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A B S T R A C T

Members of the voltage-gated K+ channel subfamily (Kv1), involved in regulating transmission between neurons
or to muscles, are associated with human diseases and, thus, putative targets for neurotherapeutics. This applies
especially to those containing Kv1.1 α subunits which become prevalent in murine demyelinated axons and
appear abnormally at inter-nodes, underlying the perturbed propagation of nerve signals. To overcome this
dysfunction, akin to the consequential debilitation in multiple sclerosis (MS), small inhibitors were sought that
are selective for the culpable hyper-polarising K+ currents. Herein, we report a new semi-podand – compound 3
– that was designed based on the modelling of its interactions with the extracellular pore region in a deduced
Kv1.1 channel structure. After synthesis, purification, and structural characterisation, compound 3 was found to
potently (IC50 = 8 µM) and selectively block Kv1.1 and 1.6 channels. The tested compound showed no apparent
effect on native Nav and Cav channels expressed in F-11 cells. Compound 3 also extensively and selectively
inhibited MS-related Kv1.1 homomer but not the brain native Kv1.1- or 1.6-containing channels. These col-
lective findings highlight the therapeutic potential of compound 3 to block currents mediated by Kv1.1 channels
enriched in demyelinated central neurons.

1. Introduction

Voltage-gated K+ channels of the Shaker subfamily (Kv1) are key
players in controlling neuronal excitability and synaptic transmission.
Hence, their alteration by either mutation or expression levels is asso-
ciated with an array of human diseases referred to as K+ channelo-
pathies [1–3]. Kv1 channels are tetrameric (α4 β4) sialoglycoproteins
(Mr ~ 400 kDa) and were first purified from mammalian brain using
polypeptide blockers, α dendrotoxin (αDTX) or dendrotoxin K (DTXK)
[4,5]. When expressed in vitro, each of the major Kv1 α subunit genes
[Kv1.1–1.8] form homo-tetrameric channels exhibiting distinct bio-
physical and pharmacological profiles [6]. In vivo, neuronal Kv1
channels are located along the axons mainly as hetero-tetramers and
their kinetics as well as patterns of expression are modulated by cyto-
plasmically-associated auxiliary β proteins [7–9]. Only a subset of the
possible oligomeric combinations of Kv1 channels has been isolated
from mammalian brain, including humans [10–13]. This suggests that
native synthesis and/or assembly are restricted. Among all Kv1

channels expressed in neuronal membranes, the Kv1.2 is the most
prevalent in forming heterotetramers with other Kv1 α subtypes
(mainly with Kv1.1 and to a lesser extent with Kv1.4 and 1.6) or, in
smaller proportions, as homomeric Kv1.2 channels [10,13] Noticeably,
there is preponderance in these preparations of the less abundant Kv1.1
subunit in oligomers with Kv1.2.

The voltage-dependent delayed-rectifier members of the Kv1
channel family play an important role in rapid restoration of the neu-
ronal resting membrane potential, after depolarization. Both Kv1.1 and
1.2 channels are considered low-voltage-activated channels that open
with small depolarizations at or below resting potential [14,15].
Nevertheless, the homomeric Kv1.1 channels expressed in mammalian
cells activates at more negative potentials compared with its Kv1.2
counterparts [16,17]. This shift was confirmed when Kv1.1 α subunits
were sequentially substituted with Kv1.2 subunits [18]. Such a differ-
ence in the voltage-dependence of activation of Kv1.1 and 1.2 would
confer the rapid conduction of high-frequency action potentials ex-
hibited between neurons [19,20]. Therefore, dysfunction or absence of
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Kv1.1 and 1.2 subtypes, in particular Kv1.1, is associated with various
neurological disorders including epilepsy and episodic ataxia [2].

Kv1 members exposed on demyelinated axons in patients suffering
from multiple sclerosis (MS) contribute to abnormal propagation of
nerve signals resulting in debilitating muscle weakness [6,16]. K+

channels containing Kv1.1 and Kv1.2 α subunits have been found to be
abnormally over-expressed outside the nodes of Ranvier in demyeli-
nated axons of optic nerve, from a cuprizone-induced mouse model of
MS [16]; importantly, the associated abnormal conductivity could be
near-normalised by attenuating the Kv1.1-mediated currents with
DTXK. These findings guided our efforts to develop a small, extra-
cellular inhibitor (compound 1) targeting such K+ channels to ame-
liorate MS-related symptoms [21]. These results indicate that up to two
compounds could interact in the outer pore of Kv1 channels. Herein,
analysis of structure–activity relations (SAR) led to the design of a new
candidate (compound 3), a dimer of compound 1, which was shown
electrophysiologically to be most potent on Kv1.1 homomeric channels
like those in a rodent MS model.

