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Abstract

Conceptually, a vulnerability is: "A flaw or weakness in a system’s design, implementation,

or operation and management that could be exploited to violate the system’s security policy".

Some of these flaws can go undetected and exploited for long periods of time after soft-

ware release. Although some software providers are making efforts to avoid this situ-

ation, inevitability, users are still exposed to vulnerabilities that allow criminal hackers

to take advantage. These vulnerabilities are constantly discussed in specialised forums

on social media. Therefore, from a cyber security standpoint, the information found in

these places can be used for countermeasures actions against malicious exploitation of

software. However, manual inspection of the vast quantity of shared content in social

media is impractical. For this reason, in this thesis, we analyse the real applicability of

supervised classification models to automatically detect software vulnerability com-

munication in expert social media channels. We cover the following three principal

aspects:

Firstly, we investigate the applicability of classification models in a range of 5 differ-

ent datasets collected from 3 Internet Domains: Dark Web, Deep Web and Surface

Web. Since supervised models require labelled data, we have provided a systematic

labelling process using multiple annotators to guarantee accurate labels to carry out

experiments. Using these datasets, we have investigated the classification models with

different combinations of learning-based algorithms and traditional features represen-

tation. Also, by oversampling the positive instances, we have achieved an increase

of 5% in Positive Recall (on average) in these models. On top of that, we have ap-
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plied Feature Reduction, Feature Extraction and Feature Selection techniques, which

provided a reduction on the dimensionality of these models without damaging the

accuracy, thus, providing computationally efficient models.

Furthermore, in addition to traditional features representation, we have investigated

the performance of robust language models, such as Word Embedding (WEMB) and

Sentence Embedding (SEMB) on the accuracy of classification models. Regarding

WEMB, our experiment has shown that this model trained with a small security-

vocabulary dataset provides comparable results with WEMB trained in a very large

general-vocabulary dataset. Regarding SEMB model, our experiment has shown that

its use overcomes WEMB model in detecting vulnerability communication, recording

8% of Avg. Class Accuracy and 74% of Positive Recall. In addition, we investigate two

Deep Learning algorithms as classifiers, text CNN (Convolutional Neural Network)

and RNN (Recurrent Neural Network)-based algorithms, which have improved our

model, resulting in the best overall performance for our task.

Finally, we simulate the deployment of these models in a real-life situation for 1-year

period. The results suggest that Concept Drift affects the performance of models cre-

ated with hacker forums data (Deep Web), which has presented a faster performance

degradation than models created with Twitter data (Surface Web). Additionally, to

avoid a sudden decrease in performance and provide more robust models over time,

we presented the optimal proportion of 50% re-train, which reduce in half the hu-

man workload needed for performing the labelling tasks; and also presented that

the weight proportion of 3:1 on the newest instances enhance the performance of the

model.
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CHAPTER 1

Introduction

There is no guarantee that we are using software products free of vulnerabilities. Ac-

cording to Shirey (2007), vulnerability is "A flaw or weakness in a system’s design,

implementation, or operation and management that could be exploited to violate the

system’s security policy". Some of these flaws are built-in to software products and can

remain unknown or dormant for long periods. Elements of these flaws are inserted by

mistake during the development of software due to the lack of training on security

development and quality assurance procedures (Acar et al., 2017, Younis et al., 2016).

Thus, leaving a path for exposure of information of users to hackers with malicious

intentions.

According to an important source of information about software vulnerabilities, the

National Vulnerability Database (NVD), the number of security issues have been in-

creasing each year, with a disclosing of 4,000 vulnerabilities in 2010 up to 17,000 in

2019 (NIST, 2019). As seen in Figure 1.1, there is an ascendant trend line with a sudden

increase in the number of vulnerable software numbers in 2017, 2018 and 2019.

This ascendant trend might be related to the growing number of services offered by

computer-like devices which modern society is increasingly reliant on, such as the pro-

liferation of Internet of Things (IoT). We, as software users, are using more software

1



Figure 1.1: The Growth of Software Vulnerabilities in the Last 10 years (NIST, 2019)

than ever before. Once, it was used only within strict boundaries, such as our desktop

computer and home network: nowadays, it is ubiquitous and connected to other ser-

vices around the world. Software is present in several aspects of our life, for instance,

shopping, entertainment, career, etc. Since the popularisation of the Internet, there

has been an increasing demand for computer-like devices that are not only restricted

to our desk computers, instead, they are found in mobile phones in our pockets, home

appliances (IoT), cars, and nowadays these technologies can be used for monitoring

entire cities (Smart Cities).

However, the nature of these devices has created a wide range of potential attack vec-

tors. According to Jang-Jaccard and Nepal (2014), embedded systems and sensors,

which are part of the IoT paradigm, are the topics that have been receiving the most

attention from industry and academia in recent years due to their increased use in our

lives. Such devices lack proper maintenance and security updating (patching), which

leave their vulnerabilities exposed to hacker attacks.

It has been frequently reported that hackers explore software vulnerabilities to exfil-

trate data (Do et al., 2016, D’Orazio et al., 2017, Thompson et al., 2016). Such attacks

not only affect a massive number of users but also incur a financial loss and damage to
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a company’s reputation. As an example, we see the data breach attack on the Equifax

credit company, which affected the private information of more than 140 million peo-

ple. This breach originated from a vulnerability on Equifax applications and it is be-

lieved that the data was shared (or sold) on Dark Web underground forums (CNBC,

2019). Another example occurred on the Facebook web application and affected 50

million users. This breach occurred through a flaw found in the ”View As” feature,

which allowed a hacker to exfiltrate users authorization token. After that event, Face-

book’s security team acknowledged that the vulnerability was introduced in the ap-

plication around July 2017 and remained hidden for more than one-year (Facebook

Newsroom, 2018).

Both incidents occurred through security flaws in their software application, although

the principal difference is that, in the Facebook case, the vulnerability was explored

before the release of a security patch (black area), whereas in Equifax it was explored

after that event (grey area) as seen in Figure 1.2. Moreover, it is worth highlight that the

insecure version of the software remained publicly available with a hidden vulnerabil-

ity for a long time before discovery, 303 days for Equifax, and 453 days for Facebook.

According to Bilge and Dumitraş (2012), hidden vulnerabilities might be exploited by

a few experts, however, after its public disclosure, the volume of exploitation can go

up to 5 orders of magnitude. This is what happened in Equifax case, the attack oc-

curred in a time window after public disclosure and before the update patch being

applied (144 days of time window), whereas, for Facebook, the attack occurred before

public disclosure.

Although the magnitude of the mentioned cases was well explored by specialised me-

dia, these were not the only vulnerabilities exploited by hackers. In the following, we

present some examples of known critical security flaws that affected (or had a huge

potential of affecting) software users, business and governmental institutions:

• During the COVID-19 pandemic, when hundreds of people were lockdown in

their homes, the use of video-conference increased suddenly, and Zoom soft-
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Figure 1.2: Comparison of Attack Windows Between Facebook and Equifax Vulnera-
bility

ware faced this huge increase by going from 10 to 300 million daily meetings in

March and April (CNET, 2020a). In this period, several vulnerabilities in Zoom

were discovered, which included flaws on Windows and Mac OS software the al-

lowed personal data to be exfiltrated (CNET, 2020b), which, according to Bleep-

ing Computer (2020), was found being sold on Dark Web markets. However, the

most notable of these vulnerabilities was named Zoombombing, a flaw on the

function that generates the Meeting ID, which allows the attacker to discover it

by randomly searching valid digits within a space of 9 to 11 digits (krebsonse-

curity.com, 2020). Using the flaw, hackers have invaded and disturbed several

meetings and webinars around the world.

• The Wannacry Ransomware, built to take advantage of vulnerability in Win-

dows Server Message Block (SMB) protocol, affected several companies around

the world that had not applied the Microsoft Security Update (MS17-010). This

malware, when installed in the host machine, encrypts the files in the hard drive,

making it impossible to use. After the encryption, the malware requires a pay-
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ment (ransom) to provide a key that decrypts the files (Chen and Bridges, 2017).

More than 150 countries were affected by this malware in 2017. This has dis-

rupted several services, including the British National Health (NHS)(Ghafur et al.,

2019), with a total revenue loss of 92 million pounds (ZDnet, 2018). It also has

stopped airline and bank services throughout Europe (theverge.com, 2017).

• In March 2012, the version 1.0.1 of OpenSSL, a widely used cryptographic tool,

was released with a vulnerability that allowed the attackers to read sensitive in-

formation from a server’s memory, including private data, cryptographic keys,

login credentials. This vulnerability, named as Heartbleed and assigned as CVE-

2014-0160 by NVD database, remained hidden (publicly unknown) for 2 years

until a patch was provided in April 2014. Researchers considered this vulnera-

bility one of the most impactful flaws found in software due to the widespread

use of HTTPS servers around the world (Durumeric et al., 2014). Nobody knows

whether this vulnerability was exploited by a hacker during this time, although

there are some incidents which are associated with this flaw. For instance, in-

cidents with Canadian Governmental Information systems are associated with

Heartbleed vulnerability, including a major data breach on Canadian Revenue

Agency (CBC.ca, 2015).

• Spectre and Meltdown are exploits created to take advantage of a hardware-

level vulnerability found in Intel x86, AMD and ARM-based processors. The

Spectre exploit takes advantage of a processor’s routine, called speculative branch.

This routine is manipulated by the exploit to run a set of instructions which

should not have been executed under correct program execution (Kocher et al.,

2019). Whereas Meltdown takes advantage of out-of-order execution processors’

execution routine to leak information from kernel-space memory (Lipp et al.,

2018). Both attacks can be used to leak private data, for instance, passwords,

cryptography keys and certificates. Two main problems make hardware-level

vulnerabilities more difficult to patch than software-level vulnerabilities: (1) the

patches come with a computational performance cost, compromising a maxi-
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mum of 74% of CPU speed (Kocher et al., 2019), and (2) the vulnerabilities might

be found in large part of hardwares that use CPUs from the mentioned compa-

nies (desktop and computer servers). This is due to the size of market Intel and

AMD share in manufacturing and selling CPUs. Recently, new CPUs are being

produced with a built-in fix, however, these vulnerabilities will exist in legacy

devices for long periods, as consumers need to purchase a new generation of

processors to fix this problem permanently.

According to Bilge and Dumitraş (2012), there is no study about the duration and

prevalence of attacks towards hidden vulnerabilities before its public disclosure. Also,

Rescorla (2005) contribute with the idea that it is hard to determine quantitatively how

often attacks to publicly unknown vulnerabilities take place. Moreover, these prob-

lems contributed to a debate on whether software vendors are liable for any eventual

loss users might have by eventual damage caused by vulnerabilities in software Rice

(2007).

Other studies have shown that exploitation of software vulnerabilities can be discov-

ered by tracking specific-purpose social media channels, such as hacker forums, mar-

ketplaces and microblogs (Khandpur et al., 2017, Nunes et al., 2016, Sabottke et al.,

2015). These social media channels are being used as an ecosystem to share and gain

knowledge about hacking techniques, tools and exploitable vulnerabilities in which

the principal motivation is mainly financial (Ablon et al., 2014, Roumani et al., 2016).

Moreover, Macdonald et al. (2015) reported that hackers eventually use Deep Web

forums to exchange security information regarding attacks against critical infrastruc-

tures computers, for instance, power grids, financial institution and transportations

networks, where communication about such attacks was discovered before the attacks

occurred. Additionally, Horawalavithana et al. (2019) reported that Surface Web so-

cial media such as Twitter, Reddit and Github that are also being used for security

discussion regarding vulnerabilities problems.

In this context, cyber security initiatives are motivated to act proactively against such
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threats by focusing on which is called Open Source Intelligence (OSINT). OSINT is

"data collected from publicly available sources, such as social media, internet and pub-

lic data, to be used in an intelligence context" (Steele, 1996). To acquire insights from

these unstructured data, companies are investing more in data-driven methods that

use machine learning algorithms and natural language processing (LLC, 2017). These

approaches are experiencing considerable growth due to their capacity for solving

real-world problems through the discovery of useful patterns in data. These methods

have revolutionised tasks such as image recognition (e.g., handwriting and face classi-

fication) and natural language understanding (e.g., sentiment analysis, Named-entity

recognition).

In this applied research, we provide a thorough study of these methods with the pur-

pose of detecting vulnerability communications in hacker social media channels. We

perform experiments using data-driven approaches across multiple datasets from dif-

ferent social media sources (Surface Web, Deep Web, and Dark Web). We believe that

the outcome of our research contributes to cyber security initiatives that aim to use

open source information proactively against malicious exploitation of software vul-

nerabilities.

1.1 Background

Monetary gains have been promoting the interest for software vulnerabilities and its

trade on underground markets. These vulnerabilities are generally exploited through

specific tools (exploits). The market value of these exploits is given by criticality

(damage it might cause) and novelty of these vulnerabilities (zero-day vulnerabili-

ties) (Huang et al., 2016). These products are frequently offered on hidden hacker

channels on social media, such as Dark Web forums and marketplaces. According

to Algarni and Malaiya (2014), underground hacker forums offer more financial ad-

vantage to the exploit’s seller than legal bounty initiatives, for instance, BugCrowd

(www.bugcrowd.com) and HackerOne (www.hackerone.com). Additionally, these fo-
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rums also work as learning ecosystems, where hackers interact with peers to acquire

knowledge on security and technical information.

However, on the other side of the vulnerability ecosystem, we found the "white hats".

They are usually security researchers who also consume information from specialised

social media channels intending to protect systems against malicious attacks. More-

over, they are also an important part of the Coordinate Disclosure System (Pupillo et al.,

2018, Shepherd, 2013). This system provides a coordinate agreement between the per-

son who found a vulnerability (security researcher) and the company that developed

the software (vendor). Both parties agree on a time that the vendor should provide

the vulnerability patch. Only after the security update, the vulnerability information

is made public. This information is usually shared in broad audience social media,

such as Twitter and also by National Vulnerability Database) (NIST, 2019). This coor-

dinate system holds the vendors accountable for the released software and also, acts

as a practical way to inform users about vulnerable software.

Furthermore, the more widely used the software, the more the surface of attack is

increased. This situation creates a constant need for securing and hardening Infor-

mation Systems to avoid leaking private data and intellectual property, as well as to

avoid damaging a company’s reputation. According to Juniper Research (2017), the

estimative of investment in cyber security is $135 billion by 2022, with a growth rate

of 7.5% each year. There is also a growing concern with international espionage (Hjort-

dal, 2011, Lindsay, 2013). As seen in Deibert et al. (2009), some countries have clearly

stated that cyberespionage is part of their strategic activities as a sovereign country.

