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Sound transformation: Applying Image Neural
Style Transfer Networks to Audio Spectograms

Xuehao Liu, Sarah Jane Delany, and Susan McKeever

Technological University Dublin, Dublin, Ireland
xuehao.liu@mydit.ie,{sarahjane.delany,susan.mckeever}@dit.ie

Abstract. Image style transfer networks are used to blend images, pro-
ducing images that are a mix of source images. The process is based
on controlled extraction of style and content aspects of images, using
pre-trained Convolutional Neural Networks (CNNs). Our interest lies in
adopting these image style transfer networks for the purpose of trans-
forming sounds. Audio signals can be presented as grey-scale images of
audio spectrograms. The purpose of our work is to investigate whether
audio spectrogram inputs can be used with image neural transfer net-
works to produce new sounds. Using musical instrument sounds as source
sounds, we apply and compare three existing image neural style trans-
fer networks for the task of sound mixing. Our evaluation shows that
all three networks are successful in producing consistent, new sounds
based on the two source sounds. We use classification models to demon-
strate that the new audio signals are consistent and distinguishable from
the source instrument sounds. We further apply t-SNE cluster visualisa-
tion to visualise the feature maps of the new sounds and original source
sounds, confirming that they form different sound groups from the source
sounds. Our work paves the way to using CNNs for creative and targeted
production of new sounds from source sounds, with specified source qual-
ities, including pitch and timbre.

Keywords: Audio Morphing · Neural Network · Image Style Transfer ·
Generative Adversarial Network

1 INTRODUCTION

With the success of deep learning techniques for image classification [15], re-
searchers have continued to achieve improved classification rates, with image
classifiers now outperforming the ability of humans to recognise images. For ex-
ample, the combination of Res-Net and an Inception V3 Convolutional Neural
Network (CNN) can classify images with a 96.91% success rate [22]. Until re-
cently, CNNs have been treated as a black box, with a limited understanding of
how images are represented at each layer of the CNN. Gatys at al. [6] addressed
this by examining how specific images features are captured at particular layers
of the CNN. They used this knowledge to generate images that mix the content
and style of two source images. This image generation process, adopting the style
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or texture of one image and the content or contour of another image is termed
image style transfer. Gatys et al. noted that higher layers of the CNN preserve
the spatial structure or content in comparison to the capture at lower layers of
image textures or style qualities in the image [13].

The purpose of this paper is to investigate image style transfer using neural
networks for blending of sounds. An audio signal can be represented as a spectro-
gram, preserving audio frequency and amplitude. Instead of visual image inputs,
audio spectrograms are fed into the image transfer process, producing a blended
spectogram output. An early investigation of style transfer using spectrograms
has been done by [23]. This work used AlexNet [15], a relatively shallow CNN,
to extract feature maps and generate two illustrative audio spectrograms using
the style transfer method. In addition to the limited number of outputs, there
is no evaluation of the resultant spectrograms and thus limited insight into the
nature of the generated sounds. In our work, we extend the work of [23], investi-
gating the application of three image neural style transfer techniques [6, 13, 24]
to the task of blending audio spectrogram inputs. We use classification models
to demonstrate that the generated mixed sounds are new sounds distinguishable
from the source sounds.

Audio morphing is a closely related field to our work as it focuses on the
synthesis of audio signals. Audio morphing aims to find a middle ground between
two audio signals, which share the properties from both sides[21]. Image neural
style transform, when applied to audio, enables transformation of audio source
sounds to produce a new sound, akin to audio morphing.

2 RELATED WORK

The traditional approach to audio morphing [21] is to match pitch and temporal
components between two audio signals. Another approach is to deduce the si-
nusoids of one audio signals and fill them with magnitude from another sound’s
sinusoids [19]. More recently, the methods for determining a mix of two sounds
have become more complex. Different kinds of spectral envelopes can be applied
on the morphing process[1]. A common factor of these methods is that, unlike
neural network style transfer, they require manual feature extraction from the
audio signals.

