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Abstract

Field cancerisation (FC) is poten-

tially an underlying cause of poor

treatment outcomes of oral squa-

mous cell carcinoma (OSCC). To

explore the phenomenon using

Raman microspectroscopy, brush

biopsies from the buccal mucosa,

tongue, gingiva and alveolus of

healthy donors (n = 40) and from potentially malignant lesions (PML) of

Dysplasia Clinic patients (n = 40) were examined. Contralateral normal

samples (n = 38) were also collected from the patients. Raman spectra were

acquired from the nucleus and cytoplasm of each cell, and subjected to par-

tial least squares-discriminant analysis (PLS-DA). High discriminatory accu-

racy for donor and PML samples was achieved for both cytopalmic and

nuclear data sets. Notably, contralateral normal (patient) samples were also

accurately discriminated from donor samples and contralateral normal sam-

ples from patients with multiple lesions showed a similar spectral profile to

PML samples, strongly indicating a FC effect. These findings support the

potential of Raman microspectroscopy as a screening tool for PML using

oral exfoliated cells.

KEYWORD S

contralateral normal, field cancerisation, oral brush biopsy cytological samples, oral potentially

malignant lesions, partial least squares-discriminant analysis, Raman microspectroscopy,

sensitivity and specificity

1 | INTRODUCTION

Oral squamous cell carcinoma (OSCC) ranks as the 18th
most common cancer in the world and the eighth most
frequent cancer in males [1]. OSCC can arise de novo,
but is sometimes preceded by potentially malignant

Abbreviations: CIS, carcinoma in-situ; Ex, earlier user; LV, latent
variable; LOPOCV, leave one patient out cross validation; LOOCV,
leave one spectrum out cross validation; OSCC, oral squamous cell
carcinoma; PLS-DA, partial least squares-discriminant analysis; PCA,
principal components analysis; PML, Potentially malignant lesions; FC,
Field cancersation.
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lesions (PML), either leukoplakia (white patch) or
erythroplakia (red patch) [2]. It is estimated that ~50% of
oral cancers develop from PML [3]. The gold standard
method for oral dysplasia or cancer diagnosis is biopsy
followed by histopathological examination. The oral
mucosa is divided into three basic types of epithelium,
depending on the site and function; masticatory, lining
and specialised epithelium [4, 5]. Gingiva and hard palate
are the sites of the oral cavity which are subject to
mechanical forces associated with mastication. These
sites are covered by keratinising epithelium resembling
that of the epidermis covering the skin. The mucosa is
strongly attached to the underlying tissues by a collage-
nous connective tissue. Since the lips, buccal mucosa,
vestibule, alveolar mucosa, soft palate, floor of mouth,
and ventral surface of tongue are required to be flexible
to assist functions like chewing, speech, or swallowing of
a bolus, they are covered with a non-keratinising epithe-
lium. The underlying connective tissue is more elastic
and flexible when compared with the connective tissue of
the masticatory mucosa. The dorsal surface of the tongue
is a specialised epithelium, which can be represented as
keratinised and non-keratinised epithelium [4, 5]. This
epithelium is attached strongly to the muscle of the
tongue.

According to WHO 2017 guidelines, histopathologi-
cally, PML are graded based on a three-tiered grading
system namely mild, moderate, and severe dysplasia. Car-
cinoma in situ is considered equivalent to severe dyspla-
sia in this grading system. The stratified epithelial layer
of the oral mucosa is comprised of three layers of the epi-
thelium; basal/parabasal, intermediate (spinosum and
granulosum) and superficial layer. The superficial layer is
keratinised in the case of keratinising epithelium and
non-keratinised in the case of non-keratinising epithe-
lium. The basal layer is the only layer of epithelium
which has dividing cells, which mature and exfoliate on
the surface of the epithelium (superficial layer) [6]. In the
case of mild dysplasia, the changes are limited to the
lower one-third of the epithelium (basal and parabasal
layers), which exhibit cytological and/or architectural
alterations described by the WHO 2017 guidelines. Mod-
erate dysplasia shows disordered maturation up to the
mid portion of the spinous layer (middle third) of the epi-
thelium. Severe dysplasia/carcinoma in situ comprises of
irregular maturation extending to a level above the mid-
point of the epithelium (upper third) and may also
include the entire thickness of the epithelium [7, 8].