Preventing cyberattacks is a difficult task that can be tackled from various perspec-

tives, for instance, from a software engineering standpoint, we can improve software

in its development lifecycle to deliver better (and more secure) products; while from a

cyber security standpoint, we can collect information to strategically act to avoid cyber

attacks and vulnerability exploitation.
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1.2 Publications

The list of publications that are part of the scope of this theses are:

• Queiroz, A., Keegan, B., and Mtenzi, F. (2017). Predicting software vulnerability

using security discussion in social media. In 16th European Conference on Informa-

tion Warfare and Security, ECCWS, pages 628–634.

• Queiroz, A. L., Mckeever, S., and Keegan, B. (2019). Eavesdropping hackers: De-

tecting software vulnerability communication on social media using text mining.

In The 4th International Conference on Cyber-Technologies and Cyber-Systems, pages

41–48.

• Queiroz, A. L., Mckeever, S., and Keegan, B. (2019). Detecting hacker threats:

Performance of Word and Sentence Embedding models in identifying hacker

communications. In The 27th AIAI Irish Conference on Artificial Intelligence and

Cognitive Science, volume 2563, pages 116–127.

• Lima, A. Q. and Keegan, B. (2020). Chapter 3 - Challenges of using machine

learning algorithms for cybersecurity: a study of threat-classification models ap-

plied to social media communication data. In Benson, V. and Mcalaney, J., edi-

tors, Cyber Influence and Cognitive Threats, pages 33–52.

• Queiroz, A. L., Keegan, B., and Mckeever, S. (2020). Moving Targets: Addressing

Concept Drift in Supervised Models for Hacker Communication Detection. In

International Conference on Cyber Security and Protection of Digital Services (Cyber

Security), pages 1–7.

1.3 Contributions

The principal contribution of this thesis is the investigation of how machine-learning

based models can be used to detect malicious communications related to software
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vulnerabilities in hacker forums and social media. The foremost goal is to identify the

optimal configurations and techniques that make these models suitable for real-life

application.

In the folloiwng, we present the contributions of this thesis in detail:

1. We provide a publicly available labelled dataset containing 10,000 messages re-

lated to vulnerabilities in software products and internet services. These mes-

sages were collected from different Internet domains (Surface, Deep and Dark

Web), which includes 3 hacker forums, 1 Twitter and 1 Marketplace datasets.

The labelling task was systematically performed by multiple labellers to guaran-

tee that the labels are not biased by the subjectivity of the annotators.

2. We demonstrate, through empirical investigation, that the use of oversampling

techniques in imbalanced datasets increases the recall of traditional classifica-

tion models (aimed to detect software vulnerability communication) by 5% (on

average).

3. We present the optimal techniques using Feature Reduction, Feature Extraction

and Feature Selection to improve the efficiency of traditional classification mod-

els.

4. We demonstrate that specific-vocabulary language models are potentially better

than general-vocabulary language models for detection of software vulnerability

communication.

5. We demonstrate that Sentence Embedding language models acting as feature

representation enhance the performance of classification models in downstream

task.

6. We presented a study on deep learning-based classification models using text

CNN and BiLSTM architectures. Both architectures have shown the best over-

all results for detection of software vulnerability communication, compared to

traditional algorithms.
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7. We demonstrate that models created using hacker forums content degrade in a

period of less than 1-year, indicating Concept Drift.

8. We propose optimal methods for avoiding performance degradation of classifi-

cation models over time, under Concept Drift effects.

1.4 Thesis Overview

The thesis is structured as in Figure 1.3 and described as follows:

• Chapter 2 provides an overview of the principal concepts of text mining with fo-

cus on supervised learning and text classification. It describes the application of

traditional classification and deep learning classification techniques for solving

real-world problems that use unstructured textual data. Additionally, we dis-

cuss the importance of feature representations and classifier algorithms to create

classification models using textual data. In conclusion, we provide a literature

review of the supervised classification models used for the task of detecting ma-

licious communications in hacker forums and social media.

• Chapter 3 describes the sources of the 5 datasets used throughout this thesis.

Additionally, we present the systematic approach taken for reducing the volume

of messages, labelling and providing the final label. Moreover, we present the

methodology used to perform the experiments in this thesis. This includes the

selection of text classification algorithms and features representation, as well as

the evaluation metrics and the feature reduction techniques.

• Chapter 4 provides an investigation of models created with traditional classifi-

cation algorithms and traditional features representations. The principal goal is

to identify the optimal configuration of these models for detecting hacker com-

munication regarding software vulnerabilities. The performance of these models

is assessed and compared with multiple datasets. Additionally, we have investi-

gated optimum approaches for dealing with imbalanced datasets and techniques
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for optimising the classification model, for instance, document frequency reduc-

tion, feature selection and feature extraction. Furthermore, we compared two

classification approaches, binary and multi-class classification for the detection

task proposed in this thesis.

• Chapter 5 evaluates Deep learning-based models in detecting software vulner-

ability communication. Firstly, we investigate the use of these Deep learning

language model used as feature representation, for instance, Word and Sen-

tence Embedding. Also, we compare the use of general-vocabulary and security-

vocabulary Word Embedding for the proposed task. Furthermore, we investi-

gate the performance of Sentence Embeddings model to build the classification

model. Finally, we evaluate the use of two different Deep Learning architectures

commonly used in Natural Language task, text CNN and an RNN-based archi-

tecture called BiLSTM.

• Chapter 6 simulates the real-world application of these models by periodically

evaluating its performance in 1-year period. With that, we investigate whether

the performance of these models will decrease, indicating Concept Drift. More-

over, this evaluation is performed using three different datasets collected from

Deep and Surface Web domains. Furthermore, we provide strategies to avoid

performance decreasing, thus, prolonging the model’s accuracy for a longer time.

• Chapter 7 summarises the key contributions of this work, its limitations, and

highlights opportunities for additional research
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CHAPTER 2

Literature Review

This thesis aims to investigate techniques for automatic detection of software vulner-

ability communication in hacker forums and social media. Due to the vast amount of

generated data on these channels, it is virtually infeasible for Cyber Threat Intelligence

(CTI) teams to analyse them through manual inspection. Thus, appropriate methods

for allowing automatic language understanding should be considered to provide a

distinction between threat and non-threat messages in hacker communication.

Recently, data-driven approaches have been used to solve a variety of tasks using

large quantities of data. Encouraged by this, we aim to review a range of language

models and supervised learning-based algorithms applied to text classification tasks.

These methods have shown promising results in traditional classification tasks, for

instance, news categorisation (Mittermayer and Knolmayer, 2006), sentiment analy-

sis (Jianqiang and Xiaolin, 2017, Ren et al., 2016, Tang et al., 2015), and spam filtering

(Feng et al., 2016, Lee and Kang, 2019), among others.

Therefore, this chapter begins by introducing the process of creating a supervised

model in Section 2.1, which includes the challenges of acquiring and labelling data

in the security research domain (Section 2.1.1) and a review of evaluation designs and

metrics used to validate the model (Section 2.1.2). Furthermore, in Section 2.2, we

14



present the state-of-the-art machine learning techniques and algorithms used for au-

tomatic categorisation of textual data, including traditional- and deep learning-based

algorithms, and unsupervised feature representations (language models).

Finally, in Section 2.3, we provide a review on cyber security research that uses text

classification techniques. In this overview, we compare works regarding three over-

lapping aspects: Labelling task, Domain-specific features and algorithms. Addition-

ally, in Section 2.3.2, we discuss the application of unsupervised algorithms (language

models) for clustering similar words and jargon in hacker forums.

2.1 Fundamentals of Data-driven Approach

In this thesis, we focus on supervised data-driven approaches applied to classifica-

tion of textual content, commonly called "text classification". This is an interdisci-

plinary approach which borrows from other domains, such as computational linguis-

tics, statistics, machine learning and data mining. The main challenge of this method

is to provide comprehension of unstructured information, for instance, text and sen-

tences, which is easily perceived by humans, but difficult for machines. Additionally,

these methods have been frequently used for solving several traditional Natural Lan-

guage Processing (NLP) problems, for instance, Information Retrieval (IR), Informa-

tion Extraction (IE), Named-entity Recognition (NER).

Therefore, the process of creating supervised classification models requires the train-

ing of an algorithm. This training uses a labelled (categorised) dataset, where each

instance belongs to a class. There are three principal steps to be followed to create

these models:

1. Pre-processing - the sentence is split into small parts, such as words or char-

acters (tokenisation); Afterwards, the words that do not carry much information

are removed, for instance, pronouns and articles (filtering). Also, these tokens

are represented by weights, which the values are adjusted to a defined range of
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numbers (Normalisation).

2. Learning - the algorithm and the some individual/informative characteristics of

data (commonly known as features) are combined to train the model.

3. Evaluation (or test phase) - the model is evaluated using unseen data (data that

the model has not used in the training phase). In the end, the model has "learnt"

all given examples, thus, it is can be deployed in a real production environment

to predict further unseen instances. The entire process can be seen in figure 2.1.

Figure 2.1: Basic Training Process of Machine Learning Models for Text Classification
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2.1.1 Data Acquisition and Labelling

Labelled data is a requirement for supervised approaches. To perform the labelling of

data (annotation), there are two commonly used approaches:

• Expert labelling - This approach can be expensive due to the need for the right

skill set and human training to carry out the task. However, it is the most suitable

method when the task requires domain knowledge to guarantee quality labels

(Welinder and Perona, 2010).

• Crowdsourcing labelling - In contrast to the previous approach, Crowdsourcing

is frequently used for larger amounts of data. It can be less expensive and less

time consuming, as the workload is generally distributed among multiples of

labellers provided by the crowdsourcing platform. However, the drawback is

a potential lack of reliability as the labeller might not have the skill needed to

perform the annotation task (Wang and Zhou, 2015).

Regarding the related literature in data-driven approaches for cyber security, we have

mainly seen authors using the Expert Labelling approaches, in which the authors are

responsible for assigning the labels to the dataset. Moreover, we have observed mul-

tiple approaches for performing this task, for instance, some authors have used key-

words to help with the labelling annotation task (Deliu et al., 2017, Deliu et al., 2018),

while others have used external sources to properly assign the labels (Mulwad et al.,

2011, Sabottke et al., 2015). Additionally, it is worth to mention that, there is a lack of

a reliable labelled dataset (commonly called gold standard or ground truth dataset) in

this research domain, which prevents the comparison between model and the repro-

ducibility of works, as related by Benjamin et al. (2015), Nunes et al. (2016), Sabottke

et al. (2015). A more detailed discussion on this issue is presented in Section 2.3.1.
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2.1.2 Evaluation Design and Performance Metrics

The evaluation of supervised classification models is based on unseen/untrained in-

stances, commonly referred to as the test samples. The results of the classification model

are presented in a contingency table called confusion matrix. In Table 2.1, we see an ex-

ample of a confusion matrix table for binary classification models, where the classes

are positive and negative. The values of the cells are given as follows:

Table 2.1: Confusion Matrix For Binary Classification

Predicted Label
Negative Positive Total

True Label Negative TN FP TN+FP
Positive FN TP FN+TP

Total TN+FN FP+TP

• True Positive (TP) represents the positive instances that are correctly predicted

as positive

• False Positive (FP) refers to the negative instances that are falsely predicted as

positive

• True Negative (TN) is the negative instances are correctly predicted as negative

• False Negative (FN) stands for the positive instances are falsely predicted as neg-

ative

Furthermore, a commonly used approach for assessing the performance of models is

the K-fold cross-validation evaluation design (with K = 10 folds) (Chen et al., 2017a,

Deliu et al., 2017, Lippmann et al., 2016, Nunes et al., 2016). Through this approach,

the dataset is randomly partitioned into K equally sized folds preserving the propor-

tion of positive and negative instance for each fold, according to the original dataset

(stratification). Then, the model is trained K times, with each fold held back exactly

once to be used for evaluation (test) as shown in Figure 2.2. This evaluation provides

a good estimation of how well the model will perform when deployed (Kelleher et al.,

2015).
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Figure 2.2: K-fold Cross-validation Design

2.2 Text Classification Models

Text classification is a branch of classification domain that aims to predict or categorise

textual documents. From a mathematical viewpoint, we are modelling an approxima-

tion function f (x) from input samples x to its output y . At the core of this modelling,

we use a (1) learning algorithm, and (2) text/features representation. In this section,

we provide a historic review of the so-called features representation, which is the

method for translating the textual messages to be further used as input for learning-

based algorithms. Furthermore, we provide a review of the learning algorithms used

in text classification, starting with traditional linear algorithms, and moving onto more

robust Neural Network-based architectures.
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2.2.1 Overview of Features Representations

In text classification approaches, parts of the message can be represented either by

words, characters or symbols (tokens). Then, these tokens are transformed into a rep-

resentation which can be understood or interpretated by an algorithm. These repre-

sentations can be used as Features for the model, and are of paramount importance for

classification and computational performance of the models (Allahyari et al., 2017). In

this thesis, we use the term Features interchangeably with Text/Features Representation,

or simply Word Features.

Features representation can be used for retaining contextual information of messages.

The earliest form of representing these messages in language system was through the

so-called Vector Space Model (VSM), for which bag-of-words, word n-grams and char n-

grams are the popular VSMs. Recently, there has been a surge in other types of features

representation, commonly called Language Models, more robust than the traditional

VSM models, it can retain the semantic and syntactic relationship of words and sen-

tences. In the following, we present an overview of these approaches by highlighting

their properties, starting with common examples of the traditional Vector Space Model

(VSM), moving onto more robust models which are divided into Word Level Distributed

Representation and Sentence Level Distributed Representation.

Vector Space Model (VSM)

The most common and earliest form of representing word features in text classifica-

tion is through a Vector Space Model (VSM). VSMs were introduced in information

retrieval by (Salton et al., 1975), and are still widely used in text mining algorithms

and retrieval systems. In this scheme, the feature on a VSM model is represented by

weights, which term frequency (TF), and the Inverse Frequency (TF-IDF) are common

representations (Salton and Buckley, 1988).

A traditional example of VSM is the bag-of-words (BoW) representation, used in a large
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number of text classification tasks (Chen et al., 2017a, Lee and Kang, 2019, Liu, 2017,

Nunes et al., 2016, Wu et al., 2017). In this representation, the document/sentence

is split in words that represent a single feature of the classifier. Another common

representation is the n-gram, also used in text classification model, where the n of n-

gram is used to define the number of sequential tokens representing a single feature,

where the tokens can be entire words (words n-gram) or characters (char n-gram).

The principal problem in VSM representations is that they might end up as large vec-

tors (or high-dimensional) and a large number of zeros (sparse), depending on the size

of the vocabulary. This problem is also known as "Curse of Dimensionality" which

might damage the performance of models due to an imbalanced of the number of fea-

tures (high-dimensionality) and the size of the dataset (number of examples) (Bellman

et al., 1957). To soften the high-dimensionality problem, non-informative words are

often removed, where the goal is to reduce the noise by removing words such as pro-

nouns and articles, while also reducing the dimensionality of the vector. Other tasks,

such as Lemmatisation and Stemming, is used to reduce the word to its core (e.g.,

the words "hacking", "hacked" and "hacker" are reduced to same token "hack"), are

also used to reduce the dimensionality of VSMs. There are more robust techniques

for reducing the dimensionality of VSMs, for instance, features selection and feature

extraction, which we discuss on Chapter 4, Section 4.7.