Recent research works have applied CNNs to audio processing tasks. For ex-
ample, Dieleman [2] tested audio classification models, using CNNS trained on
raw audio file input and the corresponding audio spectrogram input. Spectro-
grams were found to have a slightly higher prediction accuracy than the raw
audio, suggesting that spectrograms are a richer information source. Han et al
[8] used a CNN (termed ConvNet) to classify musical instrument sounds. Herse-
hey et al. [11] used GoogleNet and Res-Net to do a similar classification task,
but using a much larger video dataset, YouTube-100M. Their results with a
0.930 AUC demonstrated that good classification accuracies can be achieved us-
ing spectogram representation of audio signals. These works indicate that audio
spectograms are a useful and valid representation of audio inputs with neu-
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ral networks. In neural style transfer of audio, feature extraction will be done
automatically by the network. Our neural style transfer work in this paper is
inspired by image style transfer networks. In such networks, specific layers from
the CNN are associated with content (objects) versus style (texture). Gatys et
al.[6] demonstrated this by reconstructing an image, preserving its content, but
changing the texture of the image to the style of Van Gogh’s Starry Night. John-
son et al.[13] produced a faster version of Gatys et al.’s network, reducing time
for one image blend from hundreds of seconds to less than one second. Frigo
et al.[5] proposed a new style transfer method basing on Johnson et al.’s work,
splitting the content and style images into small grids (adaptive quadtrees) and
doing the style transfer operations on those similar small parts from the content
and style images. Our work is also inspired by image translation networks which
focus on translating just a specific portion of the image. For example, Isola et
al. used conditional GANs to translate street maps to satellite maps. [12] In the
work of Zhu et al.[24], they transform style on a portion of the image content
using a cyclical generative adversarial network termed cycleGAN. An example
of their work is the transformation of a horse in the image to a zebra, without
changing the background of the content image, as shown in Figure 1(d) Next,
we provide a more detailed explanation of three image style transfer networks
that represent a good coverage of the range of networks available and which will
feature in our approach:

Fig. 1: An overview of three kinds of structures used in this paper, and a GAN example.

Gatys et al. [6] image neural style transfer results are used as the baseline
by other image style transfer methods [13, 5]. The purpose of their network, as
shown in Figure 1(a), is to produce a blended image which consists of the content
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of one image and the style of another image. Looking at their configuration,
the two sources images (one for content, one for style) are fed into the VGG-19
CNN[20]. The CNN extracts the content and style features, generating a blended
result image. The result image is initialised as random noise, and on each training
iteration the result image is adjusted to minimise the sum of content and style
loss comparing to the result image.

Johnson et al. [13] proposed a method of image neural style transfer that
performs significantly faster than that of Gatys et al. Their method shown in
Figure 1(b) produces a blended result image produced from a sample image that
will provide the content, but the style is pre-defined. The underlying concept
is that style can be pre-captured, whereas content from image to image will
vary. Instead of initialising the input as random noise they pass the output of a
generative network G, into the pre-trained VGG-19. The input to the generative
network G is the content image. After each result iteration, the loss in respect
to both the fixed style image and the content image is compared and gradient
descent is performed on the generative networkG. The advantage of their method
is that style transfer can be applied at close to real-time processing speed.

Zhu et al. [24] created a cyclical generative adversarial network, termed cy-
cleGAN, for style transfer. The target task in their work is to translate a specific
portion of the image, rather than transforming the style of the full image. In Fig-
ure 1(d), a sample from their network demonstrates how a horse in an image is
transferred to a zebra. The structure of cycleGAN is shown in Figure 1(c). There
are two classes X and Y in the dataset where the style of X can be transformed
to Y. A generative network G generates a candidate yfake from each x image
and a discriminate network DY will evaluate whether it is a real Y image. A
generative network F then generates xcycle from yfake and uses the discriminate
network DX to evaluate whether it is a real X image.