Even though extensive research has been carried out
in managing oral PML, the overall 5-year survival rate is
~50% for treated patients [3, 9]. The poor outcomes can
be explained by the concept of FC, a term which was
coined by Slaughter et al. [10] in 1953. The concept of FC

was demonstrated histologically by showing alterations
in the tissue surrounding squamous cell carcinoma for
oral cancer [10]. Since then, this concept has been used
to explain the development of multiple PML, tumours
and recurrent local lesions in various cancers including
oropharynx, oesophagus, lungs, stomach, colon, cervix,
anus, skin and bladder [11]. It has been observed, how-
ever, that oral cancer is most susceptible to this phenom-
enon, when compared to other cancers [11].

Different theories have been put forward to explain
the concept of FC and the phenomenon of secondary pri-
mary, or second primary tumours, a different tumour
unrelated to the primary tumour, arising in a different
oral site [3, 7, 12]. The classical theory suggests that mul-
tiple squamous cell lesions occur, independent of each
other, due to the fact that the entire oral cavity is exposed
to carcinogens such as tobacco at the same time, resulting
in the development of multiple independent genetic
mutations. Another is a clonal theory, which suggests
that a single cell is transformed or mutated that leads to a
large extended pre-malignant field by clonal migration of
dysplastic and altered cells. Oijen et al. [13] suggested
two methods of migration of cells: (a) migration of malig-
nant cells through the saliva (micro metastasis) and (b)
intraepithelial migration of the progeny of initially trans-
formed malignant cells.

The concept of FC not only explains the alteration in
tissues surrounding squamous cell carcinoma, but also
explains the development of multiple potentially malig-
nant changes and the persistence of abnormal tissue even
after surgery, which can lead to secondary primary
tumours and recurrences [3, 11–13].

Raman spectroscopy is a label-free methodology and
has shown good potential for oral cancer diagnosis [14–
29]. Previous studies have demonstrated cancer field
effects or malignancy-associated changes in skin as well
as in cervical organotypic raft cultures, using Raman
microspectroscopy [30, 31]. Singh et al. [32] acquired in
vivo Raman spectra from 84 subjects (722 spectra) under
five categories; healthy controls (no tobacco habit, no
cancer), habitual healthy controls (tobacco habit, no can-
cer), habitual cancer and contralateral normal (opposite
side of tumour) and non-habitual contralateral normal
(no tobacco habit with cancer). The results suggested that
the Raman spectral profile of the mucosa from healthy
controls was distinct, but habitual healthy controls had a
similar spectral profile to contralateral normal mucosa.
They also observed that non-habitual contralateral nor-
mal mucosa was different to habitual healthy controls.
The study demonstrated the efficacy of Raman micro-
spectroscopy to detect malignancy associated and tobacco
related spectral changes. Sahu et al. [15] have also dem-
onstrated the concept of FC in pellets of oral exfoliated
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cells using Raman microspectroscopy. They reported that
cells from healthy volunteers and healthy volunteers with
tobacco chewing habits could be discriminated from cells
from patients, both contralateral normal and tumour.
They also observed misclassifications between healthy
volunteers with tobacco chewing habits and contralateral
normal. Again, this demonstrated the concept of FC, and
the sensitivity of Raman microspectroscopy to explore
the phenomenon.

The development of new diagnostic markers for early
detection of FC would be helpful in preventing cancer
progression and the development of second primary
tumours or PML, even before morphological changes can
be seen [12]. Therefore, the present study has been car-
ried out to detect FC based on single cells from oral cyto-
logical samples through Raman microspectroscopy.

2 | MATERIALS AND METHODS

2.1 | Sample collection and processing

Oral brush biopsy cytological samples were collected
from the buccal mucosa and the ventral surface of the
tongue (n = 32) and from the alveolus and gingiva
(n = 8) in healthy volunteers. Samples were also collected
from identified potential malignant lesions of buccal
mucosa and tongue (n = 32) and gingival and alveolar
mucosa (n = 8) in the patient group from the Oral
Mucosa Dysplasia Clinic of the Dublin Dental University
Hospital. In both cases, contralateral normal samples
were collected, (n = 30) and (n = 8) respectively, from
the opposite side to the clinically evident lesions. There
was no evident lesion present on the contralateral side of
the lesion and these sites were not tissue biopsied.

