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American Option Pricing: 
An Accelerated Lattice Model 
with Intelligent Lattice Search
QIANRU SHANG AND BRIAN BYRNE

ABSTRACT: The authors introduce to the 
literature an intelligent lattice search algorithm to 
efficiently locate the optimal exercise boundary for 
American options. Lattice models can be accelerated 
by incorporating intelligent lattice search, truncation, 
and dynamic memory. We reduce computational 
runtime from over 18 minutes down to less than 
3 seconds to estimate a 15,000-step binomial tree 
where the results obtained are consistent with a 
widely acclaimed literature. Delta and implied 
volatility can also be accelerated relative to standard 
models. Lattice estimation, in general, is consid-
ered to be slow and not practical for valuing large 
books of options or for promptly rebalancing a risk-
neutral portfolio. Our technique transforms stan-
dard binomial trees and renders them to be at least 
on par with commonly used analytical formulae. 
More importantly, intelligent lattice search can be 
tweaked to reach varying levels of accuracy with 
different step size, while conventional analytical 
formulae are less f lexible.

TOPICS: Options, derivatives*

American option pricing can 
present challenges with trade-offs 
embedded along an accuracy-effi-
ciency spectrum. Approximation 

methods necessarily produce error. The 
margin of that error must be weighed against 
the uptick in estimation speed. Geske and 
Johnson (1984), Bunch and Johnson (1992), 

Huang et al. (1996), Carr (1998), and Ju (1998) 
developed analytic approximations that were 
convergent in the sense that when additional 
terms were included, their respective tech-
niques became increasingly accurate while 
less efficient. Zhu (2006) developed an exact 
solution in the form of a Taylor’s series expan-
sion, which contains infinitely many terms. 
The model, however, is not practicable in 
terms of speed (Medvedev and Scaillet 2010).1 
Barone-Adesi and Whaley (1987, BAW) 
developed typically faster approximation 
techniques. Ju and Zhong (1999, Ju-Zhong), 
based on BAW, served to improve the longer 
maturity options accuracy with little sacrifice 
in terms of efficiency. Li (2010) extended fur-
ther Ju-Zhong by introducing an improved 
smoothing condition for American options. 
BAW, Ju-Zhong, and Li (2010) approaches 
were all found to share the limitation that 
pricing is not convergent to the “true” price. 
Including additional terms does not invari-
ably produce greater accuracy (Fabozzi et al. 
2016). Instead of applying a quadratic approx-
imation,  Bjerksund  and Stensland (1993, 
Bjerksund93) simplify the optimal exercise 
strategy by assuming a unique f lat boundary. 
The improved approximation is pre-
sented in Bjerksund and Stensland (2002, 

1 We are grateful to Prof. Zhu Song-Ping for 
providing his opinion on the Zhu (2006) model in 
terms of speed.
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Bjerksund02), where a second bound is also introduced. 
In practice, their lower-bound approach represents an 
accurate and very computer eff icient approximation 
to the true American option value. In this article, we 
compare our accelerated binomial model with these 
commonly used analytical approximations. We show 
that our model can be comparable with these analytical 
approximations in speed for option pricing, delta estima-
tion, and implied volatility estimation.

In practice, traders are likely to prioritize speed 
if approximation only entails a small compromise in 
accuracy. Nimble responses are viewed as important for 
preserving profit margins and for timely hedging. Not 
surprisingly, then, approximation techniques are relied 
upon heavily despite limitations. Estimating a book of 
options requires some insight on how the respective 
parameter values are likely to be incorporated into a 
given model. This might not be as simple as it seems. 
Uniform performance of analytical models cannot 
be guaranteed. This typically means that analytic 
models are regularly benchmarked against numerical 
techniques. Cox, Ross, and Rubinstein (1979, CRR) 
developed a binomial approach. It is widely accepted 
that greater accuracy can be introduced by making 
the CRR lattice mesh f iner or by, more prosaically, 
incorporating a larger number of steps. Broadie and 
Detemple (1996) used a 15,000-step binomial model 
to obtain “true values.” The binomial model is there-
fore acknowledged as a reliable workhorse and serves 
to benchmark other techniques. This lattice method, 
however, is distinctly viewed as having substantial 
computational workloads, runtimes, and gluttonous 
memory requirements. Not surprisingly, many variants 
and extensions of the original CRR binomial model 
were developed to accelerate estimation. Leisen and 
Reimer (1996, LR) and Tian (1993) extended the CRR 
binomial model by changing the function of the incre-
ment and decrement of stock price at each step. The 
adaptive mesh method, proposed by Figlewski and Gao 
(1999), builds a strip of f iner lattice over a substrate 
tree and can be adapted to a wide variety of options. 
Staunton (2005) proposed several modifications to the 
LR model by adapting curtailed ranges and Richardson 
extrapolation. This modified LR model was found to 
be more eff icient than other approximation methods 
considered. Joshi (2009) used standard deviation trun-
cation, smoothing, and Richardson extrapolation, 
which led to better performance than the modif ied 

LR model proposed in Staunton (2005). The Chen 
and Joshi (2012, Chen–Joshi) incorporated tolerance 
truncation, Black–Scholes smoothing, and Richardson 
Extrapolation. This model constituted the premier 
model relative to 220 lattice permutations evaluated 
previously in Joshi (2009). In this article, we compare 
our accelerated binomial model with Chen–Joshi and 
show that our model performs better than this leading 
benchmark tree model. 

