures, and teaching methods, may explain misclassifications. Further work is needed

to determine potential improvements in model accuracy for an Institute of Technology

student cohort if data gathered after student induction were included in the model.

Attributes that were significant for accurate prediction of students at risk of failing

across a range of courses included:

• Age. The study sample had an age range of [18,60]. Younger students had a greater

risk of failing in first year of study.

• Aggregates of prior academic performance. In particular, an aggregate of mathe-

matics, science and business related subjects was found to be a stronger predictor

of year 1 students at risk of failing compared to other prior academic performance

aggregates.

• Factors of motivation, particularly self-efficacy and intrinsic goal orientation.

• Learning approach. A shallow or a strategic learning approach was indicative of

students at risk of failing.

• Openness, indicating a creative, inquisitive temperament, was indicative of a passing

grade.

• A kinaesthetic modality (preference for learn by doing) was indicative of students at

risk of failing.

It was found that self-regulation factors were not significant once learning goals and ap-

proaches to learning were considered. Similarly, conscientiousness did not improve model

accuracy over and above other factors of learning. Respective correlations between study

factors and GPA, and significance in regression models predicting GPA, were not indica-

tive of factors significant in classification models of students at risk of failing. For example,

both openness and kinaesthetic learner modality were significant in a number of classifica-

tion models but had relatively weak correlations with GPA. Conclusions from this study
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that openness and kinaesthetic learner modality were significant predictors of at-risk stu-

dents were not widely observed in other studies, particularly the significance of learner

modality. Therefore, further work is needed to determine if their importance in models of

learning, as reported in this study, generalises to other student cohorts.

The primary value of non-cognitive factors of learning in this study was to distinguish

the learning profile of students at risk of failing from the learning profile of students that

passed, rather than provide improvement in model predictive accuracy. It has been argued

that non-cognitive factors of motivation, self-regulation and approaches to learning are

malleable, and key to an effective learning disposition, which in turn should be a valued

learning outcome of courses in tertiary education. Further work is needed to evaluate

subsequent benefits of profiling non-cognitive factors of learning during student induction,

both for the student, and for first year mentoring and support programmes.

100



References

Achen, C. (1982). Interpreting and Using Regression. Number 07-029 in Quantitative Applications
in the Social Sciences. Sage Publications, Inc. 49

Ackerman, P. L. and E. D. Heggestad (1997). Intelligence, personality, and interests: Evidence for
overlapping traits. Psychological Bulletin 121 (2), 219–245. 15

ACT (2012). 2012 retention completion summary tables. Technical report, www.act.org. 1

Akbani, R., S. Kwek, and N. Japkowicz (2004, September 20-24). Applying support vector machines
to imbalnced dataset. In 15th European Conference on Machine Learning (ECML), pp. 39–50.
Springer Berlin Heidelberg. 59
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Diseth, Á. (2011). Self-efficacy, goal orientations and learning strategies as mediators between
preceding and subsequent academic achievement. Learning and Individual Differences 21, 191–
195. 19, 20, 21, 22, 23, 70, 72, 96

Dixon, S. and R. Brereton (2009). Comparison of the performance of five common classifiers
represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis,
quadratic discriminant analysis, learning vector quantization and support vector machines, as
dependent on data structure. Chemometrics and Intelligent Laboratory Systems 95, 1–17. 31

Dollinger, S. J., A. M. Matyja, and J. L. Huber (2008). Which factors best account for academic
success: Those which college students can control or those they cannot? Journal of Research in
Personality 42, 872–885. 17, 21, 26, 27, 28, 78, 94

Domingos, P. and M. Pazzani (1997). On the optimality of the simple bayesian classifier under
zero-one loss. Machine Learning 29, 103–130. 53

Drachsler, H. and W. Greller (2012, 29 April- 2 May). The pulse of learning analytics under-
standings and expectations from the stakeholders. In 2nd International Conference on Learning
Analytics and Knowledge, Vancouver, BC, Canada, pp. 120–129. ACM. 1

Duff, A., E. Boyle, K. Dunleavy, and J. Ferguson (2004). The relationship between personality,
approach to learning and academic performance. Personality and Individual Differences 36,
1907–1920. 14, 17, 23, 24, 27, 28, 70, 72

Duffin, D. and G. Gray (2009a, March). Accommodating learner diversity in the classroom. In 3rd
International Technology, Education and Development Conference (INTED), Valencia, Spain,
pp. 4629–4635. 97

Duffin, D. and G. Gray (2009b, August 31 - September 2). Using ICT to enable inclusive teaching
practices in higher education. Assisstive Technology Research Series 25, 640–645. 98

105



REFERENCES

Dweck, C. S. (October 1986). Motivational processes affecting learning. American Psychologist 41
(10), 1040–1048. 20

Dweck, C. S. and E. L. Leggett (1988). A social-cognitive approach to motivation and personality.
Psychological Review 95 (2), 256–273. 20, 21

Eccles, J. S. and A. Wigfield (2002). Motivation beliefs, values and goals. Annual Review of
Psychology 53, 109–132. 18, 20

Entwhistle, N. (2005). Contrasting perspectives in learning. In F. Marton, D. Hounsell, and
N. Entwhistle (Eds.), The Experience of Learning (3rd ed.)., pp. 3–22. Edinburgh: University
of Edinburgh, Centre for Teaching, Learning and Assessment. 2, 21, 23

Entwistle, N. and D. Entwistle (1970). The relationship between personality, study methods and
academic performance. British Journal of Educational Psychology 40, 132–143. 17

Eppler, M. A. and B. L. Harju (1997). Achievement motivation goals in relation to academic
performance in traditional and nontraditional college students. Research in Higher Education 38
(5), 557–573. 13, 14, 20, 21, 26, 27, 72, 75

Eysenck, H. (1994). Test Your IQ. Thorsons. 12

Eysenck, M. W. and M. T. Keane (2005). Cognitive Psychology: A student handbook (5th ed.).
Psychology Press. 93

Farsides, T. and R. Woodfield (2003). Individual differences and undergraduate academic success:
the roles of personality, intelligence, and application. Personality and Individual Differences 34,
1225–1243. 1, 18

Fisher, R. A. (1915, May). Frequency distribution of the values of the correlation coefficient in
samples from an indefinitel large population. Biometrika 10 (4), 507–521. 43

Flanagan, D. P. and K. S. McGrew (1998). Interpreting intelligence tests from contemporary gf-gc
theory: Joint confirmatory factor analysis of the wj - r and kait in a non - white sample. Journal
of School Psychology Vol. 36, No. 2, 151 – 182. 12, 13, 14

Fleming, N. D. (1995). I’m different, not dumb. Modes of presentation (VARK) in the tertiary class-
room. In Research and Development in Higher Education, Proceedings of the 1995 Annual Con-
ference of the Higher Education and Research Development Society of Australasia (HERDSA),
Volume 18, pp. 308–313. 41

Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. American
Psychological Association 101:2, 171–191. 12

Freedman, D. (1987). As others see us: A case study in path analysis. Journal of Educational
Statistics 12(2), 101–128. 28

Frey, M. C. and D. K. Detterman (2003). Scholastic assessment or g? The relationship between the
scholastic assessment test and general cognitive ability. Psychological Science 15(6), 373–378.
13

Furnham, A. and S. Medhurst (1995). Personality correlates of academic seminar behaviour: A
study of four instruments. Personality and Individual Differences 19(2), 197–208. 17

106



REFERENCES

Furnham, A., J. Zhang, and T. Chamorro-Premuzic (2006). The relationship between psychometric
and self-estimated intelligence, creativity, personality and academic achievement. Imagination,
Cognition and Personality 25(2), 119–145. 14

Galesic, M. and M. Bosnjak (2009). Effect of questionniare lenght on participation and indicators
of response qualirt in a web survey. Public Opinion Quarterly on Topics in Survey Measurement
and Public Opinion 73 (2), 349–360. 39