Ethical approval was obtained from the St James'
Hospital/Adelaide and Meath Hospital Research Ethics
Committee (REC ref: 2013/23/05) to collect patient sam-
ples, and from Dublin Institute of Technology (now TU
Dublin) Research Ethics Committee (REC ref: 15/104) for
the collection of healthy donor samples. Written
informed consent was obtained from each donor and the
study was conducted in accordance with ethical princi-
ples founded in the Declaration of Helsinki.

According to WHO 2017 guidelines [7], histopatho-
logically, PML were graded based on a three-tiered grad-
ing system, namely mild, moderate, and severe dysplasia,
by the expert pathologists at St. James' Hospital, Dublin.
Five lesions were excised as part of the patient treatment.
The details for the patients are given in Table 1.

The healthy donors were screened before sampling by
a trained dentist who also supervised the sample collec-
tion to ensure no evident lesion was present inside the

oral cavity while collecting samples. The oral mucosa of
healthy donors was not biopsied.

The standardisation of the protocol, including col-
lection tool, sample preparation, Raman data acquisi-
tion and processing for Raman microspectroscopic
analysis of healthy donors has been reported earlier
[33]. The same protocol was applied to patients, to col-
lect samples from the potentially malignant lesion. In
order to collect the cells, at first the mouth was rinsed
with an alcohol-free mouthwash. Then, samples were
collected using an endocervical brush and placed into
ThinPrep vials. Sample slides were prepared using the
ThinPrep2000 processor with the aim of forming a
monolayer of cells for analysis.

2.2 | Raman spectral acquisition

The protocol for spectral acquisition has been previously
reported for ThinPrep samples [33, 34]. An XploRA con-
focal Raman instrument (HORIBA JobinYvon) was used
for spectral acquisition. Manual calibration of the grating
was done using the 520.7 cm−1 Raman band of crystalline
silicon. Dark current measurement and recording of the
substrate and optics signal was also performed, for data
correction. As a source, a 532 nm diode laser was focused
by a 100X objective (MPlanN, Olympus, NA = 0.9) onto
the sample (~12 mW at the focus) and the resultant
Raman signals were detected using a spectrograph with a
1200 g mm−1 grating coupled with a CCD. Raman spec-
tra were acquired in the 400 to 1800 cm−1 region with an
integration time of 30s per spectrum and averaged over
two accumulations. Spectra were acquired from the cen-
tre of the nucleus and at random from the cytoplasmic
regions of the cells. As ~10 to 25 cells were recorded per
slide, depending on the quality of the sample, it is
expected that any heterogeneity of the cytoplasm should
be averaged out.

2.3 | Raman spectral processing and
analysis

All the data processing and analyses were carried out
using Matlab (Mathworks), PLS-Toolbox (Eigenvector
Research Inc.) using in-house algorithms.

The glass spectral interference with the biological
Raman signals was removed using the extended multipli-
cative signal correction (EMSC) described by Kerr et al.
[35]. The EMSC algorithm also includes a polynomial
term, and order n = 5, was used to correct the baseline of
the Raman spectral data set. After glass correction, the
data sets for nucleus and cytoplasm were subjected to
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TABLE 1 Detailed information about the patients that were recruited to the study

Patient
identifier

Histology
(WHO 2017)

Sample collection
site

Other sites
with lesions

Smoking
history Alcohol history

CSP003 Moderate dysplasia Buccal mucosa Tongue Ex smoker Minimal (units not documented)