This article outlines a lattice search algorithm to 
rapidly locate the early exercise node in each column of 
a binomial model. This ideally should dispense with the 
standard blanket test to repetitively compare the relative 
magnitudes of the exercise and holding values at each 
node. The methodology in this article follows the lit-
erature that has focused on discerning a continuous early 
exercise boundary so that the tree can be cleanly delin-
eated between exercising and holding regions. Knowing 
in advance the vicinity of the optimal exercise boundary 
reduces greatly the quantum of computation. Kim and 
Byun (1994) specify the optimal exercise boundary for 
an American put option written on a non-dividend-
paying stock. Curran (1995) subsequently extended the 
Kim and Byun (1994) approach to American put options 
with continuous dividend yields y and proposed the 
Diagonal Method, which can efficiently locate the early 
exercise boundary. A stipulation of this model, however, 
is that the risk-free interest rate r necessarily exceeds (is 
inferior to) the dividend yield y for puts (calls). In reality, 
this implies the model cannot be guaranteed to work in 
every instance. Basso et al. (2002, 2004) developed the 
insights of Kim–Byun–Curran to discern a binomial 
approximation to the optimal exercise boundary. Areal 
and Rodrigues (2013) use the early exercise boundary 
theory of Curran (1995) to accelerate the binomial 
model for pricing American options with discrete divi-
dends. In this article, we open the Kim–Byun–Curran 
boundary theory to include the wider subset of param-
eter inputs where the American put (call) valuation is not 
constrained by r ≥ y (r ≤ y). Furthermore, we propose 
an accelerated CRR model, incorporating the intelli-
gent lattice search algorithm based on revamped optimal 
boundary theory as well as two acceleration technolo-
gies, for efficiently pricing American options with unre-
stricted continuous dividends. 

The remaining article is organized as follows. In 
the next section, optimal exercise boundary theory is 
reviewed and extended to make practicable intelligent 
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lattice search and we introduce the latter. We then 
describe two acceleration technologies: truncation and 
dynamic memory, which are standard in the literature. 
and integrate two acceleration technologies with the 
intelligent lattice search algorithm to accelerate the 
CRR pricing process. Following that section, we eval-
uate the relative performances of our accelerated CRR 
model, with varying benchmarks including a conven-
tional CRR model implementation, other tree models 
from a recent literature, and several commonly used 
analytical formulae. We develop several metrics that cap-
ture the relative efficiencies in terms of option pricing, 
delta estimation, and implied volatility estimation. In the 
final section, we tease out conclusions. The Appendix 
includes the proof of the propositions and theorems 
developed in the initial section.

EXTENDING KIM–BYUN–CURRAN: 

THE OPTIMAL EXERCISE BOUNDARY 

ADAPTED FOR UNRESTRICTED 

CONTINUOUS DIVIDENDS

Consider an American put option with an initial 
stock price S, strike price X, time to maturity T, risk-
free interest rate r, continuous dividend yield y, and 
volatility σ, priced by a n-step binomial tree. We define 
the number of time steps as i, the number of upward 
steps as j, and S(i,j) and V(i,j) as the stock price and option 
price respectively. The lattice structure is presented in 
Exhibit 18 in the Appendix complete with (i, j) map-
ping. Kim and Byun (1994) give the definition of the 
stopping region S, the continuation region C, and the 
optimal exercise state B(i): all nodes in a binomial tree 
are divided into two groups, which fall on two different 
regions. The stopping region S is a series of nodes whose 
option values are equal to their exercise values, which 
can be given by

 ≡ =S {(i, j)|V X S− }(VV ) (X S , )i j, i j,  (1)

The nodes that belong to the stopping region are 
called stopping nodes. In addition, the continuation region 
C is a set of nodes where options are worth more if they 
are held instead of exercised, which can be defined as

 ≡ >C {(i, j)|V X S− }(VV ) (> X S , )i j, i j,  (2)

In this case, the option values are equal to their 
holding values below:

 +
−V [= V (+ 1 )V ](VV ) ([ 1) (VV )
1p+ (++ 1−(VV 1) Ri j, i j+1,++ i j1++ ,  (3)

where p represents the risk-neutral probability of an 
upward movement and R = exp(rT/n). The nodes that 
belong to the continuation region are called continuation 
nodes. I is defined as the set of time steps at which there 
is at least one stopping node, which can be given by

 j i n≤ ≤j ≤S∈I ≡ {i|(i, j) ,0 }  (4)

Based on I, I0 = {i|(i, j) ∈ S, 0 ≤ j ≤ i ≤ n – 1} (from 
the penultimate column back) is proposed, which will 
be used later. In addition, the optimal exercise state B(i) 
represents the biggest j at the ith column when (i, j) ε S 
for i ε I, which can be defined as

 Smax≡ ∈maxB(i) { j|(i, j) , i }I  (5)

Therefore, (i, B(i))  is a series of optimal exercise nodes 
for i ε I, which constitutes the optimal exercise boundary. 
Kim and Byun (1994) propose three propositions and 
two theorems relating to the continuity of the optimal 
exercise boundary. Curran (1995) extends the optimal 
exercise boundary theory for American put options 
with continuous dividend yields y where r ≥ y. He then 
applied this to American calls by invoking McDonald 
and Schroder (1998), who proposed put-call symmetry 
conditions for American options where

 σC(S,X,r,y,T, ) P= (X,S,y,r,T, )σ  (6)

