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LM-Based Word Embeddings Improve
Biomedical Named Entity Recognition:

A Detailed Analysis

Liliya Akhtyamova and John Cardiff(B)

Social Media Research Group, Technological University Dublin, Dublin, Ireland
akhtyamova@phystech.edu, john.cardiff@tudublin.ie

Abstract. Recent studies have shown that contextualized word embed-
dings outperform other types of embeddings on a variety of tasks. How-
ever, there is little research done to evaluate their effectiveness in the
biomedical domain under multi-task settings.

We derive the contextualized word embeddings from the Flair frame-
work and apply them to the task of biomedical NER on 5 benchmark
datasets, yielding major improvements over the baseline and achieving
competitive results over the current best systems. We analyze the sources
of these improvements, reporting model performances over different com-
binations of word embeddings, and fine-tuning and casing modes.

Keywords: Deep learning · Biomedical named entity recognition ·
Contextualized word embeddings

1 Introduction

Named entity recognition (NER) is a fundamental basis for many applications
such as speech recognition [6], question answering [13], knowledge base popula-
tion [14], query. One of the areas in which NER and its applications are most
useful is the biomedical domain.

However, as the labeling of a corpus for biomedical NER requires domain
knowledge, the preparation of high-quality training corpora is usually quite
expensive and time-consuming. Transfer learning introduced in NLP through
the concept of pretrained word embeddings allows us to leverage knowledge
about the language semantics more accurately. One of the recent advances of it
is contextualized language modeling based concept representations.

The release of contextualized word embeddings [3,7,21] has substantially
advanced the state-of-the-art in many NLP tasks. It has become possible by
learning the contextual representations of terms and training of models based on
fragments of contiguous text that typically span multiple sentences thus captur-
ing long distance relationships within the text fragments better.

Models based on contextualized word embeddings due to the more com-
plex structure of latter in comparison to the standard word embeddings such as
c© Springer Nature Switzerland AG 2020
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Word2vec [19], Glove [20], FastText [4] are better at capturing information from
domain-restricted corpora or even the unrelated or general nature corpora.

These advantages of contextualized word embeddings motivate us to apply
them to biomedical NER tasks. The identification of biomedical instances in
texts can lead to an improvement in the structuring of biomedical and medical
knowledge (e.g., biomedical knowledge bases’ population) and revealing hidden
or unknown previously phenomena from biomedical texts to help clinicians and
medical professionals in their routine (e.g., medical database query, decision
support systems).

While the most popular version of language representation – BERT [7] is well
investigated and has yielded state-of-the-art results on many biomedical bench-
mark datasets [16], the capabilities of Flair language model (LM) [3] have not
yet been researched comprehensively for biomedical NER. Although, Sharma
and Daniel [24] in their paper present the BioFlair system learnt over the part
of benchmark datasets from Lee et al. [16], they do not learn the model exten-
sively over a variety of combinations of word embeddings and different model
architectures.

In this work, we aim to close this gap by (1) incorporating pre-trained contex-
tualized embeddings in a state-of-the-art NER multi-task system [27], obtaining
major performance improvements over previous state-of-the-art and competi-
tive to other systems result; (2) for comparability of single-task models, we also
experiment with contextualized embeddings integrated into the of-the-shelf Flair
NER system1; (3) we test model performances over different combinations of the
standard, character and contextualized word embeddings as well as parameter
settings (casing, fine-tuning).

2 Materials and Methods

The following sections present the technical details of the NER architectures used
in this study [1,27]. We first briefly give the problem definition, then describe
single-task and multi-task learning systems. We also describe word embeddings
and datasets used in the experiments. And finally, we give details on the evalu-
ation metric.

2.1 Problem Definition

The problem of biomedical NER is a sequence labeling task where the goal is to
detect the correct spans of entities and assign them the right labels.

To be in line with the results of the original work, to classify entities in
Wang’s model [27], we used a BIO schema. These classify entities in a document
as [B]eginning, [I]nside, [O]utside.

