
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Electrical and Electronic Engineering

2021-07-01

Bayesian Adaptive Path Allocation Techniques for Intra-Bayesian Adaptive Path Allocation Techniques for Intra-

Datacenter Workloads Datacenter Workloads

Ali Malik
Technological University Dublin, ali.malik@tudublin.ie

Ruairí de Fréin
Technological University Dublin, ruairi.defrein@tudublin.ie

Chih-Heng Ke
National Quemoy University, Kinmen 892, Taiwan

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart

 Part of the Computer and Systems Architecture Commons, and the Systems and Communications

Commons

Recommended Citation Recommended Citation
Malik, A. et al (2021) Bayesian Adaptive Path Allocation Techniques for Intra-Datacenter Workloads, The
30th International Conference on Computer Communications and Networks (ICCCN 2021)July 19 - July
22, 2021, Athens, Greece.

This Conference Paper is brought to you for free and
open access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Conference papers by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License
Funder: Science Foundation Ireland (SFI)

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fengscheleart%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fengscheleart%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fengscheleart%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Authors Authors
Ali Malik, Ruairí de Fréin, Chih-Heng Ke, Hasanen Alyasiri, and Obinna Izima

This conference paper is available at ARROW@TU Dublin: https://arrow.tudublin.ie/engscheleart/331

https://arrow.tudublin.ie/engscheleart/331

Bayesian Adaptive Path Allocation Techniques for
Intra-Datacenter Workloads

Ali Malik∗, Ruairı́ de Fréin∗, Chih-Heng Ke†, Hasanen Alyasiri‡, Obinna Izima∗
∗School of Electrical and Electronic Engineering, Technological University Dublin, Ireland

{ali.malik, ruairi.defrein, d17127923}@tudublin.ie
†Department of Computer Science and Information Engineering, National Quemoy University, Taiwan

smallko@gmail.com
‡Department of Computer Science, University of Kufa, Iraq

hasanen.alyasiri@uokufa.edu.iq

Abstract—Data center networks (DCNs) are the backbone of
many cloud and Internet services. They are vulnerable to link
failures, that occur on a daily basis, with a high frequency. Service
disruption due to link failure may incur financial losses, com-
pliance breaches and reputation damage. Performance metrics
such as packet loss and routing flaps are negatively affected
by these failure events. We propose a new Bayesian learning
approach towards adaptive path allocation that aims to improve
DCN performance by reducing both packet loss and routing flaps
ratios. The proposed approach incorporates historical informa-
tion about link failure and usage probabilities into its allocation
procedure, and updates this information on-the-fly during DCN
operational time. We evaluate the proposed framework using an
experimental platform built with the POX controller and the
Mininet emulator. Compared with a benchmark shortest path
algorithm, the results show that the proposed methods perform
better in terms of reducing the packet loss and routing flaps.

Index Terms—SDN, Bayesian, datacenter, probability, traffic
workloads.

I. INTRODUCTION

Traffic demands in Data Center Networks (DCNs) pose
challenges for resource and path allocation mechanisms. A
key requirement for DCN-oriented enterprises is to deliver
good Quality of Service (QoS) so that end-users are satisfied,
and their profit margins are preserved and grown. Network
incidents such as link failures have a negative impact on
network performance as they impinge on functionalities such
as routing which plays a crucial role in forming the substrate of
the DCN. Link failures invoke routing flaps –the advertisement
of destination networks via multiple different routes in quick
succession– that negatively affect QoS metrics such as packet
loss. The severity of the problem of infrastructure failures can
be measured in terms of financial loss. The financial losses of
28 cloud providers were estimated to sum to approximately
$285 million as a consequence of infrastructure and applica-
tion failures for the period 2007-2013 [1]. The approach in
[2] looked to measure the exposure of DCN operators to link
failures by quantifying the vulnerability of different online
transaction processing workloads to different failures, and
assigning a globality score to each workload, in the context of
a DCN, which managed 75% of Europe’s flight bookings. We
take a Bayesian approach [3] towards adaptive path allocation
in DCNs; belief in the availability of the DCN substrate is

updated as more and more link failure events and workloads
are observed by the DCN.

Modern DCN topology design is dominated by tree-based
structures, for example, fat-tree and clos networks [4]. A
review of the architecture of production networks is discussed
in [2]. These architectures include redundancy in the path set to
improve the fault-tolerance of the networks. Despite this over-
provisioning, the authors of [5] report that this redundancy
is not fully effective in terms of reducing the impact of
link failure incidents. We argue that over-provisioning is not
enough when it is implemented without reference to (1) the
workloads serviced by the DCN or (2) the probability of link
failures on the available links. Instead we show that learning
about the use and vulnerability of the network can be used to
update “prior” information about the network’s state, resulting
in an updated “posterior” information view of the network.
Path allocation in response to a Bayesian learning approach
improves DCN performance.