The optimal exercise boundary can also be applied 
for pricing American call options with y where r ≤ y. The 
Kim–Byun–Curran construction is augmented here by 
pricing American options without imposing any restric-
tions on y. The methodology developed in this article 
departs from Kim–Byun–Curran by locating/initial-
izing in the penultimate column the seed node consistent 
with the optimal exercise boundary. The key intuition 
to the proposed approach relates to properties of the 
boundary. If r ≥ y the boundary is always continuous for 
put options, and this simplifies the demarcation of the 
stopping and continuation regions up to and including 
the final column. Otherwise, when r < y, a break of the 
early exercise boundary between the last column and 

JOD-Shang.indd   94JOD-Shang.indd   94 07/08/19   11:30 am07/08/19   11:30 am

AUTHOR-A
UTHORIZED C

OPY FOR LIM
ITED D

ISTRIB
UTIO

N O
NLY 



The Journal of Derivatives   95Fall 2019

the penultimate column for an American put option can 
occur. In Exhibit 1, S represents the optimal exercise node 
(i, B(i)) for i ε I and C represents (i, B(i) + 1) for i ε I, which 
is the first continuation node at each column from the 
bottom. The heavy solid lines represent the continuous 
optimal exercise boundary, and the heavy dashed lines 
represent the discontinuation. The upper binomial tree 
(Exhibit 1 [A]) follows that of Curran (1995, p.13), where 
S = 100, X = 100, T = 1, r = 0.05, y = 0, σ = 0.3 and 
n = 10. It is clear that the boundary is continuous where 
r > y. The lower binomial tree (Exhibit 1 [B]), however, 
has the same set of parameters as Curran’s except y = 
0.07, so that r < y (r = 0.05). In this instance, the stipula-
tion that r ≥ y set out by Curran (1995) is violated. The 
impact of this violation is illustrated in the lower binomial 
tree. When r < y, the optimal exercise boundary is only 
continuous from the penultimate column back, while a 

discontinuous boundary between the penultimate and last 
column manifests itself. 

The main insight here is that the region of discon-
tinuation is limited to merely the final and penultimate 
columns. If we exclude the final column, three proposi-
tions and two theorems of the optimal exercise boundary 
developed by Kim and Byun (1994) can be extended 
to American put options with unrestricted continuous 
dividends. These revamped propositions/theorems are 
developed in the Appendix. The restrictions imposed on 
dividends by Curran (1995) are also relaxed by seeding 
the continuous boundary from the penultimate column. 
The propositions and theorems in the Appendix can be 
used to identify the optimal exercise boundary for an 
American put option with unrestricted continuous divi-
dend yield. We assert that from the penultimate column back, 
the new optimal exercise state B(i − 1) is always equal to the 
old optimal exercise state B(i) minus a value of 1 or 0 as time to 
expiry increases.2 Discerning the adjustment behavior of the 
optimal exercise boundary permits an elaboration of an 
intelligent lattice search algorithm. Exhibit 2 shows the 
simple mechanism steering the intelligent lattice search, 
where this seed value at column n − 1 has been confirmed 
as an integer value of k. The optimal exercise state B(i − 1) 
is invariably equal to either B(i) or B(i) − 1. Therefore, 
we efficiently locate the boundary by verifying no more 
than one node at each column from the antepenultimate 
column back. Unlike Kim–Byun–Curran, the intelligent 
lattice search technique is anchored by reference to the 
penultimate column from where the recursion is initiated. 
This involves some further computation, as the exercise 
condition of additional nodes must be verified, (no more 
than n) at the penultimate column. The extra computa-
tion workload is comparatively trivial—especially for a 
large number of steps. In so doing, the restriction imposed 
on dividend yields can be relaxed and the spectrum of fea-
sible parameter value inputs can be extended significantly. 

TWO ACCELERATION TECHNOLOGIES: 

TRUNCATION AND DYNAMIC MEMORY

As noted by Curran (1995), there are subtrees 
within the binomial tree, where the nodes exercise no 
inf luence on the present value of the option. In the 

2 Moving back through time—consistent with backward 
induction. Also, McDonald and Schroder (1998) put-call symmetry 
permits us to generalize to the case of the American call options.

E X H I B I T  1
A Discontinuous Optimal Exercise Boundary When 
r < y
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C C
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Panel B: r < y

C C
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Panel A: r > y
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classic backward induction approach set out by CRR, all 
the nodes are given an equal weight in the estimation. 
This blanket method implies that large regions of the 
binomial tree are incorporated into the estimation but 
do not materially exert any impact in terms of the ulti-
mate valuation. As noted by Curran (1995), this creates 
scope to apply the diagonal method where redundant 
nodes can be isolated and eliminated for the purposes 
of estimation.3 Acceleration is obtained by locating and 
truncating a portion of redundant stopping nodes (The 
redundant-stopping region enclosed by heavy dashed 
lines) and all redundant zero-value nodes (The zero-
value zone enclosed by light dashed lines), which are 
shown in Exhibit 3. Signif icantly, some redundant 
stopping nodes (hollow nodes) are not truncated because 
more-complex programming would be required for 
recognizing those nodes and this likely would produce 
slower computational speed. On balance, when the extra 
programming cost against speed is taken into account, 
it was considered sufficient to truncate the redundant-
stopping region and the value of the redundant hollow 
nodes to make pricing more efficient.

3 Consistent with Curran (1995), the first passage probabilities 
are not applied here. No increase in computational efficiency from 
that technique has been obtained.

