
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Electrical and Electronic Engineering

2021-07-01

Grammatical Evolution for Detecting Cyberattacks in Internet of Grammatical Evolution for Detecting Cyberattacks in Internet of

Things Environments Things Environments

Hasanen Alyasiri
University of Kufa, Iraq

John Clark
The University of Sheffield, UK, john.clark@sheffield.ac.uk

Ali Malik
Technological University Dublin, ali.malik@tudublin.ie

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart

 Part of the Electrical and Electronics Commons, and the Systems and Communications Commons

Recommended Citation Recommended Citation
Alyasiri, H. et al. (2021) Grammatical Evolution for Detecting Cyberattacks in Internet of Things
Environments, Conference: IEEE ICCCN, Athens, Greece, July 2021.

This Conference Paper is brought to you for free and
open access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Conference papers by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License
Funder: Science Foundation Ireland (SFI)

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=arrow.tudublin.ie%2Fengscheleart%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fengscheleart%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Authors Authors
Hasanen Alyasiri, John Clark, Ali Malik, and Ruairí de Fréin

This conference paper is available at ARROW@TU Dublin: https://arrow.tudublin.ie/engscheleart/329

https://arrow.tudublin.ie/engscheleart/329

Grammatical Evolution for Detecting Cyberattacks
in Internet of Things Environments

Hasanen Alyasiri ∗, John A Clark †, Ali Malik ‡, Ruairı́ de Fréin ‡
∗Department of Computer Science, University of Kufa, Iraq

hasanen.alyasiri@uokufa.edu.iq
†Department of Computer Science, The University of Sheffield, United Kingdom

john.clark@sheffield.ac.uk
‡School of Electrical and Electronic Engineering, Technological University Dublin, Ireland

ali.malik, ruairi.defrein@tudublin.ie

Abstract—The Internet of Things (IoT) is revolutionising
nearly every aspect of modern life, playing an ever greater role
in both industrial and domestic sectors. The increasing frequency
of cyber-incidents is a consequence of the pervasiveness of IoT.
Threats are becoming more sophisticated, with attackers using
new attacks or modifying existing ones. Security teams must deal
with a diverse and complex threat landscape that is constantly
evolving. Traditional security solutions cannot protect such sys-
tems adequately and so researchers have begun to use Machine
Learning algorithms to discover effective defence systems. In this
paper, we investigate how one approach from the domain of
evolutionary computation - grammatical evolution - can be used
to identify cyberattacks in IoT environments. The experiments
were conducted on up-to-date datasets and compared with state-
of-the-art algorithms. The potential application of evolutionary
computation-based approaches to detect unknown attacks is also
examined and discussed.

Index Terms—Grammatical Evolution, IoT Security, Unknown
Attacks

I. INTRODUCTION

The Internet of Things (IoT) is composed of many devices
whose augmentation with processors and network cards pro-
vide connection to the Internet and allow the exchange of data.
Things, in this context, refer to various devices ranging from
complex cloud servers to simple sensors that can be managed
by users using the web, app or other types of interfaces [1].
These devices can interact with each other with minimum
human involvement. IoT technologies help improve life quality
by introducing smart applications in education, healthcare,
cities, factory, and many more domains [2] [3] [1]. IoT is
one of the fastest-growing industries, despite its fairly recent
initiation (between 2008 and 2009) [4]. According to the
survey conducted by Statista [5], the count of IoT connected
devices will be more than 50 billion by 2023 and 75 billion by
2025, as presented in Figure 1. Despite this growth, experts
have recognised that many IoT devices are still inherently
vulnerable and a weak link in security [6].

Recently, Mirai malware was used to compromise various
vulnerable IoT devices, namely cameras, modems, and routers,
and turn them into botnets [6]. These botnets were then used,
in September 2016, to launch a large scale Distributed Denial
of Service (DDoS) attack against the Internet infrastructure

Fig. 1. IoT: Number of devices worldwide from 2015 to 2025 [5].

firm Dyn, which paralysed access to several high-profile web-
sites. This showed how dangerous the consequences are if IoT
systems are compromised. Not only are the IoT users affected,
but a whole range of systems such as websites, applications,
social networks and servers [7]. In addition, the large-scale
and complex nature of IoT paradigms has increased net-
works vulnerability [6]. Current traditional security solutions,
such as encryption, authentication, and access control, though
important, are inadequate for addressing complex security
requirements of IoT systems [1] [7]. Traditional approaches
must be augmented with new methods to provide adequate
protection for IoT systems. Over the past few years, and of
specific interest to the work reported in this paper, the field of
Machine Learning (ML) has advanced considerably for solving
various real-world problems. For this reason, many researchers
have begun to deploy ML algorithms to improve the security
of various systems including IoT [1] [7]. Our work explores
a particular approach as indicated below.