For the Flair NER system, we used the default best settings which include
BIOES tagging schema, where B stands for Beginning, I for Inside, O for Out,
E for End, and S for Single entity.
1 https://github.com/zalandoresearch/flair.

https://github.com/zalandoresearch/flair
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Fig. 1. Architecture of modified Wang et al. deep multi-task learning system. Instead
of the original word embeddings, concatenated LM-based word embeddings are used.

2.2 Single-Task Learning

The single-task model (STM) learns on one task at a time. In this work, we
experiment with two STMs. The first is the model of Wang et al [27] who in
turn adopted their model from Liu et al. [17]. It is the bi-LSTM-CRF model
with integrated character-level embeddings to be combined with the word level
embedding representations. The character-level embeddings in their models are
learned through another bi-LSTM model. As stated by authors, the advantage
of their architecture from vanilla bi-LSTM is that its character level word repre-
sentations allow capturing out-of-vocabulary (OOV) terms and context around
words, thus being “contextualized” in some degree. In their architecture, we
expanded the word embedding layer with other types of embeddings including
contextualized word embeddings. The augmented architecture is presented in
Fig. 1.

Another part of experiments was conducted using the Flair NER framework
(see Footnote 1) which goes on top of Theano providing a convenient way to
experiment with the combination of different types of word embeddings. It con-
sists of a bidirectional Long Short Term Memory (bi-LSTM) network of Huang
et al. [12] with the options to select and tune its parameters. We trained it with
Conditional Random Fields (CRF) using the default best parameter settings:
one LSTM layer, hidden state dimension 256, initial learning rate 0.1 with sub-
sequent halving if the loss does not decrease for 5 epochs, mini-batch size 8, and
Adam objective function optimizer.

2.3 Multi-Task Learning

Multi-task learning (MTL) is the task of learning on many tasks in parallel by
sharing some part of learning model representation between tasks. This app-
roach became popular in NLP [5], computer vision [18], speech recognition [6],
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simulation of electrocardiogram signals [23] and other tasks [22] outperforming
results gained with STL model architectures.

For our MTL experiments, we utilize again the MTL architecture of Wang
et al. [27]. Authors using the single-task based model of Liu et al. [17] built
the competitive multi-task model for solving biomedical NER tasks. Using 15
benchmark datasets they showed the substantially better performance of their
approach in comparison to STL and other baseline systems.

We took their best-performed MTL architecture - with shared both word and
character-level layers - as a foundation for comparison with STL while integrating
contextualized, standard and character-level word embeddings.

2.4 Flair Embeddings

In our experiments, we consider the variant of LM-based word embeddings called
Flair [3] and ELMo [21]. As in Wang et al. [27] these embeddings are also
character-level and trained using the bi-LSTM network. The principal differ-
ence of them from Wang et al. [27] is that they are trained in a separate task of
LM with next character in a text being the target to predict, while in the model
of Wang et al. [27] the character-level embeddings are trained jointly as part of
NER model with the word label to be the final target to predict.

In comparison to, for example, BERT language representation which allows
after pre-training it further fine-tune it for the downstream task, Flair, ELMo
and other similar LM architectures do not allow to do it and should be used in
a pre-trained form to embed sentences of the downstream task’s input to form
contextualized embeddings.

In this work, we use the pooled version of Flair embeddings which keeps the
information on each encountered word and reduces the word representation bias
when the same word occurs in noisy, under specified context [2]. For example,
the biomedical term “hemoglobin” is not ambiguous and its word embedding
should not vary heavily in different contents.

We chose Flair and ELMo embeddings both pre-trained on in-domain English
PubMed articles2.