Making use of dynamic memory can produce an 
important reduction in computational cost. In Exhibit 4, 
we try to reveal how computer memory can be used 
more efficiently. A conventional two-dimensional static 
n-step binomial model requires (n + 1)(n + 2)/2 nodes
to be memorized (Exhibit 4 (A)). Broadie and Detemple
(1996) and Haug (2007, p. 288–289) propose using a
one-dimensional dynamic binomial tree (Exhibit 4 [B]).
This approach takes the option values at the last column
and stores them in a dynamic vector Opt( j) for j = 0,
1, …, n. After moving one step back, the values in the
re-dimensioned Opt( j) for j = 0, 1, …, n − 1 will be
replaced by the option values of the corresponding nodes
at the penultimate column (Exhibit 4 [C]). Similarly, the
values of Opt( j) for j = 0, 1, …, k − 1 at kth column will
always be substituted by the option values at (k − 1)th
column for 1 ≤ k ≤ n. Therefore, a dynamic binomial
tree only requires n + 1 contemporaneous storage spaces.

THE EFFICIENT PRICING PROCESS 

OF AN ACCELERATED CRR MODEL: 

APPLYING INTELLIGENT LATTICE 

SEARCH ALGORITHM, TRUNCATION, 

AND DYNAMIC MEMORY

In this section, we demonstrate how an acceler-
ated CRR model, incorporating an intelligent lattice 

E X H I B I T  2
An Intelligent Lattice Search Algorithm

E X H I B I T  3
Truncating Zero-Value Zone and Redundant-
Stopping Region

X

C
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C
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search algorithm, dynamic memory, and truncation, can 
efficiently price an American put option. We explain 
how the intelligent lattice search algorithm can be used 
to efficiently locate the optimal exercise boundary. We 
employ a one-dimensional dynamic binomial tree with 
truncation for an American put option. The rationale for 
presenting the sequence of steps involved in Exhibit 5 
relates to teasing out a viable framework appropriate 
for coding. The CRR binomial tree in Exhibit 5 has 
the same set of parameters as Exhibit 1 (B), which also 
follows Curran (1995), where S = 100, X = 100, T = 1, 
r = 0.05, σ = 0.3 and n = 10. We differ by setting the 
dividend yield, y = 0.07. Since r < y, the stipulation 
that r ≥ y advanced by Curran (1995) is deliberately 
violated. The nodes falling along each row share the 
same underlying asset price and by extension exercise 
value. These are given in the final two columns. Array 
mappings in Exhibit 5 are set out consistent with the 
one-dimensional dynamic binomial tree depicted in 
Exhibit 4 (B). Each node outside the truncated regions 
can be identified by its series number. For illustrative 
purposes, nodes with series numbers enclosed by no-fill 
circles (e.g., ⓪) represent the stopping value. Nodes 
with series numbers enclosed by a black-fill circle (e.g., ⓿) represent the optimal exercise nodes (first stopping 
nodes), B(i), at ith column. Continuation nodes are 
in contrast denoted by square brackets (e.g., [0]). The 
nodes with series numbers followed by question marks 
are those that are minimally investigated by checking 

the exercise condition (e.g. ⓿? and [0]?). The optimal 
boundary check is efficiently reduced to determine the 
status of these nodes—no more than one single node at 
each column from the antepenultimate column. The 
pathway of these checks is shown by the presence of 
question marks. In this regard, clear efficiency gains are 
discernible vis-à-vis more common systems of blanket 
checking. The nodes represented by X without option 
values and series numbers in Exhibit 5 are redundant and 
can be truncated to also increase efficiency. 

To elaborate the sequence of steps involved in the 
optimization process, we begin with the last column. 
The expression in (7) below is used to ascertain the first 
non-zero/stopping node at the maturity:

 +j [= (ln(X/S)/ln(u) n)/2] (7)

where [.] locally means the largest integer lower than 
its argument and σp( / ).u T= σ(  Logically, for a put 
the nodes beneath the optimal exercise node at the 
maturity belong to the stopping region. Their exer-
cise values are calculated and assigned to the appro-
priate nodes.4 In Exhibit 5, j is initially calculated to 
be 4 using the expression in (7), which implies that 
the optimal exercise node at the maturity is node ❹. 
Then we assign respectively the exercise values: 

4 All assignments of the option values to nodes should strictly 
follow the order, from the bottom to the top, consistent with the 
dynamic memory approach.

E X H I B I T  4
A One-Dimensional Dynamic CRR Tree
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61.2749, 53.1841, 43.4028, 31.5778, and 17.2823, from 
node ⓪ to node ❹ at column 10.

Once these values are established, they then are 
used to enable backward induction leading to the pen-
ultimate column. The exercise condition is investigated 
somewhat more painstakingly from the first node beneath 
the zero-value zone by calculating and comparing the 
exercise values and holding values of the nodes until the 
optimal exercise node is confirmed. Then the respec-
tive exercise values are calculated again and assigned to 
the optimal exercise node and the node immediately 
below it, while consecutive holding values are calcu-
lated again and assigned to the nodes lying between the 
stopping zone and the zero-value zone. A more exhaus-
tive search routine is required for the penultimate array 
because the boundary is not guaranteed to be continuous going 
from the final column to the preceding column. In Exhibit 5, 
moving to column 9 we check the exercise condition 
from node [4] by comparing the exercise values relative 
to the holding values of the nodes until node ❷, which 
is ultimately confirmed as the optimal exercise node. 
The respective exercise values, 48.5252 and 37.7705, 
are assigned to node ① and to node ❷. The respective 
holding values, 24.7949 and 9.1864, are assigned to node 

[3] and node [4]. By locating and verifying the optimal
exercise value, the seed value of the continuous portion
pertaining to the optimal exercise boundary, B(n − 1) is
also identified. Node ❷ at column 9 provides the root
value that initiates the continuous optimal boundary.

