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Abstract: For visually impaired people (VIPs), the ability to convert text to sound can mean a new
level of independence or the simple joy of a good book. With significant advances in optical character
recognition (OCR) in recent years, a number of reading aids are appearing on the market. These
reading aids convert images captured by a camera to text which can then be read aloud. However, all
of these reading aids suffer from a key issue—the user must be able to visually target the text and
capture an image of sufficient quality for the OCR algorithm to function—no small task for VIPs. In
this work, a sound-emitting document image quality assessment metric (SEDIQA) is proposed which
allows the user to hear the quality of the text image and automatically captures the best image for OCR
accuracy. This work also includes testing of OCR performance against image degradations, to identify
the most significant contributors to accuracy reduction. The proposed no-reference image quality
assessor (NR-IQA) is validated alongside established NR-IQAs and this work includes insights into
the performance of these NR-IQAs on document images. SEDIQA is found to consistently select the
best image for OCR accuracy. The full system includes a document image enhancement technique
which introduces improvements in OCR accuracy with an average increase of 22% and a maximum
increase of 68%.

Keywords: image quality assessment; image quality metrics; NR-IQAs; D-IQA; OCR accuracy; OCR
prediction; OCR improvements; visual aids; visually impaired; reading aids; document images;
text-based images

1. Introduction

With advances in smartphone technology, particularly in camera quality, several visual
aids for VIPs are emerging [1,2] with Microsoft’s Seeing AI as the current market front-
runner. These assistive technologies range from navigation aids [3] to object detectors [4]
and readers [5]. However, this last task has embedded in it reliance on OCR accuracy
and, therefore, on image quality. This means that the user’s performance (hand motion,
visual acuity, etc.) will affect the performance of the reader. Since these readers are both
hand-held and designed for people with visual impairments, this is a fundamental issue
that needs to be addressed.

To solve this issue, automatic processing can be done to improve OCR performance [6,7],
but even the best performing pre-processors cannot achieve high OCR accuracy out of
a low-quality image. Therefore, it is necessary to also assess the image quality before
attempting OCR, and so a robust image quality assessment (IQA) metric is needed.

For this application, in the absence of a reference image, no-reference image quality
assessment (NR-IQA)—otherwise known as “blind” IQA—is required. Most established
NR-IQAs concentrate on perceptual image quality [8] but it has been found that these
are not suitable for the application of document images, as the degradations that affect
text-based content, and subsequently, OCR accuracy, can be quite different, and what
is considered “high quality” in a scene image does not correlate with document image
quality [9]. In fact, in previous work by the author [10], an unexpected reverse relationship

J. Imaging 2021, 7, 168. https://doi.org/10.3390/jimaging7090168 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-9175-7855
https://doi.org/10.3390/jimaging7090168
https://doi.org/10.3390/jimaging7090168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7090168
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7090168?type=check_update&version=1


J. Imaging 2021, 7, 168 2 of 18

was discovered between established NR-IQAs such as BRISQUE (Blind Referenceless
Image Spatial Quality Evaluator [11]), NIQE (Natural Image Quality Evaluator [12]) and
PIQE (Psychovisually-based Image Quality Evaluator [13]) and document image quality,
with the metrics reporting lower quality results for ideal images than for their scanned
counterparts.

A number of blind document image quality assessors (D-IQAs) have been developed
to date. Some concentrate on specific degradations such as compression [14] or blur [15,16],
while others concentrate on perceptual quality [17–19]. More recently, methods have
tended towards learning [20–23]. However, trained networks can be slow and are affected
by the size and diversity of the training dataset. Some promising work has emerged in
the area of screen content quality [24–26] and, in this application area, a relationship was
found between entropy and text-based image quality [27]. Other direct quality measures
concentrate on the gradient of the image [28,29]. To date, no NR-IQA-based OCR accuracy
predictors [30–35] pick up on the four major sources of OCR accuracy reduction: noise, blur,
contrast and brightness. SEDIQA builds on the D-IQA findings, using entropy, gradient
and median intensity to combine measures of the four main sources of error, creating a
robust and directly measurable NR-IQA for documents.