These models are simple to implement and also provide good results in many NLP

tasks. However, they are limited with regards to the information retained in the vector

values. Recently, research in language representation has provided forms of enhancing

the capability of these traditional features representations by allowing them to provide

information on the semantic and syntactic meaning of words (or sentences). These

models allow assessing the relationship between the words by simple mathematical

operations. Such characteristics have been seen as a breakthrough into the language

representation domain and have also enhanced traditional VSMs models. In the fol-

lowing, we provide an overview of models that provide such characteristics, starting

by the Word Level Distributed representation, or Words Embeddings (WEMB), and
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afterwards, the Sentence Level Distributed Representation, or Sentence Embedding

(SEMB).

Word Level Distributed Representation

Word2vec language model introduced by (Mikolov et al., 2013) is a language model

that allows assessing the semantic and syntactic relation of words through simple al-

gebraic operation, for instance, the operation vector("King") - vector("Man") + vec-

tor("Woman") would result in vector values close to the vector representation of ("Queen").

The same operation can be performed throughout all words of a corpus where the

model was trained.

This model has been successfully used in several NLP tasks such as Machine Trans-

lation, Information Retrieval and Question Answering systems, and also has shown

promise in improving accuracy on several downstream classification accuracy tasks

(Kameswara Sarma et al., 2018, Roy et al., 2017, Yang et al., 2018). Word2vec is also

presented in two different Neural Network-based architectures, the CBOW and Skip-

gram. They differ on the performed task, where the former performs a prediction

of the current word given a surrounding context, whereas the latter predicts the sur-

rounding words given the current word. During this task, a dense vector representa-

tion is calculated for each input word (embedding), where the resulting vector is used

as input in algorithms for a downstream classification task.

There is also another method called Glove, introduced by Pennington et al. (2014).

Similarly to Word2vec, this model is often used in downstream classification and word

clustering tasks. However, different from the previous, Glove is not based on Neu-

ral Network architecture, but on a matrix factorisation of co-occurrence of words,

which makes its training more computationally expensive. Both models have a sim-

ilar advantage regarding the mathematical operation on similar words, but also the

same drawback, they lack the ability to adequately capture word polysemy (different

meanings for unique word). Moreover, Glove has been providing better results than
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Word2vec on some NLP task (Pennington et al., 2014).

Sentence Level Distributed Representation

Sentence Embedding (SEMB) is focused on providing a fixed-length dense vector that

represents an entire variable-length sentence while keeping similar sentences along-

side in a vector space. This model, as the name suggests, is focused on providing a

vector encoding for the entire sentence instead of encoding each unique words of the

sentence. The main characteristics of SEMBs are the ability to differentiate between

sentences with the same words, placed in a different order. For instance, the sentence

"Play hard, don’t study!" and "Study hard, don’t play!" have different meanings, and

this difference is encoded by SEMB model, but is lacking on previously seen models

(VSMs and WEMB), which would treat these phrases as being equal.

There are several proposed architectures for SEMB models, each one is trained in

a different task and with different types of data. For instance, the authors Le and

Mikolov (2014) proposed a SEMB model based on unsupervised learning approach

called Sent2vec. This model follows the Word2vec approach, although it adds a new

vector that maps the resulting Word Embedding to a single vector that represents the

entire sentence. Another model introduced by Kiros et al. (2015) called Skip-Thought

is based on Wor2vec Skip-Gram training task, which uses a central sentence to recon-

struct the surrounding sentence. Additionally, this model uses an encoder-decoder

architecture to provide better use of the computational resource.

Beyond the unsupervised approaches presented so far, there are two other forms for

creating SEMB. One uses supervised learning and the other uses both supervised and

unsupervised approaches (multi-task). An example of a supervised SEMB was intro-

duced by Conneau et al. (2017). This model achieved better performance in trans-

fer learning tasks compared to other two state-of-the-art unsupervised SEMB models,

SkipThought and FastSent. The so-called Infersent model is trained in a supervised task

called Natural Language Inference (NLI), which, according to Conneau et al. (2017),

23



provides better embedding representation due to the high-levels of understanding

and reasoning involved in this task. Furthermore, using a multi-task approach, the

so-called Universal Sentence Encoder model (SentEncoder) (Cer et al., 2018), utilises a

variety of sources in its unsupervised module, including Wikipedia, question-answer

pages and web news, and in its supervised module used the labelled Stanford Natu-

ral Language Inference (SNLI) corpus, similarly to Inferset. Language model research

has advanced in a fast-paced manner. It continues to evolve during the writing of

this thesis. As a consequence, we are not covering all the newest language models

architectures.

Transformer-based Models

Currently, the new generation of language models has been built with the so-called

Transformer architecture (Vaswani et al., 2017). This architecture can also process the

input information using parallel computer processing rather than sequentially, result-

ing in fast training time compared to non-transformer models. This characteristic

is due to the use of the Attention mechanism. Moreover, Transformer models per-

form better with long-range dependencies compared to RNN-based and CNN-based

sequence-to-sequence language models.

The characteristics described combined with larger datasets have resulted in state-of-

the-art language models for NLP tasks. For example, popular Transformer language

models include BERT (Devlin et al., 2018) by Google, GPT2 (Radford et al., 2018) and

GPT3 (Brown et al., 2020) by OpenAI, with a total number of parameters of 340M, 1.5B

and 175B, respectively. However, high volumes of data require a large computational

capacity to train such models. For instance, GPT3 model needs an infrastructure of

285,000 CPUs and 10,000 GPUs to be trained, which costs more than $ 4.6M to achieve

the computer power requirements on cloud platforms (INFO-Q, 2020).
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2.2.2 Overview of Traditional Algorithms

The algorithm is the basis of classification models. There are a variety of algorithms

that can be used to solve classification tasks. Among them, we commonly see K-

nearest Neighbour (Cover and Hart, 1967), Logistic Regression (Zhang and Oles, 2001),

Decision Trees, e.g., ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), Support Vector Ma-

chine (SVM) (Cortes and Vapnik, 1995), and Naïve Bayes (McCallum and Nigam,

1998).

Although technically, all these algorithms can be used in text classification tasks, SVM

and Naïve Bayes are the most commonly used. Studies indicate that the former algo-

rithm is among the best text classifiers and also, the most suitable for high-dimensional

features set (Dumais et al., 1998, Joachims, 1998, Yang and Liu, 1999), whereas the lat-

ter is a simple but effective Bayesian learning method that has been providing good

performance in text classification problems (Domingos and Pazzani, 1997). These al-

gorithms have been applied to a variate of text classification tasks, for instance, sen-

timent analysis, spam detection, news categorisation (Feng et al., 2016, Jianqiang and

Xiaolin, 2017, Liu, 2017, Mittermayer and Knolmayer, 2006).

One of the principal characteristics of traditional algorithms, including SVM and Naïve

Bayes, is the need for predefined features. In other words, the selection of features for

these algorithms requires human with knowledge in the specific domain of applica-

tion. Although it requires an extra effort to find which features would improve the per-

formance, it allows us to use them to explain the resulting classification of the model.

This characteristic is not present in Neural Network-based Algorithms to date.

2.2.3 Overview of Neural Network-based Algorithms

Recently, we have been experiencing the popularisation of Artificial Neural Network

(ANN). These algorithms have an inspiration in the biological process of human brain,

in which artificial neurons are used for learning patterns in past historic data to predict
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further unseen information. This approach has been providing some of the state-of-

the-art results in classification tasks, although, in contrast to traditional algorithms, it

is not possible to explain the classification results using the classifier’s features. This

is due to the non-requirement of hand-crafted features, thus it acts as a “Blackbox”

system.

Another characteristic of ANNs is that they require a large quantity of data to avoid

overfitting. As a consequence, some traditional algorithms such as SVM can be more

effective than ANNs with small data sets, as they use a less computational resource

and achieve better accuracy (Liu et al., 2017). However, to partially overcome the

overfitting problem of ANNs, Hinton et al. (2006) has proposed a training method

called layer-wise-greedy-learning, which has provided the beginning of Deep Learn-

ing (DL) approaches. The basic idea of DL algorithms is to expand the neuron layers

of ANNs, which they called hidden layers. This procedure allows obtaining a compact

representation of the data, reducing the possibility of overfitting and achieving faster

convergence (training), although it still more computational resource intensive than

based on traditional methods (Liu et al., 2017).

DL algorithms have been providing state-of-the-art results in several domains, for in-

stance, image classification, language translation, documents retrieval, abusive com-

ments detection (Chen et al., 2019, Huang et al., 2014, Kim, 2014, Palaz et al., 2015).

There are two promising examples of DL algorithms used in text classification, so-

called text CNN and RNN. CNN architecture started its foundations in LeCun et al.

(1990) papers and was improved in Lecun et al. (1998), and the focus was in image ap-

plications. Since then, a large number of network architectures have been proposed,

among then are Alexnet (Russakovsky et al., 2014), VGGNet (Simonyan and Zisser-

man, 2014), GoogleNet (Szegedy et al., 2014), ResNet (He et al., 2015). Although CNNs

are mostly applied in image recognition tasks, this architecture has been adapted for

text classification and has provided good results in Natural Language tasks, including

sentiment analysis and question classification Kim (2014).
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Another commonly used algorithm for Natural Language tasks is the Recurrent Neu-

ral Network (RNN). In contrast to CNN, this algorithm is characterised by the ca-

pability of mapping sequential data and its temporal dependencies. Audio, video

and text are examples of sequential data (data that depend on previous information).

The temporal information of data is then mapped through cyclical connections. This

allows the updating current state of an RNN cell with past dependencies Yu et al.

(2019). However, RNN is not suitable for mapping long-term dependencies within

data, which incurs in a well-known problem called vanish gradient (Hochreiter, 1998).

To overcome this limitation, an RNN-based architecture was proposed by Hochreiter

and Schmidhuber (1997), called Long Short-Term Memory (LSTM). As opposed to the

basic recurrent unit, the LSTM architecture introduces a "gate" mechanism, which al-

lows the architecture to decide which data is stored and removed from its current cell

state. LSTM is used in the majority of the state-of-the-art results and has performed

better compared to the basic RNN (Tang et al., 2015, Wang et al., 2015).

2.3 Text Classification in Cyber Security

In this section, we provide the state of the art of studies applied to the detection of ma-

licious communication shared in social media channels. We highlight that the majority

of the work discussed in this chapter is not completely related to the principal goal of

this thesis. However, in some extent, it may overlap with our purpose by including a

more generic objective for example, the detection of malicious conversation, hacker

attacks discussion, malicious cyber communication or malicious software attach-

ments. Therefore, all research presented in this section uses data-driven approaches

for detection of malicious communication in social media.

To introduce these studies, we divided this section into two parts. The first provides

a discussion of Supervised Classification approaches using machine learning classifica-

tion algorithms. The second provides a discussion regarding some Unsupervised ap-

proaches to support cyber security investigation on social media channels.
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2.3.1 Supervised Approaches

We have focused on three main aspects of data-driven methods: The labelling task;

Domain-Specific Features; and algorithms choice, so that we might compare and dis-

cuss the different approaches thoroughly.

A) Dataset and Labelling Task

As discussed in Section 2.1.1, supervised learning approaches require a labelled dataset.

The related literature categorises these labels into two classes: the positive or target

class, for messages representing malicious communication content, and negative or

non-target class, for messages that do not represent a threat or hacker malicious con-

tent.

However, the process of labelling this type of data, especially those related to cyber

security, is difficult due to the need of experts that can understand the jargon and

technical information of these messages (Benjamin et al., 2015, Sabottke et al., 2015,

Trabelsi et al., 2015). It is also expensive and time-consuming, not to mention the

difficulty of collecting these messages in hacker forums, as these channels have an

anti-crawling mechanism to prevent the messages being collected by automatic tools

(crawlers) (Fu et al., 2010).

As a result, we have identified that, in these works, the authors are using their exper-

tise to annotate the labels. Additionally, it has been noticed that the use of crowdsourc-

ing service providers to perform the labelling is not common in the security domain.

Furthermore, we have identified three different methods that the authors have used

to provide labels to the dataset messages, which we discuss below:

Human Expert labelling: In this case, the authors used expert knowledge to annotate

the labels of the messages. As seen in Nunes et al. (2016), they manually labelled only

25% of the dataset, while the unlabelled part, 75%, was annotated by a technique called

co-training (CT). Although this technique has been used to enhance the performance
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of classification models by increasing the quantity of labelled data, the authors fail to

adequately explore how reliable the assigned labels are for this specific problem.

Labelling by keyword matching: In this case, the authors assumed that the messages

with specific keywords could be categorised either as positive or negative classes. As

seen in Deliu et al. (2017) and Deliu et al. (2018), they pre-defined a security-keywords

list, where messages containing at least one word in common with the list are assigned

a positive class label. On the other hand, the negative class messages are those which

do not match any word from the mentioned list. As an example, the security list

provides words, such as adware, antivirus, backdoor, botnet, exploit, cve, exploit, firewall,

hijack, infect, keylogger, security, shell code, spam, crypter, ddos, password. Whereas, the

negative messages include words relating to sport, movies, music, etc.

Also, in Portnoff et al. (2017), where the aim of the work is to detect whether the posted

message is related to the trade of hacking products or not, they annotated the messages

according to the description of the thread topic of the forum. If the thread topic uses

words that refers to the trade of products, for instance, buy, sell, currency, all messages

under this topic were assigned as being from a positive class, whereas for topics with

words not related to trade, the messages were assigned as being from a negative class.

Similarly, in Lippmann et al. (2016), instead of using keywords, they have assigned the

same category to messages under a specific social media topic. For instance, on Reddit

social media dataset, all messages under reverse engineering, security, malware, and

blackhat were assigned as positive, whereas messages under topics not related to com-

puter security, such as astronomy, electronics, beer, biology, music, and movies were

assigned as negative class.

We believe these works are naively assuming that keywords can guarantee the real

category of messages. If it were true, we would not need robust algorithms to dis-

tinguish the meaning of these messages. As outlined later in this thesis (Chapter 3),

the same keywords might appear in both categories of messages, in which case, the

distinction is made by understating the entire contextual information.
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Labelling by external reference: In this case, the authors have used an external ref-

erence to assign the labels on dataset instances. As seen in Sabottke et al. (2015), the

authors have created a model where the goal is to predict whether a vulnerability is

being exploited or not. For labelling the dataset, they have used Symantec’s anti-virus

and intrusion-protection signatures report, which mentions what vulnerabilities have

been exploited. The authors have claimed that they use this source because there is a

lack of ground truth dataset for study classification models in this area. Additionally,

they complain that these sources do not cover all vulnerabilities, as well as leaving

Linux products out of the scope of the report.