Evolutionary Computation (EC) algorithms, a subset of ML
algorithms, have successfully produced intelligent solutions
for different fields, for instance, computational biology, med-
ical science, finance, engineering and many others [2] [8].

Additionally, the study in [2] has concluded that EC techniques
have the potential to identify cybersecurity risks including
those of IoT systems. Furthermore, solutions evolved using
EC techniques possess a number of attractive characteristics
such as being readable and lightweight, and employing fewer
features than other ML algorithms [9].

In this paper, we investigate the use of one EC algorithm,
Grammatical Evolution (GE), to evolve rules for detecting
attacks against IoT environments. There are various studies
that have adopted GE algorithm to address security problems
in different fields including mobile ad hoc networks [10],
traditional networks [11], phishing threats [12], and botnet
detection [13]. However, this paper is the first study to use
GE algorithm for the purpose of protecting IoT environments.
Moreover, a recent study [7] has shown that unknown attacks
are an ongoing issue for IoT systems. Hence, we will evaluate
how well GE algorithm can address this issue.

This paper is organised as follows: Section II summarises
background and related work; Section III explains the method-
ology; Section IV describes the experiments conducted and the
results obtained; and Section V concludes.

II. BACKGROUND

IoT systems have become an active research area in cyberse-
curity. This is due to the wide-spread adoption of IoT devices
and inadequacy of currently used protection techniques [14].
IoT presents a significantly increased threat landscape: a great
many traditional server and networking threats are present but
the proliferation of end devices, with their varying capabilities
and resources, offers many new points to attack [15].

Turning IoT devices into a botnet is one particular threat.
Botnets refer to compromised devices that are controlled by
an attacker using a special command and control channel [13].
These botnets can be used to perform a number of malicious
activities: DDoS, keylogging, spamming, phishing and others
[13] [15]. Another security risk for IoT environments comes
from its communication protocol, such as Message Queuing
Telemetry Transport (MQTT) [14]. MQTT is a message trans-
port protocol used for machine-to-machine communications
(the basis for IoT). It has a number of attractive features in-
cluding being lightweight, having low bandwidth requirements
and being highly effective [3]. These features make it the
prominent protocol for IoT systems. However, such a protocol
is vulnerable and attackers could exploit this vulnerability
to launch attacks such as aggressive scans and brute-force
attacks [3] [14]. Both botnet-based and MQTT-based attacks
are addressed in this study.

In the literature, several researchers have built ML-based
security methods for IoT systems, as outlined below:

Aydogan et al. [16] proposed using genetic programming
to detect attacks in the context of industrial IoT applications.
Two types of attacks were investigated, namely Hello flood
attacks and Version number attacks, which target the routing
protocol of low-power and lossy IoT networks. The proposed
system achieved very satisfying outcomes (high true positive
and low false positive rates).

Koroniotis et al. [15] used Machine and Deep Learning al-
gorithms to detect threats to IoT frameworks. These algorithms
were: Support Vector Machines (SVMs), Recurrent Neural
Networks (RNNs) and Long-Short Term Memory Recurrent
Neural Network (LSTM-RNNs). Different attack scenarios
were considered including probing attacks, Denial of Service
(DoS) attacks and information theft. The results showed these
algorithms were capable of detecting such attacks with a
detection rate of 100% in the best-case scenario.

Aldhaheri et al. [17] developed a hybrid detection system
consisting of Deep Learning and Dendritic Cell Algorithm
(DeepDCA) for detecting attacks against IoT frameworks.
Threats, such as DoS, DDoS, Information gathering and theft,
were investigated. Before training the classifier, they applied
the Information Gain approach to select the most effective (i.e.
informative) features from the search space to minimise the
computational cost and enhance accuracy. DeepDCA demon-
strated better performance than other ML algorithms including
SVM, Naive Bayes (NB), K Nearest Neighbor (KNN) and
Multilayer Perceptron (MLP).

