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PAPERS

A Machine Learning Approach to Hierarchical
Categorisation of Auditory Objects

William Coleman1*, AES Student Member, Sarah Jane Delany1, Ming Yan3, AND Charlie Cullen12

(william.coleman4@mydit.ie) (sarahjane.delany@dit.ie) (ming.yan@xperi.com) (charlie.cullen@dit.it)

1Technological University Dublin, Ireland 2University of the West of Scotland, 3DTS Inc. now part of Xperi

With the advent of new audio delivery technologies comes opportunities and challenges for
content creators and providers. The proliferation of consumption modes (stereo headphones,
home cinema systems, ‘hearables’), media formats (mp3, CD, video and audio streaming) and
content types (gaming, music, drama & current affairs broadcasting) has given rise to a com-
plicated landscape where content must often be adapted for multiple end use scenarios. The
concept of object-based audio envisages content delivery not via a fixed mix but as a series of
auditory objects which can then be controlled either by consumers or by content creators &
providers via accompanying metadata. Such a separation of audio assets facilitates the concept
of Variable Asset Compression (VAC) where the most important elements from a perceptual
standpoint are prioritised before others. In order to implement such a system however, in-
sight is first required into what objects are most important and secondly, how this importance
changes over time. This paper investigates the first of these questions, the hierarchical clas-
sification of isolated auditory objects, using machine learning techniques. We present results
which suggest audio object hierarchies can be successfully modelled and outline considera-
tions for future research.

0 INTRODUCTION

Recent technological developments have created new
modes of audio consumption. Increased mobile network
capacities have made possible the streaming of high defini-
tion video content while ‘on the move’. Smart home speak-
ers (becoming known as ‘hearables’), such as the Google
Home [1], connect a mono speaker to a voice search capac-
ity which allows the control of music streaming services
and numerous other functions. New home entertainment
technology, such as sound bars [2] and multi-speaker home
cinema systems [3] have become more prevalent. This pro-
liferation of consumption paradigms brings challenges and
opportunities for audio delivery infrastructure. Where pre-
viously a stereo audio mix was the standard for the major-
ity of scenarios, the plethora of possibilities now available
to consumers creates an impetus towards optimising audio
delivery for multiple cases.

Object-based audio is an active area of research [4]
which conceives of audio content being delivered as a col-
lection of individual audio objects controlled by metadata.
Such flexibility gives rise to numerous possibilities for con-
tent creation and delivery. For example, audio profession-

*To whom correspondence should be addressed Email:
william.coleman4@mydit.ie

als can be given direct control of how their content is deliv-
ered across multiple formats, accommodating stereo, mono
or multi-speaker audio presentation in one download with
no great increase in media file size. The BBC has exper-
imented with end-user command of audio elements with
broadcasts offering mix control to viewers [5]. Addition-
ally, breaking audio content into discrete objects offers
the possibility of intra-object variable compression which
could be utilised to adapt audio file sizes in constrained
bandwidth situations. For this scenario it follows that in-
sight into the relative Hierarchy of Importance (HoI) be-
tween individual sound objects in an auditory scene is crit-
ical as it can be used to implement a Variable Asset Com-
pression (VAC) schema which maps how audio object im-
portance changes over time.

We approach this problem by first establishing context
for the task as an extension of Auditory Scene Analysis
(ASA), Semantic Audio, and Machine Learning (ML) re-
search in Section 1. In Section 2 we review an experi-
ment investigating subjective hierarchical ratings of iso-
lated sounds [6] which we shall use as the basis for the
current study, the methodology for which is described in
Section 3. We will outline results of the experiment in Sec-
tion 4 and in Section 5 we will discuss these in the context
of planned future work.
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1 RESEARCH CONTEXT

Bregman [7] has described ASA as the process by which
auditory scenes are parsed into individual sounds which we
are referring to as auditory objects. This is a complex task
because sounds are interleaved and overlap in both tempo-
ral and frequency domains, and the human auditory system
only has access to an amalgam of all sounds that are pre-
sented to the ear at any one moment. Bregman describes
how the human auditory system addresses this using pro-
cesses of sequential and simultaneous grouping where per-
ception is governed by primitive low-level and schematic
high-level structures that parse the sound scene for indi-
vidual objects.