2. Results and discussion

2.1. Rational design of compound 3

In our earlier work [21], [2,2′-((5,5′(di-p-topyldiaryldi-(2-pyrrolyl)
methane)bis(2,2′carbonyl)bis (azanediyl)) diethaneamine.2HCl] (com-
pound 1) (Fig. 1) was identified and characterised as a candidate to
specifically block the extracellular pore of a homomeric Kv1.1 channel.
It was shown to selectively inhibit this protein, recombinantly ex-
pressed in mammalian cells, with an IC50 ~ 15 µM, to induce a positive
shift in the voltage-dependency of the K+ current activation and slow
its kinetics. Also, channels containing two or more Kv1.1 α subunits
proved susceptible to compound 1. Results of modelling investigations
predicted a high number of localized interactions between compound 1,
the selectivity filter and inner turret region residues of the channel.
However, these studies highlighted an issue that compound 1 cannot
take full advantage of all these important interactions with residues
within the channel due to size constraints. Accordingly, the Hill slope
observed for compound 1 in our earlier investigation [21] lay between
1.5 and 1.7, indicating that two molecules may be binding to the Kv1.1
channel. This observation led us to consider the possibility of covalently
linking two dipyrromethane subunits together (as in the postulated
compound 2, Fig. 1) at the para positions of 1, in the hope of enhancing
selectivity and binding efficiency. However, initial attempts to in-
troduce a reactive group at the para position in the phenyl groups of the

dipyrromethane scaffold in compound 1, proved unsuccessful. Further
efforts failed to introduce functionality into the carboxylic acid of the
dipyrromethane scaffold via condensation with various substituted
benzophenone derivatives and pyrrole. Hence, a convenient synthetic
route to compound 2 was not available.

An alternative new molecule, compound 3, outlined in Fig. 2, was
proposed. It would possess the required two dipyrromethane moieties
within the structure that are linked with a rigid isophthaloyl amide
linker; the latter should reduce the degree of freedom of rotation of the
dipyrromethanes relative to each other. There are a series of key
structural and functional differences between the proposed compound 3
and the putative compound 2 (Figs. 1 and 2) including the replacement
of one of the phenyl groups in the dipyrromethanes of compound 2 with
a methyl group in compound 3. This proposed change should not sig-
nificantly affect binding since the previous modelling of compound 1
with Kv1.1 demonstrated that only one of the tolyl groups made direct
π-π interactions with Tyr 379, whilst the second tolyl remained on the
peripheral region of the pore (see 2-D plot in [21]). Thus, removal of
one of the tolyl substituents from compound 1 in theory should not
disrupt its interaction with the protein. The substitution of the para
methyl group in the phenyl ring in compound 2 with an amide nitrogen
in compound 3 is a second change in the sub-structure of the dipyrro-
methane. To determine if the latter would be a viable candidate,
docking with Kv1.1 was undertaken, using the homology models pre-
viously employed for compound 1.

Modelling (see Fig. 3a) revealed that the proposed isophthaloyl
amide linker positions the two dipyrromethanes of compound 3 into the
centre of the pore region of the channel, thereby, spatially aligning
these two moieties against the corresponding residues in the protein
matrix. Perhaps, the most interesting discovery from the modelling of
compound 3 interacting with Kv1.1 is that, unlike our previously re-
ported lead compound 1, compound 3 shows proximity to Tyr 379 on
all the chains. Since Tyr 379 is unique to Kv1.1 and absent from Kv1.2
–1.6, this intimate interaction observed with compound 3 should result
in its enhanced selectivity for Kv1.1 over the other channels.

The ligand plot (Fig. 3b) indicates all the molecule-protein inter-
actions predicted for compound 3 with Kv1.1. A major observation
made from the ligand plot is the optimal hydrogen bonding (HB) be-
tween the Tyr379 and both the amide plus the terminal amine moiety of
the side group of compound 3 (Fig. 3b). More detailed analysis of the
modelling of compound 3 with the previously established rat Kv1.1
homology model (Fig. 3a) confirmed that the presence of a single
phenyl unit in the dipyrromethanes could be sufficient for direct π-π
interactions with Tyr 379 in the channel. Furthermore, there was also

Fig. 1. The structure of compound 1 and that proposed for compound 2.
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strong interaction between the terminal amine groups of compound 3
and the Asp 377 residues on two of the chains (A and B) and a potential
HB between compound 3 and Tyr 375 on one of the chains (C).