As well as the metric, this work includes a document image enhancement technique
with an emphasis on OCR accuracy improvements. Document image enhancement is still
an open field of research and the SmartDoc competition [36,37] continues to encourage
development in the area and to allow evaluation of document image enhancers and
improvements on OCR accuracy. Some contributions have been made [16,38] using the
associated dataset, which is also used here for comparison.

A systematic approach is taken to the investigation of OCR accuracy by first testing the
relationship between accuracy and image degradations to determine which degradations
should be the focus of the quality metric and the image enhancer. Performance of SEDIQA’s
Q-metric was evaluated by comparing it against image degradations and OCR accuracy, as
well as evaluating its performance alongside established NR-IQAs. The document image
enhancer was evaluated by investigating improvements in OCR accuracy.

The full SEDIQA system is a visual reading aid design that automatically captures,
assesses and converts camera-captured document images to audio outputs and ensures the
best possible OCR accuracy for any given capture scenario.

The major contributions in this work include:

(1) Testing of OCR accuracy versus image degradations to identify the degradations that
contribute most significantly to OCR accuracy reduction.

(2) A new, robust and directly measurable NR-IQA metric for document images. This is
validated by testing on both synthetic and real images, against image degradations
and OCR accuracy and alongside established NR-IQAs.

(3) Insights into the performance of established NR-IQAs on document images.
(4) Improvements in OCR accuracy in the full SEDIQA design.
(5) SEDIQA as a visual reading aid.

2. Materials and Methods

This system was designed in Python 3.7 with OpenCV 4.3. Testing was done on
a PC using Tesseract [39] for OCR and MATLAB 2020b for BRISQUE, NIQE and PIQE
image quality tests. Tests were performed on synthetically degraded images, live captured
images and the SmartDoc dataset [40] as an established benchmark. The SmartDoc dataset
provides an excellent testbed for this design as it contains images of the same documents
captured under different conditions and with different capture parameters—very much
representing a realistic scanning scenario. The dataset contains images with both single and
multiple distortions, which include variations in lighting, focus, motion blur, distance and
perspective angle. These geometric and photometric distortions have significant negative
effects on OCR accuracy. The dataset also includes text transcripts of the documents,
allowing OCR accuracy to be measured.
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The full dataset was tested but graphical results are presented for an individual
document from this dataset (D1) for clarity. This document was selected as its scanned
versions lead to a full range of OCR accuracies from 0 to 99%.

2.1. OCR Accuracy vs. Quality

OCR performance has been found to deteriorate significantly under real image degra-
dations [41,42]. Some of these degradations are due to camera parameters and are constant
for a given capture setup, others will vary with user performance (how accurately the user
targets the document with the camera) and external conditions such as lighting. Compres-
sion and resolution belong to the former type and are constant, as the same smartphone
camera is used to capture raw image data. However, noise, blur, contrast and brightness
will change for each capture scenario. While contrast has been the emphasis of many
document image binarization techniques [43], it has been shown to have relatively little
effect on OCR performance, while noise and blur have been found to contribute most
significantly to accuracy reduction.

To confirm this, testing is done on synthetic images with noise, blur, contrast reduction
and brightness reduction introduced separately. These images are created initially in
imaging software, with clear black text on a homogenous white background and represent
ideal text images. Degradations are then introduced incrementally to study the effects of
each type of degradation. A synthetic image and its associated histogram are shown in
Figure 1 and samples of degraded versions of this are shown in Figure 2.
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Figure 1. A sample ideal text image alongside its corresponding histogram: (a) ideal text image; (b) intensity histogram.

The set of synthetically degraded images was tested for OCR accuracy using the
standard Characters Correct percentage as an accuracy measure. From the synthetic image
tests, it is possible to ascertain which degradations have the most significant effect on
OCR accuracy. These results were used in the development of the Q-metric and the Page
Extractor, which is used to extract and enhance the text in the image.
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(Gaussian blurring); (c) reduced contrast; (d) reduced brightness.