Then we move to column 8. Node ❷ should be 
initially inspected (the uncertain node) since it has the 
same series number as the optimal exercise node ❷ in 
column 9. We check its exercise condition and find that 
it is determined as a stopping node. This indicates that it 
is the optimal exercise node at this column. Thereafter, 
exercise values are assigned to it and the nodes immedi-
ately below it, and respective holding values are assigned 
to the nodes lying between the stopping zone and the 
zero-value zone at this column. Accordingly, we assign 
respective exercise values, 43.4028 and 31.5778, to node ① and node ❷ in column 8. The respective holding
values, 17.4373 and 4.8830, are by default assigned to
node [3] and node [4]. When we move to column 7, we
check node [2], which has the same series number as
the optimal exercise node ❷ in column 8 and find that
node [2] is a continuation node, which means the node
immediately below it, node ❶, is the optimal exercise
node in column 7. Accordingly, we assign the exercise

E X H I B I T  5
An Efficient American Put Option Pricing Process
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value 37.7705 to node ❶ and assign respective holding 
values, 24.8667, 11.5319, and 2.5956, to node [2], [3], [4] 
in column 7. This option valuing process is iterated until 
we move to column 4 by virtue that the value [0] associ-
ated with the last node in column 4, is also verified as a 
continuation node, which triggers the exit mechanism of 
the algorithm. The optimal exercise boundary searching 
stops. All nodes in the remaining columns (column 3, 
2, 1, 0) are continuation nodes. From column 4 back, 
we assign automatically holding values to each node in 
each column. 

We also present a closed-loop optimal exercise 
boundary search routine in Exhibit 6. When the pre-
vious exercise state B(i) = k, the new optimal exercise 
state either remains unchanged or minus 1 (B(i − 1) = k 
or k − 1). k should not breach 0 or exceed the step size 
associated with any given column in the tree. Other-
wise, the exit feature is primed to trigger. In Exhibit 7, 
a direct comparison using the accelerated CRR tree 
vis-à-vis a standard CRR tree is made. The reported 
exhibit is based on the sample tree outlined in Exhibit 5. 
In a conventional CRR tree, we are normally obliged to 
estimate and assess the exercise value relative to holding 
value for 55 nodes. 11 terminal nodes are by default 
exercise values. The accelerated CRR tree only requires 
8 direct comparisons to be made of the exercise value 
relative to the holding value. 9 nodes and 25 nodes are 

automatically assigned exercise values and holding values 
independently given that the early exercise boundary 
can be used to eff iciently demarcate. Otherwise, 
24 redundant nodes are truncated, which incorporates 
hardly any processing costs. 

NUMERICAL RESULTS

Numerical results can be divided into three sections: 
In the first section, we show how option pricing effi-
ciency can be improved by applying dynamic memory, 
truncation, and intelligent lattice search sequentially to a 
standard CRR tree. The most accelerated CRR model 
combines intelligent lattice search, dynamic memory, 
and truncation together. In the second section, we com-
pare the efficiency of our most accelerated CRR model 
to a standard CRR model, to a leading benchmark tree 
Chen and Joshi (2012), and to four popular analytical 
formulae. These comparisons are made relative to both 
option pricing and delta estimation. In the final section, 
we compare the accelerated CRR model to Chen–Joshi, 
and to four analytical formulae for implied volatility 
estimation. All reported results are obtained using Excel 
VBA. A DELL Latitude E5470 with Intel’s Core i3 pro-
cessors ran these algorithms and models. 

In the f irst section, we gauge successively how 
improvements in estimation eff iciency can be intro-
duced by using dynamic memory, intelligent lattice 
search, and truncation, where the initial baseline tree is 

E X H I B I T  6
The Closed-Loop Optimal Exercise Boundary 
Search Routine

E X H I B I T  7
Comparing the Computational Workload Associated 
with the Accelerated CRR Tree and a Standard 
CRR Tree

Notes: Truncated nodes are ignored for backward recursion. Stopping 
nodes require merely to estimate the exercise value. Continuation nodes 
require merely to estimate the holding value. Uncertain nodes require 
both estimation of the exercise value and the holding value plus a logical 
operator to make a mutual comparison.

Accelerated CRR

24
9

25
8

66

Standard CRR

0
11
0
55
66

Number of Nodes

Truncated NodeTT s
Stopping Nodes
Continuation Nodes
Uncertain Nodes
Total Nodes

Type of Nodes
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a standard CRR tree.5 Benchmark values for American 
call and put option samples are obtained from Broadie 
and Detemple (1996). In addition, in order to test the 
intelligent lattice search algorithm, two sets of parame-
ters with r > y (r < y) for call (put) are expressly selected, 
which violate the restrictions imposed by Curran (1995) 
on continuous dividend yields. In Exhibit 8, CRR base-
line represents a standard two-dimensional static CRR 
tree. CRR_Dyn are accelerated purely by employing 
a one-dimensional dynamic tree. CRR_Dyn_Bound 
augments the dynamic binomial tree by using the intel-
ligent lattice search algorithm. CRR_Dyn_Bound_
Trun represents the most accelerated binomial model, 
which comprehensively applies intelligent lattice search, 
dynamic memory, and truncation. The computational 
times are presented using a mm:ss.00 format, located 
under the corresponding option values. We found that 

5 This approach to pricing is by far the slowest. It is also typi-
cally the most common method introduced in textbooks.

all four binomial models with the same set of parameters 
have resolutely identical results, which in turn are also 
consistent with the benchmark values. The accelera-
tion effects can be gauged by noting how estimation 
time is reduced—moving from the baseline. Replacing 
the two-dimensional static tree by a one-dimensional 
dynamic tree saved almost half of the computational 
time. This pales in comparison to the acceleration 
effect of applying intelligent lattice search algorithm, 
which produces improvements in speed by at least one 
order of magnitude. Then the application of truncation 
technology further speeds up the computation several 
times. With the number of steps increasing, the effect 
of accelerations becomes more obvious. The baseline 
binomial model took more than 18 minutes at a 15,000-
step size to complete. The most accelerated CRR tree 
(CRR_Dyn_Bound_Trun) took only 2.30 seconds for 
the call and 5.66 seconds for the put. The improvement 
in estimation time is noteworthy, and accuracy has not 
been compromised relative to the standard CRR tree. 