Hindy et al. investigated the use of six different ML algo-
rithms to detect MQTT-based attacks [14]. These attacks were
aggressive scans, User Datagram Protocol (UDP) scans, Sparta
SSH brute-force attacks, and MQTT brute-force attacks. Three
sets of features representing behaviours in the IoT environment
were extracted, from packet-based data and two types of flow-
based (i.e. uni-directional and bi-directional) data. Their work
demonstrated the effectiveness of detecting such attacks using
ML algorithms and bi-directional flow-based features.

III. PROPOSED METHODOLOGY

In this paper, our objective is to use the Grammatical Evolu-
tion (GE) algorithm to evolve programs to detect cyberattacks
in IoT environments. GE is a population-based optimisation
algorithm inspired largely by the mechanism of Darwinian
evolution. It seeks to evolve ever-fitter populations of candidate
solutions for the intended environment [18]. It was devised by
Ryan and O’Neill in 1998 [19].

GE is capable of automatically evolving complete pro-
grams in any language. It typically uses sequences of non-
negative integers of variable length to represent individuals.
The grammars used to express the space of programs are
specified in Backus-Naur Form (BNF), a notation for spec-
ifying context-free grammars. The grammar is denoted by
a four-tuple {N, T, P, S}, where N is a non-terminal
set, T is the terminal set (i.e. inputs), P is the production
rules set, and S is the start symbol of the grammar from
which the generation process begins. Sentences in the language
are concrete expressions containing only terminals. They are
derived by successive application of production rules to non-
terminals (i.e. replacing a non-terminal that appears on the
left-hand side of a rule with one of its productions on the
right-hand side). A typical approach is to expand the leftmost
non-terminal. A candidate solution is a non-negative integer
sequence. The elements of such a sequence are successively
interpreted as indices into the relevant production rules (i.e.

they indicate which rules to apply). If a non-terminal can be
expanded via k rules (indexed by 0 to (k−1)), then an integer
value V is deemed to indicate the (V mod k)th rule. Consider
the following grammar as an example:
N = {expr, op, pre-op, var}
T = { +, −, /, ∗, sqrt, sin, cos, tan, x, 1.0}
S = <expr>

and P can be represented as
<expr> ::= <expr><op><expr> 0

| <pre-op><expr> 1
| <var> 2

<op> ::= + 0
| − 1
| / 2
| ∗ 3

<pre-op> ::= sqrt 0
| sin 1
| cos 2
| tan 3

<var> ::= x 0
| 1.0 1

The GE genomes are expressed as variable-length strings
of 8-bit elements. Each set of 8 bits forms what generally
is referred to as a codon value which is used to select the
production rule from the BNF grammar. Consider the follow-
ing genome of a GE individual represented by a sequence of
integers, for instance {210, 35, 46, 67, 136, 53, 143, 25}.
Since S is the start symbol. There is only one production rule
that starts with S (mapping S to < expr >) and so we start the
decoding process by substituting S with < expr >. < expr >
has 3 rules and so we interpret 210 as 210 mod 3, i.e. as rule 0,
and so we expand < expr > as < expr >< op >< expr >.
We now expand the leftmost non-terminal in this expression.
Once again, < expr > has 3 possible rules to expand it, and
we select rule (35 mod 3), i.e. rule 2. Applying this rule gives
the string < var >< op >< expr >. This continues until non
non-terminals symbols remain. The final expression evolved
given the genome and the grammar is ’x∗sin(1.0)’. If we run
out of integers before a string is produced comprising entirely
terminal elements, a recovery strategy needs to be adopted, e.g.
continuing from the first element of the array, a strategy called
wrapping [19]. However, if a valid sentence (i.e. comprising
only terminals) is not produced within a certain number of
wraps, GE will consider this chromosome to be invalid.

GE creates the initial population from randomly produced
chromosomes, each considered as a candidate solution to the
problem [20]. Generation by generation, GE applies genetic
operators (i.e. crossover and mutation) to produce new solu-
tions, hopefully better, that replace the old ones. The single-
point crossover is used where two positions are chosen on
each codon sequence at random and their genetic contents
are swapped beginning from these positions. The mutation
operator mutates at random on each bit in a GE genome
with a predetermined mutation probability. The mutation is
essential to preserve the diversity of GE individuals through

the evolutionary process [20]. This will continue until the
termination condition is met (i.e. an ideal solution evolved
or the maximum number of generations reached). The general
steps of GE algorithm are stated in Algorithm 1.