Ganyaupfu, E. M. (2013, September). Teaching methods and students’ academic performance.
International Journal of Humanities and Social Science Invention 2 (9), 29–35. 92

Gilakjani, A. P. (2012, December). A match or mismatch between learning styles of the learners
and teaching styles of the teachers. International Journal of Modern Education and Computer
Science 11, 51–60. 97

Goldberg, L. R. (1992). The development of markers for the big-five factor structure. Psychological
Assessment 4 (1), 26–42. 15

Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist 48
(1), 26–34. 15, 16

Goldberg, L. R., J. A. Johnson, H. W. Eber, R. Hogan, M. C. Ashton, C. R. Cloninger, and
H. C. Gough (2006). The international personality item pool and the future of public-domain
personality measures. Journal of Research in Personality 40, 84–96. 39

Goodman, S., T. Jaffer, M. Keresztesi, F. Mamdani, D. Mokgatle, M. Musariri, J. Pires, and
A. Schlechter (2011). An investigation of the relationship between students’ motivation and
academic performance as mediated by effort. Psychological Journal of South Africa 41(3), 373–
385. 21, 22, 26

Gray, E. K. and D. Watson (2002). General and specific traits of personality and their relationship
to sleep and academic performance. Journal of Personality 70(2), 177–206. 17

Gray, G., C. McGuinness, and P. Owende (2013, July 6-9). An investigation of psychometric mea-
sures for modelling academic performance in tertiary education. In S. K. D’Mello, R. A. Calvo,
and A. Olney (Eds.), Sixth International Conference on Educational Data Mining, Memphis,
Tennessee, pp. 240–243. 3

Gray, G., C. McGuinness, and P. Owende (2014a, February). An application of classification
models to predict learner progression in tertiary education. In Advance Computing Conference
(IACC), 2014 IEEE International, Gurgaon, India, pp. 549–554. 3

Gray, G., C. McGuinness, and P. Owende (2014b, July). Non-cognitive factors of learning as
predictors of academic performance in tertiary education. In S. Ritter and S. Fancsali (Eds.),
Workshop on Non-Cognitive Factors and Personalization for Adaptive Learning (NCFPAL) IN
EDM 2014 Extended Proceedings, London, pp. 107–114. CEUR Workshop Proceedings. 3

Gray, G., C. McGuinness, and P. Owende (2014c). A review of psychometric data analysis and
applications in modelling of academic achievement in tertiary education. Journal of Learning
Analytics 1 (1), 75–106. 3

Gray, G., C. McGuinness, P. Owende, and M. Hofmann (2015). Learning factor models of students
ar risk of failing in early stages of tertiary education. Journal of Learning Analytics in review.
3

107



REFERENCES

Groth, R. (2000). Data Mining Building Competitive Advantage. Prentice Hall PTR. 30

Gupta, P. and D. Toshniwal (2011). Performance comparison of rule based classification algorithms.
International Journal of Computer Science and Informatics 1 (2), 37–42. 30

Hair, J. F. J., W. C. Black, B. J. Babin, and R. E. Anderson (2010). Multivariate Data Analysis
A Global Perspective, 2nd Ed. Pearson Education, Inc. 48

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student
survey of mechanics test data for introductory physics courses. American Association of Physics
Teachers 66, 64–74. 92

Hall, M. A. and G. Homes (2003, Nov-Dec). Benchmarking attributes selection techniques for
discrete class data mining. IEEE Transactions on Knowledge and Data Engineering 15 (6),
1437–1447. 58

Han, J. and M. Kamber (2006). Data Mining Concepts and Techniques. Burlington, MA: Morgan
Kaufmann. 29, 30, 50, 51, 52, 53, 63, 64, 92

HEA (2008). National plan for equity of access to higher education: 2008 - 2013. Technical report,
Higher Education Authority. 3

HEA (2013, January). Higher education key facts and figures 2011-12. Technical report, Higher
Education Authority. 3

Hembree, R. (1988). Correlates, causes, effects, and treatment of test anxiety. Review of Education
Research 58, 47–77. 1, 16

Herzog, A. R. and J. G. Bachman (1981). Effects of questionnaire length on response quality.
Public Opinion Quarterly 45, 549–559. 42

Herzog, S. (2006, Fall). Estimating student retention and degree-completion time: Decision trees
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Appendix A

Abstracts of Publications

Emanating from this Study

Section 1.7 listed the publications emanating from this study, specifically: an invited book

chapter (Pb1 ); two journal publications (Pb2 , Pb3 ) and four conference papers (Pb4 -

Pb7 ). This appendix contains the abstract from each of these publications.
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Pb1 . Gray, G., McGuinness, C. and Owende, P. (2015) Non-cognitive fac-

tors of learning as early indicators of students at-risk of failing in tertiary

education In Khine, M. S. (Eds.) Non-cognitive Factors and Educational At-

tainment, Sense Publishers.

Following from an invitation to contribute a chapter in the forthcoming book Non-

cognitive factors and Educational Attainment, the following abstract has been accepted.

The book is due for publication in late 2015 by an international publisher. Editor: Dr.

Myint Swe Khine, Adjunct Professor, Science and Mathematics Education Centre, Curtin

University, Perth, Australia.

Abstract: Non-cognitive factors of learning have been associated with an

effective learning disposition, describing attributes and behaviour that are

characteristic of a good learner. This chapter explores fifteen non-cognitive

factors of learning relating to personality, motivation, self-regulation and

learning strategies. These were chosen on the basis of being directly or indi-

rectly related to academic performance in tertiary education. Data on these

non-cognitive factors of learning was gathered using an online learner profiler

compiled from validated instruments in the public domain, and administered

during first-year student induction. Analysis was conducted on three years of

data (n=1,207) covering a diverse student population in terms of age, prior

academic performance and course of study.

The efficacy of learner profiling during first-year student induction to tertiary

education is reviewed, with a focus on identifying early indicators of students

at risk of failing in the first year of study. Relationships between each of the

non-cognitive factors of learning and academic performance are presented,

along with variations found when analysing subgroups by course of study, age

and gender. Significant differences between the learning profile of students

that failed and the learning profile of students that passed are considered.
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Pb2 . Gray, G., McGuinness, C., Owende, P., and Hofmann, M. (2016)

Learning Factor Models of Students at Risk of Failing in the Early Stage of

Tertiary Education, Journal of Learning Analytics, 3(2): 330-372, 2016

This manuscript was submitted to the journal of learning analytics in March 2015 in

response to a call for papers for a special section on multimodal learning analytics.

Abstract: This paper reports on a study to predict students at risk of fail-

ing based on data available prior to commencement of first year of study.

The study was conducted over three years, 2010 through 2012, on a stu-

dent population from a range of academic disciplines (n=1,207). Data was

gathered from both student enrolment data maintained by college admin-

istration, and an online, self-reporting, learner profiling tool administered

during induction sessions for students enrolling into the first year of study.

Factors considered included prior academic performance, personality, motiva-

tion, self-regulation, learning approaches, learner modality, age and gender.

Models were trained on data from the 2010 and 2011 student cohort, and

tested on data from the 2012 student cohort. A comparison of eight classifi-

cation algorithms found k-Nearest Neighbour achieved best model accuracy

when applied to a different student cohort (72%), but accuracies achieved by

other algorithms were similar, including a voting ensemble (71%) and SVM

(70%). Accuracies estimated using cross validation were higher. Correlations

between study factors and GPA were not indicative of factors significant in

classification models of students at risk of failing. Results indicated that

early modelling of first year students yielded informative, generalisable mod-

els that identified students at risk of failing.
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Pb3 : Gray, G., McGuinness, C., Owende, P., and Carthy, A. (2014) A

review of psychometric data analysis and applications in modelling of academic

achievement in tertiary education. Journal of Learning Analytics, 1(1):75-106,

2014.