Software-Defined Network (SDN) is a promising network-
ing paradigm in which the control plane is physically decou-
pled from the data plane. SDN’s centralized network man-
agement and network programmability paradigm simplifies
the task of embedding learning algorithms in DCNs routing
[6]. We exploit SDN to improve DCNs by including run-time
topological statistics such as the probability of link failure and
the probability of link usage in the mechanism that is used
for allocation paths for intra-DCN workloads. The benefits of
this approach in the context of packet loss rates are readily
demonstrated: assigning links which are more likely to fail
than other less likely to fail links, could increase the percentage
of packet losses. This type of assignment will also increase
the expected percentage of routing changes, i.e. flaps, as
the system will need to perform a recovery process every
time when a failure occurs. As far as the DCN manager is
concerned, the DCN substrate is more reliable for enterprises
whose viability depends on its dependability.

This paper is organised as follows. Section II, introduces
various SDN-based DCNs techniques from the literature. In
section III, we introduce our proposed framework. Simulation
and experimental results are presented in Section IV. Finally,
in Section V, we conclude and highlight future research.

II. RELATED WORK

Although previous studies provide important insights into
how to develop SDN-based DCN routing strategies they do
not take into consideration the topological information which
is available as a consequence of having centralized view of
the DCN. We posit that information about the probability
of link failure and the probability of link usage have the
potential to play a crucial role in keeping end-users of the DCN
satisfied. To this end, we propose a new SDN-based routing
strategy that aims to enhance DCN performance through by
reducing the packet loss and the routing flaps. We discuss
the related work under the following headings: (1) Packet loss
reduction during convergence time and multi-path mechanisms
for packet loss reduction; (2) resource reallocation methods
that are achieved with minimum network reconfiguration; and
finally, (3) SDN-based machine learning techniques towards
reducing the probability of packet loss in DCNs.

The authors in [7] proposed SQR as a mechanism to reduce
the packet loss rates in DCNs. SQR is concerned a particular
set of packets, e.g. those that might be lost during the con-
vergence time. Convergence time is the time required by the
network substrate to amend a path in response to a link failure
incident. In comparison a multi-path approach was introduced
in [8]. The objective of the approach, namely FUSO, was
speed and thus the multi-path approach sought to reduce the
packet loss that was induced by failure, congestion or both. To
this end, FUSO diverted the traffic of a path onto a better path
when the current path was suspected to be lossy. In comparison
with our approach, we incorporate historical probability of loss
information into the recover procedure, whereas FUSO takes
an most local-in-time view of the recovery problem.

Packet loss due to link congestion was the primary issue
addressed by a number of SDN-based DCNs approaches [9]–
[12]. The authors in [13] introduced DADR, a disaster aware
dynamic routing algorithm for DCNs based on SDN. DADR
reduces the rate of packet loss and improves the overall
network utilisation in response to disaster warning signals.
The authors in [14] proposed QNR as a SDN-based QoS-
aware approach to reduce the resource reallocation in DCNs.
The problem of resource reallocation with minimum network
reconfiguration was investigated with a view to minimising
packet loss and delay. The authors in [15] introduced a system
that provides load-aware virtual networking service in SDN-
based DCNs with the aim of reducing packet loss and keeping
the network load balanced. The authors in [16] compared the
equal cost multi-path (ECMP) routing with static routing and
found that the packet loss could be reduced with ECMP. In
this paper, the probability of link usage is incorporated into
the routing decision process, an approach which resonates with
the load-aware packet loss reduction approach in [15].

The readily available network data, due to the global view
and centralised management of the SDN paradigm, motivates
the application of Machine Learning techniques [17], [18]. Ef-
forts in the pursuit of DCN performance improvement, which
leverage machine learning are pushing at the boundaries of

what was previously possible. The authors in [19] introduced
DQL as a strategy to generate optimal routing paths in SDN-
based DCNs. The authors demonstrated that DQL can reduce
the average packet loss rate compared with ECMP routing.
In the same context, the authors in [20] proposed a new
SDN reinforcement learning method, called RL-Routing, to
solve various traffic engineering issues. Instead of building
a mathematical model, RL-Routing relies on the experience
that can be obtained from the underlying network activities.
Compared to the Open Shortest Path First (OSPF) algorithm,
which is the touchstone of many deployments,experimental
results show that RL-Routing can reduce the packet loss and
the probability of re-transmission. We continue by introducing
a framework for incorporating various run-time statistics into
SDN optimization routines.