Similarly, in Mulwad et al. (2011), using an external source as part of their frame-

work for collecting security information posted on social media platforms; the authors

trained a model using vulnerability descriptions of National Vulnerability Database

(NVD) as positive instances, and technical messages found on CNET web portal, as

negative instances. With this model, the authors suggest that it would be useful for

monitoring potential hackers attack and vulnerability mentions in social media chan-

nels and chat rooms. However, the authors fail to adequately provide the resulting

performance of the model in the mentioned social media sources.

B) Domain Specific Features

Some works have been using social media domain-specific features to increase the per-

formance of the classifier. In Cherqi et al. (2018), the authors created a model for detect-

ing hacker related and non-hacker related messages in marketplaces on Dark Web. They

have used domain-specific features, such as the origin of products, the destination of

products and rating of products. This information is domain-specific and cannot be

seen in all hacker forums, or on other social media channels. Moreover, in Benjamin

and Chen (2012), the authors have also used specific metadata called hacker-rating (rate

the contribution of the user) to enhance the performance of the classification models

applied to hacker forum communication.
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Another example of the use of domain-specific features can be seen in Sabottke et al.

(2015), the author has used the number of re-tweets on Twitter social media to im-

prove classification performance in predicting the next software exploited vulnerabil-

ity. However, similarly to Cherqi et al. (2018), the feature can only be used in a Twitter

dataset, and as the previous work, it is not part of other social media, especially hacker

forums.

In summary, some types of information are domain-specific and are not found on ev-

ery social media platform. As a result, we have chosen not to add domain-specific

features in our experiments, as we are using 5 different datasets collected from differ-

ent sources. We acknowledge that domain-specific features might be used to enhance

the performance of classifiers, however, it would not be fair for comparison between

models created in different sources. For this reason, we are only using the words (and

characters) of sentences as features, as they are the most informative feature and are

present in all datasets.

C) Classification algorithms

The selection of algorithms in cyber security-related literature does not differ from

other text mining approaches, where the traditional SVM is one of the top choices for

text mining tasks. SVM has been showing promising results in detecting transaction

in Dark Web forums (Portnoff et al., 2017), cyber security-related events in social me-

dia (Deliu et al., 2018), and malware, exploitation and vulnerability communication

(Nunes et al., 2016, Sabottke et al., 2015). Therefore, deep learning-based approaches

have also shown good results using RNN and CNN architectures, as presented by Gr-

isham et al. (2017) in a mobile malware attachment detection and by Deliu et al. (2017)

in a security-related communication detection. In the latter work, the author has pro-

vided a comparison of CNN and traditional SVM algorithms, where both algorithms

have performed similarly well in the same task.

As we have previously discussed at the beginning of section 2.3, these techniques are
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applied to a broad context of hacker threat, which in some cases overlaps with our

purpose (software vulnerability communication). Although these approaches indicate

promising results, we need to perform a thorough analysis of these algorithms and

features representation focused on our specific purpose and assure that we provide a

sound dataset with quality labels.

2.3.2 Unsupervised Approaches

In contrast to supervised approaches, unsupervised does not require a labelled dataset.

However, unsupervised approaches are not commonly used for classification as its

evaluation is done mostly by qualitative analysis. As a consequence, unsupervised

methods are frequently used to cluster similar information. An Example of a model

created using unsupervised methods is the so-called language models, which is com-

monly used in hacker forum investigation as seen in Benjamin and Chen (2015). In this

work, the authors have used a language model to capture the meaning of hacking-

specific language, jargons and concepts. To perform this task, they have built two

models, using CBOW and Skip-Gram architecture (seen in Section 2.2.1). The result-

ing model was able to capture the similarity of the 10 popular hacker terms, i.e., botnet,

RAT, card, logger, crypter, rootkit, salt, binder, dork, vulnerability. Moreover, CBOW

with Negative Sampling (NS) has shown the best result using an evaluation metric

called precision-at-10, which the results is given based on the similarity of the first 10

output words with the input word. The similarity of the output and input is based on

the experience and subjectivity of the research authors.

A similar work presented by Zhao et al. (2016), applied the two language models,

Word2vec and Latent Dirichlet Allocation (LDA) to a Chinese hacker forum for identi-

fying similar jargons with related cyber security terms. The results show that Word2vec

models can overcome LDA in the task of similarity. This work has also used the same

metric as Benjamin and Chen (2015) (precision-at-10). Additionally, the authors have

highlighted the difficulties of analysing hacker forums, and have also argued that the
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major difficulty for cyber security researchers and investigators is usually the unfamil-

iarity with novel terms due to the fast-pace emerging of new hacking concepts.

Furthermore, the work done by Roy et al. (2017) highlight that specialised Word Em-

bedding, that is, a Word Embedding build on top specific-language vocabulary (i.e.,

using a corpus with cyber security vocabulary), might not produce high-quality em-

bedding due to the lack of co-occurrence words within the dataset instances. With

that in mind, they have provided an annotation framework called Word Annotation

Embedding (WAE) to deal with this limitation. Their approach has improved over the

common approach. However, it relies on the ability (and availability) of the human an-

notator. Additionally, there is also the added task of labelling before the creation of the

embedding, making the creation of unsupervised models more labour intensive.

In summary, large part of the work in this domain used unsupervised approaches to

understanding hacker language by clustering new related concepts and jargons. How-

ever, there are other forms of using these language models, such as using as features

representation in downstream classification tasks. In other words, we can use pre-trained

language models in combination with supervised algorithms as they provide classifi-

cation improvement in a variety of language problem (Amir et al., 2016, Perone et al.,

2018, Wang et al., 2015, Wieting et al., 2015). Therefore, in this thesis, we focus on the

use of these unsupervised models in combination with supervised classification algo-

rithms, to investigate whether this combination enhances the performance of models

applied to the detection of software vulnerability communication.

2.4 Rule-based Systems

A classic and commonly used rule-based system is the so-called Expert System (ES)

(Russell and Norvig, 2009, p. 633). In this system, a set of rules is created by a human

expert to build the Knowledge Base (KB). Based on the interaction of the KB rules

and the so-called Inference Engine, the system can perform actions, such as reasoning,
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deductions, choices and predictions.

Comparing ES with machine learning-based approaches, the main difference lies in

how the set of rules is specified. In ES, the rules are tailored by domain-experts,

whereas in machine learning approaches, the rules are discovered by learning-based

algorithms through patterns in data, without necessarily requiring human interven-

tion to define them. Although supervised learning approaches might also require a

human expert to categorise the dataset (labelling phase), this step can be replaced by

crowdsourced services, such as Amazon Mechanical Turk or similar labelling plat-

forms (Wang and Zhou, 2015, Welinder and Perona, 2010).

Both approaches have been used in NLP tasks, although, machine learning has been

the most commonly used approach nowadays. Additionally, studies have shown a

slight advantage of using machine learning approaches instead of the ES. As seen

in Tan et al. (2018), the authors compared two medical NLP system aimed to detect

the occurrence of Low Back Pain (LBP) diagnosis on radiology reports, one built as

an ES and the other as a machine learning system. The authors presented that the

machine learning system provides the best average recall, 94%, and Area Under the

Curve (AUC), 98%, compared to 84% and 90% achieved by ES. In another publication,

the authors Tiftikci et al. (2019) have also compared both methods. They provided a

combination of three machine learning algorithms (CNN, Bi-LSTM and CRF) to iden-

tify Adverse Drug Reaction (ADR) in drug labels. This approache achieved 77% of

F1-score compared to 67.4% achieved by the ES in the same task.

As a result, for this research, we have decided to pursue the machine learning ap-

proach as they (1) provide better results when compared to ruled-based systems, and

more importantly, (2) there is no need to handcraft rules as required in ES approaches.

Moreover, machine learning algorithms are built to discover the rules by themselves,

which reduce human intervention and effort to build a classification system.
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2.5 Summary and Conclusion

In this chapter, we outlined the basic process of creating supervised classification mod-

els for text classification problems, which includes three basic steps: Pre-processing,

Learning (training) and Evaluation (testing). Afterwards, in Section 2.1.1, we high-

lighted the importance of a labelled datasets for supervised approaches and outlined

the two commonly used strategies for collecting these labels: Expert labelling and

Crowdsource labelling. In sequence, in Section 2.1.2, we outline the main metrics and

evaluation designs taken to evaluate the performance of these models.

Furthermore, we reviewed one of the principal components of text classification, Fea-

ture Representation models. We started by describing the early VSMs (bag-of-words

and n-grams) as well as more robust language models (Word and Sentence Level Dis-

tributed representation). In the latter, we compared the main advantages and limita-

tion with regards to the retention of contextual information of words and sentences.

Afterwards, we provided an overview of the commonly used algorithms for text clas-

sification, including traditional and Deep Learning-based algorithms. We have no-

ticed that among the traditional algorithms, SVM is one of the top choices for text

classification due to its ability to handle a large number of features. However, several

Neural network architectures, for instance, CNNs and RNNs, have been adapted for

solving NLP problems, achieving promising results.

Finally, we reviewed the approaches taken for classification models in cyber security.

To overview these works, we compare them based on the common aspects of the cre-

ation of supervised models, for instance, the labelling task, features and algorithms.

As a result, we have identified two gaps in these approaches within security research

domains: (1) there is a lack of Ground Truth dataset for comparison and research re-

producibility purposes, and (2) there is a lack of systematic approach for dealing with

ambiguous messages and the subjectivity of labellers in the labelling task. To address

this problem, we propose a systematic labelling approach in Chapter 3.
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CHAPTER 3

Dataset and Methodology

The purpose of this research is to investigate techniques for automatic identification

of software-security communication posted on hacker forums and social media chan-

nels. To achieve this goal, we have applied supervised learning approaches to distin-

guish the target (related to software security) from non-target messages (non-related to

software security). Thus, the target communication can be used in further counter-

measures against hacker threats. The terms target and non-target are used throughout

this thesis to refer to these different classes of messages.

Moreover, given the rapid development data-driven techniques for text analytic dis-

cussed in Chapter 2, we propose to cover a range of these approaches for creating

classification models, which includes the use of traditional- and deep learning-based

classification algorithms combined with different types of supervised and unsuper-

vised feature representations.

The methodology and datasets described here are the basis for the experiments in

Chapters 4, 5 and 6 which, in summary, consists of:

• Identifying the best configuration of traditional algorithms and feature represen-

tations for automatic identification of software-security communication posted
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on hacker forums and social media channels.

• Analyse strategies that provide efficiency and better use of these models, such as

feature reduction, feature selection and feature extraction.

• Identifying the best configuration of Deep learning-based algorithms and robust

feature representations for the automatic identification of software-security com-

munication posted on hacker forums and social media channels.

• Evaluate the application of these models in a variety of sources, for instance,

forums and marketplace on Deep Web, and microblogs on Surface Web.

• Evaluate the robustness of these models in a real-life application under concept

drift effects.

In this chapter, in Section 3.1 we describe the original datasets and types of sources

used for performing this experiment (forums and social media). In addition, Section

3.2 describes the details and principal characteristics of each source for the hacker com-

munity. As these datasets do not contain labels, in Section 3.3, we describe the steps

taken for preparing them for expert annotation (labelling), which is also a necessary

step for supervised learning approaches.

Lastly, in Section 3.4, we describe the methodology to create the models consider-

ing the combination of classification algorithms and feature representations. Also, we

introduce the metrics for evaluating these models in our specific task, followed by

Section 4.5 Summary and Conclusion.

3.1 Original Datasets Collection

The principal purpose of this research is to investigate forms of automatically detect-

ing software-vulnerability communication on social media through supervised classi-

fication models. As a result, we have opted to follow a data-driven approach, as this

method has been providing outstanding results in NLP tasks (as seen in Chapter 2).

37



Moreover, with data-driven approaches, it is possible to use examples of real-world

messages to produce suitable classification models that can be used to distinguish the

target from non-target messages. To have a representative number of messages (ex-

amples) that reflect our research purpose (software-vulnerability communication), we

have selected 5 datasets from representative hacker communication channels, which

cover commonly used social media and hacker forums from three domains: Deep Web,

Dark Web and Surface Web.

The criterion for selecting these datasets was determined by the existence of a com-

mon channel where users interact to disclose and acquire knowledge regarding soft-

ware vulnerability. Also, by using this range of datasets, we want to ensure that our

classification model provides generalisable results to a broad range of sources. These

sources are referred to in the following chapters of this work as D1, D2, D3, D4 and

D5 and represent Hacker forum, marketplaces and Twitter security expert posts, from

Deep Web, Dark Web and Surface Web, respectively. A textual description regarding

the purpose and relevance of each dataset can be seen in Section 3.2, whilst the number

of messages in each original set, type and source are summarised in Table 3.1.

Table 3.1: Original Dataset Collection Summary

ID Source Type No. of
msgs. Published in

D1 Hacker Forum Deep web 44,752 Samtani et al. (2016)

D2 Twitter Surface web 11,832 Queiroz et al. (2017)

D3 Marketplace Dark web 91,463 Samtani et al. (2016)

D4 Hacker Forum Deep web 8,699 Samtani et al. (2016)

D5 Hacker Forum Deep web 36,684 Samtani et al. (2016)

TOTAL 193,430

The datasets D1, D3, D4 and D5 contain, respectively, 44,752, 91,463, 8,699, 36,684

posted messages and were originally published in https://www.azsecure-data.org/,

which is an open source data portal specialising in security research (Samtani et al.,

2016). Whereas D2, with 11,832 posted messages, was first used in Queiroz et al.
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(2017) and can be found at http://tiny.cc/8ws67y. In all datasets, the content of the

posted messages represents technical and personal communication regarding com-

puting, security, internet services, and technology. The users of these forums range

from people interested in computer security subjects to sellers and buyers of hacker

products. Moreover, among the messages, we identify several posts relating to private

data exposure (such as credit numbers and user accounts), and sharing of copyright

software (activation number and cracked software). These activities are considered a

by-product of a hacker attack, which have not mentioned whether it was performed

through a software-security flaw, thus, are not part of what we consider as target mes-

sages in this research.

After a thorough inspection of these datasets, it was noticed that messages that repre-

sent the goal of this research are found in a small number, i.e., posts with information

about vulnerabilities in software (exploited or not). This situation left us with an im-

balanced number of instances; fewer from target class compared to non-target, which

is not ideal for training classification models (Ganganwar, 2012). Taking this into ac-

count, in Section 3.3, we describe the steps taken to sample datasets and to enhance

the balance between the target and non-target messages.

3.2 Datasets Description

This section describes the principal activities of the dataset sources used in this work,

for instance, the description of its purpose, content and number of users.