This manuscript was accepted for publication in the inaugural issue of the Journal of

Learning Analytics.

Abstract: Increasing college participation rates, and diversity in student

population, is posing a challenge to colleges in their attempts to facilitate

learners achieve their full academic potential. Learning analytics is an evolv-

ing discipline with capability for educational data analysis that could enable

better understanding of learning process, and therefore mitigate these chal-

lenges. The outcome from such data analysis will be dependent on the range,

type and quality of available data, and the type of analysis performed. This

study reviewed factors that could be used to predict academic performance,

but which are currently not systematically measured in tertiary education. It

focused on psychometric factors of ability, personality, motivation and learn-

ing strategies. Their respective relationships with academic performance are

enumerated and discussed. A case is made for their increased use in learning

analytics to enhance the performance of existing student models. It is noted

that lack of independence, linear additivity and constant variance in the rela-

tionships between psychometric factors and academic performance suggests

increasing relevance of data mining techniques, which could be used to pro-

vide useful insights on the role of such factors in the modelling of learning

process.
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Pb4 . Gray, G., McGuinness, C., and Owende, P. (2014) An application

of classification models to predict learner progression in tertiary education.

4th IEEE International Advanced Computing Conference, Gurgaon, India, pp

549-554, February 2014.

This paper was presented online at that 4th IEEE International Advanced Computing

Conference, India.

Abstract: This paper reports on an application of classification models to

identify college students at risk of failing in the first year of study. Data

was gathered from three student cohorts in the academic years 2010 through

2012. Students within the cohorts were sampled from a range of academic

disciplines (n=1,074), and were diverse in their academic backgrounds and

abilities. Metrics used included data that are typically available to colleges

such as age, gender and prior academic performance. The study also consid-

ered psychometric indicators that can be assessed in the early stages after

enrolment, specifically, personality, motivation and learning strategies. Six

classification algorithms were considered. Model accuracy was assessed using

cross validation and was compared to outcomes when models were applied

to a subsequent academic year. It was found that mature students were

more complex to model than younger students. Furthermore, 10-fold cross

validation accurately estimated model performance when modelling younger

students only, but over-estimated model accuracy when modelling mature

students.

Pb5 . Gray, G., McGuinness, C., and Owende, P. (2014) Non-cognitive

factors of learning as predictors of academic performance in tertiary education.

In Gutierrez-Santos, S and Santos O. C, editors, WSEDM 2014 co-located with

the 7th International Conference on Educational Data Mining (EDM 2014),

London, July 4-7, 2014.

This paper was presented at the Non-Cognitive Factors & Personalization for Adaptive

Learning workshop at the 7th International Conference on Educational Data Mining.
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Abstract: This paper reports on an application of classification and regres-

sion models to identify college students at risk of failing in first year of study.

Data was gathered from three student cohorts in the academic years 2010

through 2012 (n=1,207). Students were sampled from fourteen academic

courses in five disciplines, and were diverse in their academic backgrounds

and abilities. Metrics used included non-cognitive psychometric indicators

that can be assessed in the early stages after enrolment, specifically factors

of personality, motivation, self regulation and approaches to learning. Mod-

els were trained on students from the 2010 and 2011 cohorts, and tested on

students from the 2012 cohort. Is was found that classification models iden-

tifying students at risk of failing had good predictive accuracy (> 79%) on

courses that had a significant proportion of high risk students (over 30%).

Pb6 . G, Gray, C. McGuinness, and P. Owende (2013) An Investigation

of Psychometric Measures for Modeling Academic Performance in Tertiary

Education. 6th International Conference on Educational Data Mining (EDM

2013), Memphis, July, 2013.

This paper was presented at the 6th International Conference on Educational Data

Mining.

Abstract: Increasing college participation rates, and a more diverse student

population, is posing a challenge for colleges in facilitating all learners achieve

their potential. This paper reports on a study to investigate the usefulness

of data mining techniques in the analysis of factors deemed to be significant

to academic performance in first year of college. Measures used include data

typically available to colleges at the start of first year such as age, gender

and prior academic performance. The study also explores the usefulness of

additional psychometric measures that can be assessed early in semester one,

specifically, measures of personality, motivation and learning strategies. A

variety of data mining models are compared to assess the relative accuracy

of each.
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Pb7 . Gray, G., McGuinness, C., and Owende, P. (2013) Investigating the

efficacy of algorithmic student modelling in predicting students at risk of failing

in tertiary education. Young researcher track, 6th International Conference

on Educational Data Mining (EMD 2013), Memphis, July, 2013.

This paper was presented at the young researcher track at the 6th International Con-

ference on Educational Data Mining.

Abstract: The increasing numbers enrolling for college courses, and in-

creased diversity in the classroom, poses a challenge for colleges in enabling

all students achieve their potential. This paper reports on a study to model

factors, using data mining techniques, that are predictive of college academic

performance, and can be measured during first year enrolment. Data was

gathered over three years, and focused on a diverse student population of

first year students from a range of academic disciplines (n ≈ 1,100). Initial

models generated on two years of data (n=713) demonstrate high accuracy.

Advice is sought on additional analysis approaches to consider.
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Appendix B

The Study Dataset

This appendix augments the details provided in Chapter 3 on the study participants and

the online learner profiler. The mission statement in Section B.1 was referenced in Section

3.2 as evidence of ITB’s commitment to encouragement of a diverse student population.

Section 3.2 also described how permission to use student data in this study was requested;

Section B.2.1 gives the paper consent form used and Section B.2.2 has the text from the

introductory page of the online profiler, which also requested consent to use participant

data in this study. Factors measured by the online profiler were discussed in Section 3.3.2;

Section B.2.3 lists the questionnaire items used. Finally Section B.3 illustrates how first

year GPA is calculated, as discussed in Section 3.3.3.
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B.1 ITB mission statement

The mission of the Institute is to serve its students and the community by meeting the

skills needs in the economy and increasing the level of participation in third-level education

and training, particularly in Dublin North-West and its environs.

The Institute will do this:

• by achieving consistently high standards of relevance and quality in teaching, re-

search, development and consultancy.

• by offering a welcoming and supportive environment to students from all educational

and social backgrounds and to adults wishing to increase or update their level of

technical skills.

The Institute is adopting admissions and student support policies to ensure that a

relatively high proportion of its students are ’non-standard entrants’ such as mature stu-

dents:

• applicants without Leaving Certificate qualifications who can meet entry require-

ments in other ways

• students with disabilities

• students from disadvantaged socio-economic backgrounds

B.2 Online learner profiler

B.2.1 Consent form

The following paper based consent form was given to all students before completing the

online questionnaire:

The Learning Styles questionnaire asks a range of questions based on factors that

affect how you study and how you learn. In addition, current research at the Institute

of Technology Blanchardstown is investigating if there is a link between these factors and

academic performance. This research is investigating group trends only, and will not be

investigating the profiles or academic performance of individual students.

I give permission for my details to be used anonymously for research into links between

learning styles and academic performance.
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Signed: Date:

Printed Name:

I also give permission for any relevant information to be seen by appropriate members

of the Assessment Services.

Signed: Date:

Printed Name:

B.2.2 Learner profiler: introductory pages

The following text is from the online profiler (www.howilearn.ie; Access code: 12345).

The profiler was available online for all students at ITB to use at any time. The study

dataset included profiling done during first year induction only.

This tool will ask you a number of questions, following which you will be told what

your learning style is, in other words how you learn best.

The tool does NOT record the answers you give to each question, just your learning

style which is determined from the answers you give.

The data gathered by this system is used to generate summary reports for each class,

informing lecturers of the range of learning styles in each class. Lecturers do not have

access to an individual’s profile. The data gathered will only be used for research into

group trends.