CSP006 Moderate dysplasia Tongue Never smoker 10 units/week

CSP009 Severe dysplasia Tongue Tongue Never smoker 2 units/week

CSP010 Carcinoma in situ Tongue Never smoker 10 units/week

CSP012 Mild dysplasia Tongue Buccal mucosa Ex smoker 12 units/week

CSP013 Moderate dysplasia Tongue Never smoker No details

CSP014 Moderate dysplasia Buccal mucosa Tongue Ex smoker No details

CSP015 Mild dysplasia Buccal mucosa Inner lip Smoker 15 units/week

CSP016 Mild dysplasia Tongue Labial Ex smoker 14 units/week

CSP017 No dysplasia Tongue Smoker Ex alcohol consumer

CSP020 Mild dysplasia Tongue Floor of mouth Ex smoker No alcohol

CSP021 No dysplasia Buccal mucosa Tongue Ex smoker No alcohol

CSP022 No dysplasia Buccal mucosa Never smoker 1 units/week

CSP023 Moderate dysplasia Buccal mucosa Ex smoker No alcohol

CSP025 Severe dysplasia Tongue Tongue Smoker 10 units/week

CSP027 No dsyplasia Buccal mucosa Smoker 8 units/week

CSP028 Mild Dysplasia Tongue Ex smoker 8 units/week

CSP029 Mild Dysplasia Buccal mucosa Ex smoker No details

CSP030 Moderate dysplasia Tongue Non-smoker Ex alcohol consumer

CSP032 Mild Dysplasia Tongue Non-smoker 1 unit/week

CSP035 Severe dysplasia Buccal mucosa Palate, Tongue Ex smoker No alcohol

CSP037 Moderate dysplasia Tongue Ex smoker 8 units/week

CSP038 Carcinoma in situ Buccal mucosa Non-smoker Ex alcohol consumer

CSP040 Mild dysplasia Tongue Soft palate Non-smoker No alcohol

CSP041 Severe dysplasia Tongue Smoker No alcohol

CSP042 Moderate dysplasia Buccal mucosa Soft palate, Tongue Smoker 100 units/week

CSP043 Mild dysplasia Buccal mucosa Gingiva Non-smoker Ex alcohol consumer

CSP044 Severe Dysplasia Tongue Buccal Mucosa Smoker 80 units/week

CSP046 Carcinoma in situ Buccal mucosa Alveolus Ex smoker 1 units/week

CSP047 Moderate dysplasia Tongue Smoker 6 units/week

CSP048 Moderate dysplasia Tongue Alveolus Smoker 10 units/week

CSP050 Moderate dysplasia Tongue Ex smoker 20 units/week reduced from
70 units/week at time of biopsy

CSP001 Moderate dysplasia Alveolus Smoker 7 units/week

CSP005 Moderate dysplasia Gingiva Buccal mucosa Ex smoker 8 units/week

CSP007 Carcinoma in situ Gingiva Never smoker 2 units/week

CSP011 Mild dysplasia Alveolus Buccal mucosa No details No details

CSP018 Moderate dysplasia Gingiva Hard palate, alveolus Ex smoker 6-7 units/week

CSP019 Moderate dysplasia Alveolus Ex smoker 2 units/week

CSP024 Moderate dysplasia Alveolus Buccal mucosa Ex smoker 5-10 units/week

CSP026 Severe dysplasia Gingiva Buccal mucosa Never smoker 1 units/week
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smoothing (Savitzky-Golay, order = 5; window =13), out-
lier removal using Grubb's test [36] and vector
normalisation.

Subsequently, pre-processed spectra of nucleus and
cytoplasm were subjected to partial least squares-discrim-
inant analysis (PLS-DA). It was used to build models in

TABLE 1 (Continued)

Patient
identifier

Histology
(WHO 2017)

Sample collection
site

Other sites
with lesions

Smoking
history Alcohol history

CSP031 Moderate dysplasia Gingiva Non-smoker No alcohol

CSP033 Mild dysplasia Alveolus Soft palate Smoker No alcohol

CSP034 Mild dysplasia Alveolus Smoker 60 units/week

Note: Ex- former user, Never- never used, Non-occasional user.

FIGURE 1 Representative Pap

stained samples from, A, healthy

volunteer, B, patient contralateral

normal sample (black arrows indicate

abnormal cells and yellow arrow

indicates a micronucleus) and, C,

patient potentially malignant lesion

sample (red arrow indicates

abnormal cell). Scale-bar = 20 μm

FIGURE 2 Mean spectra for healthy volunteers, potentially malignant lesion (lesion) and contralateral normal from buccal mucosa

and tongue, A, Cytoplasm and, B, Nucleus. Shading denotes SD
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order to train the data set. PLS-DA is a supervised form
of multivariate analysis which works as a linear classifier
that aims to maximise the variance between groups and
minimise the variance within groups. The loadings of the

discriminate, that is, latent variables (LV) can be plotted
to give more information on the source of the vari-
ance [37].