D1 - CrackingArena Forum

This is one of the largest hacker forums existing in 2018 with 44,752 posts and 11,977

active users from February of 2013 to February of 2018. It contains security communi-

cation regarding issues in computing, which makes these messages suitable to study

the interaction among hackers. The variety of topics in the forum covers areas such
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as social engineering, cracking/exploit tools and tutorials. Also, this forum is known

as one of the principal sources for learning how to hack newly emerged problems in

computer systems. The data was collected by Samtani et al. (2016).

D2 - Security Experts

The data was collected from 12 security-expert users on Twitter by Queiroz et al.

(2017). There are two groups of professionals in this dataset: The well-known secu-

rity experts with an average number of followers of 18,800, and lesser-known security

experts, with an average number of followers of 1,100 between 2016 and 2017. Each

group contains 6 users. Their posts are mostly related to security aspects of technol-

ogy, including software vulnerabilities and hacking. The collected Tweets range from

early November of 2015 to early March of 2017. The total number of Tweets gathered

is 11,833.

D3 - Dream Market

The Dream Market is considered the largest marketplace on the Dark Web space after

the shutdown of Alphabay forum (CNET, 2017). With 91,463 posted products from

2,092 sellers in 2016, this is a well-known marketplace for selling illegal products, such

as illicit drugs, fake IDs, stolen credit card numbers and copyrighted software. It is also

a place for advertises hacker products and services used in malicious hacker activities.

Some of these products are generally associated with cyber-attacks on companies and

governmental agencies. This marketplace is within the Dark Web domain, which is

only accessible by using a special communications setup called a ToR network. This

network is used to provide buyers and sellers with privacy and anonymity. The data

was collected by Samtani et al. (2016)
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D4 - Garage4Hackers Forum

This is a medium-sized forum in terms of the number of messages, with only 8,699

messages that span from June of 2010 to September 2017. The messages in this forum

are related to exploitation, botnets and explanation of reverse engineering in software.

It also has information regarding specialised hacking tools for the reconnaissance phase

of cyberattacks. The data was collected by Samtani et al. (2016)

D5 - Cracking Fire Forum

This forum has approximately 14,511 active users and 36,684 messages from April

2011 to February 2018. Additionally, after brief inspection, we noticed that some of the

posts contained pieces of pseudo-code and source code, which are aimed to perform

malicious operations, such as compromise online social media accounts. Thus, this

dataset facilitates cyber security research on software/web applications vulnerability

exploitation tools. The data was collected by Samtani et al. (2016)

3.3 Dataset Preparation

Our approach is based on supervised classification, which needs training data with

suitable labels. However, the original datasets lack the provision of these labels for

the messages. Additionally, based on organised inspection of the contents, we have

noticed that the target messages are found in a low proportion compared to the non-

target messages. As a result, to solve this problem, we propose a robust systematic

procedure for sampling and labelling these datasets.

For performing the labelling preparation of the datasets, the dataset should follow

three principal requirements:

• Each message is identified as belonging to either a target or non-target class.
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• Each message needs to be correctly assigned to a label, otherwise the perfor-

mance of the model would be negatively affected, which would result in failure

in detecting the software vulnerability communication.

• There should be, ideally, a balanced number of instances in each class to provide

enough information for pattern learning.

The labelling task is at the core of supervised learning approaches as the dataset needs

to be previously labelled before the creation of supervised models. In some cases, this

task requires expert human knowledge, which is time-consuming and expensive de-

pending on the size of the dataset. Due to the lack of labelled datasets (gold standard)

in security research for building these models, researchers are either labelling their

own datasets or (2) using automated services (e.g., Amazon Mechanical Turk crowd-

sourcing). Considering this problem, the choice in this thesis was performing our own

labelling scheme using expert knowledge, as these messages carry out a degree of

ambiguity, which makes it difficult for non-experts to determine its real category. As

seen in Table 3.2, a certain background knowledge is needed, to clearly understand

the content.

As seen MSG-1, marked as Yes, this message is related to a type of vulnerability (Stack

Buffer Overflow) affecting a software product. MSG-2, also marked as Yes, is related

to a release of a Proof Of Concept (PoC) of a vulnerability called dirtycow. The posts

MSG-3 and MSG-4 are related to personal opinion and have no direct relation to real

vulnerabilities in software. Despite MSG-3 and MSG-4 having hack and hacker key-

words, they are not related to the distribution of messages about software vulnerabil-

ity communication and are thus marked as No.

Moreover, in MSG-5, there is not enough information to decide whether either the ssh

scan tool is vulnerable or can be used against vulnerable software. Likewise in MSG-6,

we cannot confirm that the error mentioned leads to a vulnerability into the sneaker

software product, thus they are marked as Undecided. The label Undecided is used to

capture any subjectivity doubt of the labeller regarding the real class of the message,
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target (Yes) or non-target (No). Further details on the labeling task is given in Section

3.3.2.

We acknowledge that the model will only be as good as the knowledge of the labellers,

when it comes to detecting hacker posts. For this reason, labellers who understand the

ambiguity and subtlety of the posts are a critical component in our work.

Table 3.2: Message Examples

ID Message Label

MSG-1 Multiple remote memory corruption vulns in all Symantec/
Norton antivirus products, including stack buffer overflows Yes

MSG-2 PoC for dirtycow vuln [URL] Yes

MSG-3 Reading about lawyers argue about our Jeep hack is endless fun No

MSG-4 it is amazing a hacker can put up with a sociologist ;) No

MSG-5 Just released ssh_scan v0.0.10. Release notes can be found here Undecided

MSG-6 I like sneaker’s error 0xC0000156 Undecided

In other words, to guarantee the quality, we decide to not outsource the task to non-

experts nor use automated techniques for labelling the messages. In the following

sections, we describe the detailed steps for preparing the dataset to comply with the

requirements. The steps are: (1) Keywords-filtering; (2) Labelling Annotation; and (3)

Final Label Assignment.

3.3.1 Keyword-filtering

The original dataset has brought the following issues: (1) there is a high number of

messages to be manually labelled by human experts (193,430 in total), and (2) there

are few instances of the target class, which is found in less proportion compared to the

non-target class.

Perform the labelling in all messages is infeasible due to our limited number of expert

knowledge to perform the task. Also, reducing the number of messages to be labelled

by eliminating the non-target messages (majority) while keeping the target class (mi-
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nority) contributes for balancing the dataset.

For this reason, we have followed similar approach as seen in Chen et al. (2017b),

König and Brill (2006) for selecting a sample of each dataset. These approaches have

defined keywords and patterns to select a representative sample of messages of the

datasets. Then, the selected data is assessed by a human expert to define the real class.

In summary, this procedure aims to:

1. Reduce the number of messages to be labelled by expert labellers, thus, reducing

the time and human resources needed for completing the task.

2. Increase the number of messages that represents the target class (software vul-

nerability communication) in the reduced sample.

To achieve these goals, we used a set keywords from a specialised keywords list related

to software vulnerabilities. This procedure allows us to reduce the amount of original

data while increasing the chances of including the target class messages in our final

dataset. After manual evaluation, we have noticed that we had increased the propor-

tion of target class instances compared to non-target.

Filtering using Specialised Keyword List

Chen et al. (2017b) has used the keywords for reducing the amount of data to be la-

belled for an abusive comments detection task. Similarly, we have used a security

keyword list to extract a set of sample messages form our original datasets. This list

contains terms used to describe common security problems in software, for instance,

Cross-Site Scripting (XSS), buffer overflow and SQL Injection (SQLi), which are com-

monly used to communicate software security vulnerabilities.

These terms are provided by two well-known list software defects: The Open Web Ap-

plication Security Project (OWASP) top 10 Application Security risks (OWASP, 2017)

and the SANS top 25 software errors (SANS, 2019). The full list can be seen in Ap-

pendix A1.
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In Table 3.3, we present the number of messages that contain at least one word from the

list as well as messages without any of these keywords for each dataset. All duplicated

messages are excluded. The reduction of messages compared to the original dataset is

55% , from 193,430 to 88,359 instances. The number of messages containing at least one

keyword is 34,145, and there are 54,214 messages that not contain any keywords.

Table 3.3: Messages with and without Word from The List

ID No. of inst.
with keyword

No. of inst.
without keyword Sum

D1 1,353 16,421 17,774

D2 6,173 5,659 11,832

D3 18,881 7,877 26,758

D4 3,972 4,659 8,631

D5 3,587 19,598 23,185

TOTAL 33,966 54,214 88,180

Sampling Messages

Performing the labelling task on 88,180 messages as shown in Table 3.3 remains time-

consuming. To solve this problem, we sampled the messages of each dataset by reduc-

ing the total of messages to be labelled to 10,000, according to the following:

• Random selection of 1600 messages that contain at least one security keyword

(list) from datasets (D1, D2, D3, D4, D5)

• Random selection of 400 messages without security keywords from datasets (D1,

D2, D3, D4, D5)

Additionally, the messages are presented in a range of different sizes regarding the

number of words. Capturing a representative sample of these sizes is relevant to the

training phase of the model, as the model would learn different examples, thus im-

proving prediction performance. As a result, to capture a representative sample, we

have performed the following three steps:
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1. Exclude the upper and lower outliers messages in terms of the number of words.

2. Divide each dataset into 4 different groups (A, B, C, D) according to its number of

words distribution, where group A represents all messages up to the first quartile

(Q1), B represents messages from Q1 to the second quartile (Q2), C represents

messages from Q2 to the third quartile (Q3) and D represents the messages from

Q3 onward. An illustrative example is seen in Figure 3.1.

3. From messages that contain at least one of the specialised keywords, we ran-

domly select 400 messages per group and per dataset, whereas from messages

without any keywords, we randomly select 100 messages per group and per

dataset.

A B C D

Number of Words (Bins)

Figure 3.1: Illustrative Example of Groups A, B, C, D Divided by Interquartiles Q1, Q2,
Q3 (Dotted Line)

Finally, we provide the violin graphs in Figure 3.2 of the sampled (reduced) dataset.

This figure is a graphical representation of the distribution of messages per number

of words in each dataset. The three dotted lines represent the first (1Q), second (2Q)
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and third (3Q) quartile. Comparing the dataset, we see that the majority of the data

is spread within the 0 to 350 words range, only D3 has a large spread, of 0 to 650

words.

Dataset = D1

Dataset = D2

Dataset = D3

Dataset = D4

0 100 200 300 400 500 600
Number of Words

Dataset = D5

Figure 3.2: Distribution of Messages per Number of Words
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3.3.2 Label Annotation Task

Accurate labels are critical to the success of supervised learning. As previously men-

tioned in Chapter 2, there are two principal approaches for acquiring dataset labels:

Expert and Crowdsourcing. In our 5 datasets, we have used the expert labelling ap-

proach, as non-experts might have difficulty understanding the content of the mes-

sages. Furthermore, to guarantee high quality of labels, we have performed the la-

belling task with multiple annotators.

To achieve our goal, we followed a systematic approach, where each instance (post)

in the datasets has been labelled by three different human labellers (computing re-

searchers). Those three opinions are considered for use in an additional step for defin-

ing the final label (the majority votes). The use of three experts brings more expertise to

the labelling process, whereas the majority of votes approach reduces their influence

(subjectivity) on the final result. Additionally, to facilitate the decision of labellers,

we created a third label option called Undecided, which can be used for ambiguous

massages where the labellers are not sure whether it belongs to target or non-target

class.

In order to perform the task, the labellers were asked to consider the following rules

when deciding whether the message is related to software-vulnerability-related com-

munication:

• Yes, for messages that appear as malicious messages regarding how to breach

vulnerabilities in software assets.

• No, for messages not related to hacker activity or which are out of the scope of

our research (Data breach, copyrighted software cracked, stolen accounts and

credit card accounts).

• Undecided, for messages that the labeller does not have enough information or

confidence to mark as Yes or No.
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Existing approaches, as in Nunes et al. (2016), have relied on labelling annotation done

by the authors, where they provided a discussion on doubtful messages to form a con-

sensus regarding the final label. In Deliu et al. (2018), the authors have assigned labels

to specific instances in a keywords-matching approach, where messages containing

specific keywords, e.g., "Hacker", are marked as being from target class. In the former

approach, the authors have considered that some messages can be difficult to label

due to the ambiguity of certain posts, whereas in the latter approach, the authors have

ignored the ambiguity problem by assuming the keywords matching would suffice to

determine which class a post would belong to. We acknowledge that the last approach

is not suitable for this research, as we see in our dataset, we have security-specific

keywords appearing in target and non-target messages, e.g., "hacker" or "vulnerabil-

ity".

On-line Survey for Labelling Task

The on-line survey was the method used to collect the labels. This survey consists of

the following three parts:

1. An introductory text regarding the dataset to be labelled (Appendix A2),

2. A question in which the answer should be Yes, No or Undecided

3. Rules and Tips for marking the labels.

For part (2), the question to each dataset was set into the domain of software vulnera-

bilities communication, however, for D3 (marketplace), it was adjusted to support the

content of each this specific dataset. Differently from D1, D2, D4 and D5, the dataset

D3 was collected from a marketplace forum, where the principal activity is the trade

of malicious and criminal products, which includes malicious software. Furthermore,

the questions can be seen in Table 3.4. we highlight that the term SOFTWARE in these

questions is used in a broad context, which represents every piece of software running

on computers, such as desktop computers, web servers, ATMs, embedded systems,
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mobile phones, as well as network protocols. We have also provided examples of

target and non-target messages per dataset in Table 3.5. The entire dataset with all

messages can be found at http://tiny.cc/8ws67y.

Table 3.4: Questions on Survey

Dataset Question

D1 Is this message somehow related to
exploitation of software vulnerabilities?

D2 Is this message somehow related to
exploitation of software vulnerabilities?

D3 Can this product/service be used for malicious exploitation
of software vulnerabilities?

D4 Is this message somehow related to
exploitation of software vulnerabilities?

D5 Is this message somehow related to
exploitation of software vulnerabilities?

50

http://tiny.cc/8ws67y


Table 3.5: Examples of Target and Non-target Messages per Dataset. Yes = Target, No
= Non-target

DATASET MESSAGE LABEL

D1

Hello everybody, First , i am a big newbie so please don’t blame me ! I want to crack a software in
.Net So first i scan my exe with protection ID : Everything is good exe not protectected I run .Net
reflector 8.3 and i see strange line, i run De4Dot ! I relaunch Net reflector and use search system
(Tools - Search or F3) i type. serial, Verification, Licence , key ,validate , login , password ...
But no results I search in the program and look for things that look like a function that requires a serial
! I found : License , but i don’t know where to search ? Can you help me please ? Thanks a lot for help!