Applying this to Zhu et al’s [24] example in Figure 1(d), classes X and Y
are zebra and horse respectively. The output in the figure are xfake and yfake.
The training process of G and F is to build the mapping between X(zebra) and
Y (horse). xfake(fake zebra) may not exist, but we can minimize the distance
between xcycle and x to make a more realistic yfake(fake horse). With a perfect
G and a perfect F , xcycle should equal to x, and ycycle should equal to y. The
horse should be the exact same one after changing it to a zebra and changing it
back to horse. xfake(fake zebra) and yfake(fake horse) will be the transfer of X
and Y we want.

To evaluate our results, we will need to determine whether coherent consis-
tent sounds are being produced. According to [9], if we describe multiple audio
signals as being the same kind of sound, their spectrograms are identical from
the point view of timbre. As previously explained, CNNs can be used to suc-
cessfully classify instruments basing on their timbre[8, 11]. Classification has also
been used in the image generation domain as an approach to verifying results
of image generation[12]. Given these approaches, we will use classification meth-
ods(using CNNs) to test whether our generated sounds can be distinguished
from the source sounds, and to test the timbre consistency of generated sounds.
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3 APPROACH

Our approach used for audio style transfer follows the approaches used for image
style transfer in other works [23, 11, 13, 24]. The first step in image style transfer
involves training a CNN on labelled images - producing a network with embed-
ded content and style feature maps at known layers in the CNN. Applying this
approach to audio, we train a CNN classification network with labelled audio
spectogram inputs of the types of source sounds we will later aim to blend.
The second step in image style transfer is the blending process itself - using the
trained CNN and the relevant image style transfer technique with source inputs
to produce a blended result output. For audio neural style transfer, the input
to the trained network will be the spectogram representation of the two audio
signals to be mixed. Figure2(a) and (b) are two spectrogram examples of input
to the CNN. Using the layers of this CNN, we will use three methods of image
style transfer to the audio following the baseline transfer method of Gatys et al.,
the faster transfer method of Johnson et al. and Zhu et al.’s cycleGAN transfer
method, as described in the Related Work section.

3.1 Datasets

We use the Nsynth corpus[4] which is a high-quality, large-scale musical instru-
ment audio corpus. Every instance in the corpus is a 4 seconds long, 16kHz audio
snippet that covers the whole sound envelope. For our work, we will mix two dif-
ferent musical instrument sounds. We extract a subset dataset from the Nsynth
corpus consisting of the flute and keyboard classes: 8000 clips randomly selected
from acoustic keyboard sounds and 8000 flute clips. The flute clips include all
the acoustic flute and a small amount of synthetic flute.

3.2 Training the Classification Network

We train the classification network to distinguish between the keyboard and flute
sounds. Our CNN follows the structure of VGG-19 [20]. VGG-19 does not have
any shortcuts or concatenation of feature maps and it has many layers at differ-
ent feature levels. Thus it provides a rich source of image feature knowledge and
is used in a variety of image style transfer networks [6, 13, 7]. We call our classifi-
cation network audio-VGG. The only difference between our audio classification
network and the original VGG-19 is the first layer. Since we use spectrograms
as input, and there is only one channel in the spectrogram (the absolute value
of the Short Time Fourier Transfer) the spectrogram will be represented as a
grey-scale image. For the training process, 1000 clips from each class were used
as the holdout set. The remaining 14000 clips (7000 for each class) were used
for a 7-fold cross-validation. The accuracy achieved on the test set was 99.99%
with a five epoch training process and a 0.0001 learning rate. This shows that
the network can fully distinguish the two instrument sound types, with the in-
ternal layers capturing the features of flute and keyboard. Next, we apply three
separate transfer networks to blend keyboard and flute sounds.
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3.3 Using the Neural Style Transfer Networks for Sound Mixing