Algorithm 1: The general steps of GE

Create initial random population;
while termination conditions not met do

Evaluate the fitness of each individual;
Apply genetic operators to the individuals;
Create a new population;

end
Return the best individual;

The steady-state replacement mechanism is applied in the
GE algorithm by default to ensure the validity of solutions in
evolution [18]. Invalid solutions are given the lowest fitness
value, however, using a simple replacement mechanism these
solutions may possibly remain in future generations. These
invalid solutions may cause a delay in the evolution process.
Thus, the positive effect of having the steady-state mechanism
is its capability to replace the worst solutions in a population
with new solutions.

A. Fitness Function

The fitness function measures how well an individual solves
the problem at hand. In our experiments, the fitness value is
calculated using the Matthews Correlation Coefficient (MCC).
A new study [21] has shown that MCC provided a more
informative and truthful score in assessing binary classifiers
than conventional metrics, especially when an unbalanced
dataset is investigated. MCC relies on the four categories of
the confusion matrix (i.e. true positives, true negatives, false
positives, and false negatives). The following formula is used
to calculate the MCC score:

MCC = TP∗TN−FP∗FN√
(TP+FP)∗(FN+TN)∗(FP+TN)∗(TP+FN)

(1)
True Positives (TP) is the count of attack instances actually

identified as attacks. True Negatives (TN) is the count of
normal events identified correctly as normal. False Positives
(FP) is the count of normal events identified as attacks. False
Negatives (FN) is the count of actual attack instances incor-
rectly identified as normal events. The MCC score produces
values in the range of −1 to 1. MCC = −1 indicates a
completely incorrect classification while MCC = 1 shows a
completely correct classification. The fitness value is given by:

f = 1−MCC (2)

The fitness value will be equal 0 when all instances identi-
fied correctly (i.e. the ideal).

B. GE Grammars and Settings

To evolve detection rules, GE uses a BNF grammar
that produces ’if’ statements, which raise an alarm when
the condition is true. Function nodes consist of a set
of mathematical, relational, and logical operators. These
operators are of two types: a binary which takes 2 inputs and
a unary which takes one input only. Relational nodes take
any 2 inputs and return an output of a Boolean type whereas
logical operators take 2 Boolean inputs and return an output
of a Boolean type. The output node takes relational or logical
operators only. The BNF grammar of IoT attacks detection
problem is provided below:

<rule> ::= if (<condition>) {raise alarm ()}
<condition> ::= <condition>AND<condition>

| <condition>OR<condition>
| <rel.op>

<rel.op> ::= <op>(<expr>, <expr>)
<op> ::= >, >=, <, <=
<expr> ::= <binary.op>(<expr> , <expr>)

| <unary.op>(<expr>)
| <var>

<unary.op> ::= sqrt | abs | ceil | exp | floor | log | sin | cos
| tan | tanh

<binary.op> ::= + | − | ∗ | protected (/) | power | max | min
<var> ::= The feature set given by used datasets

GE was implemented using an R package named gramEvol
[20] in this study. GE settings used in the experiments had a
population size of 1000, the maximum count of generations
was set to 50, and without elitism. The rest of the settings
is automatically determined by the package. The maximum
search depth in the case of cyclic grammar and is limited to
the number of production rules in the grammar.

IV. EXPERIMENTAL DESIGN AND EVALUATION

The section includes two types of experiments: the evolution
of detection rules for IoT cyberattacks and for unknown
attacks.

A. Description of the Benchmark Datasets

To demonstrate the effectiveness of the proposed method
we used two recently contributed datasets: BoT-IoT [15] and
IoT-MQTT [22]. The BoT-IoT dataset was generated in the
Research Cyber Range lab of UNSW Canberra. This dataset
represents a realistic IoT environment and has many attractive
features, for instance a realistic testbed configuration, a real-
istic traffic, diverse attack scenarios, etc, compared to other
datasets. The attacks traffic in this dataset are described as
follows [15]:

Probing attacks are malicious activities in which an attacker
collects information about vulnerabilities in the targeted sys-
tem using scanning software, for instance, port scanning and
operating system fingerprinting. This collected information can
help attackers evade system security controls.