Please enter your e-mail:

Please enter Student Number:

Please enter your date of birth

Please select your gender : Male Female

What category of student are you? (Options: Apprentice, Full time, Part time, Post-

graduate, Other)

Which year/phase are you in? (Options: Year 1, Year 2, Year 3, Year 4, Year 5)

What month does your course start?: (Options: Jan, Mar, Jun, Sep)

Please select your course: (Options: all ITB courses were listed in a drop down box)

Current research at ITB is investigating if there is a link between learning profiles and

academic performance. Do we have your permission to compare your learning profile with

your end of year Grade Point Average (GPA)? This is an analysis into group trends only.

Individuals will not be identified: Yes No
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The following questionnaire contains 69 questions. Each question has at least two

answers. Select one answer for each question. Do not spend too much time thinking

about each question. The correct answer is generally your initial instinct. When you are

finished, you will get feedback on your learning style under various headings.

Click here to start the Test

B.2.3 Learner profiler: questionnaire items

This section includes the 69 items included in the online profiler. Table B.1 maps items

to their corresponding study factor.

Table B.1: Mapping learner profiler questions to study factors

Question range Factor

1-6 Conscientiousness
12-15 Extrinsic goal orientation
16-19 Group work
20-23 Intrinsic goal orientation
25-28 Learning approach
29-40 Learner modality
41-46 Openness
52-55 Self-efficacy
56-60 Meta cognitive self-regulation
61-63 Study effort
66-69 Study time

Please select one answer to each question

Question 1. I am always prepared

� Strongly agree

� Agree

� Neither Agree or Disagree

� Disagree

� Strongly Disagree

Question 2. I find it difficult to get down to work

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

127



Question 3. I often forget to put things back in their proper place

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 4. I leave my belongings around.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 5. I pay attention to detail

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 6. I like to do things according to a plan or schedule

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 12. I get the most satisfaction if I get good grades.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 13. I get great satisfaction from doing well, which drives me to work hard.

� Strongly agree

� Agree
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� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 14. It is important to show my family and friends that I can do well.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 15. If I can, I would like to get better grades than most of the people in my

class.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 16. The idea of doing a work presentation in groups

� appeals to you?

� does not appeal to you?

Question 17. Do you prefer to

� spend time on your own or with one other person?

� spend time in the company of others?

Question 18. Do you like to

� share ideas with other people?

� or work best on your own?

Question 19. Do you prefer to

� work as a part of a team?

� to get on with a piece of work on your own?

Question 20. I like classes where the material arouses my curiosity, even if it is more

difficult.

� Strongly agree

� Agree
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� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 21. I prefer work that is challenging so I can learn new things.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 22. If choosing a topic for an essay, I would pick a topic I can learn from,

even if it means more work.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 23. I get the most satisfaction if I thoroughly understand what I am studying.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 25. When preparing for an exam, would you

� hope to pass the exam by learning off the key points.

� make sure you understand the topic completely.

� use past papers to decide if you need to understand the material or just learn it off.

Question 26. Which of the following is more important to you?

� Try hard to understand course material.

� Try to pass the course while doing as little work as possible.

� Do well in assessments and exams.

Question 27. Which of the following describes you best?

� I will come to class interested to learn.

� I will find most classes boring.
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� I will come to class to find out how to get a good grade.

Question 28. Which of the following would you agree with most?

� I would only do extra reading if it was required to pass an exam.

� Extra reading is a waste of time and can be confusing

� I like spending time reading up on topics that interest me.

Question 29. Do you tend to remember

� faces?

� names?

Question 30. Do you prefer

� to get on with a practical task and try it out?

� read up about it first, so you know what you need to do?

Question 31. Do you prefer to get information in

� pictures, diagrams, graphs, or maps?

� a written format?

Question 32. Do you prefer working out solutions to problems

� by doing the task and then seeing how it works?

� by talking about the task first?

Question 33. Do you remember best

� what you see?

� what you hear?

Question 34. Do you prefer to

� listen to the music/radio/TV?

� play sport/go for a walk?

Question 36. Do you in your home or work area

� move your furniture several times in a year?

� like to keep the same arrangement?

Question 37. Do you have

� a place for everything and like everything to be in its place?

� tend to put things where they land?

Question 38. Would you tend to, if you were to hang a picture on a wall,

� carefully measure to be sure it is centered and straight?
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� put it where it looks right and move it if necessary?

Question 39. Do you tend

� to scan read when reading a new article or piece of work?

� to read every word carefully?

Question 40. Do you when making notes

� write everything out?

� make bullet points/key points?

Question 41. I love to daydream.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 42. I get excited by new ideas.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 43. I avoid philosophical discussions.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 44. I do not like poetry.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 45. I like art and creativity.
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� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 46. I rarely look for deeper meaning in things.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 53. I think I will be good at completing assessment work to a high standard.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 54. I am confident I can understand the more complex material that will be

taught on this course.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 55. I expect to do very well on this course.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 56. I set goals for each study period in order to direct my activities.

� Strongly agree

� Agree
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� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 57. During class, I often miss important points because I am thinking of

something else.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 58. When I am confused by something I am studying, I would try to go back

and figure it out.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 59. I often find that I have been studying for class but I dont know what it

was all about.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 60. Before studying a new topic, I often skim through it first to see how it is

organised.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 61. I am often so bored by what I am studying that I quit before I am

finished.
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� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 62. I would work hard to do well even if I do not like what I am doing.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 63. When course work is difficult, I give up or just study the easy parts.

� Strongly agree

� Agree

� Neither Agree nor Disagree

� Disagree

� Strongly Disagree

Question 66. When I am studying, I make good use of my time

� Yes

� No

� I don’t know yet

Question 67. It is hard to find time to study because of other activities

� Yes

� No

� I don’t know yet

Question 68. I plan to attend class regularly.

� Yes

� No

� I don’t know yet

Question 69. I have a regular place set aside for studying.

� Yes

� No

� I don’t know yet
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B.3 Procedure for calculating GPA

The following is from ITB policy document 4RAS04: Grade Point Average (GPA) calcu-

lations:

The aggregate performance of an individual student is represented by the student’s

Grade Point Average (GPA). In order to determine the GPA for a particular student, the

following calculation is carried out.

(A) A Grade Point Value is assigned to the alphabetic grade a student has gained for

each subject as illustrated in Table B.2.

(B) The Grade Point Value is multiplied by the Credits (available from the Approved

Course Schedule) to arrive at a Grade Credit Score for each subject/module.

(C) The Grade Credit Scores are then added together and divided by the credits for the

stage or semester to arrive at the GPA.

(D) Credits gained as a result of being awarded an X or a G in a module are not included

in the calculation of the GPA.

To pass a candidate must have 60 credits (unless exemption granted) and a GPA≥2.00.

Table B.3 illustrates a worked example of GPA calculations using steps A to D above.

Table B.2: Module grades and their corresponding grade point value

Grade Percentage band Grade Point Value Credits awarded

A 80 - 100 4.00 Yes
B+ 70 - 79 3.50 Yes
B 60 - 69 3.00 Yes
B- 55 - 59 2.75 Yes
C+ 50 - 54 2.50 Yes
C 40 - 49 2.00 Yes
D 35 - 39 1.50 Yes
F <35 0.00 No

One or more D grades can be compensated for with C+ or higher
grades in other subjects.
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Table B.3: Example of calculating grade point average (GPA)

Module A B C D (A x B)
Credits Grade Grade Point Value Grade Point Score

Construction Technology 10 B 3.0 30
Site Management 5 C 2.0 10
Civil Engineering Design 10 B 3.0 30
Mathematics 5 B 3.0 15
Advanced Surveying 10 B 3.0 30
Quality Management 5 C 2.0 10
Project 15 B 3.0 45

Total 60 170

GPA (170/60): 2.83 Merit
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Appendix C

Additional Data Exploration

This appendix includes four figures relating to study factors and two figures depicting

classification models.

1. Section 3.3.2.1 discussed that lack of normality amongst study factor distributions.

This is illustrated in histograms of student factors in Figure C.1. Figure C.1 also

gives the skewness and kurtosis of each factor, referenced in Section 4.2.3 to aid the

interpretation of outlier detection results.