Baseline Slow Transfer : Our first transfer process uses Gatys et al.’s [6] net-
work. The aim is to mix two source sounds, treating the flute spectrogram as
the content image and the keyboard spectrogram as the style image. The au-
dio spectrograms of the flute and keyboard sounds are passed as input into our
pretrained audio-VGG network. The target blended sound spectrogram is ini-
tialised as random Gaussian noise. The training process uses gradient descent on
the Gaussian noise based on total lossL, where total lossL is calculated by com-
paring the outputs from different layers of audio-VGG network. On completion
of the gradient descent, the Gaussian noise input spectrogram has been trans-
formed to a mix of the visual content and style of our source sound and keyboard
spectograms. The transfer process is slow, taking several hours to generate a sin-
gle mixed sound even using the modern GPUs(GTX 1080). The content loss is
between two outputs of layers relu3 3 in that audio-VGG. In the style loss Ls,
the Gram matrix loss Lg, energy loss Le, and frequency loss Lf are balanced[23].
The style loss is computed on layer relu1 2, relu2 2, relu3 3 and relu4 3.
The interpolation factor λ is equal to 1e-2.

Faster Fixed Style Transfer : The second method of style transfer used is
Johnson et al.’s [13] faster fixed-style and generative network approach to speed
up the transfer process. With this transfer process, we are generating multi-
ple flute snippets which have the visual spectrogram style feature of a single
keyboard snippet. The structure of the network [13] starts with a three-layer en-
coder and ends with another three-layer decoder, connected by residual blocks.
We trained the generative net G using a learning rate of 0.0002 for 10 epochs.
The input of the generative network is the content spectrogram (a spectrogram
of a flute snippet) and the output is the spectrogram of the mixed or blended
sound. The mixed spectrogram, the content spectrogram (flute), and the style
spectrogram (keyboard) will be passed into audio-VGG in the same way of the
baseline slow transfer process. The difference is that the gradient descent will
be done on the generative network. The style spectrogram is a keyboard clip.
The content spectrograms are the same 8000 flute clips in the training VGG-19
process.

CycleGAN Transfer : Our third style transfer approach uses the structure
and parameters of Zhu et al’s discriminate and generative networks, more fully
described in [24]. X is flute. Two new sounds are generated: The xfake result
is the flute with a keyboard content; yfake is the keyboard with a flute content.
The generative networks G and F have a similar structure to that used in Faster
Fixed Style transfer. Instead of padding before the residual blocks in Johnson
et al’s work[13], we followed the structure in [24], which does the padding be-
tween every layer in the residual blocks. The discriminators DX and DY are two
Markovian discriminators(PatchGAN), which is also used in [12]. This Marko-
vian discriminator randomly chops the input image into a smaller 70×70 patch.
According to [12], this smaller patch of input will be sufficient for the network
to discriminate fake images from real ones. Also it is faster and has a smaller
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number of parameters. We trained the networks for 10 epochs with a 0.0001
learning rate using the same audio clips above(flute(X) and keyboard(Y)).

4 RESULTS
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Fig. 2: (a)-(d): The spectrogram examples of slow transfer and faster fixed style transfer
from the same source flute and keyboard. (a) the source flute, (b) the source keyboard,
(c) the output spectrogram of slow transfer, (d) The output spectrogram of Faster
Fixed Style transfer. (e)-(h): Spectrogram examples of the cycleGAN transfer. (e) the
original flute x, (f) the original keyboard y, (g) the xfake output, (h): the yfake output.

The resulting audio clips are are published online1. Listening to the result-
ing sounds, we can hear that they are different to our source sounds. However,
we need objective mechanisms to determine whether the resulting sounds are
consistent with each other, and distinctly separate from the source sounds. Fol-
lowing previous work on processing and evaluation of audio signals [14, 8, 17,
18], we interpret our generated sound results using three methods: (1) Visual
assessment of the generated audio spectrograms (2) Consistency tests on the
generated sounds, using classification models and (3) Examination of the audio
signal clusters.

4.1 Visual Assessment of Generated Spectrograms

Figure 2(a)-(d) shows two sample spectrograms of slow transfer and faster fixed
style transfer. We observe that they both have the contour of the flute sound.
With the baseline slow transfer, the harmonic is not clear, and the part higher
than 6000Hz is discarded. In the faster transfer, the lower frequency is em-
phasized, and there is an onset(beginning) of the note, which is missing in the

1 https://www.xuehaoliu.com/audio-show
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slow transfer. Although the loss functions are the same, how these two methods
learned from the keyboard are entirely different. With the slow transfer method,
the generation of mixed spectrograms is initialised from Gaussian noise, whereas
in faster fixed style transfer, the transfer has to follow the shape of content.