Considerable sensory research exists regarding sound-
scapes [8, 9, 10], sound categorisation [11, 12, 13] sound
taxonomies [14, 15, 16] and how attentional, contextual
and other processes affect our perception of the environ-
ment [17, 18, 19]. The recent multi-stable Yanny/Laurel
percept [20] is a current example of such phenomena.
However, the authors are unaware of any research using
subjectively derived hierarchical ratings as labels in a ML
task using objective measures to predict sound importance.
Lewis et al. [21] provide a sound hierarchy rating on an
object-like versus scene-like axis for a selection of mechan-
ical and environmental sounds. Thorogood et al. [22] use a
selection of soundscape recordings derived from the World
Soundscape Project Tape Library database [23] and cat-
egorise them in Background (BG), Foreground (FG) and
‘FG with BG’ categories. These sounds were selected with
the intention of allowing the listener to identify sound con-
text. Salamon et. al [14] perform subjective labelling of BG
and FG urban sounds and validate their accuracy with ex-
perimental testing, but the sounds used are confined to ur-
ban contexts and are not isolated from context.

ML is an active area of research both generally [24]
and in audio terms [25]. There is a rich recent history in
the application of such knowledge to a number of audi-
tory research areas which provide significant context for
the hierarchical categorisation task proposed. Considerable
progress in speech recognition [26, 27, 28], music informa-
tion retrieval [29, 30, 31] and environmental sound classifi-
cation [32, 33, 34] tasks, including the Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) chal-
lenges [35, 36], provide background to a variety of differ-
ent sound classification tasks and suggest ML techniques
as a fruitful path for development of a VAC schema.

The following will outline research focussed on sub-
jective perception of macro sound categorisation on a hi-
erarchical level, as opposed to sound quality differences
between stimuli that occur on a micro level. Hierarchical
categorisation of audio objects is a variation on the envi-
ronmental sound classification problem for content such
as computer games, drama, entertainment and current af-
fairs broadcasting. This is a process of deriving meaning
from sounds, a subset of the field of Semantic Audio, the
study of the ‘abstraction and processing of information re-
lating to audio signals’ [37]. As such, it involves an in-
vestigation of individual subjective judgement of sound hi-

erarchy, which is distinct from studies focussed on varia-
tions in Basic Audio Quality (BAQ) between experimental
stimuli, which typically involve assessment of audio equip-
ment, such as loudspeakers [38] or compression codecs
[39]. In this context, providing a basis for subsequent in-
vestigation of effects such as context, expectation and in-
dividual training across the broadest spread of categories
requires an investigation into the existence of an inherent
HoI between isolated sounds. The authors have previously
outlined a perceptual study [6], summarised in Section 2,
which suggests the existence of such a structure by quanti-
fying human subjective hierarchical ratings of sounds. The
next step is to derive labels from these data for use in a
ML classification exercise which establishes the feasibil-
ity of predicting the hierarchy of a sound set using purely
objective measurements.

2 SUBJECTIVE HIERARCHICAL SOUND
RATINGS

In order to maximise participants, the experiment out-
lined in [6] was deployed in an online environment pro-
viding detailed instructions as to its use and a training
phase for test environment familiarisation purposes. Sub-
jects were asked to complete the test using headphones in
a quiet environment, were required to submit basic demo-
graphic information and then rate 40 sounds in a BG—
Neutral (N)—FG evaluation task. A total of 112 complete
test results were collected from 36 women and 76 men. The
majority (65%) of respondents were 25—44 years of age.
For study purposes, FG and BG were defined as follows:

A FG sound: One you are likely to think prominent and
give greater attention.

A BG sound: One you are likely to think less important
and give less attention.

Informed consent was obtained for all participants fol-
lowing guidelines approved by the Dublin Institute of
Technology Research Ethics Committee. Figure 1 shows
the stimulus presentation and scale rating portion of the
test environment.