E X H I B I T  8
Acceleration Effect Comparison Among Dynamic Memory, Truncation, and Intelligent Lattice Search

Notes: CRR is a standard two-dimensional static CRR tree. CRR_Dynamic is a one-dimensional dynamic CRR tree. CRR_Dyn_Boundary is a 
dynamic CRR tree incorporating intelligent lattice search algorithm. CRR_Dyn_Bound_Truncation is a dynamic CRR tree incorporating intelligent 
lattice search and truncation, the most accelerated CRR model.
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Before moving to the second section, there is some 
initial preparatory work relating to generating a large 
number of sample options parameters. We use these 
to determine the level of error relative to a benchmark 
(“true value”) and the time required for estimation is also 
recorded. We additionally sketch out a number of delta 
estimation methods. Following Broadie and Detemple 
(1996), we design a uniform distribution of parameters 
inputs for S, T, r, y, σ, and PutCall to generate 2,500 
American options. The spot price S was given to be uni-
formly distributed between 70 and 130. The exercise price 
X was fixed as a constant at a value of 100. Time to matu-
rity T, with probability of 0.75, was uniform between 0.1 
and 1 years. A probability of 0.25 was attributed to matu-
rity being randomly between 1 and 5 years. The riskless 
rate r was uniformly distributed between 0 and 0.1 with a 
probability of 0.8 and 0 generated, with the residual prob-
ability of 0.2. The dividend rate y was uniform between 
0 and 0.1. Volatility σ was distributed uniformly between 
0.1 and 0.6. There was also a random 0.5 probability of the 
option being a call or put. Consistent with Broadie and 
Detemple (1996), the main error measure, root-mean-
square relative error (RMSRE), is defined as

∑=
=

RMSRE
1

1

2

m
e

i

m

i (8)

where m is the number of options and =ei
C C−

C
i iC

i
 where 

Ci and Ci is the true and estimated value of the option,
respectively. The true value Ci is generated using a 
15,000-step CRR model. 170 of the 2,500 American 
options with extremely-small true value (Ci < 0.50) are 
excluded. The residual number of American options 
involved in the valuation is 2,330 (m = 2,330). The time 
consumption measure (Time) represents the average exe-
cution time (seconds) for pricing per American option, 
which can be calculated as

=Time
Total ExeEE cutionTime

m
(9)

where m is the number of options. For delta estimation, 
the delta of the tree model, including a standard CRR, 
our accelerated CRR, and Chen–Joshi, are estimated 
using

Δ =
V V−
S S−

(1VV ,1) (VV1,0)

(1,0) (S 1,1)
CRRRR (10)

where the numerator is the difference between the 
option value of the upper node and lower node at the 
end of the first period, and the denominator is the dif-
ference between the stock price of these two nodes. For 
analytical formulae, however, the delta is calculated as

Δ = ε
ε

(S ) (S )− ε
2

C + ε(S ) −
anal (11)

where ε is a perturbation introduced for the spot price S, 
and the numerator is the difference between the option 
value estimated with the spot price S + ε and S − ε using 
analytical formulae.

In the second section, we first compare the 2,330 
options sample for pricing and delta estimation, with 
a view to teasing out the relative efficiency of a stan-
dard CRR model (CRR) vis-à-vis our accelerated 
CRR model (Accel CRR). The latter introduces intel-
ligent lattice search, dynamic memory, and truncation. 
For both pricing options and estimating delta, shown 
in Exhibit 9, as the number of steps increase, the esti-
mation error (RMSRE) generated by CRR and our 
Accel CRR decreases, while the execution time (Time) 
increases. We found that Accel CRR always generates 
identical RMSRE as CRR at different step size but with 
much less Time, which implies that the pricing process is 
effectively accelerated without disturbing the accuracy. 
The “Multiple of speed” shows how many times Accel 
CRR is faster than CRR attaining the same estimation 
accuracy. From 50 to 1,000 steps, Accel CRR model 
can be from 7 to 220 (182) times faster than CRR in 
option pricing (estimating delta). 

To provide a yardstick relative to a more recent 
literature, we replicate Chen–Joshi and run it with a 
tolerance level of 1E-05 to estimate 2,330 generated 
sample options. The comparison between our Accel 
CRR and Chen–Joshi is demonstrated in Exhibit 10. 
To make a direct comparison, the number of steps of 
the two models are selected to achieve a similar level 
of accuracy (RMSRE) so that the eff iciency can be 
easily juxtaposed according to execution time (Time). 
For each column, Accel CRR and Chen–Joshi gen-
erate a similar RMSRE but expend different amounts 
of Time. The “Multiple of speed” indicates how many 
times Accel CRR is faster than Chen–Joshi. For option 
pricing, Accel CRR is roughly 1.5 to 2 times faster than 
Chen–Joshi consistent with a similar level of accuracy. 
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102  American Option Pricing: AN ACCELERATED LATTICE MODEL WITH INTELLIGENT LATTICE SEARCH Fall 2019

This differential is amplified by an order of 2 to 3 times 
for delta estimation. 