Figure 2(e)-(h) shows a mixed spectrograms resulting from the cycleGAN
transfer. After the transfer, from flute to keyboard, the lower frequencies of the
flute are emphasised, and the higher frequencies disappear. From keyboard to
flute, the frequencies are denser. These two sample spectrograms show that this
transfer will not change the harmonic, but the magnitude of each frequency is
changed. This is similar to the model proposed by Serra et al. [19]. It is interesting
to see that is how the model interprets the flute to/from keyboard transfers.
With image transfer[24], the model should change the horse into zebra with the
background intact. In this transfer process, what has been changed is the part
that cycleGAN interpret as the key difference between flute and keyboard.

4.2 Sound Consistency Testing using Classification

Classification is a common way to evaluate the output from style transfer net-
work[12, 24, 3]. This is a quantitative way to examine the consistency of the
outputs of the network. We tested whether our generated sounds are consistent
on timbre via classification.

As a first simple test of consistency, we test whether the generated sounds are
considered consistently closer to flute or keyboard by our audio-VGG, which has
had no exposure to the new sounds. We took 1000 random selected clips of each
of the three kinds of new generated mix sounds into the audio-VGG classification
CNN. The classification returned for these test clips will show whether the audio-
VGG defines the mixed sounds as closer to a flute or a keyboard.

Table 1 how of the mixed sounds are classified by the audio-VGG. Almost
all of the mixed sounds are classified as a flute. We surmise that the generated
mixed sounds therefore have common features that cause the audio-VGG classify
them as the same sound.

flute keyboard

faster fixed style transfer 1000 0

cycleGAN keyboard to flute 998 2

cycleGAN flute to keyboard 992 8

Table 1: Number of instances per class when testing generated sounds using original
audio-VGG

The next step was to verify whether the generated sounds are consistent
with each other, and distinguishable and consistent from the source sounds,
when classified by a model that has been exposed to the new generated sounds.
For each style transfer method, we trained a classifier to distinguish between the
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source keyboard sounds, source flute sounds and the generated mixed sound. We
are dealing with four types of mixed sounds, from: the baseline slow transfer, the
faster fixed style transfer, the two results of cycleGAN: the xfake from G and the
yfake from F . For the baseline slow transfer, it is impractical to generate a large
number of mixed spectrogram results needed for training, due to long processing
time. We exclude this transfer process from our classification task. That leaves
us with the three remaining generated sound types. For each of these three, we
generated 8000 clips, and do the same train-test split as done in the previous
training section(6000-1000-1000).

For each of our three generate sound types, we train a four-class classifi-
cation network. The four classes consist of the original flute sounds, original
keyboard sounds, the generated sounds from the relevant style transfer network
and a fourth class - guitar sounds from the Nysnth dataset. The guitar class is
a dummy class to introduce a class which is neither from the source sounds nor
the generated mixed sounds. The structure of the network used was the VGG-
19 network structure. The network was trained over 5 epochs, with a 0.0002
learning rate.

Table 2 shows the classification results across for four classes, for each of
the faster fixed style transfer, cycleGAN form flute to keyboard and cycleGAN
from keyboard to flute approaches.

Overall
Accuracy

Recall
flute keyboard guitar mixture

faster fixed style transfer 0.9947 0.995 0.996 0.988 1.000

cycle GAN flute to keyboard 0.9872 0.986 0.985 0.978 1.000

cycle GAN keyboard to flute 0.9735 0.993 0.933 0.969 1.000

Table 2: Class accuracy for 4 class VGG-19 for three generated sound types: Faster
fixed style transfer and cycleGANs

The table gives the overall accuracy and the class accuracy for each class for
each network. The overall performance of each network is high, indicating that
the generated sounds are consistent and distinguishable from the natural sounds.
The class accuracy for the generated sounds for all style transfer approaches is
perfect. The small number of errors made are between the natural sounds with
the keyboard class accuracy the lowest.