2.2. SEDIQA Quality Measure

As can be seen in its image histogram (Figure 1b), an ideal text image is characterized
by high median brightness (for dark text on a bright background), high contrast and
low entropy. Entropy is visible as the spread of image values in the histogram, contrast
approximates the width of the histogram and median brightness is the most common
intensity value, in this case, white. The median intensity suffices for the majority of images
and on the test dataset but will not work for bright text on dark backgrounds. To address
this, a simple dominant intensity test can be used to determine whether to invert the image.

It has been shown that entropy, while considered proportional to quality in natural
scene images, has a negative correlation with quality in text-based images, with higher
entropy denoting lower quality [10,27]. As entropy captures both noise and blur deteriora-
tions, it is potentially a good measure for predicting OCR performance:

E(I) =
N

∑ pI log2 pI (1)

However, since entropy does not vary with brightness or contrast, brightness and
contrast approximation measures are also needed. The median intensity, Ĩ, of the image is
a good approximation of brightness and should be high in a good quality text-based image
with a bright background. The standard deviation, σ, of the image approximates contrast,
as it is proportional to the width of the histogram:
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σ(I) =

√
∑(I − µI)

2

N
(2)

However, in real images, degradations are rarely constant throughout the image, so
the entropy and standard deviation of the whole image are not useful. To overcome this
issue, two versions of the image are acquired: the Entropy Image (EI) and the Gradient
Image (GI).

Pixel values in the Entropy Image are local neighborhood average entropies for each
location in the image. This local entropy should be high around text-content regions but
low in the homogenous background. This means the median of the entropy image in a high-
quality text image should be low while its standard deviation should be high. The Gradient
Image captures the local contrast between the text and the background so in this image,
again, the median should be low while the standard deviation should be high. In fact, the
median of the Gradient Image is zero, so this term is omitted for computational efficiency.

Using these measures, SEDIQA’s quality metric is defined:

Q =

{
Ĩ+σ(EI)+σ(GI)

ẼI
i f ẼI > 0

Ĩ + σ(EI) + σ(GI) i f ẼI = 0
(3)

where Ĩ = intensity median, ẼI = entropy image median, σ(EI) = entropy image standard
deviation and σ(GI) = gradient image standard deviation.

2.3. Validation of SEDIQA’s Q Metric

The Q values of the synthetically degraded images were measured to confirm the
relationship between Q and image degradations noise, blur, contrast and brightness, as
well as Q’s relationship with OCR accuracy. The Q values and OCR accuracies of the
SmartDoc dataset were also measured to confirm the relationship between Q and OCR
accuracy under real-world conditions. To compare Q with other measures, this same
testing approach on both synthetic and real images was used with a set of well-established
NR-IQAs: BRISQUE, NIQE and PIQE.

2.4. SEDIQA Design

The full SEDIQA design consists of three main stages: page extraction, quality mea-
surement and audio output. As well as emitting a tone during capture to guide the
user, the system automatically retains the highest quality image, allowing for automatic
best-image selection. This image is then passed through an OCR algorithm, followed by
text-to-speech software.

Until the page extraction stage is successful, the output will be a repeated ‘chirp’
and no image is retained. Once the page extractor successfully finds text, this is cropped,
perspective warped and cleaned to create a page image, which is both saved as an initial
best image and passed to the quality measurement stage. The quality of the image is
measured, saved as an initial QMAX and converted to a tone where the frequency of the
tone is proportional to the quality.

While SEDIQA is active, a new frame is grabbed from the camera and this process
is repeated with an image added to the Best Image Array whenever its Q value exceeds
QMAX, at which point QMAX is updated to the minimum Q in the array.

The full workflow for the system can be seen in Figure 3.
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mum no. of images to be captured, N0 = no. of baseline images to be captured, Q0 = baseline Q,
QN = normalized Q, QMAX = lowest Q in the Best Image Array, Conf = OCR confidence.