Denial of Service is an intrusion action where an attacker
attempts to disrupt service(s), and thus deny legitimate users
access. Usually, compromised machines are used to launch
such kind of attacks. In this dataset, two types of Denial of
Service are performed, namely DoS and DDoS, which differ
in the volume of the attack. Moreover, they launched both DoS
and DDoS using various network protocols.

Information theft is an attempt to compromise the security
of a machine in order to steal sensitive information. They
implement two such attacks, namely data theft and keylogging.
In data theft, the attacker downloads the sensitive data from
a targeted machine after compromising it. In keylogging, the
attacker records the user activities (i.e. keystrokes) to help leak
sensitive credentials.

We used the original split of the training and testing portions
(see Table I). The Argus tool was used to extract the feature
set that describes various behaviours in the IoT environment.
In addition, they created new features based on the statistics
of groups of network flows in which models of different
attacks can be identified. In the original dataset, a collection
of the 10 best features has been given, which we used in our
implementations (see Table II).

TABLE I
BOT-IOT DATASET DISTRIBUTION

Category Training Testing
DDoS 1,541,315 385,309
DoS 1,320,148 330,112
Reconnaissance 72,919 18,163
Information Theft 65 14
Normal 370 107

TABLE II
BOT-IOT BEST 10 FEATURES DESCRIPTION [15]

Feature Name Description
seq Argus sequence number
stddev Standard deviation of aggregated records
N IN Conn P SrcIP No. of inbound connections per source IP
N IN Conn P DstIP No. of inbound connections per destination IP
state number Numerical representation of feature state
mean Average duration of aggregated records
drate Destination-to-source packets per second
srate Source-to-destination packets per second
min Minimum duration of aggregated records
max Maximum duration of aggregated records

In the IoT-MQTT dataset, there are two types of attacks,
namely scanning and brute-force. In a scanning attack, an
attacker scans the connected devices to a network to gather
valuable information about services and operating systems
they are running. This information can be used to launch
attacks. They implemented two types of this attack namely ag-
gressive scan and UDP scan. In a brute-force attack an intruder
tries all possible combinations to guess critical information
such as login, encryption keys, etc. Sparta SSH brute-force
and MQTT brute-force attacks were performed.

The tcpdump tool was used to collect Ethernet traffic
from the simulated environment. Packet-based and flow-based

features were generated, which their experiments showed
that flow-based types were better in discriminating between
normal and attack behaviour [14]. The two types of flow-based
feature (i.e. unidirectional and bidirectional) were used in our
experiments (see Table III). In the case of bidirectional flows,
each feature has two values: one represents the forward flow
and the other represents backward flow.

TABLE III
IOT-MQTT USED FEATURES DESCRIPTION [22]

Feature Name Description
num pkts Number of Packets in the flow
mean iat Average inter arrival time
std iat Standard deviation of inter arrival time
min iat Minimum inter arrival time
max iat Maximum inter arrival time
mean pkt len Average packet length
num bytes Number of bytes
num psh flags Number of push flag
num rst flags Number of reset flag
num urg flags Number of urgent flag
std pkt len Standard deviation packet length
min pkt len Minimum packet length
max pkt len Maximum packet length

We randomly partitioned this dataset into 70% for the
training and 30% for the testing. Each set of the unidirectional
data contained around 24% attacks whereas the bidirectional
data contained around 27% attacks in each set.

B. Evaluation Metrics

The metrics utilised to evaluate GE algorithm performance
are: Detection Rate (DR = TP

(TP+FN)) which provides the
fraction of attack instances that are identified. Accuracy
((TP+TN)
(TP+FP+TN+FN)) indicates of how well all classes (i.e.

attacks and normal) are identified. In addition, we calculate
the percentage of misclassified instances using Error Rate
(ERR = (FP+FN)

(TP+FP+TN+FN)). Finally, the MCC score is
reported.

C. Results

To remove dependence on the initial random seed from
the results, we report the average plus the Standard Error
(SE) of the average for 20 independent runs. The SE gives
the dispersion in the average with several experiments been
conducted. It measured using (σ/

√
N) where N in our case

indicates the count of runs. The change in the fitness value
(i.e. MCC score) of the best-evolved rule throughout the
generations is shown in Figure 2. The best rule from the IoT-
MQTT experiment appeared to display performance on the
test set as effective as on the training set.