III. ENCODING OBSERVATIONS IN PATH ALLOCATION

We start by introducing notation to describe the DCN nodes
and edges, the operational link set and finally DCN workloads.
We then discuss the link failure model. Finally, we introduce
a Bayesian framework for embedding learned observations
about network state in an adaptive path allocation routine.

A. System Model

The network is modelled as an undirected graph, G, which
consists of a combination of vertices and edges, G = (V,E).
The set V = {v1, . . . , vn} represents a finite set of vertices
(OpenFlow switches) in G. The edge-set, E, represents the
finite set of bidirectional edges (links) in G. The edge between
vi and vj is e

ij
. A path p is a sequence of nodes (vs, . . . , vd);

each pair of nodes is connected by an edge. The source and
destination nodes of p are vs and vd respectively. We consider
simple paths, which means that all the nodes in the path are
distinct. The ijth edge has a cost associated with it, C(eij). The
path cost, Cp, is the sum of the costs of the edges in the path,
Cp =

∑
e
ij
∈p C(eij). In current routing approaches, edge

costs are frequently deterministic values which characterize
how favourable usage of the link is, for example, the cost
captures its bandwidth or a hop counts. Our contribution lies in
introducing a coherent framework for embedding belief about
network state in these costs and updating these costs as time
progresses. A path is operational when all its edge pairs can
be traversed. The state of a link is represented as being in one
of two states at time t,

Ψt(eij) =

{
1, if the link is operational
0, otherwise.

(1)

The shortest path from vs to vd is the path which has the
minimum cost given that all links are operational.

The workload serviced by a DCN consists of a set of
traffic flows or paths, W = {p1, p2 . . .}. DCNs support some
workloads which reoccur periodically. Some examples include
database updates, the Map and Reduce of steps MapReduce,
and also periodic queries due to DCN and application monitor-
ing functions. It follows that some of the load patterns serviced
by the DCN are structured. Similarly, workloads due to user

requests can be structured; the types of applications serving
requests reflect the phase of the user’s day.
Failure Model: We use the link failure model that is presented
in [21] in order to generate failure events periodically. Some
DCN characteristics have been considered to make the adopted
model more appropriate. First, the links length are set to be in
the range of few hundred meters based on the recommen-
dations of [22]. Second, only core links are considered to
be possible subjects of link failure as they have the highest
probability of failure [5].

B. Bayesian dynamic path allocation

The cost assignment approach outlined above, may ad-
versely affect traffic that is delivered over the DCN. It does
not express the idea that certain links experience failures more
frequently than others. In addition, making routing decisions
without considering the periodic nature of some workloads
may lead to network instability and performance degradation.
What is missing is a mechanism for incorporating sources of
information into the route learning procedure adaptively.

Many conventional routing algorithms assign the hop count
as the link cost. This can be interpreted as saying that all links
in the network are equally likely to experience link-failure.
Least cost routing in this scenario corresponds to choosing
paths through the DCN with the lowest sum of link likelihoods
of failure. As the likelihood of the link being a favourable
choice is equal for all links, the DCN is represented as an
adjacency matrix L ∈ In×n, where the entries corresponding
to links are drawn from the binary values, I = {0, 1}.

To fix ideas, consider a 6 node DCN consisting of the
vertex set V = {a, b, c, d, e, f}. A DCN’s adjacency matrix
has entries corresponding to each operational edge. If the hop
count is the cost on each link, this is similar to saying that the
likelihood of link failure of each link is equal,

L =


0 1 0 1 1 0
1 0 1 1 1 0
0 1 0 0 1 1
1 1 0 0 1 0
1 1 1 1 0 1
0 0 1 0 1 0

 . (2)

In SDN-based DCNs, the network controller determines the
flow tables for the selected routing algorithm, by running
Dijkstra’s Algorithm [23] on the link costs, which are captured
here in L. The learned routing topology is distributed to
OpenFlow switches in the form of flow entries. When path
recovery is required, the routing algorithm modifies the flow
tables in the relevant switches. In the case where all links have
an equal probability of failure, we can express this adjacency
matrix as a likelihood of link failure matrix, L̂, by scaling the
entries by the entry-sum of L, which we denote as |L| which
produces the following matrix:

L̂ =
1

|L|
L (3)