2.5 Additional Embeddings

In numerous papers, it was shown that stacking different types of embeddings
mostly improves the quality of NLP models [3,21]. In this work, we integrate
the following types of additional embeddings:

2 http://evexdb.org/pmresources/language-models/.

http://evexdb.org/pmresources/language-models/
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Table 1. Statistics on biomedical NER datasets

Dataset Size Entity types and counts

BC2GM 20,000 sentences Gene/Protein (24,583)

BC4CHEMD 10,000 abstracts Chemical (84,310)

BC5CDR 1,500 articles Chemical (15,935), Disease (12,852)

NCBI-Disease 793 abstracts Disease (6,881), Gene/Protein (35,336)

JNLPBA 2,404 abstracts Cell Line (4,330), DNA (10,589), Cell Type
(8,649), RNA (1,069)

1. General-domain word2vec embeddings.3 These embeddings are trained
over news and Wikipedia data.

2. Biomedical word2vec embeddings.4 These embeddings were trained on
5.5M terms over PubMed, PubMed Central and Wikipedia texts with the
window size 200.

3. Byte-pairwise encoded embeddings (BPE). They are statistically cal-
culated based on occurrences of sub-word tokens of words [11].

4. Character-level word embeddings are trained in the model of Wang
et al. [27] using the methodology developed by Lample et al. [15].

2.6 Datasets

For comparative purposes, we test our models on the same datasets as used
by [27] (Table 1). Here, NER on BC2GM, BC4CHEMD and NCBI-Disease are
binary classification problems, and NER on JNLPBA and BC5CDR are multi-
classification ones.

These datasets cover major biomedical entity types (genes, proteins, chemi-
cals, diseases) and thus were chosen as a standalone set of biomedical datasets by
many researchers. All datasets could be downloaded from the GitHub repository
of MTL Bioinformatics Lab5.

In line with Wang et al. [27], below we also briefly mention the origin of
datasets and state-of-the-art results on them to the current moment for the
systems similar to ours.

BC2GM This dataset was used in the BioCreative II gene mention recog-
nition task. The best result to the moment are holded by to the moment are
holded by [26] and Lee et al. [16] (with insignificant difference). Lee et al. [16]
utilized LM-based BERT system. They trained a large BERT system on rele-
vant corpora and fine-tuned on a downstream tasks. Wang et al. [26] applied the
multi-task learning techniques cross-sharing structure for their neural-network
based model.
3 https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/

CLASSIC WORD EMBEDDINGS.md.
4 http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-

w2v.bin.
5 https://github.com/cambridgeltl/MTL-Bioinformatics-2016.

https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/CLASSIC_WORD_EMBEDDINGS.md
https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/CLASSIC_WORD_EMBEDDINGS.md
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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Table 2. Comparative evaluation of proposed STM systems against state-of-the-art
systems on five NER tasks.

NCBI-disease JNLPBA BC5CDR BC4CHEMD BC2GM

STM LM 86.47 75.17 88.98 89.34 81.66

STM Flair 87.13 76.81 90.33 – 82.89

Best published

STM, Wang et al. [27] 83.92 72.17 86.96 88.75 80.00

Collabonet, Yoon et al. [29] 84.69 – – 88.19 78.56

BiLM, Sachan et al. [25] 87.34 75.03 89.28 – 81.69

FullyNER, Gupta et al. [10] 88.31 76.20 88.64 – 82.06

BioBERT, Lee et al. [16] – – – 91.41 84.40

BioFlair, Sharma and Daniel [24] – – 89.42 – –

TransferSM, Giorgi and Bader [9] 87.66 – – 88.98 80.65

BC4CHEMD used in BioCreative IV shared task on chemical entity men-
tion recognition. The state-of-the-art is again belongs to Lee et al. [16] with
BioBERT system and Watanabe et al. [28] with multi-task paraphrasing neural
network model to utilize paraphrase pairs.

BC5CDR used in BioCreative V challenge on chemical and disease mention
recognition. The state-of-the-art for STM is obtained by Sharma and Daniel
[24] with their BioFlair system. They combined Flair embeddings with ELMo
embeddings trained both over the biomedical corpora using the FLair framework.
For MTM, we did not find publicly available recent results on 3 class problem.