2.2. Synthesis and purification of compound 3

The synthetic route for the preparation of compound 3 is outlined in
Scheme 1. The first step involved the coupling of isophthaloyl chloride
(4) with 4-aminoacetophenone (5), using TEA in THF at room tem-
perature to give compound 6 in 85% yield. Condensation of compound
6 with pyrrole was initially performed using the published procedure
[21] that involves BF3.(OEt)2 in methanol; unfortunately, only trace
quantities of compound 7 were formed. The yield of the latter was in-
creased by condensing compound 6 in freshly distilled-pyrrole with
trifluoroacetic acid (12% volume in place of BF3.(OEt)2) at 70 °C over
four hours; this gave 28% recovery of compound 7 after repeated
chromatography. Conversion of compound 7 to 8 was achieved by
treating the former with trichloroacetic anhydride (TClAA) and DMAP
in CH2Cl2 to give the final product in 68% yield, after chromatography.

The final two steps in the synthesis of compound 3 involved treating
compound 8 with N-Boc ethylenediamine (5 equivalents) in anhydrous
CH2Cl2 at 0 °C to which 4 equivalents of TEA were added dropwise. After
addition, the solution was allowed to heat to room temperature and
stirred overnight. The resultant precipitate was filtered and washed
thoroughly with both diethyl ether and CH2Cl2. The collected precipitate
was then suspended in anhydrous CH2Cl2 at 0 °C and 4 M HCl in dioxane
was added dropwise at 0 °C. Once the addition was complete, the reac-
tion was allowed to stir overnight at room temperature. The resulting
precipitate formed during the reaction was isolated by filtration and
washed with diethyl ether to give compound 3 in 84% yield. Its struc-
tural characterisation is detailed in the Appendix (Supplementary data)

2.3. Preferential selectivity and potent blockade by compound 3 of
homomeric Kv1.1 and Kv1.6 channels but not a Kv1.6 - containing
heteromer

To measure the reactivity of compound 3 with Kv1 channels, those
containing the major α subunits found in the mammalian brain [6,13]

Fig. 2. Schematic structure of the new semi-podand N,N’bis isophthalamide, compound 3.

Fig. 3. A docked model of compound 3 with the pore region of Kv1.1 channel. (a) Compound 3 (in green) docked into the rat Kv1.1 homology model. Red illustrates
chain A, blue relates to chain B, cyan indicates chain C and orange is chain D of the subunits. The image was generated using Pymol (The PyMOL Molecular Graphics
System). (b) 2D ligand-plot of compound 3 docked onto the rat Kv1.1 homology model, illustrating the deduced interactions with numbered amino acids in the
channel protein, generated by LigPlot ([22]

A. Al-Sabi, et al. Bioorganic Chemistry 100 (2020) 103918
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were expressed in HEK-293 cells and their K+ currents recorded, using
whole-cell voltage patch-clamp (Fig. 4a and b).

Representative K+ current traces, in the absence or presence of
10 μM compound 3, revealed a considerable inhibition of Kv1.1
(69 ± 1%, n = 6) and a lesser extent for Kv1.3 (11 ± 2%, n = 4)
channels whilst being ineffective towards Kv1.2 or 1.4 homomers. Also,
the Kv1.6-mediated current was reduced by 10 μM compound 3
(62 ± 11%, n = 3), close to that of Kv1.1, but not by compound 1.
However, compound 3 proved unable to inhibit a transiently expressed
heteromeric channel possessing one copy of Kv1.6 subunit
(Kv1.4–1.2–1.2–1.6, Fig. 4a) which mimic those present in neurons
[6,13,23].