2.4.1. Page Extractor

A simple page extraction method is required to ensure that text has been found before a
quality measure is taken. This method must be fast enough to ensure it can be implemented
in near real-time but robust enough to operate under a variety of image degradations.
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In this design, the image is first binarized using adaptive thresholding [44] followed
by a dilation [45] to accentuate the boundary of the page. The largest contour in this image
is taken as the page boundary and a polygon approximation is performed to establish
the corners. While more sophisticated text detection methods, such as Google Vision or
EAST [46], could replace this method, the design here was found to suffice for a typical
page capture scenario, which is less challenging than the more general ‘Text in the Wild’
scenario and has been shown to work on the SmartDoc dataset and in live testing.

The extracted page boundary is then used in a perspective transform [47] to warp and
crop the image to the page region only. This is then resized using a cubic interpolation and
cleaned by contrast enhancing, sharpening and denoising.

The full workflow for the Page Extractor can be seen in Figure 4.
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2.4.2. Quality Measurement

In the quality measurement stage of SEDIQA, Q is measured once text has been found.
For the first N0 images, the mean Q is calculated to act as a baseline, Q0. This is used for an
approximate normalization of Q to ensure that the frequency falls into the audible range. It
is also used as an initial maximum, QMAX.

QN =
Q
Q0

(4)

If QN < QMAX, no change occurs in QMAX and no image is captured; however, QN is
still calculated and passed to the audio output stage. If QN > QMAX, the image is retained
as a member of the Best Image Array and QMAX is updated to the minimum Q in the array.
The process is continued until enough images have been tested and the array is full.
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2.4.3. Audio Output

When the text is initially found by the Page Extractor, a neutral tone of 300 Hz is
emitted. Once the baseline, Q0, is established (after the first N0 runs), QN is calculated.
Decreases in QN are translated to lower frequency tones while increases are higher, tending
towards the preferred 400–800 Hz range [48]. QN is found to vary by about ±50% over a
full range of OCR accuracies from 0 to 99%, so to stay in the audible range and close to the
preferred frequency range, QN is scaled by 400 to convert it to Hz. The frequency of the
tone in Hz is then given by:

f = 400QN (5)

The sound only acts as a guide for the user as the best images will be retained
automatically. At the end of the capture process, the best image is passed to a Tesseract
OCR algorithm and converted to text. If the confidence value returned by this algorithm
is too weak, the “best image” can be rejected and the next best image used. When the
confidence value is sufficiently high, the text extracted by this process is then passed to
text-to-speech software to be read aloud.

2.5. Accuracy Improvements

To investigate the effect of the SEDIQA system on OCR accuracy, each document from
the SmartDoc dataset was passed through the SEDIQA system and the OCR accuracy was
measured on both the original images and the extracted page images. The full dataset was
tested but for clarity, results are presented for a sample document (D1). This document
was selected for presentation as it was found that the range of images of this document
in the dataset, captured under different conditions, led to a full range of initial accuracies
ranging from 0 to 99%. Although the full SEDIQA system only retains the best of these, the
full range is presented to demonstrate the extent of the accuracy improvements introduced
by the system.

3. Results

Before the full SEDIQA system was tested, the relationship between OCR accuracy
and image degradations was investigated using synthetically created and degraded images
of text (see Figures 1 and 2). The Q-metric was validated on these synthetic images and its
performance with respect to image degradations was compared with established NR-IQAs
as well as with OCR accuracy. Note that in these images, Q does not need to be normalized
for audibility, so the original Q value is used.

The OCR accuracy, Q-metric and established NR-IQAs were also tested on real camera-
captured images from the SmartDoc dataset. The full SEDIQA system was tested on this
dataset and in live capture to confirm the relationship between OCR accuracy and the
Q-metric and to test the system’s accuracy improvements.

3.1. Synthetically Degraded Images

Using synthetically created text images, such as the one shown in Figure 1, the
relationship between OCR accuracy and different forms of image degradation can be
established. The level of degradation is increased from zero (original, ideal image) to a
maximum and the OCR accuracy is tested for each level. Degradation is continued until
OCR accuracy collapses, or a maximum degradation level is reached.