Yes

Our Free VPN (Virtual Private Network) server is Designed with the latest technologies and most advanced
cryptographic techniques to keep you safe on the internet from prying eyes and hackers by securely routing
all your internet traffic through an encrypted tunnel to bypass government censorship, defeat corporate
surveillance and monitoring by your ISP. VPNBook strives to keep the internet a safe and free place by
providing free and secure PPTP and OpenVPN service access for everyone. You do not have sufficient rights
to see the hidden data contained here.

No

D2
[RT] [USERNAME] Signal bug lets attackers tamper with encrypted
messages patch now [URL] Yes

Last talk, android firewall by [USERNAME]. Not really into
android but tweeted out of respect for [USERNAME]. [URL] No

D3

Droid Jack - Android RAT 4.4 -Droid Jack - Android Rat 4.4 + Guide There is nothing that you can do with
a PC that you can’t do using an Android phone. Since the power in the hand has grown so much, a control
over that power is also needed. DroidJack is what you need for that. DroidJack gives you the power to
establish control over your beloveds’ Android devices with an easy to use GUI and all the features you need
to monitor them. droid jack, android rat, droidjack, rat, trojan, android hack, hack, droid hack, android
spy, malware, spyware If you have any question, let me know. droid jack, android rat, droidjack, rat, trojan,
android hack, hack, droid hack, android spy, malware, spyware

Yes

Homemade Grenade Launchers Let Uncle Ragnar walk you through these simple step-by-step plans for making
an M79 or M203 in your own workshop! All it takes is ordinary tools and some pipe, washers, nuts and bolts
. Reloading info for 40mm ammo and BATF guidelines are included

No

D4

suppose a programmer wrote: Code: touch ("myfile");chmod ("myfile",700); instead of: Code: umask (077)
;touch ("myfile"); race condition can be exploited by opening the file for reading right after the touch command
was executed and before the chmod command took place.

Yes

Adobe has introduced technology that makes it easier for users to delete local shared objects (LSOs), known
as Flash cookies LSOs store user preferences, but some websites have been using the LSOs to restore user cookies
even after users have manually deleted them. Working with Mozilla, Google and Apple, Adobe has developed an
application programming interface (API) known as NPAPI ClearSiteData that lets users delete LSOs from the
settings panels of certain browsers. For more info: <br> [URL]

No

D5

The ultimate tool used for spying your desired contact who’s using WhatsApp messenger to speak with friends,
partners and family with mobile devices (Androind, iOS, BlackBerry, Windows phone, Nokia). Our tool is not
just made for spying purposes, but there are also options to type and send messages from your desired
target’s WhatsApp account to someone of their contacts. You can also update their status message,
and many more! Choose any phone number you want,from any country in the world and hack any desired
WhatsApp account in just few minutes! [URL]

Yes

its ok virus no mean to be mad just saying not like used to be .. i had others just deleted post
.. u are great just people change pws and by paying every month i only look for a
few it get frustrating sorry

No

51



3.3.3 Final Label Assignment

For performing the Final Label task, we have used the labels from the labelling annota-

tion task, where each message was annotated by multiple labellers (3 different expert

labellers). According to Sheng et al. (2008), this approach is a simple but effective

alternative for labelling noisy and ambiguous instances, which provide better quality

labels than those provided by a single labeller. As a result, we have provided labels us-

ing two different schemes: The Unanimous Label Assignment (ULA) scheme, where

the final label is given only when all 3 labellers have agreed on the label; and the Par-

tial Label Assignment (PLA) scheme, where the final label is given when at least 2 of

3 labellers have agreed on the label.

Some examples of Final Label (FL) using ULA scheme are given as follows:

• FL = NO , if La = NO , Lb = NO , Lc = NO , with n ∈ {a, b, c} being a different

labeller (L).

• FL = YES , if La = YES , Lb = YES , Lc = YES , with n ∈ {a, b, c} being a different

labeller (L).

• FL = UNDECIDED , if La = UNDECIDED , Lb = UNDECIDED , Lc = UNDECIDED ,

with n ∈ {a, b, c} being a different labeller (L).

Some examples of Final Label using PLA scheme are given as follows:

• FL = NO , if La = NO , Lb = NO , Lc = UNDECIDED , with n ∈ {a, b, c} being a

different labeller (L).

• FL = YES , if La = YES , Lb = YES , Lc = UNDECIDED , with n ∈ {a, b, c} being a

different labeller (L).

• FL = UNDECIDED , if La = UNDECIDED , Lb = UNDECIDED , Lc = NO , with

n ∈ {a, b, c} being a different labeller (L).

Additionally, for PLA scheme, messages with unanimous agreement are also included,
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e.g.: La = YES , Lb = YES , Lc = YES or La = NO , Lb = NO , Lc = NO or La =

UNDECIDED , Lb = UNDECIDED , Lc = UNDECIDED . Furthermore, we have excluded

all total disagreement messages, e.g.: La = YES , Lb = NO , Lc = UNDECIDED before

performing PLA and ULA. In Table 3.6, we present the number of instances, percent-

age and remainder quantity of instances excluded from the final dataset.

Table 3.6: Total Disagreement

ID Excluded % Exclusion Remainder

D1 71 of 1,753 4% 1,682

D2 73 of 2,000 3% 1,927

D3 79 of 2,000 4% 1,921

D4 44 of 2,000 2% 1,966

D5 26 of 2,000 1% 1,974

Moreover, we can see the summary description of the ULA scheme (Table 3.7) and

PLA scheme (Table 3.8). It is seen that, by using ULA scheme, 25% of the instances

(on average) are excluded, whereas by using PLA scheme, the exclusion of instances

is around 3%, on average, being only those with full disagreement. As a consequence,

in order to maintain a large number of instances within the final dataset, we decided

to use the PLA scheme for the remainder of this work.

Table 3.7: Unanimous Label Agreement Scheme Description

ID Scheme No. of
No

No. of
Yes

No. of
Undec

% Distrib.
(no/yes/und) Total Excluded / (%)

D1 ULA 1,243 27 7 97/3/<1% 1,277 of 1,682 (405)/24%

D2 ULA 1,372 110 0 93/7/0% 1,482 of 1,927 (445)/23%

D3 ULA 1,365 89 3 94/6/<1% 1,457 of 1,921 (463)/32%

D4 ULA 1,307 70 0 95/5/0% 1,377 of 1,966 (589)/30%

D5 ULA 1,525 15 0 99/1/0% 1,540 of 1,974 (434)/22%
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Table 3.8: Partial Label Agreement Scheme Description

ID Scheme No. of
No

No. of
Yes

No. of
Undec

% Distrib.
(no/yes/und) Total Excluded / (%)

D1 PLA 1,520 114 48 90/7/3% 1,682 of 1,682 (0)/0%

D2 PLA 1,633 243 51 85/13/2% 1,927 of 1,927 (0)/0%

D3 PLA 1,638 211 72 85/11/4% 1,921 of 1,921 (0)/0%

D4 PLA 1,704 225 37 87/10/3% 1,966 of 1,966 (0)/0%

D5 PLA 1,864 110 0 95/5/0% 1,974 of 1,974 (0)/0%

3.3.4 Time Span of Final Dataset

After labelling the final dataset with the PLA scheme, we ended up with instances

spread across a range of months and years. Fig 3.3 presents the volume of messages in

each dataset over time, where the x-axis represents the year-month of the post, while

the y-axis represents the volume of posts on that period. These messages are spread

over a period between June of 2010 and February of 2018 with each dataset covering

a subset of this range of time. The dataset D1 contains messages between 2013-02 and

2018-02 (5 years), D2, the shortest dataset in terms of temporal range, contains mes-

sages between 2015-11 and 2017-03 (≈ 1 year). D4, the longest, contains data between

2010-06 and 2017-09 (≈ 7 year), D5 between 2011-04 and 2018-02 (≈ 6 year). Only D3

is not present in this figure as the publishers in Samtani et al. (2016) have not provided

the timestamp of the messages. The messages and their timestamps are used to per-

form a deployment simulation and Concept Drift experiment presented in Chapter

6.
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3.4 Methodology

This section aims to briefly introduce our choice of algorithms and feature representa-

tions used to build the models investigated in this thesis. We have based our choice

on techniques that have shown promise in the text mining domain and previously dis-

cussed in Literature Review Chapter 2. The algorithms are presented in two different

categories, Traditional and Deep Learning-based. Likewise, the feature representa-

tions are divided into Traditional and Distributed representation. Furthermore, we

describe the evaluation design and metrics used to perform the analysis of the differ-

ent models built with 5 different datasets.

3.4.1 Supervised Classification Approaches

Supervised approaches can be categorised as regression, when the outcome value (out-

put) provided is continuous (numerical), or classification, when the output is categori-

cal value (or classes). In this work, the focus is on classification models, thus, we are

using malicious (target) and non-malicious (non-target) communication as categories

for the output values.

Additionally, this approach requires the mapping of each input instance of the dataset

to its output value, in a process known as labelling. That is the principal characteristic

that differs from unsupervised approaches, which require labelled instances.

Although this work is primarily using supervised methods for classification, we also

use unsupervised approaches (language models) for feature representations (as seen

in Section 3.4.2). The motivation for using supervised approaches is based on the

following:

• It allows us to create a model that learns with previous data without the need of

predefining rules, which differs from expert systems (Fogel et al., 1993), and

• It allows us to objectively evaluate the performance the models with quantita-
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tive metrics. This differs from unsupervised methods, which lack objective met-

rics for measuring the performance,relying more on qualitative analysis (Palacio-

Niño and Berzal, 2019).

In this thesis, we have selected a range of supervised algorithms, which include tra-

ditional and state-of-the-art deep learning classification algorithms. Traditional algo-

rithms can provide comparable results with deep learning algorithms in certain tasks,

whilst being more computationally efficient and require less training data (Chen et al.,

2019, Deliu et al., 2017, Kim, 2014). Although the foremost goal of these algorithms

is providing the best accuracy for the models, the computational performance and

efficiency are also important characteristics that should be taken into consideration,

especially when the intention is to deploy these models for real-life use. For this rea-

son, we have decided not only to investigate the state-of-the-art algorithms, but also

the performance of traditional algorithms in our specific task. As a result, the experi-

mental procedure in Chapters 4, 5 and 6 is the evaluation of the most commonly used

traditional algorithms as well as the state-of-the-art Deep learning-based algorithms

for text classification as following:

Traditional Algorithms

Traditional algorithms usually rely on hand-crafted features to provide the final pre-

diction. In text classification domain, the most used are Support Vector Machine

(Cortes and Vapnik, 1995) and Naïve Bayes (Lewis, 1998, Sebastiani, 2002). More de-

tails are described In Chapter 4.

Deep learning-based Algorithms

Deep Learning algorithms are based on Artificial Neural Network architecture. This

architecture finds itself the best set of features within the input data. Recently, Convo-

lutional Neural Network (CNN) (Kim, 2014, Lecun et al., 1998) and Recurrent Neural

Network (RNN) are the most used architectures, with the former being adapted for
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text classification, and the latter being used mostly in interdependent sequential data,

for instance, sound and text. More details are described in Chapter 5.

3.4.2 Feature Representations

This work has focused on using only textual features, such as words, characters and

sentences. These parts provide the meaning to messages and are also ubiquitous to all

hacker platforms and social media used to disclose text-based information. For this

reason, we have selected a diverse set of feature representations that provide different

forms of representing the characteristic of the message, for instance, some represen-

tations are focused on the importance of frequent keywords in the context and others

are focused on aligning similar words and sentences together. Therefore, the principal

goal is to evaluate these feature representations in a downstream classification task,

in other words, to find the representation that provides best accuracy in combination

with classification models for detection software vulnerability communication.

We acknowledge that adding different types of features (crafted features) might pro-

vide an enhancement of performance of the model. However, some of them might

be available to specific datasets and not the other. For instance, the use of re-tweets

(RT) as done by Sabottke et al. (2015) is useful only for Twitter data (D2), as the other

datasets (D1, D3, D4 and D5) do not have re-tweet-like function implemented in their

platforms (hacker forums). The same occurs for hacker-rating attributes used by Ben-

jamin and Chen (2012), which are available in some hacker forums (D1, D4, D5), how-

ever, it is not present in Twitter data (D2).

As a result, by using only word features, we can compare the results of the models

fairly and also evaluate the importance of each language model for downstream clas-

sification tasks. Furthermore, in this thesis, we have divided the Feature Representa-

tions into two categories as done in Chen et al. (2019), the Traditional and Distributed

Representation, in which the latter includes the Word and Sentence Level representa-

tions, as described below:
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Traditional Representation

Bag-of-words (BoW), word n-grams and char n-grams are commonly used in several text-

mining and classification tasks Benjamin et al. (2015), Lee and Kang (2019), Nunes

et al. (2016). With BoW, the sentence (in our case, the post messages) is split into a

set of tokens (words), then each token is counted to produce a vector that represents

the entire sentence. As the previous representation, words n-grams and char n-grams

are also token-based, however, the number of word/characters representing tokens is

defined by n, where n ≥ 1. The main difference between bag-of-words and word n-grams

models is that the latter encodes contextual information in a sequence of words when

n > 1, i.e: The words "United" and "States" when appearing in sequence might illus-

trate a different context compared to appearing separately. Finally, the char n-grams

representation is better for representing sentences with rare words and morphological

variants. Some of the common characteristics of these language models are:

• It forms a sparse vector (with lots of zeros)

• The word order of messages is lost

Distributed Representation

As mentioned in Chapter 2, these categories of language models can be subdivided

into two other categories, the Word Level Distributed representation and Sentence Level

Distributed representation. In this thesis, we have selected models from both cate-

gories, as they have different characteristics. Examples of the former category are

Word2vec and Glove, and the latter are Sent2vec, InferSent, and SentEnconder. We have

used these models in Chapter 4 and 5, their details are given in the respective chapters.

In following, we summarise their common characteristics and improvements over tra-

ditional representation:

• It forms a dense vector

• Semantically and Syntactically similar words (or sentence) are mapped together
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• In case of Sentence Embedding, the order of messages is maintained

Comparison of Traditional and Distributed Representation

In order to investigate the optimal feature representations that enhance vulnerability

communication detection, we have selected language models with different character-

istics, which are summarised in Table 3.9. It is seen that, the traditional is characterised

for being sparse, while Word and Sentence distributed representation are Dense Vec-

tor. The sparsity of the vector might present a well-known issue called "curse of di-

mensionality" that affects the performance of the model (Bellman et al., 1957). How-

ever, this problem is not presented in dense representation, therefore is more compu-

tationally expensive than traditional representations. In terms of providing similar

words/sentences together in a vector space, both Distributed representation models

present this property. However, only the Sentence Distributed representation distin-

guishes between sentences that use similar words but different word order, i.e, "Play

hard, don’t study! and "Study hard, don’t play!" would be considered as equal sen-

tences in Traditional and Word Level distributed representations (Deepanshu Jindal,

2019).
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Table 3.9: Summary of Language Models

Sparse Vector Dense Vector Similarity Word Order

TRADITIONAL REPRESENTATION

Bag-of-Words X

Word n-gram X

Char n-gram X

WORD LEVEL DISTRIBUTED REPRESENTATION

Word2vec X X

Glove X X

SENTENCE LEVEL DISTRIBUTED REPRESENTATION

Sent2vec X X X

InferSent X X X

SentEncoder X X X

3.4.3 Evaluation and Metrics

As the principal goal of the models is to detect the messages related to vulnerabili-

ties in software among those non-related, we acknowledge that the impact of a false

negative (FN) classification (assigning a true malicious communication as being non-

malicious) is more damaging than the impact of a false positive (FP) (assigning a false

malicious communication as being malicious) in real-life application of these models.