It was decided to use stimuli analogous to visual stream-
ing content as this is the envisaged end-use of object-based
audio in media consumption scenarios and thus is ecolog-
ically valid. Stimuli were sourced from the ESC-50 [40]
sound set and presentation was randomised so as to min-
imise order effects. The Environmental Sound Classifica-
tion 50 classes dataset (ESC50) files are provided in the
.ogg format. To maximise browser compatibility the files
were converted to .mp3s in Audacity [41] at 320kbps, the
highest possible bitrate. All files have a sample rate of
44.1kHz. The ESC-50 dataset has been compiled for use
in computational audio scene analysis contexts for train-
ing and testing automatic classification of sounds. Dataset
recordings are of approximately 5 seconds duration and are
organised into 5 broad classes:

• Animals

2 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October
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• Natural soundscapes and water sounds
• Human, non-speech sounds
• Interior/domestic sounds
• Exterior/urban sounds

Subject responses were collated and a frequency table
compiled (summarised in Table 1) which shows counts of
BG, N and FG selections for each sound. We consider
the hierarchical spectrum as a ranked continuum indicat-
ing level of sound importance. Thus, the median sound rat-
ing is used for categorisation purposes as this is generally
accepted as the appropriate measure of centre for ordinal
data. The numerical coding for categorisation was used to
calculate standard deviation and mean score for each sound
which gives an indication of consensus between partici-
pants as to sound category. Ranking using these measures
results in the order used in Table 1.

3 HIERARCHICAL CATEGORISATION USING
OBJECTIVE MEASURES

In approaching the problem of modelling auditory hi-
erarchy from objective measures it was decided to priori-
tise identifying FG sounds. Any real-world implementa-
tion of a VAC would in theory require all important sounds
be correctly identified and have tolerance for accepting
some misclassified objects. For this reason it was decided
to frame the task as a binary classification problem using
the target labels of ‘FG’ and ‘notFG’, the latter of which
is simply the set of all sounds identified as ‘N’ and ‘BG’
according to the median rating derived in [6].

3.1 Feature Extraction
Objective measures of the sound stimuli were generated

in Matlab [42] using the ‘Matlab Audio Analysis Library’
[43] as detailed in [44]. A Hamming window of the form

Fig. 1. The online test environment.

outlined in Equation 1 (where n = sample number, N = the
number of samples in the window, window length L = N +
1) was implemented with a size and step length of 0.05 and
0.025 secs (50% overlap) respectively. This resulted in an
initial Analytics Base Table (ABT) of 35 features, which
are described in Table 2.

w(n) = 0.54 − 0.46 cos(2π
n
N
), 0 ≤ n ≤ N (1)

Standard statistical summaries (mean, median, standard
deviation, standard deviation by mean ratio, maximum,
minimum, mean non-zero, and median non-zero) were ap-

Table 1. Summary results ordered by mean sound rating from top
to bottom. Sounds ranked More Background are towards the top
while those More Foreground are to the bottom.

Sound BG N FG Category
Birds 95 12 5 BG
Keyboard Tapping 81 25 6 BG
Clock Tick 79 25 8 BG
Fire 76 31 5 BG
Crickets 81 16 15 BG
Water Drops 73 23 16 BG
Wind 69 28 15 BG
Engine 69 23 20 BG
Helicopter 68 22 22 BG
Train 62 19 31 BG
Washing Machine 61 20 31 BG
Rain 55 28 29 N
Drink Sipping 51 31 30 N
Hen 50 32 30 N
Can Open 53 25 34 N
Pouring Water 50 26 36 N
Coughing 43 38 31 N
Snoring 46 28 38 N
Crow 45 27 40 N
Brushing Teeth 42 33 37 N
Handsaw 36 40 36 N
Fireworks 37 30 45 N
Clapping 35 31 46 N
Pig 31 35 46 N
Church Bells 34 26 52 N
Dog 28 36 48 N
Cow 35 20 57 FG
Door Wood Creak 31 25 56 FG
Insects 28 27 57 FG
Thunderstorm 30 22 60 FG
Rooster 24 25 63 FG
Cat 24 18 70 FG
Laughing 17 30 65 FG
Breathing 19 22 71 FG
Chainsaw 12 16 84 FG
Siren 11 12 89 FG
Baby Crying 6 7 99 FG
Door Knock 3 10 99 FG
Glass Breaking 2 11 99 FG
Clock Alarm 1 7 104 FG
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Table 2. A description of features extracted as objective measures of the sound stimuli.