Cross validation of PLS-DA classification is carried
out in order to avoid over or under-fitting the model due
to inappropriate selection of the components used, and
secondly to determine the prediction error of the model.
In leave one patient out cross validation, (LOPOCV),
observations of one patient are excluded from the train-
ing set, one at a time, and the resulting model is evalu-
ated by using the left out observations as tests. The
procedure is repeated until all patients have been left out
once and the average performance across all interactions
is considered as the performance of the classification
model [38].

3 | RESULTS AND DISCUSSION

It has been demonstrated previously that oral site is a
confounding factor when developing classification

FIGURE 3 A, Score plot for healthy volunteer samples, and patient (potentially malignant lesion (lesion)) samples from cytoplasm of

buccal mucosa and tongue, B, Latent variable loading, C, Probability predictive plot, D, Confusion matrix

TABLE 2 Major Raman band positions [40, 41] and

assignments in oral cytology for healthy donors and patients for

buccal mucosa and tongue samples

Biomolecule Raman bands (cm−1)

Proteins 571, 625, 645, 650, 656, 752, 760, 828, 831 850,
856, 918, 921, 963, 985, 994, 1000, 1003,1006,
1028, 1034,1040, 1105, 1163, 1177, 1211, 1234,
1239,1242, 1273, 1279, 1324, 1355, 1366, 1406,
1411,1448, 1476, 1546, 1566, 1583, 1600, 1673

Lipids 515, 521, 591, 602, 608, 705, 715, 740, 7 71, 1065,
1079,1085, 1130, 1155, 1300, 1307, 1392, 1417,
1437, 1465, 1639, 1654,1745, 1750

Nucleic acids 725, 783, 915, 1177, 1180,1195, 1248, 1251, 1290,
1296, 1315, 1335, 1340, 1369, 1372, 1485,
1493, 1572, 1662, 1666
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models for PML and healthy donors [39]. Therefore, it
has been concluded that classification models should be
developed separately for buccal mucosa and tongue sam-
ples and for alveolus and gingiva samples.

At first for the present study, brush biopsy samples
were collected from buccal mucosa and tongue in healthy
donors (n = 32) and from patients (n = 32) with identi-
fied leukoplakia, erythroplakia or erythroleukoplakia,
showing mild, moderate or severe dysplasia on histologi-
cal analysis. In the case of contralateral normal samples
(n = 30), these samples were collected from the opposite
side to the lesion, where no visible lesion could be seen.
Selected oral cytological samples were Papanicolaou
(Pap) stained and assessed by a cytologist and oral
pathologist, and can be seen in Figure 1. A healthy volun-
teer sample can be seen in Figure 1A. A contralateral
normal sample, with dysplastic features, can be in Fig-
ure 1B (black arrows indicate abnormal cells and the yel-
low arrow indicates a micronucleus), whereas a lesion

sample with high grade dysplasia is shown in Figure 1C
(red arrow indicates abnormal cell).

The mean spectra of cytoplasmic and nuclear regions
from combined buccal mucosa and tongue samples of the
cells show slight variations in the 1000 to 1200 cm−1 and
1700 to 1800 cm−1 regions of the spectrum, which are
related to the lipidic content of the samples (Figure 2A,
B). It has been demonstrated, in our previous study, that
spectra from buccal mucosa and tongue share similar
spectral profiles as they have a similar epithelium [33].
Table 2 lists the major Raman band assignments used in
the present study for the healthy volunteer samples and
patient (potentially malignant lesion and contralateral
normal) samples.