The probability of link failure of on link ei,j , pij(θ), the
prior, is computed by taking the ratio of failure events with
the total number of events. An event in this case is an

attempt to send traffic down a link, where the link may or
may not be operational. The likelihood of failure on link
ei,j given information about the probability of failure, θ, is
pi,j(y = failure|θ) = Lij . Every time that we send traffic
down a link, we can update the uncertainty that the link is
operational or not, using Bayes rule, pi,j(θ|y), which gives
us the posterior probability of failure. Even without knowing
what the frequency of failure is initially, by running traffic
down links we can update the posterior probability of failure
on a link given this sequence of observations using Bayes Law,

pi,j(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(4)

Each time a link experiences failure we update the posterior
probability pi,j(θ|y). Each of the link probabilities is bounded
by zero and one, 0 6 L̂ij 6 1 due to the normalization
term, the integral

∫
p(y|θ)p(θ)dθ. Routing using hop-counts,

where each link has a weight of one, is the same as a routing
solution which assumes that the link failure likelihoods on all
links are equal. It is unreasonable to assume that networks
are composed of links which have a uniform likelihood of
failure. Coupled with this, we would like to have the flexibility
to express the idea that links can have different frequencies
of link failure, and to have the ability to be able to update
our uncertainty about the health of links as we observe the
DCN over time. If the link failure probabilities are not equal
this effects the solution arrived at by Dijkstra’s algorithm. For
example, consider the following link failure probability matrix:

ˆL(t) =
1

20


0 3

2
0 1

2
1 0

3
2

0 1 1 1 0
0 1 0 0 1 1
1
2

1 0 0 1 0
1 1 1 1 0 1
0 0 1 0 1 0

 (5)

which indicates that the link from node a to b is more likely
to fail than any other link. Conversely, the link from a to d
is more reliable than the other links. Using this likelihood of
failure matrix instead of the likelihood of failure matrix where
all links are equally likely to fail is likely to give a different
initial Dijkstra’s algorithm solution to the uniform link failure
matrix. We have indicated a time index t in order to show that
the matrix is changing with time.

We also extend the flexibility of our approach to be able
to account for the different types of workloads serviced by
the DCN. The likelihood of failure of a link depends on the
frequency of usage of the link. Given that the DCN workloads
might involve some repetitive patterns, if we can identify what
these patterns are, it is useful to embed this information in
the uncertainty updating process. Consider a data-centre that
supports two workload patterns, W1,W2 ∈W:

W1 : a→ d, e→ c, d→ e, c→ f
W2 : b→ d, c→ b, d→ b, b→ e, b→ c, e→ b

where the operator → indicates that traffic traverses the link
separated by the two nodes. The frequency of usage of the
links associated with these workloads is defined as:

D
C

N
 A

da
pt

iv
e

Pa
th

 A
llo

ca
tio

n
Fr

am
ew

or
k

Network Information Center
and Global View

D
at

a
Pl

an
e Physical/Virtual Network Topology

Southbound	API

Northbound	API

Topology
Discovery &

Parser

A
pp

lic
at

io
n

La
ye

r

Topo.
State

ControllerC
on

tr
ol

 L
ay

er

Installed Paths

Path Allocation Module

 M2 Routing Strategy

 M1 Routing Strategy

 M3 Routing Strategy

Fig. 1. Architecture of the proposed framework and its components: the
primary contribution is on the path allocation module block. Openflow is
used on the southbound interface and POX APIs are used on the northbound
interface.

W1 =
1

|W1|


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
1 0 0 0 1 0
0 0 1 1 0 0
0 0 1 0 0 0

 ,

W2 =
1

|W2|


0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

 (6)

We contribute a new framework that runs Dijkstra’s algo-
rithm on a set of costs which are updated using Bayes law,
using information about the link failure rates in the network
and the frequency of usage patterns.

C. The proposed framework

The architecture of the proposed framework is illustrated in
Fig. 1, which encompasses the following components:
SDN controller: The SDN controller is considered the brain
of the network where the intelligence and decision making
resided. Due to its fast prototyping, the POX controller is
used in this framework [24]. The standard OpenFlow protocol
[25] is employed as a southbound API for establishing the
communication between the data and control planes. The POX
API set is used on the northbound interface for developing the
network applications.
Topology discovery: This component is responsible for learn-
ing the underlying network topology information to be de-
livered to the path allocation module. To do so, the standard
POX discovery module1 is used. In order to represent network
topology as a graph, G, we utilised the NetworkX [26] for
manipulating and simplifying the underlying graph topology.