Feature Description
Zero Crossing Rate The number of times the signal changes value, negative to positive and vice versa, divided

by frame length.
Energy Sometimes referred to as the power of a signal, calculated as the sum of the squares of

signal values normalised by the respective frame length.
Entropy of Energy A measure of the abrupt changes in the energy of an audio signal, which can be thought of

as an indication of signal predictability.
Spectral Centroid An indicator of timbre. Higher values equate to brighter sounds.
Spectral Spread A measure of how the sound spectrum is distributed about the spectral centroid. Higher

values result from spectra not tightly grouped about the centroid, exhibiting more variety.
Spectral Entropy Similar to energy entropy, but in the frequency domain. A measure of abrupt changes.
Spectral Flux The degree of change in the frequency domain between two analysis frames.
Spectral Rolloff Generally used to indicate the frequency below which 90% of the magnitude distribution

of the spectrum is focussed.
MFCCs Mel Frequency Cepstral Coefficients capture timbre detail of a signal efficiently. The fre-

quency bands used to split the signal are not linear but distributed according to the mel-
scale which is modelled on the human auditory system. In this instance, 13 bands are
extracted.

Harmonic Ratio The maximum value of the normalised autocorrelation function (the correlation of an anal-
ysis frame with itself at a defined time lag, in this instance, one analysis frame).

Fundamental Frequency An estimate of the frequency equivalent of the length of the fundamental period of the
signal.

Chroma Vector A 12-element representation of spectral energy where the bins represent the 12 equal-
tempered pitch classes of western music (semitone spacing).

plied to each feature resulting in an initial vector of 280
features per sound. In addition to these global summaries,
delta and double delta measures for the original 35 fea-
tures were calculated to capture detail of local variation in
the stimuli. These were derived from the frame level data
and summarised using mean, median, standard deviation,
standard deviation by mean ratio, maximum & minimum
values resulting in a further 420 features. This resulted in
a final ABT of dimensions 40 sounds detailed by 700 fea-
tures.

3.2 Algorithm Choice
Numerous ML algorithms, Random Forest (RF) [45,

46], k Nearest Neighbours (KNN) [32, 47], Naive Bayes
(NB) [48], logistic regression [49], and Support Vector Ma-
chine (SVM) [50, 22] have been successfully applied to
audio problems. Additionally, Convolutional Neural Net-
work (CNN)s and Recurrent Neural Network (RNN)s fea-
ture strongly throughout the environmental sound categori-
sation literature [51, 52] and in successful solutions to
the DCASE 2017 [53] environmental sound classification
challenge [54, 55]. This list is not intended to be exhaus-
tive, but gives an indication of the broad range of options
open to the researcher for automated audio classification.
It was decided to use SVM and RF in this instance.

The relatively small size of the available dataset is a fac-
tor in algorithm choice, as there are noted strengths and
weaknesses for the different ML methods. For instance, as
pointed out in [56], SVMs tend to outperform other algo-
rithms on small datasets. Also, Deep Neural Networks re-
quire large amounts of data to outperform SVMs, which

are noted to perform well using up to 10,000 instances,
but deteriorate in performance thereafter [57]. This sug-
gests that better results will be achieved with the current
dataset using algorithms known to perform well with rela-
tively small datasets, such as SVMs, which aim to find the
optimal hyperplane which separates instances by maximis-
ing the margin of distance from hyperplane to data point
[58].

A RF is an ensemble of decision trees used extensively
in ML classification problems [57]. Where a single deci-
sion tree can overfit the training data, an ensemble of trees
is less prone to this problem as the tendency to overfit in
single trees can be averaged out throughout the ensemble.
RF are often used to provide insight into relative feature
importance to assist in the process of dimension reduction.