At first, to compare the healthy volunteer samples
and the potentially malignant lesion samples, a classifica-
tion model was developed using PLS-DA with LOPOCV
for the cytoplasmic and nuclear data sets (Figure 3). In
this model, healthy volunteer samples could be

FIGURE 4 A, Score plot for healthy volunteer samples, and patient (potentially malignant lesion (lesion)) samples from nucleus of

buccal mucosa and tongue, B, Latent variable loading, C, Probability predictive plot, D, Confusion matrix
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discriminated from the potentially malignant lesion sam-
ples according to LV1 (Figures 3A and 4A). Positive load-
ings of LV1, corresponding to the healthy volunteer
samples, are rich in proteins, whereas negative LV1 load-
ings, corresponding to the potentially malignant lesion
samples, are rich in lipids for both the cytoplasmic and
nuclear data sets (Figures 3B and 4B). Increased lipidic
content of the dysplastic cells can be explained by the
fact, that during cell division, cells need energy, and this
requirement is fulfilled by upregulating lipid metabolism
within the cell. Therefore, in dysplasic or cancer cells, the
lipidic content increases [42, 43]. A more detailed analy-
sis [44] indicated that the observed differences were
largely due to a difference in palmitic acid/ceramide con-
tent. Ceramides are sphingolipids containing a sphingo-
sine, or a related base, to which a fatty acid is linked
through an amide bond. It is known that if ceramide syn-
thesis is mediated by a de novo pathway, it condenses
serine and palmitoyl-CoA (oxidised form of palmitic acid)
as precursors in the endoplasmic reticulum. As the

ceramide and palmitic acid spectra are quite similar,
many of their bands cancel each other, and the change in
relative heights of the bands at 1065 cm−1 (ceramide) and
1130 cm−1 (palmitic acid), and the emergence of the band
at 1740 cm−1 were observed in patient samples. The prob-
ability of the sample being classified as a healthy volun-
teer sample or a patient premalignant lesion sample is
shown in Figures 3C and 4C. It was observed that a few
potentially malignant lesion samples overlap with the
healthy volunteer samples and these were identified as
treated samples (ie, the lesion had been surgically
excised) (Figures 3C and 4C). The confusion matrix of
the model indicates 98% and 96% accuracy for the cyto-
plasmic and nuclear data set, respectively (Figures 3D
and 4D).

Notably, healthy volunteer samples could also be dis-
criminated from patient contralateral normal samples
using PLS-DA for the cytoplasmic and nuclear data sets
(Figures 5A and 6A). The positive loadings of LV1,
corresponding to the healthy volunteer samples, are rich

FIGURE 5 A, Score plot for healthy volunteer samples and patient (contralateral normal) samples from cytoplasm of buccal mucosa

and tongue, B, Latent variable loading, C, Probability predictive plot, D, Confusion matrix
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in proteins, whereas, negative loadings, corresponding to
the contralateral normal samples, are rich in lipids, for
both cytoplasm and nucleus (Figures 5B and 6B). The
probability of the sample being classified as a healthy vol-
unteer sample or a patient contralateral normal sample is
shown in Figures 5C and 6C. The confusion matrix of the
model indicates 99.2% and 99.7% accuracy for the cyto-
plasmic and nuclear data set, respectively (Figures 5D
and 6D). No misclassification was observed among con-
tralateral normal samples collected from the patients and
healthy volunteer samples.

This observation suggests that, even though the con-
tralateral normal samples were collected from the same
patients, with or without treatment (surgical excision of
the lesion), they have a distinctively different spectral
profile that could be attributed to the FC phenomenon.
In patients with PML, normal appearing sites with no
apparent lesions (contralateral normal samples) could be
discriminated from healthy volunteer samples. The

increase in lipidic content of the contralateral normal
cells when compared to healthy volunteers indicates that
their spectral profile is similar to cells from PML. Hence,
a PLS-DA model was developed for potentially malignant
lesion samples and contralateral normal samples from
patients.

The potentially malignant lesion samples and contra-
lateral normal samples from patients could be discrimi-
nated using PLS-DA for the cytoplasmic and nuclear data
sets (Figures 7A and 8A). For both cytoplasm and
nucleus, negative loadings of LV1, corresponding to the
potentially malignant samples, are rich in proteins,
whereas, positive loadings, corresponding to contralateral
normal samples, are rich in lipids and proteins (Fig-
ures 7B and 8B). The probability of the sample being clas-
sified as a potentially malignant lesion sample or a
contralateral normal sample is shown in Figure 7C, for
the cytoplasmic data set, and in Figure 8C for the nuclear
data set. The confusion matrix of the model indicates 77%

FIGURE 6 A, Score plot for healthy volunteer samples and patient (contralateral normal) samples from nucleus of buccal mucosa and

tongue, B, Latent variable loading, C, Probability predictive plot, D, Confusion matrix

BEHL ET AL. 9 of 15



and 84% accuracy for the cytoplasmic and nuclear data
set respectively (Figures 7D and 8D). The increase in
lipidic content in contralateral normal cells indicates that
due to FC, these cells have undergone molecular changes
similar to potentially malignant lesion cells. This explains
the significant overlap among contralateral normal sam-
ples and potentially malignant samples (Figures 7B
and 8B).