The dose-dependence for the blockade of Kv1.1 by compound 3
revealed an IC50 value of 8 ± 0.4 μM (n = 6); a Hill slope of
1.1 ± 0.1 indicates only unimolecular binding between the channel
and compound 3. These results illustrate that a single molecule of

compound 3 is solely interacting with the tetramer channel, thus, va-
lidating our earlier hypothesis. The comparative results seen with
compound 3 and the previously reported compound 1 are highly in-
teresting; compound 3 is almost twice as potent for the Kv1.1 channel
than the smaller compound 1, again in accordance with our earlier
prediction [21]. Moreover, compound 3 displayed a lower level of in-
hibition of Kv1.3 compared to compound 1. This outcome is note-
worthy because the ratio of the extent of inhibition by compound 1
under the same conditions for Kv1.1 and Kv1.3 channels was reported
as 1 this has increased to ~ 4 for compound 3. Notably, the inhibitory
effect of compound 3 on the Kv1.1 channel is associated with sig-
nificant slowing of its activation kinetics [~16 times; 2 ± 0.1 ms
before and 33 ± 2.3 ms after 10 µM compound 3, P < 0.001n = 4,
respectively] [see current traces in Fig. 4(a)]. In comparison, compound
3 showed a lower decrease in the activation kinetics of Kv1.3-mediated
currents ~ 11 times [1.42 ± 0.01 ms before and 1.6 ± 0.07 ms after

Scheme 1. Full schematic of the synthesis of compound 3: (i), TEA, THF, room temperature, 24hr; (ii) pyrrole, TFA, reflux, 4 hr; (iii) TClAA, DMAP, CH2Cl2, room
temperature; (iv) N-Boc ethylenediamine, TEA, CH2Cl2, room temperature and (v) 4 M HCl in dioxane CH2Cl2 room temperature.

A. Al-Sabi, et al. Bioorganic Chemistry 100 (2020) 103918
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Fig. 4. Selective inhibition by compound 3 of currents mediated by various Kv1 channels, expressed in HEK-293 cells. (a) Representative current traces from Kv1.1,
1.2 and Kv1.6 homomeric and Kv1.4–1.2–1.2–1.6 channels in the absence (black) and presence of 10 μM compound 3, generated by a step voltage from the holding
potential to 20 mV. (b) Summary of the dissimilar pharmacological profiles of five Kv1 channels shown for 10 μM compound 3. Notably, Kv1.1 and Kv1.6 were
inhibited significantly, with a minimal extent for Kv1.3, whereas Kv1.2 and 1.4 proved insensitive. (c) Representative dose–response curve, obtained from Qpatch
recording, for Kv1.1 inhibition by compound 3. Some of the error bars fall within the data points. The IC50 values are given in the text. (d) The histograms summarise
the selectivity of compound 3 (10 µM; filled bars) over compound 1 in inhibiting each K+ current.

Fig. 5. Compound 3 does not inhibit Nav or Cav channels in F-11 cells. (a) Native Nav channels (black traces) were insensitive to 10 µM compound 1 or 3 (grey
traces) at −30 mV potentials. The bar-diagram summarises the lack of inhibition of Nav currents by either compound (n = 4 for all). Experiments were conducted
with 100 µM Cd2+ and internal 125 mM Cs+ to block native Cav and Kv channels, respectively. (b) Native Cav channels (black traces) recorded in the presence of
1 µM TTX to block Nav and Cs+ for inhibiting K+ channels, respectively, are shown for compound 1 or 3 (grey) at −30 mV (for Nav channels) and −40 mV (for Cav
channels) potentials. The adjacent diagram reveals a significant ~ 33% reduction of Ca2+ currents by compound 1 (grey) compared to that of control currents (clear;
P < 0.001, n = 4 for all), and the absence of any inhibition of Cav currents by compound 3 (black).

A. Al-Sabi, et al. Bioorganic Chemistry 100 (2020) 103918
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10 µM compound 3, P = 0.0646, n = 3, respectively]. These data re-
veal the notably similar inhibition pattern, particularly the slowing of
activation kinetics by compounds 3 and 1 [21] with more prominent
inhibition exerted by compound 3.