1https://github.com/noxrepo/pox/

Path allocation: In order to allocate the appropriate resources
to the network workloads, three routing strategies with differ-
ent QoS views are considered here. First, we developed M1
as a routing method that serves as a reasonable benchmark
algorithm to compare with our proposed methods. M1 runs
Dijkstra’s algorithm to find the shortest path with the minimum
number of hops for new requests. This strategy is in line with
Eqn. 2, where all links are of identical cost, i.e. ω(e

ij
) = 1.

When a link failure event, f , occurs, each path whose edge
sequence involves the failed link is excluded from the installed
paths set P and therefore, the subsequent flow packets of the
affected workload will be treated as new request. The pseudo-
code of M1 is given in Alg. 1.

Algorithm 1: Shortest Path With Dijkstra Cost (M1)
. Initialisation :

1 ∀(eij) ∈ E, ω(e
ij

) = 1

. Path Allocation:
2 foreach new pkt do
3 Run Dijkstra’s algorithm to find the shortest path with link

costs {ω(e
ij

)}
4 end
5 foreach link failure (f) do
6 Remove each path includes the failed link from P
7 end

In contrast to M1, we propose M2 as a routing strategy in
which the probability of failure, P, is used as a metric to
quantify the cost that can be arrived at:

Pe
ij
,(t) =

fe
ij∑

e
ij
∈E feij

× 100 (7)

This could aid in dynamically allocating appliances which are
less likely to fail and also to break the ties when there are
identical costs. The strategy of M2 is in line with Eqn. 5. In
the case of link failure, the same procedure as M1 is applied
in addition to a step that updates the link’s failure information
based on Eqn. 7. The pseudo-code of M2 is demonstrated in
Alg. 2.

Algorithm 2: Dijkstra-Like to Find Path With Mini-
mum Failure Probability (M2)
. Initialisation :

1 ∀(eij) ∈ E, P(e
ij

) = 1

. Path Allocation:
2 foreach new pkt do
3 Run Dijkstra’s algorithm to find the shortest path with link

costs {P(e
ij

)}
4 end
5 foreach link failure (f) do
6 Remove each path includes the failed link from P
7 ∀(eij) ∈ E, update P(e

ij
)

8 end

Finally, we present M3 as an extension to M2 in which the
information of link usage probability, U, is exploited along
with P to shape the cost. The value of U can be arrived at:

Ue
ij
,(t) =

|δp(eij)|
|P|

× 100 (8)

where δp(eij) denotes the number of routes that include the
link eij in their sequence. The M3 strategy is an embodiment
of Eqn. 6. The information of the probability of links usage
is updated based on Eqn. 8 every time when a new path is
computed. At the moment of link failure incident, M3 recalls
the same procedure of M1 plus updating both the probability
of link failure information based on Eqn. 7. The pseudo-code
for M3 is demonstrated in Alg.3.

Algorithm 3: Dijkstra-Like to Find Path With Mini-
mum Failure and Usage Probabilities (M3)
. Initialisation :

1 ∀(eij) ∈ E, P(e
ij

) = 1

2 ∀(eij) ∈ E, U(e
ij

) = 1

. Path Allocation:
3 foreach new pkt do
4 ∀(eij) ∈ E, update U(e

ij
)

5 Run Dijkstra’s algorithm to find the shortest path with link
costs {P(e

ij
) × U(e

ij
)}

6 end
7 foreach link failure (f) do
8 Remove the affected installed paths from P
9 ∀(eij) ∈ E, update P(e

ij
)

10 end

It is worth mentioning that the necessary flow entries of the
computed paths are installed with permanent hard and idle
timeouts. This means that the forwarding rules will be removed
only if its belonging path affected by a failure incident.
The performance of M1, M2 and M3 will be evaluated and
discussed in the next section.

IV. PERFORMANCE EVALUATION

In order to gauge the performance of the methods presented
in Sec. III-C, three metrics were considered: (1) packet loss,
(2) routing flaps and (3) path length. The packet loss indicates
the dropped packet percentage and reflects the quality of the
selected paths in terms of packet delivery. Routing flaps indi-
cate the number of re-configurations and reflects the quality
of the selected paths in terms of stability. The path length
indicates the number of hops associated with the computed
path and reflects the quality of selected paths in terms of
shortness. Also, we considered a fat-tree with k=4 pods, which
depicted in Fig. 2, as the DCN experimental topology in
this evaluation. The Distributed Internet Traffic Generator (D-
ITG) [27] was used to generate network workloads. It is a
platform for producing a realistic packet-based network traffic
by accurately emulating the workload of real world traffic and
current Internet applications. D-ITG supports several modes of
traffic generation, e.g. single-flow, multiple-flow and daemon,
and it was shown to be more reliable than the existing traffic
generators [28].