As seen from the results in Table IV, GE algorithm showed
an excellent performance in terms of DR, ERR and Accuracy
in the BoT-IoT dataset. GE algorithm achieved similar and in
some cases better results than other ML algorithm outcomes
reported in the literature. The performance of LSTM [15]
tested on BoT-IoT dataset were 99.75% DR and 99.74%
Accuracy, while DeepDCA [17] gave 98.36% DR and 98.73%
Accuracy. However, the MCC score was low. An examination

Fig. 2. The MCC score of the best rule in different generations.

of the outcomes shows that evolved rules were classifying
the normal behaviour with a range from 26.18% to 58.87%.
This is due to the massively unbalanced BoT-IoT dataset
where normal instances represent 0.01%. Hence, balancing
techniques could have yielded different outcomes which we
will examine in the future.

In the IoT-MQTT dataset, GE algorithm accomplished an
excellent performance in terms of DR rate using both types
of flow features. Overall, the bidirectional features showed
better performance than unidirectional ones. In comparison,
various ML algorithms [14] achieved DR range from 78% to
99.98% and from 96.61% to 99.97% for unidirectional and
bidirectional flow features, respectively.

TABLE IV
GE ALGORITHM PERFORMANCE (%)

BoT-IoT IoT-MQTT (Uni) IoT-MQTT (Bi)
DR 99.99 ± 0 99.41 ± 0.05 99.20 ± 0.13

ERR 0.01 ± 0 3.29 ± 0.15 2.05 ± 0.22

Accuracy 99.98 ± 0 96.70 ± 0.15 97.94 ± 0.22

MCC 46.96 ± 1.08 91.65 ± 0.37 95.06 ± 0.52

The following is one of the best evolved rules produced by
GE algorithm taken from the BoT-IoT experiment:

if (N IN Conn P SrcIP < exp(ceil(N IN Conn P DstIP))
+ power (max, log(state number))), raise alarm ()

As shown in the rule, GE algorithm used 4 out of 10
features available during the evolution process. In addition,
the readable output (a particular strength of GE) can give
useful insights into how the algorithm solves the specified
problem.

D. GE algorithm for Detecting Unknown Attacks

Many IoT protection systems have been produced using
signature-based or normal behaviour specifications. However,
these are inadequate for detecting unknown/zero-day attacks
[7]. We assessed the suitability of GE to learn characteristics of
known attacks which are often mutations of previous attacks.
The BoT-IoT dataset was adopted for this experiment. There

are 4 kinds of attacks in this dataset (see Table I). We have
ensured that training and testing sets contain different attacks.
To do so, for each attack kind that mimics an unknown attack
we removed its training samples and added them to the testing
portion. For each investigation, we ran the algorithm 20 times
which makes the total count of the independent runs for all
attacks is (20 * 4 = 80). Fig. 3 shows the spread of responses
regarding the detection rate for each unknown attack.

Fig. 3. Boxplots show the distribution of each unknown attack detected by
GE algorithm (each boxplot represents an experiment of 20 independent runs).

The boxplots indicate that GE algorithm showed high and
steady performance in detecting unknown attacks, specifically
DDoS, DoS, and Information theft. However, it has achieved
the lowest DR for Reconnaissance attacks in comparison to
other unknown attacks. To the best of our knowledge, this is
due to the nature of this attack, which may target the port.
Consequently, for the future work, we need to include other
types of feature such as port statistics. In general, these results
suggest that GE algorithm has successfully classified unknown
attacks that the system was not trained on.

V. CONCLUSION

IoT devices and services have become a favourite target
of cybercriminals. In this paper, we presented a prelimi-
nary investigation of the GE algorithm to detect cyberattacks
against IoT environments. Our proposed method is capable of
mapping the input vector space (i.e. extracted features) into a
decision space to discriminate between classes (i.e. normal vs.
attack). In addition, the experimental results demonstrated that
the GE algorithm showed a robust performance in detecting
attacks that were absent from the training stage. In future,
we plan to use GE to synthesise an ensemble model (i.e. a
collection of detectors) to detect attacks on IoT environments.

ACKNOWLEDGEMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI)
under the Grant Number 15/SIRG/3459.