Next, concatenated Kv1.1 and/or Kv1.2 channels were evaluated for
inhibition by compound 3 of Kv1 channels (Fig. 4d) resembling those in
demyelinated neurons ([16] in comparison to compound 1. Only Kv1.1
homo-tetramers and some heteromeric Kv1.1-enriched channels (those
with 3 copies of Kv1.1) are inhibited regardless of their arrangement in
the tetramer. Notice a significant difference between the blockade by
compound 3 of homo-tetrameric Kv1.1 channel [66 ± 1% (n = 3)]
compared to Kv(1.1)3–1.2 channels [Kv1.1–1.1–1.1–1.2: 8 ± 1%
(n = 3) and Kv1.1–1.2–1.1–1.1: 8 ± 0.5% (n = 3); p < 0.0001,
each]. This compound lacks significant reactivity towards channels
with two, one or no copies of Kv1.1 subunit in the tested tetramers
[Kv1.1–1.1–1.2–1.2: 3 ± 0.4% (n = 3), Kv1.1–1.2–1.2–1.2:
3 ± 0.1% (n = 3) and Kv1.2–1.2–1.2–1.2: 2 ± 0.1% (n = 3), re-
spectively]. On the other hand, compound 1 equally inhibits tetrameric
channels containing two Kv1.1 subunit [Kv1.1–1.1–1.2–1.2: 15 ± 2%
(n = 5)] or three copies of Kv1.1 subunits irrespective of their positions
[Kv1.1–1.1–1.1–1.2: 15 ± 3% (n = 4) and Kv1.1–1.2–1.1–1.1:
17 ± 3% (n = 7)]. Compound 1 showed no apparent inhibition of
Kv1.1–1.2–1.2–1.2 channel: 4 ± 1% (n = 4) or tetrameric Kv1.2
channel: 2 ± 0.03% (n = 4). These data reveal that compound 3 is a
more selective blocker of homotetrameric Kv1.1 channel compared to
its precursor. To evaluate the reactivity of compound 3 (in comparison
to 1) with Nav and Cav channels, DRG hybridoma cell line (F-11) was
used because it is known to be enriched with such channels; these in-
clude subtypes concerned with pain transduction: Nav1.6, Nav1.7 and
Nav1.8 and most Cav channels (mainly Cav 3.3, 3.2, 2.2, 2.1 and 1.2)
[24]. Neither of the candidates inhibited native TTX-sensitive Nav
currents (such as Nav 1.6 or Nav 1.7) in F11 cells (Fig. 5a). Only
compound 1 showed a partial block of the Cav channels (Fig. 5b).

Collectively, these findings further emphasise the selective nature
and specificity of compound 3 in blocking Kv1 channels without af-
fecting native neuronal Nav and Cav channels.

As Kv1.1 homotetramers have been found only to be expressed in
demyelinated neurons, these channels are considered a promising
target for small extracellular blockers to normalize reduced excitability,
hence, potentially ameliorate symptoms in MS. In fact, the abnormal
conductivity in demyelinated axons were nearly normalized by at-
tenuating the Kv1.1-mediated currents with the available selective
blocker (DTXK) of Kv1.1 homotetramers [16]. Unfortunately, the avid
DTXK peptide toxin cannot be considered as a potential neurother-
apeutic. Towards this end, we were encouraged to develop synthetic
inhibitors selective for such MS-associated channels. A rational design
using SAR analysis led initially to the formation and characterization of
compound 1, that showed selectivity for Kv1.1 channels [21]. This
encouraged us to suspect that linking two copies of compound 1, in a
para position, could enhance selectivity and binding efficiency to re-
gions at the selectivity filter to residues in the inner turret region of the
Kv1.1 channel. In the present study, a dimeric form of compound 1,
with a covalent linker inserted created the formation of compound 3.

As predicted, compound 3 was shown to have double the potency
towards Kv1.1 with a Hill slope ~ 1, confirming a single molecule
binding to a Kv1.1 channel. It is not surprising that compound 3 inhibits
Kv1.1 and 1.6 channels since both share similarity in key interacting
residues at the inner turret region (Tyr 379 in Kv1.1 and Tyr 429 in
Kv1.6). As Kv1.6-enriched channels are not found in native or demye-
linated neuronal preparations [10–13,16], such cross-reactivity seen
with compound 3 should not prove to be an issue. Also, compound 3
has no apparent effect on native Nav and Cav channels expressed in F-
11 cells, unlike compound 1 which exhibited some inhibition of Cav
current. This is an advantage of compound 3 in being specific for Kv1.1-
containing channels and not cross-react with other native ion channels.
On the other hand, the dual effect of both compounds, by inhibiting K+

currents and slowing the activation kinetics of blocked channels found
to be advantageous in overcoming the hypo-excitability and accelerated
the activation kinetics seen in demyelinated optic axons [16]. Inter-
estingly, compound 3, unlike its precursor, showed to be a more se-
lective blocker of homo-tetrameric Kv1.1 than Kv1.1-containing chan-
nels (with 1–3 Kv1.1 copies). The therapeutic usage of 4-aminopyridine
(4-AP) is limited by being non-selective between Kv1 channel types and
causing seizures [25]. Unlike 4-AP, compound 3 is exclusively reactive
with Kv1.1 and devoid of the effect on the most prevalent subtype,
Kv1.2; this is an extra advantageous feature especially being selective
for those channels only associated with demyelinated neurons, and not
natively-expressed varieties in nearby healthy neurons.