NCBI-Disease A collection of 793 fully annotated PubMed abstracts
obtained by Doǧan et al. [8]. It was widely used by researchers and the cur-
rent state-of-the-art result belongs again to Wang et al. [26] for SMT and for
MTM to Zhao et al. [30] with their jointly performed NER and normalization
tasks.

JNLPBA is the 2004 year shared task on biomedical entity recognition of
wide range of entities (5 classes). The best STM belongs to Gupta et al. [10]
who trained their own version of contextualized word embeddings.

2.7 Evaluation Metric

All datasets are provided with training, development and test data. In our exper-
iments, we merge training and development data, shuffle it and select 10% of it
for evaluation of results.

We compared all methods in terms of macro-averaged F-score. It is computed
as the harmonic mean of precision and recall. Here, precision is computed as
the percentage of the predicted entities that are gold ones, and recall as the
percentage of the gold entities that are correctly predicted. The exact entity
span match is used for evaluation.
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Table 3. Comparative evaluation of proposed MTM systems against state-of-the-art
systems on five NER tasks.

NCBI-disease JNLPBA BC5CDR BC4CHEMD BC2GM

MTM LM 86.56 76.01 89.33 89.52 81.82

Best published

MTM, Wang et al. [27] 86.14 73.52 88.78 89.37 80.74

CollabonetMulti, Yoon et al. [29] 86.36 – – 88.85 79.73

CompParaph, Watanabe et al. [28] – – – 92.57 –

CrossSharing, Wang et al. [26] 86.50 – – – 84.40

TransferMM, Giorgi and Bader [9] 86.89 – – 88.81 79.60

JointNER, Zhao et al. [30] 87.43 – – 87.63 –

3 Results and Discussion

In this section, we provide details of the NER results for STMs and MTMs.
The section is divided into two broad parts – the first presenting the results
of the NER task and comparison with other works, and the second providing
comparative, selective results over different variants of word embedding stacking
and parameter settings.

3.1 NER Results

The experimental results of the baseline models, models with integrated LM-
based word embeddings and current state-of-the-art models are provided in
Tables 2 and 3, respectively. Table 2 shows the comparison between the existing
state-of-the-art STMs and STM of Wang et al. [27] with and without integrated
LM-based word embeddings as well as Flair STM trained using the Flair NER
framework [1]. For the MTM, in Table 3 we present the comparison of the MTM
system of Wang et al. [27] with and without integrated LM-word embeddings
and best published MTM systems.

Note that we do not report results on the BC4CHEMD dataset using the
Flair NER framework due to limited computation sources (BC4CHEMD dataset
is around four times larger than the next largest dataset used in our analysis).
Also, it should be noted that some authors solved only binary entity classification
problems, i.e. with one biomedical entity to be predicted. In these cases, we
do not report results for these evaluations (missing BC5CDR and JNLPBA
datasets’ result entries).

Overall, for both STM and MTM the NER performances in all cases using
Wang et al. [27] model architecture significantly benefit from incorporating addi-
tional embeddings with the maximum gain of 2.4% achieved by MTM on the
JNLPBA dataset.

Moreover, for STM in all cases STM Flair results outperform STM LM
results. It is probably due to the fact that in Flair NER, the default hyperparam-
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Table 4. Results of experiments over different combinations of word embeddings

Combination F-score

BC2GM embeddings pubmed 78.96

embeddings pubmed+pubmed Flair 81.05

embeddings pubmed+pubmed Flair+bpe 81.66

embeddings pubmed+ELMo+bpe 81.40

NCBI embeddings pubmed+pubmed Flair+bpe 86.40

embeddings pubmed+pubmed Flair+ELMo+bpe 85.10

embeddings pubmed+ELMo+bpe 86.42

ELMo+bpe 86.30

Table 5. Case sensitivity of model

Combination F-score F-score

(caseless) (case-sensitive)

NCBI embeddings pubmed+pubmed Flair+bpe 85.46 86.07

BC2GM embeddings pubmed+pubmed Flair+bpe 80.28 81.66

eters values were more thoughtfully selected and some additional mechanisms of
Flair NER model such as learning rate annealing, gradient clipping, etc.