It was observed that some patients had developed
multiple lesions over the entire oral cavity (ie, high risk
patients), including the gingiva and alveolus, and in these
patients, the contralateral normal samples exhibited a
similar spectral profile to that of the potentially malig-
nant lesion samples in the case of buccal mucosa and
tongue sample. It is clinically important to verify the phe-
nomenon of FC for the oral cavity, regardless of the ori-
gin of the sampling site in order to improve the treatment
outcomes, even before morphological changes become
apparent in different oral sites of the oral cavity [12], and

so the phenomenon was investigated for samples from
gingiva and alveolus.

Brush biopsy samples were collected from gingiva
and alveolus sites in healthy donors (n = 8) and from
patients (n = 8) with identified leukoplakia,
erythroplakia or erythroleukoplakia, showing mild, mod-
erate or severe dysplasia on histological analysis. In
the case of contralateral normal samples (n = 8), these
samples were collected from the opposite side to the
lesion, where no visible lesion could be seen. It has
been demonstrated in our previous study [39][39] that
samples of gingiva and alveolus share a similar spec-
tral profile, as they have similar epithelium. Table 2
illustrates the major Raman band assignments used in
the present study for the healthy volunteer samples
and patient (potentially malignant lesion and contralat-
eral normal) samples.

Similar results were obtained for the gingival and
alveolar data set as for the buccal mucosa and tongue

FIGURE 7 A, Score plot for potentially malignant lesion (lesion) samples and contralateral normal samples from cytoplasm, B, Latent

variable loading, C, Probability predictive plot, D, Confusion matrix
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data set. The PLS-DA models for cytoplasm and nucleus
can be seen in Table 3. For healthy donor and potentially
malignant lesion samples, accuracies of 98% and 81%
were achieved for cytoplasm and nucleus respectively,
whereas, for healthy donor and patient contralateral nor-
mal samples, accuracies of 98% and 80% were achieved
for cytoplasm and nucleus, respectively, as shown in Fig-
ures S1–S4. It was observed that, unlike the buccal
mucosa/tongue model, the lipidic bands could be seen in
healthy donors in the case of gingiva/alveolar model. It is
known that gingiva of healthy donors is rich in lipids
such as ceramides, saturated fatty acids and cholesterol,
which act as an antibacterial barrier against infection [5,
45]. Since the alveolus is an integral part of gingiva, they
have a similar lipidic spectral profile. Thus, this explains
the high lipidic content for healthy volunteers in the LVs
for the cytoplasm and nucleus. Nevertheless, it is also
well-known that protein metabolism changes during

FIGURE 8 A, Score plot for potentially malignant lesion (lesion) samples and contralateral normal samples from nucleus, B, Latent

variable loading, C, Probability predictive plot, D, Confusion matrix

TABLE 3 Accuracy for i) Healthy donor vs potentially lesion

samples, ii) healthy donor vs patient contralateral normal samples

and iii) potentially lesion vs patient contralateral normal samples,

based on Raman spectra of cytoplasm (I) and nucleus (II)

Classes
Cytoplasm (I) Nucleus (II)
Accuracy (%) Accuracy (%)

i. Healthy donor vs
potentially malignant
lesion samples

98 81

ii. Healthy donor vs patient
contralateral normal
samples

98 80

iii. Potentially malignant
lesion vs patient
contralateral normal
samples

81 87
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cancer development. To fulfil the growth requirements of
the cells, the uptake of amino acids increases from the
extracellular matrix leading to increased protein synthe-
sis [46–49]. This explains the prominent protein bands in
the patient samples, as the contralateral normal samples

have shown increases in protein content similar to the
potentially malignant lesion samples.