A. Experiment design

In this work, we define the workload as the number of
requests/loads/demands that need to be processed by the DCN
at a time t. In other words, the workloads are represented by
a temporal sequence of traffic matrices, where each matrix is

C
o
r
e

A
g
g
r
e
g
a
t
i
o
n

E
d
g
e

P
o
d
	
0

P
o
d
	
1

P
o
d
	
2

P
o
d
	
3

1 2S
e
r
v
e
r
s

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 2. Fat tree with k = 4, |E| = 32, |V | = 20, Servers= 16.

the demand during a certain time interval. The dynamic traffic
matrix, T , is represented as follow:

Tsd(t) = χ
sd

(t) + µ
sd

(t) (9)

where χ
sd

(t) represents the mean traffic volume from s to d,
periodic of period T = 24h and µ

sd
(t) represents the zero-

mean random variable modeling random fluctuations of traffic
volumes. The random fluctuation between the network pairs
realised by the zero-mean normal random variable as described
in [29], where the standard deviation of such fluctuation σ and
the mean traffic demands can be arrived through the following
power law:

x̄sd(t) = ψσγsd (10)

where we choose the values of γ = 0.8 and logψ = −0.33
to fit the distribution. We used the fast network simulation
setup (FNSS) tool [30] for modeling network traffic over
a short period (up to 1.5 hour) by generating 3 stationary
sequences traffic matrices. In the generated traffic matrices, we
selected the servers of pods, 0, 1 to be the traffic sources.
The remaining servers were set to be the traffic destinations.
Fig. 3 shows the number of the generated workloads with its
frequencies over the three traffic matrices. It can be observed
that some of the workloads appear just once, while, some
appear more than once , i.e. twice or three times, to constitute
a repetitive pattern. We deployed a D-ITG transmitter onto
the terminal of each sender server and a D-ITG receiver on
each receiver server that attached to pods, 2,3. In essence,
D-ITG is employed to accurately replicate the workload of
the 3 traffic matrices obtained by FNSS. The packets of the
generated workloads following the Internet Control Message
Protocol (ICMP). The size of the packets is 50 bytes and we
use a constant inter-departure time between packets. The dura-
tion of each workload is described by its traffic matrix volume.
We set the capacities of the links to 1000 Mbps, the link
propagation delays to 100ms and the switches buffer size to 50
packets. Based on the failure model, link failure events were
generated periodically during the simulation time. Finally, the
proposed framework was implemented and evaluated by using
the container-based emulator, Mininet [31]. As evidenced in
the survey [32], Mininet is a widely used emulation system for

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1

2

3

workload

fr
eq

ue
nc

y

Fig. 3. The frequency of network workloads over the 3 generated traffic matrices.

emulating/simulating network architecture with various exper-
imental scenarios as well as to evaluate and prototype SDN
protocols and applications. In the emulation environment, we
employed two servers; one acted as the OpenFlow controller
and the other simulated the network topology. For each server,
we used Ubuntu v.14.04 LTS with Intel Core-i5 CPU and 8
GB RAM.

B. Simulation results

Various experiments were conducted to study the perfor-
mance of the proposed methods. We discuss the effect of
the proposed methods on packet loss, routing flaps and path
length.

1 2 3 4 5 6 7 8

10

20

30

DCN servers

Pk
t

lo
ss

%

TM1

1 2 3 4 5 6 7 8

10

20

30

DCN servers

Pk
t

lo
ss

%

TM2

1 2 3 4 5 6 7 8

10

20

30

40

DCN servers

Pk
t

lo
ss

%

TM3

M1 M2 M3

Fig. 4. Packet loss measure over the three traffic matrices with methods, M1,
M2 and M3. This measurement is reported via the DCN sender servers. The
packet loss percentages of this measure does not reflect the whole picture as
the percentage is broken down into a respective traffic matrix.

1) Packet loss measure: Packet loss usually occurs due to a
variety of reasons such as link failure events and congestion.
In this experiment, we focus on measuring the packet loss
percentage that results due to link failure causes. To do so,

we first measure the packet loss rate over the three traffic
matrices, i.e. TM1, TM2 and TM3, individually.

Fig. 4 shows the different packet loss rates that are experi-
enced by M1, M2 and M3, which we derived from the server’s
log of pods, 0,1. It can be clearly inferred from the results
that M2 and M3 perform better than M1. Also, one can notice
that the performance of M2 and M3 are vary over the three
matrices. It is conceivable that, sometimes, the packet loss rate
with this type of individual measurement seems to be high
especially when the affected workload is of marginal volume.
Therefore, it is necessary to measure the overall packet loss
percentage over the whole traffic matrix in order to gain an
inclusive insight. Fig. 5 shows the total packet loss that gained
from the server’s log of pods, 2,3.