Overall, the constructed STM and MTM achieve higher F1-score than most
other models of similar complexity on all datasets.

With relation to BioBERT, we can only compare results on BC2GM dataset
(1.8% lower) as for BC4CHEMD dataset we did not calculate STM Flair results
however STM LM results stand not far from BioBERT ones on the BC4CHEMD
dataset. This is good results taking into account the complexity of the BERT
model (large BERT consists of 24 layers, 1024 hidden layers, and total of 340 M
parameters).

3.2 Discussion

Combination of Word Embeddings. We wanted to compare the results over
different combinations of word embeddings to evaluate the performance gain
while increasing the complexity of embedding layer. The results over two bench-
mark datasets using the single-task model of Wang et al. [27] are presented in
Table 4.

It should be noted that for experiments where Flair embeddings are used we
did not fine tune the model, however for ELMo model we fine-tune the model as
from our observations fine-tuning for model with ELMo embeddings works the
best.

From the results, presented in Table, it could be seen that overall increasing
the complexity of word level representation by adding more different types of
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Table 6. Results of fine-tuning the model

Combination F-score (no
fine-tuning)

F-score
(fine-tuning)

NCBI embeddings pubmed+pubmed Flair+bpe 86.40 86.07

embeddings pubmed+pubmed ELMo+bpe 86.33 86.47

embeddings improves results. However, two complex similarly constructed word
embeddings such as ELMo and Flair coupled together in one model deteriorate
results. Overall, Flair embeddings usually give on par or better results.

Case Sensitivity. The results of experiments with lower-casing the words and
without lower-casing on two benchmark datasets are presented in Table 5.

Lower-casing always positively influences the performance of model. Indeed,
many biological terms are upper-cased or start with upper-cased letter. In addi-
tion to the formal nature of benchmark datasets, all these requires leaving the
textual data “as it is”.

Fine Tuning. The results of experiments with and without fine-tuning the
model for NCBI dataset are presented in Table 6.

While fine-tuning process works better for ELMo embeddings, it deteriorates
results when using Flair embeddings. The reason for that should be investigated
further.

4 Conclusion

In this paper, we focused on the problem of biomedical NER. In particular, we
attempted to investigate approaches by which LM-based word embeddings can
be applied to improve the automatic NER on textual data containing biomed-
ical entities. Our particular focus was on scientific literature texts. Our results
strongly suggest that integrating contextualized embeddings and combining
them with other types of embeddings can improve sequence labeling accuracy.
As such, there is a strong motivation to explore other ways to integrate con-
textualized information into the current state-of-the-art NER models to further
boost their performance. types of advances in language representation such as
transformers, etc.

We explored the incorporation of LM-based embeddings in the strong multi-
task learning framework. The incorporation of such embeddings has shown to
improve the baseline on all tasks. We suggest investigating further the behavior
of LM-based embeddings under multi-task learning settings.

Lastly, we conducted a comparative analysis of different model architectures,
text preprocessing techniques, and model parameter settings. Simple off-shelf
Flair NER architecture turned out giving better performance rather than the
more sophisticated architecture of Wang et al. [27]. Preprocessing in terms of
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lower-casing and fine-tuning the model deteriorates results. However, fine-tuning
showed to work well on ELMo embeddings for Wang et al. [27] architecture.

In the future, we would like to explore other combinations of word embed-
dings and different NN architectures. Moreover, as mostly NER tasks in the
biomedical domain are unbalanced problems, future research on improving model
parameter settings to handle this problem should improve the results of biomed-
ical sequence labeling as well.
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