3.3 Dimension Reduction
There are a number of potential evaluation procedures

for ML features which include filter-based, wrapper and
Principle Component Analysis (PCA) approaches. A com-
prehensive overview is beyond the scope of this paper, see
[59] for a review.

A wrapper approach was applied in this instance be-
cause the relatively small dataset size meant that the com-
putational load, which can be excessive [60], was not pro-
hibitive. The wrapper technique uses a prediction algo-
rithm, the ‘wrapper’, to reduce the dimensionality of a
dataset while incorporating interacting effects among fea-
tures by searching the feature set for subsets that perform
best [61]. This is achieved either via a process of forward
sequential selection, where the search starts with a single
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feature and iteratively adds more, or backward sequential
selection, where the search starts with the full feature set
and iteratively eliminates single features from each subse-
quent trial.

Two rounds of Recursive Feature Elimination (RFE), a
backward sequential feature selection procedure, were ap-
plied in this instance to reduce the dimensionality of the
initial dataset. Firstly, 5 subsets were generated using a RF
wrapper, as it was noted that this resulted in variations in
which features were selected and the total number of fea-
tures chosen. Each of these initial subsets was then sub-
jected to a further round of dimension reduction using a
wrapper based on the final prediction algorithm, either RF
or SVM. This produced smaller data subsets of sizes rang-
ing from 2 to c. 200 features.

3.4 Model Training and Validation
5-fold cross-validation was implemented on the dataset

to measure performance and a 4-fold cross-validation was
used on the training set to select features and to fix parame-
ters using a grid search. Baseline models were first run for
later comparison. The data was normalised in the case of
SVMs as required [57]. After the dimension reduction pro-
cess, detailed in Section 3.3, another parameter search was
performed to isolate the best parameter and subset choice.
Once identified, the best performing models at this stage
were then tested on the held out fold of unseen data to pro-
vide a robust assessment of model performance.

3.5 Model Evaluation
The final step in the modelling process is measuring the

performance of the methods chosen, for which there are
a number of popular metrics. The applicability of these
varies for different use cases. Given the priority of correctly
classifying FG sounds outlined in earlier in Section 3, it
was decided to use FG class accuracy (also referred to as
Recall) and accuracy as measures of model success. Class
accuracy indicates correct predictions of FG sounds only.
Accuracy, on the other hand, indicates how many ‘FG’ &
‘notFG’ predictions are correct.

Scores from baseline and optimised models from each
of the 5 cross-validation folds implemented in the experi-
ment were compared using the Kruskal-Wallace H-test, a
non-parametric statistical test for comparing two or more
independent examples which can be applied to data sam-
ples of 5 or more observations. A significance level of p <
0.05 was adopted in this instance to indicate a statistically
significant difference between model scores [62].

4 RESULTS

Table 3 summarises the results of ML modelling. The
baseline class accuracy scores are poor, 30% of FG sounds
captured by RF and 50% by SVM. However, accuracy
scores are more promising with RF successfully categoris-
ing 60.8% of sounds and SVM scoring 67.7%. Taken to-
gether, these results suggest that HoI may plausibly be
modelled using machine learning techniques, though con-

Table 3. Summary results for baseline (BL) & optimised (OP)
models. CA is the FG class accuracy rate (or FG recall rate). AC
is model accuracy rate for both FG and ‘notFG’ classes.

Metric RF-BL RF-OP SVM-BL SVM-OP
CA 30 % 73.3 % 50 % 93.3 %
AC 60.8 % 80.3 % 67.7 % 88.1 %

siderable improvement in categorisation success rates will
likely be required for any real-world implementation.