9 10 11 12 13 14 15 16

5

10

15

20

DCN servers

Pk
t

lo
ss

%

M1 M2 M3

Fig. 5. Overall packet loss measure with methods, M1, M2 and M3. This
measure shows the total loss percentages reported by the receivers during the
three traffic matrices.

Now, we can conclude that M3 performs better than M2
in terms of packet loss rate. This is because M3 relies on
two metrics, i.e. failure and usage probabilities, therefore, it
is highly likely that the workloads will be distributed over
diverse paths in order to satisfy these two metrics.

2) Routing flaps measure: Routing changes are only ob-
served as a consequence of failure incidents. The number of
routing oscillations is correlated with the number of times that
a path allocation method is invoked. Operators are sensitive
to the network stability, hence, it is important to measure the
routing flaps associated with each method. Fig. 6 shows the
routing flaps reported over the duration of the simulated traffic
matrix. On one hand, it can be observed that M3 achieves the
lowest flaps, compared to M1 and M2, and this justifies its
effectiveness in reducing the rate of packet loss. On the other
hand, M2 performs better than M1 as the later has the highest
rate of routing flaps. In summary, the proposed methods can
play a positive role in reducing the flaps rate and to stabilise
the network.

1 2 3 4 5 6 7 8

50

100

DCN servers

Fl
ap

s

M1 M2 M3

Fig. 6. Routing changes measurements over the three methods, M1, M2 and
M3. This measurements is important for the network administrators to check
the number of routing oscillation whether it is impacting the network stability.

3) Shortest path measure: The performance of the proposed
approach was also studied with respect to the hop counts
metric. When an OpenFlow controller detects a link failure
status, the failed path is first identified. This step is followed
by installation of the backup path that detours the disrupted
flow packets, to achieve network recovery. This process could
result in a new path length, which might be longer in terms of
hop count than the replaced path. Fig. 7 shows the average
hop counts of paths that have been established using the
three methods during the experimental evaluation. In general,

1 2 3 4 5 6 7 8

2

4

6

DCN servers

A
vg

.h
op

s

M1 M2 M3

Fig. 7. Average path length measurements over the three experimental
methods, M1, M2 and M3.

M1 paths have the lowest number of hops compared to the
proposed methods. In fact, M1 produces the optimal paths in
terms of the hops count. However, M3 paths have the greater
number of hops among the others. Since M2 and M3 do not
only considers the hop count metric, but also the probability
of link failure and the usage frequency, we conclude that a
disadvantage of securing the shortest path is that this may
come at the cost of minimising the rate of both packet loss
and routing flaps.

V. CONCLUSION

This paper demonstrated the benefit of using the SDN
to enhance the performance of DCNs. Based on the global
view of the controller, we presented new SDN-based Bayesian
approaches, i.e. M2 and M3, that aim to mitigate the per-
formance degradation that would result due to link failure
incidents. In M2, the information of link failure probability
was utilised. While, in M3, the information of both link failure
probability and the frequency of link usage were used. We
demonstrated how the proposed methods can be implemented.
The performance of the proposed approach was tested and

evaluated through simulation experiments on a fat-tree topol-
ogy with k = 4. Two performance indicators: packet loss and
routing flaps, were considered to gauge the performance of
the proposed methods. The experimental findings shows the
effectiveness of M2 and M3 in reducing the packet loss as well
as the routing flaps. The experimental results also revealed that
there is a trade-off between the achieved enhancement and the
path length as the proposed methods yielded higher hop counts
compared to the conventional shortest path algorithm. As part
of our future work, we intend to explore the use of another
Machine Learning models in order to enrich the intelligence
used by the SDN controller by learning the latent factors that
determine the probabilities of link failures and link usage.

ACKNOWLEDGMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI)
under the Grant Number 15/SIRG/3459.

REFERENCES

[1] M. Gagnaire, F. Diaz, C. Coti, C. Cerin, K. Shiozaki, Y. Xu, P. Delort,
J.-P. Smets, J. Le Lous, S. Lubiarz et al., “Downtime statistics of current
cloud solutions,” International Working Group on Cloud Computing
Resiliency, Tech. Rep, 2012.

[2] R. de Fréin, J. Pfaff, and T. Paré, “Enterprise data center globality
measurement,” in 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing. IEEE, 2015, pp. 1861–1869.

[3] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis, 2nd ed. Chapman and Hall/CRC, 2004.