3. Conclusions

This work demonstrated that the dimeric compound 3 is a pre-
ferential inhibitor of Kv1.1 channels relative to compound 1. Its design
was based on in silico and electrophysiological investigations that es-
tablished two copies of compound 1 are needed to block the extra-
cellular pore region of Kv1.1 channel. This hypothesis was validated by
the observation that compound 3 displays a more potent and selective
blockade of Kv1.1-enriched channels, found in demyelinated neurons
(see below). Such inhibition is also associated with slowing the acti-
vation kinetics of the channels. Although compound 3 displays twice
the inhibitory efficacy of compound 1 on Kv1.1, it also inhibits Kv1.6.
The latter seems to result from a key interaction with a Tyr in the inner
turret region of Kv1.6, as this same residue also exists in the inner turret
of Kv1.1. Fortuitously, homomeric Kv1.6 has not been detectable in
brain synaptic membrane [8]. Furthermore, compound 3 offers an ad-
ditional advantage of interacting with heteromeric channels possessing
three copies of Kv1.1 or Kv1.1 homomers; importantly, these are the
channels shown to be expressed on demyelinated neurons and re-
sponsible for their hypo-excitability [16,21]. Moreover, compound 3
does not affect Nav or Cav channels, at least at the 10 µM tested. These
collective findings highlight the therapeutic potential of compound 3 to
block currents mediated by Kv1.1 channels enriched in demyelinated
central neurons.

4. Experimental section

4.1. Chemistry

4.1.1. N1, N3-bis(4-acetylphenyl)-1,3-benzenedicarboxamide compound 6
To a 250 mL round bottom flask, 4.3 g (32.5 mmol) of 4-aminoa-

cetophenone (5) was added and dissolved in 45 mL of anhydrous THF.
After adding anhydrous TEA (2.5 mL), the reaction mixture was chilled
to 0 °C and stirred; isophthaloyl chloride (4) (3.0 g 14.8 mmol) was
dissolved in 30 mL of anhydrous THF and added dropwise to the stirred
solution. The reaction was stirred for 4 h before filtering the precipitate.
After washing the precipitate with 5x50 mL H2O and 5x50 mL of
CH2Cl2, it was dried to give 6 as a white solid in 85% yield (5.02 g).

1H NMR (400 MHz) δ (DMSO- d6) 10.7 (2H, s, NH) 8.5 (1H, s, CH)
8.1 (2H, m, CH) 7.9 (8H, dd, p-Phenyl-H) 7.7 (1H, t, CH) 2.4 (6H, s,
CH3) 13C NMR (100 MHz, DMSO- d6) 196.6, 165.4, 143.4, 134.8, 132.1,
131.1, 129.3, 128.8, 127.2, 119.5, 26.5.

4.1.2. Compound 7
To a 100 mL round bottom flask, 1 g (2.49 mmol) of 6 was added,

followed by 15 mL (216 mmol) of freshly-distilled pyrrole. TFA (2 mL)
was added dropwise and stirred at 70 °C for 4 h. The reaction was
quenched with 5 mL of TEA and stirred at room temperature for 20
mins. Unreacted pyrrole was removed under high vacuum at 50 °C to
leave a black tar-like oil. The crude reaction mixture was purified twice
by silica gel chromatography, eluted with hexane: ethyl acetate (3:2);
after removal of the solvent under reduced pressure, compound 7 was
obtained as a beige solid in 28% yield (450 mg).
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1H NMR (400 MHz) δ (DMSO- d6) 10.4 (6H m, NH pyrrole + NH
amide) 8.5 (1H, s, CH) 8.1 (2H, m, CH) 7.7 (5H, d, phenyl-H + CH) 7.0
(4H, d, phenyl-H) 6.7 (4H, m, pyrrole-H) 5.9 (4H, s, pyrrole-H) 5.6 (4H,
m, pyrrole-H) 2.0 (6H, s, CH3)13C NMR (100 MHz, DMSO- d6) 165.8,
145.2, 138.7, 137.9, 136.1, 131.5, 129.5, 128.3, 127.9, 120.4, 118.1,
107.2, 106.8, 44.8, 28.9

4.1.3. Compound 8
To a 50 mL round bottom flask, 200 mg (0.316 mmol) of compound

7 was added with 18 mg (0.158 mmol) of DMAP. These were suspended
in 10 mL anhydrous CH2Cl2, chilled to 0 °C and placed under an argon
atmosphere. To this mixture was added dropwise 0.288 mL
(1.58 mmol) of trichloroacetic anhydride and the reaction mixture al-
lowed to stir at room temperature for 2 h. The reaction was then
stopped by the addition of aqueous NaHCO3 and the organic layer
washed with brine (2x10 mL); the organic layer was dried over MgSO4
and the solvent removed under reduced pressure. The resulting crude
product was then purified by silica gel column chromatography, eluting
with ethyl acetate and hexane (1:3) to give 8 as a white solid in 68%
yield (0.2614 g).