Similar to potentially malignant lesion samples, the
contralateral normal samples have shown increases in
protein which indicates that these cells are also

FIGURE 9 Score plot for, A, potentially malignant lesion (lesion) samples and contralateral normal samples for the cytoplasmic data

set, B, for potentially malignant lesion (lesion) samples and contralateral normal samples highlighting high risk samples, C, highlighting

smoking or alcohol status, D, highlighting degree of dysplasia, and E, highlighting gender
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undergoing similar changes as the cells from the poten-
tially malignant lesion. Hence, a PLS-DA model was
developed for potentially malignant lesion samples and

contralateral normal samples from patients. Accuracies
of 81% and 87% were achieved for cytoplasmic and
nuclear data sets, as shown in Figures S5 and S6. A

FIGURE 10 Score plot for A, potentially malignant lesion (lesion) samples and contralateral normal samples for the nuclear data set,

B, for potentially malignant lesion (lesion) samples and contralateral normal samples highlighting high risk samples, C, highlighting

smoking or alcohol status, D, highlighting degree of dysplasia, and E, highlighting gender
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number of contralateral normal samples were found to
overlap with the potentially malignant lesion samples
(Figures S3a and S4a) and, as observed for the buccal
mucosa and tongue samples, these were identified as
high risk samples (ie, samples with multiple lesions).

This suggests that these high risk samples may have
an elevated probability of developing further lesions
when compared to the rest of the patients, as the contra-
lateral normal samples exhibit a similar spectral profile
to that of the potentially malignant lesion samples. This
can again be explained by the phenomenon of FC. Also,
similar to the observations for buccal mucosa and tongue
sites, in the model of gingiva and alveolus, the identified
high risk samples have multiple lesions in the oral cavity,
irrespective of the origin of the sampling site. Therefore,
it can concluded that the results obtained from buccal
mucosa and tongue samples are reproducible for gingiva
and alveolus samples. This establishes the fact that the
Raman spectroscopic technique can be used to detect the
phenomenon of FC for the entire oral cavity.

Additionally, the effect of smoking and alcohol con-
sumption habits, histopathology and gender were
explored in contralateral normal samples. This was done
to understand the factors contributing to the spectral
overlap between lesion samples and contralateral normal
samples in Figures 9A and 10A. No set pattern was
observed, related to the history of smoking or alcohol
consumption that could be an indicator of high risk sam-
ples for the cytoplasmic and nuclear data sets, respec-
tively (Figures 9C and 10C). Similarly, the degree of
dysplasia (mild, moderate and severe) of the potentially
malignant samples had no influence on the high risk
contralateral normal samples (Figures 9D and 10D). In
addition, gender was not observed to be a confounding
factor for high risk samples (Figures 9E and 10E). This
suggested that FC might not be related to gender,
smoking, alcohol consumption or degree of dysplasia of
the potentially malignant lesion. It was expected that FC
could arise due to the consumption of carcinogens [3, 11–
13] or may be due to gender [11, 50], but through Raman
spectroscopy these were not found to be a confounding
factor.

The present explorative study suggests that the con-
tralateral normal samples can be classified as spectrally
different from the healthy volunteer samples. The results
also suggest that the contralateral normal samples show
spectral features similar to the lesion samples in patients
who are at high risk of developing multiple lesions. This
can be attributed to the phenomenon of FC and can be
detected by Raman microspectroscopy. Thus, Raman
spectroscopy has shown its efficacy in the detection of
the FC effect in patients with oral PML.

4 | CONCLUSION

The phenomenon of FC has been known for some
decades, and if it is present, the patient can be at higher
risk of developing multiple lesions. This affects the over-
all treatment outcome of the patient as it is difficult to
detect visually, and in general, biopsies would not be con-
ducted from healthy sites of the oral cavity. Although
high specification, research grade Raman microscopes
can cost hundreds of thousands of Euro, increasingly,
more compact systems of adequately high specification,
are becoming available, reducing the initial capital outlay
to some tens of thousands of Euro. Furthermore, the
results of this study have paved the way for a possible
route towards rapid and convenient detection of FC with-
out the need of invasive biopsy. In future, it may lead to
better prognosis and management of patients with PML,
which in turn might increase the 5-year survival rate.
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