The parameter tuning and dimension reduction process
described in the foregoing were implemented in an attempt
to improve these baseline scores to levels comparable with
other studies. If successful, this would strengthen the case
for utilisation of ML in the domain. In the case of RF, class
accuracy improves from 30% to 73.3%, and accuracy from
60.8% to 80.3%. When comparing the fold scores using
the Kruskal-Wallace test, the difference between class ac-
curacy baseline and optimised models is statistically signif-
icant at the 95% level. Accuracy scores are not statistically
significant, but only marginally so (p = 0.057). SVM class
accuracy improves from 50% to 93.3%, and accuracy from
67.7% to 88.1%. Both of these results are statistically sig-
nificant. While it is yet to be determined if these success
rates would be effective in the implementation of a VAC
codec, the SVM class accuracy score of 93.3% is encour-
aging, given the stated priority of classifying FG sounds.
Furthermore, the optimised model scores are comparable
to similar studies [22, 46] which indicate that experimen-
tation with feature generation approaches may lead to fur-
ther improvements. Finally, when comparing optimised RF
with SVM fold scores, while we report better metrics for
SVM models in Table 3, the difference between optimised
learning algorithms was not statistically significant in this
instance.

5 DISCUSSION & FUTURE WORK

The aim of the current study was to establish if mod-
elling HoI from objective measures of the sounds is fea-
sible and it can be regarded as successful in this respect.
The process has revealed two primary issues that need to
be addressed in the development of VAC functionality for
real-world application.

Firstly, the amount of labelled data available is a sig-
nificant issue to address before further ML analysis. The
dataset of 40 sounds derived previously [6] is useful for
initial modelling attempts to assess the application of ML
techniques to the domain. However, given the performance
of Deep Learning (DL) algorithms in the environmen-
tal sound classification literature it should be regarded as
likely that a superior performing model can be derived once
a suitable dataset is compiled. We also note that Mesaros et.
al [63] recommend quantity over quality of data for sound
classification applications, while accepting poor quality
data invalidates findings. Application of DL techniques to
this domain will require a labelled dataset of significantly
greater size than used in the foregoing. This could poten-
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tially be compiled by combining subjective ratings with
Active Learning [64] techniques.

Secondly, further investigation is required on the hy-
pothesised impact of how attentional, contextual and other
processes, as outlined in Section 1, affect our perception
of auditory hierarchies. Sound context, for example, may
prove a more important indicator of importance than visual
accompaniment, suggesting that a weighted schema could
be derived experimentally which would model how differ-
ent factors affect hierarchical categorisation and auditory
scene perception. Once complete, such a schema would in-
form the functioning of a VAC codec meaning that auditory
objects could be compressed in terms of their importance to
sound scene perception. Thus, audio content could be flex-
ibly delivered to consumers taking cognisance of the mode
of consumption and the capacity of the delivery mechanism
involved.

6 ACKNOWLEDGMENT

This work was supported by the Irish Research
Council and DTS Licensing Ltd. under project code
EBPPG/2016/339.

7 REFERENCES

[1] “Google Home - Smart Speaker & Home Assistant -
Google Store,” URL https://store.google.com/
product/google{_}home.

[2] J. Seo, J.-H. Yoo, T. Park, T. Lee, M. Yoo, G. Jang,
J.-H. Won, Y. Choi, “Soundbar System with Embedded
Multichannel Digital Amplifier SoC,” presented at the Pro-
ceedings of the 138th Convention of the Audio Engineering
Society (2015) (2015 May).

[3] E.-J. Völker, “Home Cinema Surround Sound-
Acoustics and Neighborhood,” presented at the Proceed-
ings of the 100th Convention of the Audio Engineering
Society (1996) (1996 May).

[4] M. Armstrong, M. Brooks, A. Churnside, M. Evans,
F. Melchior, M. Shotton, “Object-based Broadcasting –
Curation, Responsiveness and User Experience,” (2014),
URL http://downloads.bbc.co.uk/rd/pubs/
whp/whp-pdf-files/WHP285.pdf.

[5] T. Churnside, “Object-Based Broadcasting,”
(2013), URL http://www.bbc.co.uk/rd/blog/
2013-05-object-based-approach-to-broad/
casting.