We then need to determine whether the generated sounds from the different
style transfer approaches are different from each other. To check this, we trained
a six-class classifier: the three different natural sounds, keyboard, flute and gui-
tar and the three different generated sounds from the different style transfer
methods, faster fixed style transfer, cycleGAN from flute to keyboard and from
keyboard to flute. The structure of this network is also VGG-19 It is trained
under the same train-test strategy and the same 5 epoch.

Table 3 shows the classification result from the network trained on six classes.
The high recall score of three mixed sounds classes shows that the network can
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Recall

flute 0.914

keyboard 0.944

guitar 0.981

faster fixed style transfer 0.999

cycleGAN from flute to keyboard 0.996

cycleGAN from keyboard to flute 1.000

Table 3: Class accuracy for the 6 Classification network of source and generated sounds
in a single model

distinguish the new generated audio signals from both natural sounds and from
each other. We note that there is also some error in distinguishing the natural
sounds. This may be because there are overlapping frequencies in the harmonics
between those natural sounds[14].

4.3 Visualisation of Clusters
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Fig. 3: t-SNE mapping of pool5

T-SNE[3, 16] is a clustering method used in visualization tasks of classifi-
cation networks[7, 10], which we use to examine whether our new style transfer
classes appear as clear clusters - and as separate clusters from the other classes. It
is using a student-t distribution on the Stochastic Neighbor Embedding (SNE).
SNE calculates the similarity by computing the conditional probability using
Euclidean distances between instances. We apply t-SNE on the Pooling Layer
5[10] of every classification network.

Figure 3 shows the t-SNE mapping of layer pooling 5 for each classification
network. Each dot represents a sound clip. Each kind of sound has its own color
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and shape. The “cycleGAN f k” denotes “cycleGAN from flute to keyboard”
and vice versa. The generated mixed audio signals appear as clearly separated
clusters from the original natural sounds clusters. It is interesting to see that
for a classification network, it is easier to tell the difference between new gen-
erated mixed sounds and natural sounds, but it may get a little confused when
classifying the classes which are all natural sounds.

5 CONCLUSIONS

Inspired by image neural style transfer, we applied three neural style transfer
methods to audio mixing. All three methods can mix audio signals by mixing
the visual style and content of audio spectrograms. The new generated audio
signals are recognised by CNNs as individual classes. The t-SNE mapping shows
that the new sounds are separate groups from the original sounds and from each
other.

These new generated audio clips can be seen as a kind of morphing of two
different kinds of audio signals, using visual concepts of style and content as
our basis for mixing audio spectrograms. The next phase of work is to expand
our techniques with a wider variety of audio signals, producing targeted sounds
mixes that can be assessed by human listeners. To achieve this, we propose to
examine the layers of a CNN trained on known audio signals to distinguish the
feature maps at each layer, with a view to mapping timbre, pitch and tone to
specific CNN layers.
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18. Schlüter, J., Grill, T.: Exploring data augmentation for improved singing voice
detection with neural networks. In: ISMIR. pp. 121–126 (2015)

19. Serra, X., et al.: Musical sound modeling with sinusoids plus noise. Musical signal
processing pp. 91–122 (1997)

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

21. Slaney, M., Covell, M., Lassiter, B.: Automatic audio morphing. In: Acoustics,
Speech, and Signal Processing, 1996. ICASSP-96. Conf Proceedings., 1996 IEEE
Inter Conf on. vol. 2, pp. 1001–1004. IEEE (1996)

22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: AAAI. vol. 4, p. 12 (2017)

23. Verma, P., Smith, J.O.: Neural style transfer for audio spectograms. arXiv preprint
arXiv:1801.01589 (2018)

24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint (2017)


	Sound Transformation: Applying Image Neural Style Transfer Networks to Audio Spectrograms
	Recommended Citation

	tmp.1627488113.pdf.pcTUQ