REFERENCES

[1] M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, I. Ali, and M. Guizani,
“A survey of machine and deep learning methods for internet of things
(iot) security,” IEEE Communications Surveys & Tutorials, 2020.

[2] H. He, C. Maple, T. Watson, A. Tiwari, J. Mehnen, Y. Jin, and B. Gabrys,
“The security challenges in the iot enabled cyber-physical systems
and opportunities for evolutionary computing & other computational
intelligence,” in 2016 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2016, pp. 1015–1021.

[3] M. Harsha, B. Bhavani, and K. Kundhavai, “Analysis of vulnerabilities
in mqtt security using shodan api and implementation of its counter-
measures via authentication and acls,” in 2018 International Conference
on Advances in Computing, Communications and Informatics (ICACCI).
IEEE, 2018, pp. 2244–2250.

[4] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–11,
2011.

[5] S. R. Department, “Internet of Things - number of connected
devices worldwide 2015-2025,” 2016, (Accessed: 2021, Feb
2). [Online]. Available: https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/

[6] Security Report 2020 — Check Point Software. (2020, June 26).
[Online]. Available: https://pages.checkpoint.com/cyber-security-report-
2020.html

[7] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for iot security based on learning tech-
niques,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp.
2671–2701, 2019.

[8] R. de Fréin and L. O’Farrell, “Distance-based cluster head election
for mobile sensing,” in 2018 12th International Conference on Sensing
Technology (ICST). IEEE, 2018, pp. 196–201.

[9] S. Sen, “A survey of intrusion detection systems using evolutionary com-
putation,” in Bio-inspired computation in telecommunications. Elsevier,
2015, pp. 73–94.

[10] S. Şen and J. A. Clark, “Evolving intrusion detection rules on mobile
ad hoc networks,” in Pacific Rim International Conference on Artificial
Intelligence. Springer, 2008, pp. 1053–1058.

[11] D. Wilson and D. Kaur, “Using grammatical evolution for evolving
intrusion detection rules,” WSEAS Transactions on Systems, vol. 6, no. 2,
pp. 346–351, 2007.

[12] H. Alyasiri, J. A. Clark, and D. Kudenko, “Evolutionary computation
algorithms for detecting known and unknown attacks,” in International
Conference on Security for Information Technology and Communica-
tions. Springer, 2018, pp. 170–184.

[13] S. Yilmaz and S. Sen, “Early detection of botnet activities using
grammatical evolution,” in International Conference on the Applications
of Evolutionary Computation (Part of EvoStar). Springer, 2019, pp.
395–404.

[14] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and
X. Bellekens, “Machine learning based iot intrusion detection system:
An mqtt case study,” arXiv preprint arXiv:2006.15340, 2020.

[15] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[16] E. Aydogan, S. Yilmaz, S. Sen, I. Butun, S. Forsström, and M. Gidlund,
“A central intrusion detection system for rpl-based industrial internet
of things,” in 2019 15th IEEE International Workshop on Factory
Communication Systems (WFCS). IEEE, 2019, pp. 1–5.

[17] S. Aldhaheri, D. Alghazzawi, L. Cheng, B. Alzahrani, and A. Al-
Barakati, “Deepdca: Novel network-based detection of iot attacks using
artificial immune system,” Applied Sciences, vol. 10, no. 6, p. 1909,
2020.

[18] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349–358, 2001.

[19] C. Ryan, J. J. Collins, and M. O. Neill, “Grammatical evolution:
Evolving programs for an arbitrary language,” in European Conference
on Genetic Programming. Springer, 1998, pp. 83–96.

[20] F. Noorian, A. M. de Silva, and P. H. Leong, “gramevol: Grammatical
evolution in r,” Journal of Statistical Software, vol. 71, no. i01, 2016.

[21] D. Chicco and G. Jurman, “The advantages of the matthews correlation
coefficient (mcc) over f1 score and accuracy in binary classification
evaluation,” BMC genomics, vol. 21, no. 1, p. 6, 2020.

[22] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens,
“Mqtt internet of things intrusion detection dataset,” 2020. [Online].
Available: http://dx.doi.org/10.21227/bhxy-ep04

	Grammatical Evolution for Detecting Cyberattacks in Internet of Things Environments
	Recommended Citation
	Authors

	tmp.1620210881.pdf.n361F