As a consequence, when a model achieves a high rate of FN, we miss the identification

of the target messages, thus, we lose the chance of using this information for proactive

actions against likely cyber events.

On the other hand, a model with high rates of FP is not desirable either, as it implies

that a model is wrongly detecting the non-target as target messages. If this situation

occurs frequently, either a time-consuming expert investigation will be needed, or un-

necessary security actions will have to be taken.

Under these circumstances, the metrics used to evaluate the models need to consider

61



the real-life application of these models. Therefore, we have chosen the Positive Recall

and Average Class Accuracy (or average recall) as metrics for evaluate the models. The

majority of works in this area has focused on recall (Lippmann et al., 2016, Mulwad

et al., 2011, Nunes et al., 2016, Sabottke et al., 2015, Trabelsi et al., 2015). However,

we understand that the recall metric does provide the full picture for deployment in

real-life situation, as this metric does not inform the true negative assigned as posi-

tive.

The Positive Recall (1), is given by TP, which is the total of instances correctly classi-

fied as positive (malicious communication), over TP+FN, which is the total number of

instances from that class. Whereas the Average Class Accuracy (2), is given by the sum

of the recall of positive class and the recall of the negative class divided by the num-

ber of classes (2 classes, in this case). This metric is also suitable for the evaluation of

models built over imbalanced datasets as it prevents the majority class from dominat-

ing the results and presents a balanced result over True and False positive detection.

These metrics are also present in similar work using imbalanced datasets (Brodersen

et al., 2010, Chen et al., 2017a, Urbanowicz and Moore, 2015).

These metrics are used over 10-fold cross-validation evaluation in the following Chap-

ters 4, 5 and 6.

Recall =
TruePositive(TP)

TruePositive(TP) + FalseNegative(FN)
(1)

Avg .ClassAcc =
Recall(pos .Class) + Recall(neg .Class)

No.Classes
(2)

3.5 Summary

This chapter describes the datasets that will be used in the experiments throughout

this thesis. These datasets were collected from 5 different sources and 3 distinct In-
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ternet domains (Surface, Deep and Dark web). Due to the size of these datasets, we

propose a structured scheme for reducing the number of messages, thus providing a

feasible dataset size for the labelling task. As we have observed in the literature review,

there is a lack of gold standard dataset in security domain research. For this reason,

we have performed a structured labelling task using multiples annotators to guaran-

tee that the final labels are not biased by the subjectivity and background knowledge

of the labellers.

Furthermore, we describe the methodology used to create and evaluate the classifica-

tion models. This methodology purposes an evaluation of a range of state-of-the-art

language models and classification algorithms to detect software vulnerability com-

munication using multiple datasets. For the language models we have included the

traditional bag-of-words, and word/char n-grams, as well as Word and Sentence Embedding;

for algorithms, we have selected the traditional Support Vector Machines (SVM) and

Naïve Bayes, and robust Deep Learning architectures, for instance, CNNs- and RNN-

based algorithms.

Finally, in all experiments, we have used Python 3.6.0v programming language, Sci-kit

0.20.2v and Keras API for TensorFlow 1.15.0v as libraries.
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CHAPTER 4

Detection of Software Vulnerability-related

Communication Using Traditional Text Classification

Models

In the age of information, criminals are taking advantage of social media channels

to share hacking tools and promote coordinated cyber-attacks (Algarni and Malaiya,

2014, Deliu et al., 2018). In this context, cyber security analysts are striving to find

new approaches to extract usable information from these sources that helps to counter

malicious attacks against enterprise systems.

As a consequence, an emerging approach nowadays is the investigation of security-

related messages exchanged on social media channels from the most variate domains,

for instance, forums and marketplaces found in Deep/Dark Web, and Twitter in Sur-

face Web channels (Lippmann et al., 2016, Nunes et al., 2016, Sabottke et al., 2015).

In this chapter, we conduct a range of experiments using traditional machine learning

algorithms and word features representation to create classification models that de-

tect software-vulnerability communication in social media posts. These experiments

include an analysis of classification models through a variety of techniques, such as

features extraction/selection, and binary/multi-class classification. To complete this
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task, we systematically evaluate and compare the performance of these models. These

experiments were conducted by using three different datasets, each one coming from a

different source (Forums, marketplace and Twitter). Additionally, due to the problem

of imbalanced data mentioned in Chapter 2, we investigate sampling techniques that

improves the detection accuracy of these models.

The principal goal is to perform a thorough, empirical investigation of these models to

identify the optimal techniques that better suit our purpose, the detection of software-

vulnerability communication in social media. We believe that this study will support

the use of machine learning models in Cyber Security Intelligence (CTI).

The following sections are organised as: Section 4.1, describing the datasets used in

this experiment. Section 4.2 and 4.3, describing the traditional classification algorithm

and features representations used to create classification models. The experiment be-

gins with the baseline in Sections 4.4, and is followed by data resampling in sections

4.5, 4.6, and dimensionality reduction techniques in Section 4.7. In Section 4.8, we

present a multi-class classification experiment followed by a discussion in Section 4.9.

Finally, the conclusion in Section 4.10.

The experiments in this chapter were published in:

• Queiroz, A. L., Mckeever, S., and Keegan, B. (2019). Eavesdropping hackers:

Detecting software vulnerability communication on social media using text min-

ing. In The Fourth International Conference on Cyber-Technologies and Cyber-Systems,

pages 41–48.

4.1 Datasets

Existing works on text mining within the security domain have evaluated classifica-

tion models with a smaller number of datasets. Such an approach depends on the

compatibility of models and the specific source they are applied to. In other words, the

best model configuration created with Twitter data might not be suitable for Deep Web
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hacker forums and vice-versa. Consequently, our approach is focused on analysing the

best configuration considering more than one dataset. This way, we are not evaluating

the model based on a specific source, instead, our analysis is focused on an optimal

configuration that can be applied to different sources.

The datasets used are D1 (hacker forum), D2 (Twitter) and D3 (marketplace). The spe-

cific purpose of each dataset and description can be seen in Section 3.2. Also, they are

labelled using Partial Label Agreement (PLA) as described in Section 3.3.3, which con-

siders the majority of votes to assign the definitive label to each message. The content

of the messages in these datasets share the following common characteristics:

1. All posts are in some way related to computer technologies, including the secu-

rity aspects of software, systems, network and protocols

2. All datasets have an imbalanced number of instances within classes, with fewer

representing the positive (target class) than negative (non-target class)

In order to create the models using the mentioned dataset and labels, we considered

two classification approaches: binary and multi-class. The binary classification is the

most commonly used approach, in which a model classifies instances in two classes

(positive or negative). However, for performing the binary approach with our dataset,

we have transformed the "undecided" label into "yes" (positive) as we believe that

these messages might represent a likely risk in a real-life situation and should be cap-

tured for further analysis. Afterwards, we compared the results of the binary experi-

ment with the multi-class experiment to investigate which approach is more suitable

for detecting software-vulnerability communication.

On the other hand, in multi-class classification, the model learns to classify more than

2 classes, which allowed us to use the label "no", "yes" and "undecided", separately.

Additionally, we have decided to use One-vs-Rest (OvR) strategy for training the

models as it provides similar accuracy compared to a commonly used strategy called

One-vs-One (OvO), although its run-time is significantly less (Chmielnicki and Stąpor,

2016).

66



Finally, the description of the datasets for the binary classification task is seen in Table

4.1 and the experimentation is presented in Section 4.4. Also, the description of the

datasets for the multi-class task is described in Table 4.2 and the experiment in Section

4.8, respectively.

Table 4.1: Dataset used in Binary Classification

ID Source No instances Distrib. (pos/neg) Avg. No. words

D1 Hacker Forum 1,682 10/90% 50

D2 Twitter 1,921 15/85% 13

D3 Dark Web 1,927 16/84% 169

Table 4.2: Dataset used in Multi-class Classification

ID Source No instances Distrib. (pos/neg/und) Avg. No. words

D1 Hacker Forum 1,682 7/90/3% 50

D2 Twitter 1,921 13/85/2% 13

D3 Dark Web 1,927 11/85/4% 169

Data Pre-processing

Data pre-processing is a commonly used step of text classification. These are neces-

sary steps for reducing the noise and improving the accuracy of classifiers (Jianqiang

and Xiaolin, 2017). However, the appropriate pre-processing methods are domain and

language dependent (Uysal and Gunal, 2014). For this reason, we are using methods

that have been widely used for text classification in English language, such as follow-

ing:

• Change of message letters to lowercase

• Replace links such as https://examplelink.com to a mark [URL]

• We have replaced mention to users such as @users to a mark [USERNAME]

• For Twitter dataset, the RT (re-tweets) marks were removed
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• Removal of stop-words (such as prepositions pronouns and common words).

we have not performed this operation on Twitter datasets, as they are generally

short conversations.

4.2 Traditional Classification Algorithm

As seen in Chapter 2, a considerable part of works on text classification has been using

traditional classification algorithms. Among all options, we selected Support Vector

Machine (SVM) and Naïve Bayes (NB). These algorithm are among the top choices in

several different text classification tasks, e.g., sentiment analysis, new filtering, opin-

ion mining, spam filtering, due to good results in prediction accuracy. The follow-

ing subsections provide some characteristics of these algorithms in the context of our

work.

4.2.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning algorithm used for classifica-

tion tasks (Cortes and Vapnik, 1995). This algorithm is based on the maximal margin

principle and known for achieving favourable performance with high dimensional

data and text classification (Joachims, 1998, Suykens and Vandewalle, 1999).

SVM has been used as the first choice for solving several tasks in text classification

domain, such as spam detection (Lee and Kang, 2019), sentiment analysis (Liu, 2017),

online hate speech detection (Chen et al., 2017a). Also, this algorithm has been used

for several security domain tasks, such as identification of malware’s attack vector

(Benjamin and Chen, 2013), mobile authentication through patterns of screen touch

(Saravanan et al., 2014) and identification of malicious executables (Kolter and Maloof,

2006).

In this experiment, we apply the algorithm for detecting software vulnerability com-
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munications in social media and hacker forums. Moreover, we are using the SVM

with linear kernel and the default value of C hyperparameters, given by the library

(Sci-kit 0.2.20v). We choose to use the defaults to fairly compare the performance of

the models throughout using all 5 different datasets.

4.2.2 Naïve Bayes (NB)

Naïve Bayes (NB) algorithm, is based on the Bayes’ theorem, which is considered one

of the most commonly used, simplest and efficient algorithms for text classification

tasks (Lewis, 1998, McCallum and Nigam, 1998, Sebastiani, 2002). NB has been proved

successful in a variety of applications, particularly for the field of text classification

(Peng and Schuurmans, 2003, Sang-Bum Kim et al., 2006).

According to Bayes’s theorem, Equation 1, NB is calculated as a posterior probability

p(Ck |x) of a class CK (with k = 1, ..., k) and an unseen example x (composed by a set

of features x1, x2, x3, ..., xn). In practice, the denominator, p(x), is effectively constant

for every data point in the training set. Additionally, the prename "Naïve" comes from

the assumption that all features are calculated independently of each other (mutual

independence property).

p(Ck |x) =
p(x |Ck)(Ck)

p(x)
(1)

In classification models, this algorithm comes with a decision rule which the intuition

resumes in "assign the unseen example with the most probable class" given by Equa-

tion 2.

ŷ = argmax
k∈{1,...,k}

p(Ck)
n

∏
i=1

p(xi |Ck) (2)
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4.3 Traditional Feature Representation

As previously mentioned in Section 3.4.2, we chose to use word features, which are

generic to all datasets. The features representation used in this experiment are bag-of-

words (BoW), words n-grams (W_ngram) and char n-grams (C_ngram).

In these representations, the words (or characters) of the messages of datasets are split

into a defined set of tokens. Each message is now represented by a single vector con-

taining a normalised occurrence (frequency) of these tokens. For the BoW approach,

the text is tokenised into an unordered set of words, where each separate word repre-

sents a single feature. Whereas, for the words n-grams approach, which is considered

an improvement upon BoW, we defined the size of the token by changing the value

of n, which consists of N words occurring in sequence. Not unlike the previous repre-

sentation, with char n-grams, the process is the same, however, more granular and it is

based on characters of the words. Examples of this representation are seen in Figure

4.1.

Terms Msg1 

Freq

Msg2

Freq

a 1 0

app 1 1

and 0 0

I 1 0

in 1 1

vuln 1 0

have 1 0

x 1 0

sqli 0 0

found 1 1

new 1 0

web 0 1

Terms Msg1 

Freq

Msg2

Freq

I have 1 0

have found 1 0

found a 1 0

a new 1 0

new vuln 1 0

vuln in 1 0

in app 1 0

app X 1 0

sql and 0 1

and xss 0 1

xss found 0 1

… .. ..

I have found 

a new vuln 

in app X

MSG 1

Sqli and XSS 

found in 

web app

MSG 2

BOW Word N-gram (n=2)

Terms Msg1 

Freq

Msg2

Freq

an 0 1

ap 1 1

av 1 0

eb 0 1

ew 1 0

fo 1 1

ha 1 0

in 1 1

li 0 1

ln 0 1

nd 1 1

… .. ..

Char N-gram (n=2)

Figure 4.1: Example of Traditional Features Representation (BoW, Word and Char n-
grams)

Additionally, for these representations, we are using a range of 1 to 4 words/char
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tokens, N=(1,4), for W_ngram and C_ngram representations with the frequency of the

given n-gram as weights for the feature vectors. By using a long range of n-grams

(N=(1,4)), we are able to capture different contexts in the same message, since n=1

represents one single word, and n=2,3,4 represents a set of sequential words.

Moreover, very large and very small frequencies of words might occur throughout

the posts of dataset. These large ranges might interfere with the decision boundary of

the models. To avoid this interference, we have applied the Min-Max normalisation on

these frequencies in range of 0 to 1, according to Equation 3. This method is commonly

used in data mining research (Al Shalabi and Shaaban, 2006). The v is the value before,

and v ′ is the value after normalisation. The minv and maxv are the minimum and

maximum values of the distribution, whereas minnew and maxnew are the values used

to scale the features, in our case, 0 and 1, respectively.

v ′ =
v −minv

maxv −minv
(maxnew −minnew ) +minnew (3)

4.4 Baseline Model Configuration

In order to define the best (baseline) configuration for the models, we have created

them by permutation of two classification algorithms and three features representa-

tions. Further, these models are evaluated in 3 different datasets (D1, D2, D3).