2. Section 5.2 detailed correlations between study factors. Figure 5.2 included the

Pearson correlation coefficient only, confidence intervals for each correlation are given

in Figure C.2, indicating statistical significance.

3. The notched box plots of GPA by course in Figure C.3 were referenced in Section

4.3.4 as an illustration of variations in class imbalance found in subgroups by course.

4. Section 6.4 discussed the impact of study attributes on model predictive accuracy.

While model performances by subgroup were unreliable due to a small sample size,

correlation between GPA and study factor detailed in Figure C.5 informed sugges-

tions for future work detailed in Section 6.4.2.

5. Section 5.5.3 discussed classification models in terms of insights offered on how par-

ticipants were classified, and referenced the Decision Tree model (Model2012) in

Figure C.6 and the Back-propagation Neural Network model (Model2012) in Figure

C.7.
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Figure C.1: Histograms for each study factor
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Figure C.2: Heat map of correlations with confidence intervals for non-cognitive factors, all par-
ticipants
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Figure C.3: Notched box plots of GPA by course of study
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Con:Conscientiousness; Open:Openness; SE:Self-efficacy; IM:Intrinsic goal orientation; EM:Extrinsic goal orientation; SR: Metacognitive self-regulation; StE: Study effort; StT:Study

time; Deep: Deep learner; Shal: Shallow learner; Stra: Strategic learner; Group:Likes to work in groups; Gen=Gender; Vis:Visual modality; Aud:Auditory modality; Kin:Kinaesthetic

modality; B-all:all Business students; BGen:Business General; BwIT:Business with IT; BInt: International Business; Sport:Sports Management; C=all:all Computing students;

IT:Computing(IT); CDM: Creative Digital Media; Eng=all:all Engineering students; EngC:Engineering Common Entry; Elec:Electrical and Computer Engineering; Mech:Mechatronics;

SECT:Sustainable Electrical and Control Technology; Hor:Horticulture; H-all:all Humanities students; ACS:Applied Social Care; EC&E:Early Childcare and Education; SCD:Social and

Community Development. [18,23], [24,28], [29,60]: age ranges.

Figure C.4: Heat map of correlations between study factors and GPA, for subgroups by age, gender and course of study
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Figure C.5: Heat map of correlations with confidence intervals between non-cognitive factors and
GPA, by course of study
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Figure C.6: Decision Tree model (Model2012)
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Figure C.7: Back-propagation Neural Network model (Model2012). Line weightings reflect the
magnitude of input weights.
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Appendix D

Java and R Code Used

This Appendix gives code listings for Java and R code used in the study, specifically:

1. Section D.1 gives the Java code used to calculate factors of prior academic perfor-

mance as discussed in Section 3.3.1.

2. Correlation significance was verified using 1,999 Bootstrap Confidence Intervals with

BCa as explained in Section 3.4.1. Section D.2 gives the R code used.

3. The R code used for analysis of group differences detailed in Section 3.4.2 is given

in Section D.3.

4. As explained in Section 3.4.3, regression models predicting GPA were based on

optimal attribute subsets identified using an exhaustive search as implemented in

the regsubsets function in R. The code used is given in Section D.4.

5. The R code to test for significant differences in model accuracies using Fishers exact

test, and McNemar’s test, is given in D.5 and described in Section 3.5.10.

6. Section D.6 lists the R code used to generate SMOTE (synthetic minority over-

sampling) examples as explained in Section 4.3.4.
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D.1 Calculations for CAO points

/*

* To calculate the total number of CAO points and average LC for each student.

* @author Geraldine Gray

*/

package leavingcertdata;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.StringTokenizer;

import java.io.IOException;

import java.io.PrintWriter;

import java.text.DecimalFormat;

public class Main {

//Files

static PrintWriter pwResults;

static FileWriter fwResults;

static PrintWriter pwInput;

static FileWriter fwInput;

//array to hold top six results

static Integer Points[] = new Integer[6];

//Record if student was in a special category

static int special = 0;

static int numOfSubjects = 0;

static int numberOfStudents = 0;

static int totalPoints=0;

static Boolean firstStudent = true;

//variables for current and previous student numbers

static String oldStudent = null;

static String currentStudent = null;

public static void main(String[] args) {

//path and INPUT FILE name. Change path and filename as appropriate

String pathName = "/Volumes/PhDdata/leavingCert/";

String fileName = "SubjectsWithPoints2013.csv";

String strFile = pathName + fileName;

// initialise points array

initialisePointsArray();

// open output file and output column headings

openOutputFiles(pathName);

// process inputfile

readCsv(strFile);

closeFiles();

}

public static void initialisePointsArray() {

for (int i = 0; i < 6; i++) {

Points[i] = 0;

}

}

public static void openOutputFiles(String pathName) {

//open the five output files and write column headings

try {

// Write to OUTPUT FILE, change name as appropriate

fwResults = new FileWriter(pathName + "/3ResultsWithCAOPoints2013.csv");

pwResults = new PrintWriter(fwResults);

// output studentID and CAOPoints

pwResults.print("Id,");

pwResults.println("CAOPoints,NumberSubjects,AverageMark");

} catch (Exception e) {

System.out.println("Exception opening output file: " + e);

}

}

public static void readCsv(String strFile) {
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//open the output files and write column headings

try {

BufferedReader br = new BufferedReader(new FileReader(strFile));

String strLine = "";

StringTokenizer st = null;

String currentPoints = null;

String notNeeded = null;

// Ignore first line (column headings)

strLine = br.readLine();

//read comma separated file line by line

while ((strLine = br.readLine()) != null) {

st = new StringTokenizer(strLine, ";");

currentPoints = st.nextToken();

currentStudent = st.nextToken();

//Is it a new student? if so write out values for previous student and reset variables

if (!(currentStudent.equals(oldStudent))) {

calcCaoPoints();

special = 0;

numOfSubjects = 0;

totalPoints=0;

initialisePointsArray();

oldStudent = currentStudent;

}

//Process current row

updateCaoPoints(currentPoints);

}

//Process last student

oldStudent = currentStudent;

calcCaoPoints();

} catch (Exception e) {

System.out.println("Exception while reading csv file: " + e);

}

}

static void updateCaoPoints(String points) {

// if this is a special (no points) catch it here

if (points.equals("special")) {

special++;

} else {

numOfSubjects++;

//find current lowest number of points & its position

int smallest = Points[0];

int smallPosition = 0;

for (int i = 1; i < 6; i++) {

if (Points[i] < smallest) {

smallest = Points[i];

smallPosition = i;

}

}

// Is latest value greater than current lowest? if so replace current lowest

int pointValue = Integer.parseInt(points);

if (pointValue > smallest) {

Points[smallPosition] = pointValue;

//Calculate overall total for average LC

totalPoints=totalPoints+pointValue;

}

}

}

static void calcCaoPoints() {

int averageMark;

if (!(oldStudent == null)) {

numberOfStudents++;

//calculate CAO points by adding top 6 results

int CAOPoints = 0;

for (int i = 0; i < 6; i++) {

CAOPoints += Points[i];

//calculate average points of across all subject results

if (numOfSubjects==0)
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averageMark=0;

else

averageMark=totalPoints/numOfSubjects;

}

pwResults.println(oldStudent + "," + CAOPoints + "," + numOfSubjects + "," + averageMark);

}

}

static void closeFiles() {

try {

//Flush the output to the file

pwResults.flush();

pwResults.close();

fwResults.close();

} catch (Exception e) {

System.out.println("Exception while writing csv file: " + e);

}

}

}

D.2 Bootstrap Confidence Intervals using the Bias corrected

and accelerated method

library(boot)

#Read dataset

data<-read.csv("FinalDataset.csv",header=TRUE)

#optionally, calculate the bootstrap statistics on a subgroup within the dataset. Below defines subgroups for male and female:

#1 Males:

data<-data[data$gender==0,]

#2: Females

data<-data[data$gender==1,]

################################################################

#Select prior academic performance factors for students with leaving cert results

CAO<-data[data$CAOPoints>0,c("GPA","CAOPoints","MethodicalAverage","HumanitiesAverage","Maths","English","AppliedAverage","age")]

#Verify the correct number of rows are selected:

nrow(CAO)

#Define a function for each correlation required

fCAO <- function(CAO, i) cor(CAO[i, 1], CAO[i, 2])

fMaths <- function(CAO, i) cor(CAO[i, 1], CAO[i, 5])

fEng <- function(CAO, i) cor(CAO[i, 1], CAO[i, 6])

fNumerate <- function(CAO, i) cor(CAO[i, 1], CAO[i, 3])

fHum <- function(CAO, i) cor(CAO[i, 1], CAO[i, 4])

CAOapplied<-CAO[CAO$AppliedAverage>0,]

fApp <- function(CAOapplied, i) cor(CAOapplied[i, 1], CAOapplied[i, 7])

#Generate 1999 bootstrap statistics using correlation functions defined above

resultCAO<-boot(data = CAO, statistic = fCAO, R = 1999)

resultMaths<-boot(data = CAO, statistic = fMaths, R = 1999)

resultEng<-boot(data = CAO, statistic = fEng, R = 1999)

resultNumerate<-boot(data = CAO, statistic = fNumerate, R = 1999)

resultHum<-boot(data = CAO, statistic = fHum, R = 1999)

resultApp<-boot(data = CAOapplied, statistic = fApp, R = 1999)

#Calculate BCa confidence intervals, default is 95% confidence interval (conf=0.95)

boot.ci(resultCAO, index=1, type="bca")

boot.ci(resultMaths, index=1, type="bca")

boot.ci(resultEng, index=1, type="bca")

boot.ci(resultNumerate, index=1, type="bca")

boot.ci(resultHum, index=1, type="bca")
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boot.ci(resultApp, index=1, type="bca")

#check other confidence intervals, for example

boot.ci(resultApp, index=1, type="bca", conf=0.999)

boot.ci(resultApp, index=1, type="bca", conf=0.99)

##########################################################################################

#Select non cognitive factors (psychometric)

#Note: Before running these commands, update ’data’ to hold either the entire data, or the subgroup of interest)

PsyData<-data[,c("GPA","Conscientiousness","Openness","SelfEfficacy","ExtrinsicMotivation","IntrinsicMotivation","SelfRegulation",

"StudyEffort", "StudyTime", "DeepLearner", "StrategicLearner", "ShallowLearner", "GroupWork", "age", "gender", "Visual",

"Auditory", "Kinaesthetic")]

#verify the correct number of rows are selected:

nrow(PsyData)

#Define a function for correlations with GPA

fCon <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 2])

fOpen <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 3])

fSE <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 4])

fEM <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 5])

fIM <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 6])

fSR <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 7])

fStE <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 8])

fStT <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 9])

fDeep <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 10])

fStr <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 11])

fSh <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 12])

fGr <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 13])

fAge <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 14])

fGen <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 15])

fV <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 16])

fA <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 17])

fK <- function(PsyData, i) cor(PsyData[i, 1], PsyData[i, 18])

#Generate 1999 bootstrap statistics using correlation functions defined above

resultCon<-boot(data = PsyData, statistic = fCon, R = 1999)

resultOpen<-boot(data = PsyData, statistic = fOpen, R = 1999)

resultSE<-boot(data = PsyData, statistic = fSE, R = 1999)

resultEM<-boot(data = PsyData, statistic = fEM, R = 1999)

resultIM<-boot(data = PsyData, statistic = fIM, R = 1999)

resultSR<-boot(data = PsyData, statistic = fSR, R = 1999)

resultStE<-boot(data = PsyData, statistic = fStE, R = 1999)

resultStT<-boot(data = PsyData, statistic = fStT, R = 1999)

resultDeep<-boot(data = PsyData, statistic = fDeep, R = 1999)

resultStr<-boot(data = PsyData, statistic = fStr, R = 1999)

resultSh<-boot(data = PsyData, statistic = fSh, R = 1999)

resultGr<-boot(data = PsyData, statistic = fGr, R = 1999)

resultAge<-boot(data = PsyData, statistic = fAge, R = 1999)

resultGen<-boot(data = PsyData, statistic = fGen, R = 1999)

resultV<-boot(data = PsyData, statistic = fV, R = 1999)

resultA<-boot(data = PsyData, statistic = fA, R = 1999)

resultK<-boot(data = PsyData, statistic = fK, R = 1999)

#Generate 1999 bootstrap statistics using correlation functions defined above

#Default is 95% confidence interval (conf=0.95)

boot.ci(resultCon, index=1, type="bca")

boot.ci(resultOpen, index=1, type="bca")

boot.ci(resultSE, index=1, type="bca")

boot.ci(resultEM, index=1, type="bca")

boot.ci(resultIM, index=1, type="bca")

boot.ci(resultSR, index=1, type="bca")

boot.ci(resultStE, index=1, type="bca")

boot.ci(resultStT, index=1, type="bca")

boot.ci(resultDeep, index=1, type="bca")

boot.ci(resultStr, index=1, type="bca")

boot.ci(resultSh, index=1, type="bca")

boot.ci(resultGr, index=1, type="bca")
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boot.ci(resultAge, index=1, type="bca")

boot.ci(resultGen, index=1, type="bca")

boot.ci(resultV, index=1, type="bca")

boot.ci(resultA, index=1, type="bca")

boot.ci(resultK, index=1, type="bca")

#Check other confidence intervals, for example:

boot.ci(resultStT, index=1, type="bca", conf=0.999)

boot.ci(resultOpen, index=1, type="bca", conf=0.99)

#Alternatively, overwrite the functions above to check for

#correlations between psychometric factors themselves:

#Conscientiousness

fOpen <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 3])

fSE <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 4])

fEM <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 5])

fIM <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 6])

fSR <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 7])

fStE <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 8])

fStT <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 9])

fDeep <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 10])

fStr <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 11])

fSh <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 12])

fGr <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 13])

fAge <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 14])

fGen <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 15])

fV <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 16])

fA <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 17])

fK <- function(PsyData, i) cor(PsyData[i, 2], PsyData[i, 18])

#similarly for Openness which was the 3rd attribute, e.g.

fSE <- function(PsyData, i) cor(PsyData[i, 3], PsyData[i, 4])

fEM <- function(PsyData, i) cor(PsyData[i, 3], PsyData[i, 5])

. . .

#similarly for Self-efficacy which was the 4th attribute, e.g.

fEM <- function(PsyData, i) cor(PsyData[i, 4], PsyData[i, 5])

fIM <- function(PsyData, i) cor(PsyData[i, 4], PsyData[i, 6])

. . .

#similarly for Extrinsic goal, the 5th attribute, e.g.

fIM <- function(PsyData, i) cor(PsyData[i, 5], PsyData[i, 6])

fSR <- function(PsyData, i) cor(PsyData[i, 5], PsyData[i, 7])

. . .

#similarly for Intrinsic goal, the 6th attribute, e.g.

fSR <- function(PsyData, i) cor(PsyData[i, 6], PsyData[i, 7])

fStE <- function(PsyData, i) cor(PsyData[i, 6], PsyData[i, 8])

. . . .

#similarly for metacognitive self-regulation which was the 7th attribute, e.g.

fStE <- function(PsyData, i) cor(PsyData[i, 7], PsyData[i, 8])

fStT <- function(PsyData, i) cor(PsyData[i, 7], PsyData[i, 9])

. . . .

#similarly for Study effort, the 8th attribute, e.g.

fStT <- function(PsyData, i) cor(PsyData[i, 8], PsyData[i, 9])

fDeep <- function(PsyData, i) cor(PsyData[i, 8], PsyData[i, 10])

. . . .