Next, we compare our accelerated CRR model 
with four analytical formulae brief ly alluded to in the 
literature review: BAW, Bjerksund93, Bjerksund02, and 
Ju–Zhong. We reuse the 2,330 option parameter sets 
generated previously. In Exhibits 11 and 12, the results 
generated from analytical formulae are deliberately 
placed under the results of Accel CRR that have 
approximately the same RMSRE. The execution time 
(Time) with similar levels of accuracy (RMSRE) are 
investigated. The “Multiple of speed” tentatively maps 
out how many times our Accel CRR is faster or slower 
relative to the analytical formulae linked by approximate 

levels of accuracy. For option pricing (Exhibit 11), Accel 
CRR is roughly 1.5 times faster than BAW. In contrast, 
Accel CRR is discernibly slower than Bjerksund93 and 
Bjerksund02, but almost as fast as Ju-Zhong for similar 
levels of error. For delta estimation (Exhibit 12), we find 
that Accel CRR is about 2 and 2.5 times faster than 
respectively Ju–Zhong and BAW to obtain the same level 
of accuracy. It is comparable to Bjerksund02, but 0.3 
(1 − 0.68) times slower than Bjerksund93. Accel CRR 
has an obvious advantage in that it provides varying 
levels of accuracy with different step size. Our acceler-
ated CRR model provides a full spectrum of choice to 
practitioners varyingly tasked with pricing, repricing, 

E X H I B I T  9
Comparing Accel CRR and CRR in Option Pricing and Delta Estimation

E X H I B I T  1 0
Comparing Accel CRR and Chen–Joshi in Option Pricing and Delta Estimation
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and hedging accuracy criteria. Each analytical formula 
can only provide one combination of speed and accuracy. 

In Exhibits 13 and 14, we visualize the performance 
of our accelerated CRR model, Chen–Joshi, and four ana-
lytical formulae for option pricing and delta estimation. 
Better model performance can be achieved by reaching a 
closer proximity to the origin. Lower RMSRE and Time 
indicate higher efficiency. For option pricing (Exhibit 13), 
Bjerksund93 and Bjerksund02 perform well and efficiency 
is signaled in terms of their relative proximity to the 
origin. Accel CRR and Ju–Zhong foster similar levels of 
error with comparable levels of speed. BAW would appear 
furthest from the origin, and we interpret this to be con-
sistent with a relatively poorer performance. Accel CRR 
provides varying combinations of accuracy and speed, 

represented as a line in the graph, while each analytical 
formula has only one combination, shown as a single dot. 
The locus representing Chen–Joshi also contains different 
levels of accuracy but further from the origin than Accel 
CRR, which indicates a worse performance. For delta 
estimation (Exhibit 14), the triangular shape representing 
Bjerksund93 performs well in terms of proximity to the 
origin. The other three analytical formulae and Chen–
Joshi are farther away from the origin, which means they 
are less efficient. Again, the locus mapped out by Accel 
CRR represents different combinations of accuracy and 
speed relative to the singular dots of analytical formulae. 
Also, these varying combinations are closer to the origin 
than Chen–Joshi, which means Accel CRR has relatively 
better performance. 

E X H I B I T  1 1
Comparing Accel CRR and Analytical Formulae in Option Pricing

E X H I B I T  1 2
Comparing Accel CRR and Analytical Formulae in Delta Estimation
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This final section focuses on the relative efficiency 
of Accel CRR, Chen–Joshi, and four analytical formulae 
in estimating implied volatility (IV). We collected chain 
market prices of all 1,152 live American call and put 
options on Apple, Inc., from Datastream reported on 
April 8, 2019, with a contemporaneous stock price of 
200.1. The expiry dates span April 18, 2019, May 17, 2019, 
June 21, 2019, July 19, 2019, August 16, 2019, September 

20, 2019, October 18, 2019, January 17, 2020, June 19, 
2020, September 18, 2020, January 15, 2021, and June 
18, 2021 respectively. The strike price ranges from about 
100 to 300 with a uniform interval of 5. The dividend 
yield is 1.46%, and the risk-free rate, 2.37%.6 The implied 
volatility is estimated using the Bisection method, with 

6 The risk-free rate is defined as the annualized three-month 
US Treasury bill rate on April 30, 2019, obtained from Datastream. 

E X H I B I T  1 3
Comparing Accel CRR, Chen–Joshi, and Analytical Formulae in Option Pricing

E X H I B I T  1 4
Comparing Accel CRR, Chen–Joshi, and Analytical Formulae in Delta Estimation
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a lower and upper bound, respectively, of a = 0.1 and 
b = 1.7 The true value of IV is generated using a 15,000-
step CRR model combined with Bisection. Three hun-
dred and six of the 1,152 Apple options present with true 
IV < 0.1% or > 1, or strike price K < 100 or > 300, 
are excluded. The residual number of options involved 
in IV estimation is 846 (m = 846). In Exhibit 15, we 
report the RMSRE and Time of IV estimation using 
Accel CRR, Chen–Joshi, and four analytical formulae, 
which is sketched out in Exhibit 16. Again, the sweet spot 
leans towards lower RMSRE, coupled with lower Time, 
leading to higher efficiency estimates of IV. In the graph, 
better model performance can be realized by reaching a 
closer proximity to the origin. Ju–Zhong represented by 
the circle is closest to the origin with best performance 
in IV estimation, followed by BAW, which can achieve 
the same level of accuracy (RMSRE) with a shorter time 
than Accel CRR. Bjerksund93 and Bjerksund02 approxi-
mately fall on the locus representing Accel CRR, which 
indicates that they share similar levels of performance. 
Different from the single data point characteristic of the 
analytical formulae, Accel CRR provides varying com-
binations of accuracy (RMSRE) and speed (Time) in 
IV estimation. Chen–Joshi also possesses this advantage, 
although it performs worse than Accel CRR, as its locus 
is further from the origin than Accel CRR.