In previous work [41,42], it has been shown that noise and blur have significant effects
on OCR accuracy while contrast and brightness have almost no effect. Although contrast
and brightness show no effect on the OCR Accuracy in the ideal image case, variations in
lighting throughout a real image can affect OCR performance and so these degradations
are not ignored in developing the Q-metric.

The synthetic images were measured with the Q-metric and as a further validation,
tested with well-established NR-IQAs: BRISQUE, NIQE and PIQE. Note that for these NR-
IQAs, a lower value denotes higher quality. Results are presented here for each degradation
type: noise, blur, contrast and brightness.
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3.1.1. Noise

To test the metric’s response to noise, Gaussian noise is incrementally added to the
ideal image. The noise level is set by the sigma value, σ, in the probability density function:

G =
1

σ
√

2π
e−

(I−µI )
2

2σ2 (6)

The noise levels range from a value of 0.0125 for sigma at level 1 to 0.2375 at level 19,
where OCR accuracy collapse occurs. Results are show in Figure 5. Although SEDIQA’s
response to noise is a tad overdramatic, this ensures that images with high levels of noise
would be rejected by the system and only the least noisy images would be retained as Best
Image Array candidates. Of the other NR-IQAs, only PIQE shows the correct response
to noise (decreasing quality with noise level). NIQE shows quality increasing with noise
while BRISQUE shows almost no response (though it incorrectly shows lowest quality for
the ideal image). Only SEDIQA and NIQE correctly select the ideal image as the best image.
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quality while high Q values denote high quality. A separate axis is used for Q here as the unnormalized Q value tends to be
considerably higher than the other NR-IQAs, which tend to stay in the range 0 to 100.

3.1.2. Blur

For blur, Gaussian blurring is used. This time, the blur level is set by the size of the
kernel. As the blurring kernel must center on a pixel, it can only have odd values, so the
number of data points is limited. The blur levels range from a kernel size of 3 × 3 (level 3)
to 19 × 19 (level 19), though OCR accuracy collapse occurs around level 15.

Results are shown in Figure 6. Although Q erroneously shows an increase in quality
at low blur, this is due to the median entropy in the ideal image being zero—a situation
that does not arise in real images. In fact, the Q-metric tends towards infinity for an ideal
image. BRISQUE and PIQE show the correct response to blur (decreasing quality with blur
level), while NIQE shows quality increasing with blur.
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3.1.3. Contrast and Brightness

For contrast and brightness, the alpha and beta (gain and bias) parameters are
used respectively:

D = αI + β (7)

where D = degraded image, I = original image, α = gain and β = bias.
For contrast, the gain is decreased until a difference of just one intensity level (in the

range 0 to 255) between text and background is observed. The contrast levels range from
an α of 0.2 for level 1 to 0.02 for level 19. For brightness, the bias is decreased until the
intensity level is just 1 in this same range (0 to 255). The β range is from 0.95 for level 1 to
0.05 for level 19.

Results are shown in Figures 7 and 8. The OCR Accuracy is not affected by either
of these degradations in the synthetic image case, but it was found later in real image
testing that images with lighting issues tended to perform poorly in OCR, and so these
degradations were included in testing here. This is most likely due to non-uniform lighting
across the document in real capture. SEDIQA’s response to both is linear, ensuring that
images with lighting issues would be rejected by the system. Of the other NR-IQAs, only
PIQE shows the correct response (decreasing quality with lighting issues). NIQE shows
quality increasing with poor lighting, while BRISQUE shows almost no response.
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low quality while high Q values denote high quality. Again, a separate axis is used for Q here as the unnormalized Q value
tends to be considerably higher than the other NR-IQAs, which tend to stay in the range 0 to 100.

These tests show SEDIQA’s Q-metric responding strongly to both noise and blur—the
most significant factors in reducing OCR accuracy—whereas its responses to contrast and
brightness are linear drop-offs. This means that the system will reject noisy, blurry and
poorly lit images.

On an interesting side note, despite the fact that these established NR-IQAs continue to
be used on text-based images, e.g., [49–51], it has been shown here that only PIQE responds
correctly to these four common image degradations. This will be further investigated on
real camera-captured images in the next section. For useful reference, a summary of these
findings is presented in Table 1.
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Table 1. NR-IQAs and their ability to respond to image degradations in text-based images.