1H NMR (400 MHz) δ (DMSO- d6) 12.2 (4H, s, NH-pyrrole) 10.5
(2H, s, NH-amide) 8.5 (1H, s, CH) 8.1 (2H, m, CH) 7.8–7.7 (5H, d,
phenyl-H + CH) 7.3 (4H, m, pyrrole-H) 7.0 (4H, d, phenyl-H) 6.1 (4H,
m, pyrrole-H) 2.1 (6H, s, CH3) 13C NMR (100 MHz, DMSO- d6) 171.8,
165.0, 147.8, 141.0, 137.7, 135.0, 130.7, 128.6, 127.3, 127.0, 122.3,
121.2, 120.4, 111.3, 95.3, 45.2, 27.5.

4.1.4. Compound 3
To a 25 mL round bottom flask was added 150 mg (0.125 mmol) of

8 and 5 mL of anhydrous CH2Cl2; the mixture was placed under an
argon atmosphere. To this was added dropwise 0.094 mL (0.592 mmol)
of N-Boc ethylenediamine and the reaction mixture allowed to stir for
10 mins. Anhydrous TEA (0.082 mL, 0.592 mmol) was then added and
the mixture stirred for 24 h at room temperature under an argon at-
mosphere. The resulting precipitate was vacuum filtered using a glass
frit and washed thoroughly with CH2Cl2 to give a white/beige solid
(144 mg). This precipitate (100 mg) was placed in a 25 mL round
bottom flask, followed by the addition of 5 mL of anhydrous CH2Cl2; the
mixture was then placed under an argon atmosphere and chilled to 0 °C.
After the addition of 1 mL of 4 M HCl in dioxane was complete (addi-
tion is done at 0 °C), the reaction was left stirring for 24 h at room
temperature. The precipitate that formed was vacuum filtered and
washed with CH2Cl2 to give compound 3 in 84% yield.

1H NMR (400 MHz) δ (DMSO- d6) 11.2 (4H, s, NH-pyrrole) 10.6
(2H, s, NH-amide) 8.7 (1H, s, CH) 8.3 (4H, t, NH-amide) 8.1 (2H, m,
CH) 8.0 (12H, s, NH3+) 7.7 (5H, d, phenyl-H + CH) 6.9 (4H, d, phenyl-
H) 6.7 (4H, m, pyrrole-H) 5.9 (4H, m, pyrrole-H) 3.3 (8H, m, CH2) 2.9
(8H, m, CH2) 2.0 (6H, s, CH3)

HR-MALDI MS: Calculated (M−4HCl: 976.4820) Observed (M + 1-
4HCl: 977.4899)

4.2. Molecular biology

4.2.1. DNA constructs
cDNAs for rat Kv1.1. 1.2, 1.3, 1.4 and 1.6 were kindly provided by

Professor Olaf Pongs (Institute for Neural Signal Transduction,
University of Hamburg, Germany). Concatenation of four α Kv1.1 and/
or Kv1.2, Kv1.4 with Kv1.2 and Kv1.6 subunits as a single ORF was
accomplished using an inter-subunit linker derived from the un-
translated regions (UTRs) of the Xenopus β-globin gene (GenBank® ac-
cession number J00978) [26,27] as reported previously [21]

4.2.2. Expression of Kv1 channels in HEK293 cells
Kv1.1, 1.2, 1.3, 1.4, and 1.6, Kv1.1-homotetramers, Kv1.2-homo-

tetramers, Kv1.1–1.2–1.1–1.1, Kv1.1–1.1–1.1–1.2, Kv1.1–1.1–1.2–1.2,
and Kv1.1–1.2–1.2–1.2 channels were stably expressed in HEK-293

cells (American Type Culture Collection) [21]. Kv1.4–1.2–1.2–1.6
channel [23]. was transiently transfection into HEK-293 cells using
Trans-293® transfection reagent (Mirus Bio LLC, Madison, WI, USA).