[4] Y. Liu, J. K. Muppala, M. Veeraraghavan, D. Lin, and M. Hamdi,
Data center networks: Topologies, architectures and fault-tolerance
characteristics. Springer Science & Business Media, 2013.

[5] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 conference, 2011, pp. 350–361.

[6] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center
networking (dcn): Infrastructure and operations,” IEEE communications
surveys & tutorials, vol. 19, no. 1, pp. 640–656, 2016.

[7] T. Qu, R. Joshi, M. C. Chan, B. Leong, D. Guo, and Z. Liu, “Sqr:
In-network packet loss recovery from link failures for highly reliable
datacenter networks,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP). IEEE, 2019, pp. 1–12.

[8] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. Luo,
Y. Xiong, X. Wang et al., “Fuso: Fast multi-path loss recovery for data
center networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 3,
pp. 1376–1389, 2018.

[9] X. Zeng, D. Wang, S. Han, W. Yao, Z. Wang, and R. Chen, “An
effective load balance using link bandwidth for sdn-based data centers,”
in International Conference on Artificial Intelligence and Security.
Springer, 2019, pp. 256–265.

[10] H. A. Khosravi and M. R. Khayyambashi, “Load-aware virtual network
service over a software defined data center network,” in 7’th Interna-
tional Symposium on Telecommunications (IST’2014). IEEE, 2014, pp.
623–628.

[11] T. Zhu, F. Wang, Y. Hua, D. Feng, Y. Wan, Q. Shi, and Y. Xie,
“Mctcp: Congestion-aware and robust multicast tcp in software-defined
networks,” in 2016 IEEE/ACM 24th International Symposium on Quality
of Service (IWQoS). IEEE, 2016, pp. 1–10.

[12] J. Hao, Y. Shi, H. Sun, M. Sheng, and J. Li, “Rerouting based congestion
control in data center networks,” in 2019 IEEE International Conference
on Communications Workshops (ICC Workshops). IEEE, 2019, pp. 1–6.

[13] W. Zhang, L. Ma, and X. Jiang, “Disaster-aware dynamic routing for
sdn-based active-active data center networks,” in 2019 International
Conference on Networking and Network Applications (NaNA). IEEE,
2019, pp. 160–165.

[14] M. M. Tajiki, B. Akbari, and N. Mokari, “Optimal qos-aware network
reconfiguration in software defined cloud data centers,” Computer Net-
works, vol. 120, pp. 71–86, 2017.

[15] H. A. Khosravi and M. R. Khayyambashi, “A system for providing load-
aware virtual network service in a software-defined data center network,”
International Journal of Network Management, vol. 27, no. 5, p. e1989,
2017.

[16] F. Rhamdani, N. A. Suwastika, and M. A. Nugroho, “Equal-cost
multipath routing in data center network based on software defined
network,” in 2018 6th International Conference on Information and
Communication Technology (ICoICT). IEEE, 2018, pp. 222–226.

[17] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(sdn): Research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[18] J. Xu and K. Wu, “Living with artificial intelligence: A paradigm shift
toward future network traffic control,” Ieee Network, vol. 32, no. 6, pp.
92–99, 2018.

[19] Q. Fu, E. Sun, K. Meng, M. Li, and Y. Zhang, “Deep q-learning for
routing schemes in sdn-based data center networks,” IEEE Access, vol. 8,
pp. 103 491–103 499, 2020.

[20] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, “Rl-routing:
An sdn routing algorithm based on deep reinforcement learning,” IEEE
Transactions on Network Science and Engineering, 2020.

[21] A. Malik, B. Aziz, M. Adda, and C.-H. Ke, “Smart routing: Towards
proactive fault handling of software-defined networks,” Computer Net-
works, vol. 170, p. 107104, 2020.

[22] C. Xie, “Datacenter optical interconnects: Requirements and challenges,”
in 2017 IEEE Optical Interconnects Conference (OI). IEEE, 2017, pp.
37–38.

[23] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[24] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of sdn/openflow controllers,” in Proceedings of the 9th
central & eastern european software engineering conference in russia,
2013, pp. 1–6.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[26] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[27] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[28] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?” IEEE Communications Magazine, vol. 48, no. 9, pp.
158–165, 2010.

[29] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically gen-
erating ip traffic matrices: Initial recommendations,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 3, pp. 19–32, 2005.

[30] L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying
network simulation setup.” SimuTools, vol. 13, pp. 82–91, 2013.

[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[32] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

	Bayesian Adaptive Path Allocation Techniques for Intra-Datacenter Workloads
	Recommended Citation
	Authors

	tmp.1620042231.pdf.GUUf3