NR-IQA Noise Blur Contrast Brightness

BRISQUE
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3.2. Real Camera-Captured Images

While the synthetic images allow individual degradations to be separated and exam-
ined, real camera-captured images are subject to random combinations of these degrada-
tions along with other distortions.

To test SEDIQA’s performance in real camera-captured images, the SmartDoc dataset
was used, as it contains images of the same documents captured under different capture
conditions. As it is a well-established benchmark, it also allows comparison with other
metrics and previous work, e.g., [16,38].

To demonstrate SEDIQA’s performance, each version of the document was passed
through the SEDIQA system. Although the system only retains a Best Image Array based
on the Q-metric, the full set of results is presented here for completeness. This test was
repeated for each document set as well as on live captured images.

Only one document set is presented in Figure 9 for clarity but a similar correlation
between SEDIQA and OCR Accuracy is found throughout the dataset and across a variety
of live capture scenarios.
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Figure 9. OCR Accuracy vs. QN for document D1 of the SmartDoc dataset. The system only retains those images in the Best
Image Array for conversion to text, but the full results across all versions of the document are presented here.

For comparison, the images cleaned by the SEDIQA system were also tested using
the established NR-IQAs. Results are presented in Figure 10. For ease of comparison, all
metrics were normalized to the range 0 to 1.
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Despite its under-performance in the image degradation tests, BRISQUE showed
some correlation with OCR Accuracy, while PIQE and NIQE showed weak and positive
correlations (again, for these metrics, negative correlation is correct). The comparative
correlation results are shown in Table 2, with SEDIQA’s Q-metric showing the strongest
correlation with OCR accuracy.

Table 2. Correlation of NR-IQAs with OCR Accuracy. Red denotes incorrect correlation.

NR-IQA Correlation

BRISQUE −0.5291
NIQE 0.6783
PIQE 0.2297

SEDIQA 0.8463

As the Best Image Array are the only candidates for text to speech conversion in the
full SEDIQA system, their results are also presented in Table 3. Not only does the highest
Q value correspond with the best performing image but all Best Image Array images give
high accuracy.

Table 3. Normalized Q and OCR Accuracy results for the Best Image Array of document D1.

Image Rank Accuracy Norm Q

1 99.11 1
2 99.10 0.9967
3 99.08 0.9862
4 99.07 0.9757
5 97.68 0.9532
6 97.14 0.9440
7 96.80 0.9094
8 96.16 0.9039
9 94.69 0.8998
10 98.70 0.8402

Again, for comparison, the same Best Image Array selection method was performed
using the other NR-IQAs and the OCR Accuracies of their top-ranking images were tested.
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Results are shown in Table 4 and confirm that, while BRISQUE shows some potential as an
OCR Accuracy predictor, SEDIQA remains more robust and reliable.

Table 4. Accuracies for best images of document D1 as determined by each NR-IQA. Red denotes
unusably low accuracies.

Accuracies

Image Rank SEDIQA BRISQUE NIQE PIQE

1 99.11 99.08 1.32 0.07
2 99.10 99.11 31.34 0.86
3 99.08 97.68 0.07 5.98
4 99.07 99.07 5.13 31.34
5 97.68 0.07 0.07 2.00
6 97.14 94.69 71.63 24.47
7 96.80 96.16 0.07 38.44
8 96.16 0.07 17.91 85.50
9 94.69 97.14 66.96 1.32
10 98.70 99.10 23.31 51.25

3.3. Accuracy Improvements

As a final test of the full SEDIQA system, the OCR Accuracy of the original images
was tested and compared to the accuracy of the cleaned images. The full set of results for
document D1 of the dataset are shown in Figure 11.
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Figure 11. SEDIQA’s effect on OCR Accuracy for document D1 of the SmartDoc dataset. Again, the system only retains
those images in the Best Image Array for conversion to text but the full results across all versions of the document are
presented here.