#similarly for Study time, the 9th attribute, e.g.

fDeep <- function(PsyData, i) cor(PsyData[i, 9], PsyData[i, 10])

fStr <- function(PsyData, i) cor(PsyData[i, 9], PsyData[i, 11])

. . .

#similarly for Deep learner , the 10th attribute, e.g.

fStr <- function(PsyData, i) cor(PsyData[i, 10], PsyData[i, 11])

fSh <- function(PsyData, i) cor(PsyData[i, 10], PsyData[i, 12])

. . .

#similarly for Strategic learner, the 11th attribute, e.g.

fSh <- function(PsyData, i) cor(PsyData[i, 11], PsyData[i, 12])

fGr <- function(PsyData, i) cor(PsyData[i, 11], PsyData[i, 13])

. . . .

#similarly for Shallow learner, the 12th attribute, e.g.

fGr <- function(PsyData, i) cor(PsyData[i, 12], PsyData[i, 13])
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fAge <- function(PsyData, i) cor(PsyData[i, 12], PsyData[i, 14])

. . . .

#similarly for Group, the 13th attribute, e.g.

fAge <- function(PsyData, i) cor(PsyData[i, 13], PsyData[i, 14])

fGen <- function(PsyData, i) cor(PsyData[i, 13], PsyData[i, 15])

. . . .

#similarly for Age, the 14th attribute, e.g.

fGen <- function(PsyData, i) cor(PsyData[i, 14], PsyData[i, 15])

fV <- function(PsyData, i) cor(PsyData[i, 14], PsyData[i, 16])

. . .

#similarly for Gender, the 15th attribute, e.g.

fV <- function(PsyData, i) cor(PsyData[i, 15], PsyData[i, 16])

fA <- function(PsyData, i) cor(PsyData[i, 15], PsyData[i, 17])

. . .

#similarly for Visual, the 16th attribute, e.g.

fA <- function(PsyData, i) cor(PsyData[i, 16], PsyData[i, 17])

fK <- function(PsyData, i) cor(PsyData[i, 16], PsyData[i, 18])

#and Auditory with Kinesthetic

fK <- function(PsyData, i) cor(PsyData[i, 17], PsyData[i, 18])

D.3 Analysis of group differences
#The following codes was used in Analysis of group differences. It includes testing for normality using two or three subgroups,

#testing for equality of variance across two and three groups, t-test for two groups and ANOVA for three groups with post hoc test.

library(splines)

library(stats4)

library(mvtnorm)

library(VGAM)

library(lawstat)

library(plyr)atim}

#Full dataset

data<-read.csv("FinalDataset.csv",header=TRUE)

#Participants with leaving certificate results

dataLC<-data[data$CAOPoints>0,]

#1. Testing attributes means are normally distributed by generating 50 bootstrap samples of each attribute.

#Also testing the list of means have equal variance.

#Code here is for gender (2 groups) and GPA. Code for age group (three groups) is below:

#Variable ’col’ defines the attribute to test, change this to test other attributes.

col<-"GPA"

#The following lines define the subgroups. Change the conditions to define other subgroups

myColFemale<-data[data$gender>0.5,c(col)]

myColMales<-data[data$gender<0.5,c(col)]

#Generate 50 bootstrap samples for each subgroup:

resamplesFemale <- lapply(1:50, function(i)

sample(myColFemale, replace = T))

resamplesMale <- lapply(1:50, function(i)

sample(myColMales, replace = T))

#Calculate the mean for each sample

r.mean.female <- sapply(resamplesFemale, mean)

r.mean.male <- sapply(resamplesMale, mean)

#Test for normality

shapiro.test(r.mean.female)

shapiro.test(r.mean.male)

#Compare variances:

#Convert list of means to a dataframe, and rename the column to ’mean’

MeanFemale<-as.data.frame(r.mean.female)

MeanFemale<-rename(MeanFemale, c("r.mean.female"="mean"))

MeanMale<-as.data.frame(r.mean.male)

MeanMale<-rename(MeanMale, c("r.mean.male"="mean"))

#Add a gender column to each column of means
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females<-cbind(gender="female", MeanFemale)

males<-cbind(gender="male", MeanMale)

#Combine both list of means into one data frame

both<-rbind(females,males)

#Test for equal variance

levene.test(both$mean, both$gender)

######################################################

# 2. As above, testing attributes means are normally distributed by generating 50 bootstrap samples of each attribute,

# and testing the list of means have equal variance.

# Code here is for age groups (3 groups) and CAO points. Dataset is stored in ’dataC’.

#Variable ’col’ defines the attribute to test, change this to test other attributes.

col<-"CAOPoints"

#The following lines define the subgroups. Change the conditions to define other subgroups

myCol1<-dataC[dataC$age<=23,c(col)]

myCol2<-dataC[dataC$age<=28 & dataC$age>23,c(col)]

myCol3<-dataC[dataC$age>28,c(col)]

#Generate 50 bootstrap samples for each subgroup:

resamples1 <- lapply(1:999, function(i)

sample(myCol1, 852, replace = T))

resamples2 <- lapply(1:999, function(i)

sample(myCol2, 154, replace = T))

resamples3 <- lapply(1:999, function(i)

sample(myCol3, 201, replace = T))

#Calculate the mean for each sample

r.mean.1 <- sapply(resamples1, mean)

r.mean.2 <- sapply(resamples2, mean)

r.mean.3 <- sapply(resamples3, mean)

#Test for normality

shapiro.test(r.mean.1)

shapiro.test(r.mean.2)

shapiro.test(r.mean.3)

#Compare variances: Convert list of means to a dataframe, and rename the column the ’mean’

Mean1<-as.data.frame(r.mean.1)

Mean1 <-rename(Mean1, c("r.mean.1"="mean"))

Mean2<-as.data.frame(r.mean.2)

Mean2 <-rename(Mean2, c("r.mean.2"="mean"))

Mean3<-as.data.frame(r.mean.3)

Mean3 <-rename(Mean3, c("r.mean.3"="mean"))

#Add an age column to each column of means

group1<-cbind(age="young", Mean1)

group2<-cbind(age="mid", Mean2)

group3<-cbind(age="mature", Mean3)

#Combine both list of means into one data frame

both<-rbind(group1, group2, group3)

#Test for equal variance

levene.test(both$mean, both$age)

######################################################

#3. Running t.tests for two groups. The example here is running Welch’s t-test for gender.

t.test(data$GPA ~ data$gender, var.equal=FALSE)

t.test(dataLC$CAOPoints ~ dataLC$gender, var.equal= FALSE)

t.test(dataLC$English ~ dataLC$gender, var.equal= FALSE)

t.test(dataLC$Maths ~ dataLC$gender, var.equal=FALSE)

t.test(dataLC$HumanitiesAverage ~ dataLC$gender, var.equal= FALSE)

t.test(dataLC$AppliedAverage ~ dataLC$gender, var.equal= FALSE)

t.test(dataLC$MethodicalAverage ~ dataLC$gender, var.equal= FALSE)

t.test(data$Conscientiousness ~ data$gender, var.equal= FALSE)
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t.test(data$Openness ~ data$gender, var.equal= FALSE)

t.test(data$SelfEfficacy ~ data$gender, var.equal= FALSE)

t.test(data$IntrinsicMotivation ~ data$gender, var.equal= FALSE)

t.test(data$ExtrinsicMotivation ~ data$gender, var.equal= FALSE)

t.test(data$SelfRegulation ~ data$gender, var.equal= FALSE)

t.test(data$StudyEffort ~ data$gender, var.equal= FALSE)

t.test(data$StudyTime ~ data$gender, var.equal= FALSE)

t.test(data$DeepLearner ~ data$gender, var.equal= FALSE)

t.test(data$ShallowLearner ~ data$gender, var.equal= FALSE)

t.test(data$StrategicLearner ~ data$gender, var.equal= FALSE)

t.test(data$Visual ~ data$gender, var.equal= FALSE)

t.test(data$Auditory ~ data$gender, var.equal= FALSE)

t.test(data$Kinaesthetic ~ data$gender, var.equal= FALSE)

t.test(data$GroupWork ~ data$gender, var.equal= FALSE)

t.test(data$age ~ data$gender, var.equal= FALSE)

t.test(dataLC$LeavingCertAverage ~ data$gender, var.equal= FALSE)