[6] W. Coleman, C. Cullen, M. Yan, “Categorisation of
Isolated Sounds on a Background - Neutral - Foreground
Scale,” presented at the Proceedings of the 144th Conven-
tion of the Audio Engineering Society, pp. 1–9 (2018), doi:
https://doi.org/10.13140/2.1.1598.6882.

[7] A. S. Bregman, Auditory Scene Analysis: The Per-
ceptual Organisation of Sound (The MIT Press, Cam-
bridge, MA) (1990).

[8] W. J. Davies, M. D. Adams, N. S. Bruce, R. Cain,
A. Carlyle, P. Cusack, D. A. Hall, K. I. Hume, A. Irwin,
P. Jennings, M. Marselle, C. J. Plack, J. Poxon, “Perception
of Soundscapes: An Interdisciplinary Approach,” Applied

Acoustics, vol. 74, no. 2, pp. 224–231 (2013), doi:https:
//doi.org/10.1016/j.apacoust.2012.05.010.

[9] M. Raimbault, D. Dubois, “Urban Soundscapes: Ex-
periences and Knowledge,” Cities, vol. 22, no. 5, pp.
339–350 (2005), doi:https://doi.org/10.1016/j.cities.2005.
05.003.

[10] C. Guastavino, “The Ideal Urban Soundscape: In-
vestigating the Sound Quality of French Cities,” Acta Acus-
tica united with Acustica, vol. 92, no. 2006, pp. 945–951
(2006).

[11] J. Woodcock, W. J. Davies, T. J. Cox, A. Mem-
ber, F. Melchior, “Categorization of Broadcast Audio Ob-
jects in Complex Auditory Scenes,” Journal of the Au-
dio Engineering Society, vol. 64, no. 6 (2016), doi:https:
//doi.org/10.17743/jaes.2016.0007.

[12] O. Rummukainen, J. Radun, T. Virtanen, V. Pulkki,
M. M. Murray, “Categorization of Natural Dynamic Au-
diovisual Scenes,” PLoS ONE, vol. 9, no. 5, p. 14 (2014),
doi:https://doi.org/10.1371/.

[13] C. Guastavino, “Categorization of Environmental
Sounds,” Canadian Journal of Experimental Psychology,
vol. 61, no. 1, pp. 54–63 (2007), doi:https://doi.org/10.
1037/cjep2007006.

[14] J. Salamon, C. Jacoby, J. P. Bello, “A Dataset and
Taxonomy for Urban Sound Research,” presented at the
Proceedings of the ACM International Conference on Mul-
timedia - MM ’14, pp. 1041–1044 (2014), doi:https://doi.
org/10.1145/2647868.2655045.

[15] A. L. Brown, J. Kang, T. Gjestland, “Towards Stan-
dardization in Soundscape Preference Assessment,” Ap-
plied Acoustics, vol. 72, no. 6, pp. 387–392 (2011 May),
doi:https://doi.org/10.1016/j.apacoust.2011.01.001.

[16] P. Lindborg, “A Taxonomy of Sound Sources in
Restaurants,” Applied Acoustics, vol. 110, pp. 297–310
(2016), doi:https://doi.org/10.1016/j.apacoust.2016.03.
032.

[17] J. Woodcock, W. J. Davies, T. J. Cox, “A Cog-
nitive Framework for the Categorisation of Auditory Ob-
jects in Urban Soundscapes,” Applied Acoustics, vol. 121,
no. 2017, pp. 56–64 (2017), doi:https://doi.org/10.1016/j.
apacoust.2017.01.027.

[18] J. Sussman-Fort, E. Sussman, “The Effect of Stim-
ulus Context on the Buildup to Stream Segregation,” Fron-
tiers in Neuroscience, vol. 8, no. 8 APR, pp. 1–8 (2014),
doi:https://doi.org/10.3389/fnins.2014.00093.

[19] B. Gygi, G. R. Kidd, C. S. Watson, “Similarity and
Categorization of Environmental Sounds,” Perception &
Psychophysics, vol. 69, no. 6, pp. 839–855 (2007).

[20] D. Pressnitzer, J. Graves, C. Chambers,
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