Although the system occasionally shows a decrease in accuracy, this is generally in
images that are either of unusably poor quality or that do not pass the Page Extractor stage,
where the image would be automatically rejected, and so these images are not passed to
the Best Image Array.

The average increase in accuracy was 41% in the Best Image Array and 22% across the
whole dataset, with a maximum increase for one image of 68% from just 25% accuracy in
the original version to 94% in SEDIQA’s cleaned version, converting it from an unusable
image to a candidate for the Best Image Array. The original image and cleaned version can
be seen in Figure 12.
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4. Discussion

Within this audio-based reading aid design lie some significant contributions to
the field of Document Image Quality Assessment. First is a simple, robust and directly
measurable NR-IQA for documents which picks up on four major sources of OCR accuracy
reduction: noise, blur, contrast and brightness. This Q-metric has been validated by
comparing to OCR accuracy, image degradations and three other established NR-IQAs:
BRISQUE, PIQE and NIQE. The metric not only shows the strongest correlation with OCR
accuracy, but also correctly selects the highest performing image as the best image from a
large dataset of document scans of different qualities.

As part of the validation process, some interesting discoveries were also made about
the established NR-IQAs. First, NIQE was shown to neither respond to typical image
degradations nor correlate with OCR accuracy. This is not necessarily surprising as it is
intended for natural images, yet it continues to be used in text-based images intended for
OCR [50,52]. PIQE showed good responses to image degradations but in real document
images had a reverse correlation with OCR accuracy, selecting some of the worst performing
images. BRISQUE only responded to blur out of the degradations tested but did show some
promise in real images where it showed some correlation with OCR accuracy. However, it
was not robust and gave high quality scores to images which completely fail at conversion
to text. Still, the combination of these findings about BRISQUE would suggest that blur
may be the biggest contributor to OCR accuracy reduction.

As well as the robust metric, SEDIQA includes a text detection, extraction and cleaning
process that leads to significant improvements in accuracy in even some of the poorest
performing images. Across the entire SmartDoc dataset, the rejection rate at the page
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extraction stage was approximately 10% with almost 90% of images successfully cropped,
warped and cleaned.

There are some minor limitations to be addressed in future work. This system has
not yet been ported to a smartphone app and as such, has not yet been tested for speed,
user experience (UX) or compatibility. However, these initial tests and the simplicity of the
metric suggest that the design has significant potential.

SEDIQA could also be applied to camera focusing systems, text-in-the-wild applica-
tions (such as sign reading in autonomous cars or navigation aids) and any other text-based
applications, particularly those involving OCR. As a Reading Aid, SEDIQA offers much
needed audio guidance, to aid in document capture. Although other reading aids, such
as Microsoft Seeing AI, offer some audio guidance in the text location stage, these do not
assess, or feedback to the user, the quality of the image and as such, frequently lead to
unsatisfactory results. As can be seen here, successful text detection does not necessarily
mean successful OCR. With the addition of SEDIQA’s robust Q-metric to the reading aid
design, the user can be sure of the best possible outcome from any given capture scenario.

5. Conclusions

SEDIQA automatically captures, assesses and converts camera-captured document
images to audio outputs and ensures the best possible OCR accuracy from any given scan
attempt. The major contributions in this work include:

(1) Testing of OCR Accuracy vs. Image Degradations, identifying blur and noise as those
that contribute most significantly to OCR accuracy reduction

(2) A new, robust, directly measurable, validated NR-IQA for document images which
consistently selects the best images for OCR accuracy performance

(3) Insights into the performance of three well-established NR-IQAs on document images:

# BRISQUE was shown to only respond to blur out of the four major degradations
tested, but performed reasonably well on real images. However, its failures were
extreme, with accuracies less than 1% in its top ten images.

# NIQE was found to be wholly unsuitable for document images.
# PIQE responded to all four image degradations but completely failed on real images.

(4) A document image enhancement technique leading to improvements in OCR accuracy
of 22% on average across the whole SmartDoc dataset and a maximum increase of 68%.

(5) The full SEDIQA Design as a Visual Reading Aid with audio outputs.
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