######################################################

#4. Running ANOVA for three groups with Tukey post hoc test. The example here is for Age groups.

fit <- aov(GPA ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(Conscientiousness ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(Openness ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(SelfEfficacy ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(IntrinsicMotivation ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(ExtrinsicMotivation ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(SelfRegulation ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(StudyEffort ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(StudyTime ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(DeepLearner ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(ShallowLearner ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(StrategicLearner ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(Visual ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(Auditory ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(Kinaesthetic ~ ageCat, data=data)

summary(fit)

TukeyHSD(fit)

fit <- aov(CAOPoints ~ ageCat, data=dataLC)

summary(fit)

TukeyHSD(fit)

fit <- aov(AverageLC ~ ageCat, data=dataLC)
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summary(fit)

TukeyHSD(fit)

fit <- aov(Maths ~ ageCat, data=dataLC)

summary(fit)

TukeyHSD(fit)

fit <- aov(English ~ ageCat, data=dataLC)

summary(fit)

TukeyHSD(fit)

fit <- aov(MethodicalAverage ~ ageCat, data=dataLC)

summary(fit)

TukeyHSD(fit)

fit <- aov(HumanitiesAverage ~ ageCat, data=dataLC)

summary(fit)

TukeyHSD(fit)

fit <- aov(AppliedAverage ~ ageCat, data=dataLC)

summary(fit)

TukeyHSD(fit)

########################################################

# T-test results were confirmed using Wilcoxon paired test.

#Code below illustrates this for gender

males<-data[data$gender==0,]

malesLC<-dataLC[dataLC$gender==0,]

females<-data[data$gender==1,]

femalesLC<-dataLC[dataLC$gender==1,]

wilcox.test(males$GPA,females$GPA)

wilcox.test(malesLC$CAOPoints,femalesLC$CAOPoints)

wilcox.test(malesLC$English,femalesLC$English)

wilcox.test(malesLC$Maths,femalesLC$Maths)

wilcox.test(malesLC$HumanitiesAverage,femalesLC$HumanitiesAverage)

wilcox.test(malesLC$MethodicalAverage,femalesLC$MethodicalAverage)

wilcox.test(malesLC$AppliedAverage,femalesLC$AppliedAverage)

wilcox.test(males$Conscientiousness,females$Conscientiousness)

wilcox.test(males$Openness,females$Openness)

# . . . and similarly for other study attributes

########################################################

# ANOVA results were verified using Kruskal-Wallis.

# Post hoc used Wilcoxon paired tests using Holm adjustment.

#Code below illustrates this for GPA bands.

data<-read.csv("FinalDataset.csv",header=TRUE)

dataLC<-data[data$CAOPoints>0,]

kruskal.test(CAOPoints~GPA,data=data)

pairwise.wilcox.test(data$CAOPoints, data$GPA, p.adjust.method = "holm")

kruskal.test(AverageLC~GPA,data=dataLC)

pairwise.wilcox.test(dataLC$AverageLC, dataLC$GPA, p.adjust.method = "holm")

kruskal.test(Maths~GPA,data=dataLC)

pairwise.wilcox.test(dataLC$Maths, dataLC$GPA, p.adjust.method = "holm")

kruskal.test(English~GPA,data=dataLC)

pairwise.wilcox.test(dataLC$English, dataLC$GPA, p.adjust.method = "holm")

kruskal.test(ScienceAverage~GPA,data=dataLC)

pairwise.wilcox.test(dataLC$MethodicalAverage, dataLC$GPA, p.adjust.method = "holm")

kruskal.test(HumanitiesAverage~GPA,data=dataLC)

pairwise.wilcox.test(dataLC$HumanitiesAverage, dataLC$GPA, p.adjust.method = "holm")

kruskal.test(Conscientiousness~GPA,data=data)

pairwise.wilcox.test(data$Conscientiousness, data$GPA, p.adjust.method = "holm")

kruskal.test(Openness~GPA,data=data)

pairwise.wilcox.test(data$Openness, data$GPA, p.adjust.method = "holm")

# . . . and similarly for other study attributes

D.4 Linear regression
library(MASS)

library(leaps)
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#Choose a dataset:

#All participants

data<-read.csv("FinalDataset.csv",header=TRUE)

#Participants with leaving certificate results

data<-data[data$CAOPoints>0,]

#Participants with leaving certificate results and age <= 21

data<-data[data$CAOPoints>0 & data$age<=21,]

#Run regression model and plot results

models<-regsubsets(GPA~AverageLC+CAOPoints+ English+ Maths+ AppliedAverage+ HumanitiesAverage+ MethodicalAverage+Conscientiousness+

Openness+IntrinsicMotivation+ExtrinsicMotivation+ SelfEfficacy+SelfRegulation+StudyEffort+StudyTime+gender+GroupWork+age+DeepLearner+

ShallowLearner+StrategicLearner+Visual+Auditory,data=data,nbest=5)

plot(models, scale="r2")

D.5 Comparing model accuracies, Fisher and McNemar
Fisher’s exact test, confirmed using Chi-squared

#Define matrix columns, rows and data entries.

rnames2 <- c("XVal", "2012")

cnames2 <- c("Correct", "Incorrect")

#Define the contingency table: the following line is adjusted based on the performance of each algorithm

cells2 <- c(1144,352,393,153) #by row

#Create the contingency matrix

mymatrix <- matrix(cells2, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames2, cnames2))

# Fishers exact test using matrix created above

fisher.test(mymatrix, y = NULL, hybrid = FALSE,

alternative = "two.sided", conf.level = 0.95,

simulate.p.value = FALSE, B = 2000)

#Compare results with chi-squared test

chisq.test(mymatrix)

McNemar’s test with Holm correction

#McNemar’s test to compare algorithms if samples are dependent.

#Define matrix columns, rows and data entries.

rnames2 <- c("Alg1Correct", "Alg1InCorrect")

cnames2 <- c("Alg2Correct", "Alg2InCorrect")

#Define the contingency table: the following line is adjusted based on the performance of each algorithm

cells2 <- c(578,146,244,239) #by row

#Create the contingency matrix

mymatrix <- matrix(cells2, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames2, cnames2))

#Run McNemar’s test. Continuity correct should be set to TRUE for small error variances.

mcnemar.test(mymatrix, y = NULL, correct = FALSE)

#Post hoc test: create a vector of p-values, and adjust for family wise error, for example:

p <- c(0.7091, 0.8629, 0.5984, 0.6771,0.309,0.9601, 0.3934, 0.3901, 0,0.8305,0.6773,0.00017,0,0,0.00001)

p.adjust(p, method="holm")

D.6 Minority class balancing with SMOTE
library(grid)

library(lattice)

library(DMwR)

data<-read.csv("FinalDatasetAfterSetup.csv", header=TRUE, sep=";")

#data<-data[,c("GPA","AverageLC","CAOPoints","English","Maths","AppliedAverage","HumanitiesAverage","MethodicalAverage",

"Conscientiousness","Openness","IntrinsicMotivation","ExtrinsicMotivation","SelfEfficacy","SelfRegulation","StudyEffort","StudyTime",

"gender","GroupWork","age","DeepLearner","ShallowLearner","StrategicLearner","Visual","Auditory","Kinaesthetic")]

balData<-SMOTE(GPA ~ ., data, perc.under=200, k=5, perc.over=100)

write.csv(balData, file="FinalSmoteDataset.csv")
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