4.2.3. Electrophysiological recordings and data analysis
Whole-cell voltage clamp was performed as previously outlined

[18,28], except where specified. In the conventional patch clamp
system [EPC10 amplifier (HEKA Elektronik, Lambrecht/Pfalz, Ger-
many)], the recording pipette was filled with an internal solution that
contained (in mM): 95 KF, 30 KCl, 1 CaCl2, 1 MgCl2, 11 EGTA, 10
HEPES, 2 K2ATP (pH 7.2 with KOH), having fire-polished tips of re-
sistances between 2 and 5 MΩ. Composition of the external (bath)
medium (in mM) was: 135 NaCl, 5 KCl, 2 CaCl2, 2 MgCl2, and 5 Hepes,
and 10 sucrose (pH 7.4 with NaOH). A correction was made for liquid
junction potential (+7 mV). Leakage and capacitive currents were
subtracted on-line using the P/4 subtraction protocol. Currents were
filtered at 1 kHz and sampled at 10 kHz. Only cells with a K+ current
(IK) of > 1nA were chosen for experimentation, to avoid interference
from endogenous outward currents (< 200 pA at + 20 mV potential),
and having series resistances < 10 MΩ throughout the experiments.
Whole-cell currents were measured at a holding potential of − 90 mV,
and then depolarized to + 20 mV for 300 ms or stepped from the
holding potential in + 10 mV increments to + 80 mV. Currents from
the Kv channels tested were calculated from averaged steady-state
currents after 200 ms of activation. For Kv1.4, currents were de-
termined from the averaged peak after activation.

Automated whole-cell voltage clamp system (QPatch 16, Sophion
Bioscience, Ballerup, Denmark) was performed as previously outlined
[18], using the same internal and external solutions as in the conven-
tional system. Inhibition by compounds was determined by the Hill
equation fitting 9 concentrations. The results obtained with the QPatch
16 were confirmed by the conventional electrophysiological recordings.
Compounds for testing were dissolved in the extracellular solution as
stock solutions of 10 mM and stored at −20 °C. These were diluted in
the extracellular solution in amber tubes to desired concentrations be-
fore being applied directly to the recording chamber (0.5 mL) at a flow
rate of ~ 2 mL/min.

Electrophysiological results were re-plotted and fitted using Igor pro
6 (WaveMetrics, Lake Oswego, OR, USA). Data are reported as
mean ± S.E.M.; n values refer to a number of individual cells tested.
Statistical significance was evaluated by an unpaired two-tailed
Student’s t-test, using data obtained from at least three independent
experiments. P values < 0.01 were considered significant.

4.2.4. Screening of endogenous voltage-activated Na+ (Nav) and
Ca2+(Cav) channels

F-11 cells (DRG neuroblastoma mouse cell line, N18TG2, ECACC)
were cultured using Dulbecco's modified Eagle’s medium supplemented
with 10% deactivated foetal bovine serum and 1% penicillin–strepto-
mycin solution (Sigma-Aldrich) Wicklow, Ireland. Native Nav channels
(tetrodotoxin-sensitive [24], were pharmacologically isolated by ex-
posing the cells to 100 μM Cd2+, whereas isolation of inward Ca2+

current was achieved by including 1 μM TTX in the extracellular re-
cording solution. Native K+ currents were blocked by replacing K+

with equal molarity of Cs+ in the internal recording solution (125 mM
[Cs]i). Inward Na+ and Ca2+ currents were calculated from the average
current peaks at −30 mV and −40 mV, respectively.

4.3. Computation

A homology model for the rat Kv1.1 channel was developed and
validated, as previously described [21,29]. For ligands, Accelrys Dis-
covery Studio 3.5 (Release 3.5, Accelrys Inc., San Diego, USA), was
utilised to enumerate tautomers, stereoisomers, and conformations.
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4.3.1. Molecular docking.
AutoDock 4 was used for molecular docking with flexible ligands

[30,31] Flexible residues in the protein were defined as residues
375–381 in each monomer [29]. A cubic grid of 140 Å× 140 Å× 140 Å
around the ion pore was constructed using the Autogrid program, with a
grid point step of 0.375 Å. Default parameters were implemented in
Autodock4 with 50 docking runs, while ga_num_evals was set to
25,000,000 and ga_num_generations fixed at 27,000. The AutoDock
Tools program [32] was employed for the generation of input files. The
conformations showing lower free energy of binding for each ligand were
further analyzed.
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