CONCLUSION

In this article, Cox, Ross, and Rubinstein (1979) 
is revisited with the ambition to drive down the 

7 Regarding to the Bisection method, please refer to Rouah 
and Vainberg (2007, p. 9). Since the smallest and largest IV of the 
residual 846 options are found to reside between 0.18 and 0.98, 
respectively using a 15,000-step CRR model, we set up the upper 
and lower bound of 0.1 and 1 correspondingly. 

computational time for estimating American options. 
The continuous optimal exercise boundary theory pro-
posed by Kim and Byun (1994) and subsequently by 
Curran (1995) opened a significant vista for reaching 
greater efficiency for lattice type models despite restric-
tions being imposed on dividends. We augment their 
approach to include unrestricted dividends here. Our 
revamped continuous boundary theory addresses a non-
trivial gap for practitioners, as early exercise can occur 
for an American put (call) option even when r < y (r > 
y). Furthermore, an intelligent lattice search algorithm 
is introduced to promptly locate the optimal exercise 
boundary for American options on assets with unre-
stricted dividends (yield).

Our accelerated CRR model combines intelli-
gent lattice search, truncation, and dynamic memory 
technologies.8 In each instance, we produce equivalent 
results to the original CRR model. Computational 
runtime can be reduced from over 18 minutes down 
to less than 3 seconds to estimate a 15,000-step CRR 
tree. Significantly, American option pricing and delta 
estimation are accelerated, in terms of efficacy, dozens 
of times to hundreds of times, as lattice steps increase. 
In addition, we compare Accel CRR with the leading 
benchmark tree, Chen–Joshi, and four popular analytical 
formulae, including BAW, Bjerksund93, Bjerksund02, 
and Ju–Zhong. These comparisons are made in terms 
of option pricing, delta estimation, and implied vola-
tility estimation. Our accelerated CRR model proves 
to be more efficient than Chen–Joshi and is capable of 
producing levels of speed consistent with analytical for-
mulae. More importantly, our accelerated CRR model 
is advantageous to market professionals, in so much as it 

8 The Excel VBA codes of our accelerated CRR model can 
be provided upon request.

E X H I B I T  1 5
Comparing Accel CRR, Chen–Joshi, and Analytical Formulae in Estimating Implied Volatility
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f lexibly provides varying levels of accuracy with different 
lattice step size. In contrast, each analytical formula can 
only afford a single combination of speed and accuracy.
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ADDITIONAL READING

Fast Trees for Options with Discrete Dividends
NELSON AREAL AND ARTUR RODRIGUES

The Journal of Derivatives
https://jod.pm-research.com/content/21/1/49

ABSTRACT: The binomial model is a workhorse for valuing 
options with early exercise possibilities, including options with Amer-
ican or Bermudan exercise and barrier options. The procedure is 
straightforward when the underlying asset does not pay dividends, and 
it can be readily adapted to a payout at a fixed proportional rate. But 
discrete dividends cause trouble because they make the tree “splinter” 
rather than recombining at each time step. If the tree recombines, an 
up move followed by a down move produces the same asset price as 
a down move followed by an up move. But if the intermediate date 
corresponds to an ex-dividend date and the same fixed amount is 
subtracted from the up and down nodes, the tree no longer recombines 
at the subsequent step. The number of nodes in a non-recombining 
tree increases at a geometric rate, quickly leading to unreasonably long 
execution times. A number of alternative procedures have been devel-
oped to deal with this problem. In this article, Areal and Rodrigues 
adopt a new approach, accepting the splintering of the binomial lattice 
but then applying several techniques to accelerate the calculations. 
They show that their procedures are faster and more accurate than 
the current methods that force the tree to recombine despite discrete 
dividend payouts.
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An Approximate Formula for Pricing American 
Options
NENGJIU JU AND RUI ZHONG

The Journal of Derivatives
https://jod.pm-research.com/content/7/2/31

ABSTRACT: American exercise has always presented a problem 
for option pricing models. For put options and calls on underlying 
assets with a continuous proportional cash payout, American exercise 
turns valuation into a free boundary problem with no closed-form 
solution. The approximation formula derived by Baroni–Adesi and 
Whaley has been a very useful tool, but the approximation works 
best only for short maturities and every long maturities. The formula 
is less accurate for intermediate maturities of a couple of years, which 
are now common for over-the-counter option contracts and exchange-
traded LEAPS. Other approximation methods based on numerical 
techniques can be made arbitrarily accurate, but are computationally 
much more burdensome. Ju and Zhong present a very useful new 
closed-form model, obtained by introducing correction terms to the 
Baroni–Adesi and Whaley formula. The model is much more accurate 
than most alternatives and is also computationally more efficient. As 
important as improved accuracy, for many users, is the fact that as 
a closed-form solution, programming Ju and Zhong's model is much 
simpler than setting up a numerical algorithm.
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