The algorithms of choice are SVM and NB, and the features representations are BoW,

Words n-gram and Chars n-gram. The values of n for the word/char n-grams are in the

range of 1 to 4, which means that n-gram of 1, 2, 3 and 4 are part of the features

set.

The values recorded for Avg. Class Accuracy and Positive Recall of the model for each

individual dataset is presented in Table 4.3. It is seen that the best feature representa-

tion is char n-gram for SVM algorithm, in both metrics, whereas for Naïve Bayes, BoW
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has shown better performance in 2 of 3 datasets, D2 and D3. Additionally, to investi-

gate the best configuration of models, we have averaged the Avg. Class Accuracy of

models throughout all datasets. These results can be seen in Figure 4.2 as a modified

boxplot graph, where the middle line of the box represents the mean of Avg. Class

Accuracy metric (instead of median) with the results recorded by each dataset plotted

with a different mark in the graph.

Table 4.3: Average Class Accuracy and Positive Recall of SVM and Naïve Bayes Mod-
els per Dataset

SVM Naïve Bayes

Dataset Feat. Rep
Avg. Class

Acc

Recall

(positive)

Avg. Class

Acc

Recall

(positive)

D1

BoW 0.67 0.38 0.57 0.15

W_ngram 0.65 0.32 0.59 0.20

C_ngram 0.71 0.46 0.55 0.11

D2

BoW 0.85 0.71 0.84 0.69

W_ngram 0.76 0.53 0.80 0.61

C_ngram 0.86 0.76 0.83 0.68

D3

BoW 0.73 0.52 0.75 0.56

W_ngram 0.71 0.46 0.63 0.28

C_ngram 0.76 0.60 0.73 0.56

In terms of averaged result per model (mean line in Figure 4.2), we see that SVM

outperforms Naïve Bayes algorithm in 2 of the 3 presented models, the best combi-

nation using Naïve Bayes is BOW (NB+BOW) with an average 0.72 of Avg. Class

Accuracy. The best performance is achieved with SVM+C_NGRAM and SVM+BOW,

with 0.78 and 0.76 of Avg. Class Accuracy respectively. For these two best models,

we have the Friedman Statistical test to determine whether there is any difference on

the recorded results. With p-value=.097 (for alpha = .05), we fail to reject the null hy-

pothesis, meaning that there is no statistical certainty that any model is outperforming

any another. Considering this, the baseline preferred for the remainder of this work

is the SVM+BOW as this model is less expensive in terms of computational resources,
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Figure 4.2: Baseline results.

which consumes less processing power and memory, thus is trained faster than SVM+

C_NGRAM.

4.5 Imbalanced Datasets

As seen in Table 4.1, the datasets used for the binary experiment in this research have

an imbalanced number of instances, with the majority class being from the negative

class (non-target), which also represents at least 5 times more instances than positive

instances. According to Santos et al. (2018), a model trained with imbalanced data has

shown lowest performance compared to a model trained with balanced data. Without

sufficient knowledge to learn from the minority classes (positive), classifiers may over

assign instances to the majority classes (negative)(Ganganwar, 2012).

In this research, one of the main metrics used to evaluate the model is Positive Recall,

as mentioned in Section 3.4.3. However, these models present a low Positive Recall

compared to Negative Recall in all datasets, as seen in Figure 4.3. In order to increase

the Positive Recall, we use random over-sampling to increase the number of positive
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instances on datasets D1, D2, D3. This technique has been seen as a viable alternative

to enhance the positive recall of models trained on imbalanced datasets (Chen et al.,

2017a). In our experimental procedure (Section 4.6), we randomly resampled each fold

three times, recording the average of the results for each run to minimise any random

selection influence. It is worth highlighting that we have not applied this technique

to the test fold data (evaluation set), as this fold should represent the way data would

appear in a real-life application of the model.

D1 D2 D3
Datasets

0.0
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0.4

0.6
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R
ec
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Pos. Recall
Neg. Recall
Avg. Recall

Figure 4.3: Pos., Neg., and Avg. Recall for SVM+BOW

4.6 Dataset Resampling

Chen et al. (2017a) has demonstrated that oversampling techniques can increase the

Positive Recall. However, an excess of oversampling can lead to an overfitting of the

model (Santos et al., 2018). For finding the optimal oversampling size, we have ex-

plored different resampling proportions for the positive class by using the first optimal

rule (Queiroz et al., 2019).

This rule consists of setting the optimal point as being the one that most improves
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the positive recall and records a minor proportion of resampled instances. Following

this rule, D1, D2 and D3 have their first optimal point set as 450%, 350% and 300%

respectively as seen in Figure 4.4.

With this technique, we achieve a 6% increase in Positive Recall for D1 and D2, and

3% for D3, compared to the baseline model (without re-sampling), which represents

an average increase of 5%. Finally, the new proportion of the classes is shown in Table

4.4.

Table 4.4: Re-Sampled Dataset

D1 (+/-) % D2 (+/-) % D3 (+/-) %

Before (10/90) (15/85) % (16/84) %

After (44/56) (32/62) % (37/63) %
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4.7 Dimensionality Reduction

Traditional classification approaches using textual data usually contain a large number

of features (high-dimensional). However, not all features have equal importance for

improving the performance of a model. On the contrary, a large number of useless

features prevent the model from properly learning the patterns of the data on small

datasets, which is a phenomenon known as "Curse of Dimensionality" (Bellman et al.,

1957).

The use of Dimensionality Reduction (DR) is often applied to solve this problem.

These techniques are important for maintaining the computational efficiency of mod-

els, size compression and it is also helpful in other tasks such as visualisation (van der

Maaten et al., 2008).

Thus, the aim of this section is to apply DR techniques for removing such features that

do not contribute to the overall accuracy of the model. We have used three different

techniques to perform this reduction. The experiment was performed in a structured

way such that we remove the features to a minimum while maintaining the best ac-

curacy of the model. The experiment starts with a basic technique called Document

Frequency (DF) reduction, and, on top of that, we apply Chi-square as Feature Selec-

tion technique and Singular Value Decomposition (SVD) as Feature Extraction.

4.7.1 Document Frequency

As mentioned, the models in this experiment are high-dimensional and are repre-

sented with a sparse vector (larger number of zeros) in all trained datasets. In Table

4.5, we see the number of features for each model by feature representation.

For many learning algorithms, including the one described in Section 4.2.1, train-

ing and classification time increases directly with the number of features. In addi-

tion, higher numbers of features (high-dimensionality) combined with fewer instances
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Table 4.5: No. of Feature Per Feature Representation

Text Representation D1 D2 D3

BoW 9,422 4,880 18,119

Word n-grams 168,082 49,610 542,259

Char n-grams 96,063 36,372 104,981

might incur in a phenomenon called "Curse of Dimensionality" (Bellman et al., 1957),

which impacts negatively on classifier accuracy. A simple technique to reduce the

number of features is the use of document frequency (DF) reduction (Forman, 2003).

DF reduction uses the number of words that occur within the documents (messages

in social media) and removes it, so it is no longer a feature of the model, by defining a

threshold of most and least commonly recurring words. By removing the most com-

mon words, we remove words which offer less meaning to the sentence, so called stop

words (nouns, articles, pronouns), whereas by removing the least common words, we

remove rarely used words.

In Figure 4.5, we demonstrate that we can achieve a reduction of the number of fea-

tures to at least 50% (0.5) for all datasets by adjusting threshold to 0.1, which repre-

sents the exclusion of 0.1% top and bottom frequent words. As a result, we excluded

the most frequent words, appearing in > (more than) 20%, and least frequent words,

appearing in < (less than) 0.1% of the messages.

The performance of the model before and after reduction can be seen in Figure 4.6,

where we provide a comparison of the accuracy of the new model with the opti-

mal values achieved so far (model without DF reduction). It is seen that D1 and

D2 recorded the same optimal result compared to the previous model, while D3 has

recorded an increase of 1%. Thus, we are able to reduce the dimensionality of the

model, while maintaining the detection performance.
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Figure 4.6: Comparing Positive Recall of Models (Before and After DF Reduction)
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4.7.2 Feature Selection and Feature Extraction

To further reduce the dimensionality of the model, we have investigated two other ap-

proaches, namely, Feature Selection and Features Extraction. We have applied them on

top of the previous DF reduction. In the following, we briefly explain each approach

and its methods:

• Feature Selection involves a ranking for determining the best subset of the ex-

isting features. Typically, it uses algorithms that correlate each subset of feature

with the target class label. Thus the selection of the best subset is based on the

top-ranked ones. Furthermore, it helps eliminate the noise of less predictive fea-

tures and significantly reduces the dimensionality without losing classification

performance. In this part of the experiment, we are using the Chi-Square tech-

nique on top of the previous reduced configuration (DF reduction). This tech-

nique has been successfully applied to reduce dimension in other approaches

that use SVM algorithm (Bahassine et al., 2020, Chen et al., 2017a, Ikram and

Cherukuri, 2017).

• Feature Extraction involves a transformation of the existing feature to a set of

alternative, more compact, features. This provides retention of as much infor-

mation as possible. A Commonly used method includes the Singular Value De-

composition (SVD). SVD transforms the data into a reduced feature space and

as a characteristic, it captures most of the variance in the data. This method has

been used in other text mining problems, which have been providing promising

results (Chen et al., 2017a, Harrag and El-Qawasmah, 2009, Kadhim et al., 2014)

Through experimentation, we reached the minimum reduction using Chi-square of

50% of the features, whereas for SVD, we were able to reduce to 10% of its current

size, in other words, a reduction of 90%. It is worth highlighting that, Chi-Square

excludes 50% of the features, whereas SVD compacts all features in 10% of the feature

space. In Figure 4.7, the results indicate that we can use both techniques to further
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reduce the dimensionality of the model without decreasing performance. However,

for DF + SVD, there is a minor reduction in Positive Recall (about 1%).
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Figure 4.7: DF, Chi-square and SVD Dimensionality Reduction with SVM+BOW

4.8 Exploring as a Multi-class Problem

Up to now, we have analysed the performance of models using a binary classification

approach, where we decided to use the dataset labels Yes and Undecided as Positive

class and No as Negative class. Additionally, we have analysed oversampling tech-

nique for increasing the accuracy of the model. Furthermore, we applied feature se-

lection and features extraction to reduce the dimensionality, thus providing a more

efficient model.

In this section, instead of binary, we perform an experiment using multi-class classifi-

cation approach, where the model is trained to predict more than two classes. In our

case, we are predicting three classes separately, Yes, No and Undecided. This experiment

is performed for investigating whether multi-class approach yields better performance

than binary approach for our classification task.

Similar to the previous experiment, we have observed that the classes also present an

imbalanced number of instances with minor messages under Undecided and Yes classes

(Table 4.2). In order to deal with the imbalanced nature of the instances, we have re-

sampled the minority instances using the first optimal rule previously mentioned in
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Section 4.6. We have also applied the same dimensionality reduction as in binary

classification (seen in Section 4.7).

Therefore, as it is not trivial to compare multi-class with the binary classification ap-

proach, we have grouped the Yes and Undecided labels together in a new class called

Risk Threat. This new class contains messages that represents true malicious com-

munication (Yes) and those that are not completely discarded from being malicious

(Undecided). We acknowledge that, with a security perspective, undecided messages

carry a likely risk, thus they need further inspection, for this reason we treat them as

belonging to the Risk Threat class.

In order to compute the scores of Risk Threat class, we consider the correct classified

instances as: the Yes and Undecided instances that are predicted as yes or undecided.

The calculation of this score is given by equation 4, where we sum the correctly classi-

fied instances divide by the total of true labels of Yes and Undecided classes.

RiskThreatRecall =
(TPyes + TPundecided )yes + (TPyes + TPundecided )und

TotalTrueyes + TotalTrueund
(4)

Table 4.6: Multi-class Classification Confusion Matrix Results

D1

Predicted

D2

Predicted

No Yes Und Total No Yes Und Total

True

Label

No 147 3 2 152
True

Label

No 162 1 0 163

Yes 5 4 1 10 Yes 3 20 0 23

Und 3 1 1 5 Und 3 2 0 5

D3

Predicted

No Yes Und Total

True

Label

No 156 6 2 164

Yes 8 11 1 20

Und 4 1 1 6
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Table 4.7: Recall For Multi-class and Binary Approaches

ID Source Recall (Multi-class) Recall (binary)

D1 Hacker Forum 0.46 0.44

D2 Twitter 0.78 0.77

D3 Dark Web 0.54 0.56

Avg 0.59 0.59

In Table 4.6, we present the confusion matrix per dataset. This table shows the predic-

tion made by the model as well as the true label of each class. Using these values, we

provide the Recall for the Risk Threat class in Table 4.7. Additionally, a comparison of

the previous binary with the multi-class experiment is presented.

It is seen that, on average, both experiments lead to the same result, 0.59 recall. The

results in this section strongly suggest that using Undecided classes separately from

Yes does not enhance the performance of the model in general. However, in terms

of individual source, we have found that the model created over D1 (Hacker Forum)

and D2 (Twitter) source, has better recall using the multi-class approach. Comparing

these dataset with D3 (Dark web), we noticed that D1 and D2 contain, on average,

fewer words per message than D3, and also have less proportion of undecided classes,

which D3 has higher proportion, 4%, compared to D1, 3%, and D2, 2%. We believe that

multi-class should be applied to datasets with fewer numbers of "undecided" instances

and have at maximum an average of 50 words per message.

4.9 Discussion

Considering the results per dataset (Table 4.8), we see that the best result is achieved

by the model trained in dataset D2 (re-sampled), with 78% of recall, while D1 and D3

(re-sampled) have recorded very poor performance, 45% and 57% of recall, respec-

tively. D2 represents the dataset trained in Twitter Security Experts posts, where the

messages are aimed at a broad audience, whereas D1 and D3 are focused on expert
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users, in which technical terms are more frequently used. We believe that the use of

technical terms influence the performance of the model. Therefore, the combination of

algorithm and features representation that provided this result (SVM+BOW) is suit-

able for datasources where the use of technical terms are limited, such as D2 (Twitter).

However, it is not suitable for a more technical-focused sources, such as D1 (hacker

forums) and D3 (marketplace).

This situation is an opportunity to further investigate other text mining techniques that

can improve on the prediction of the target class messages in all types of sources. In the

next chapter, we provide an analysis of the use of Word and Sentence Level Distributed

Representation as features representation. Additionally, we have investigated the use

of Neural Network-based algorithms as classifiers, for instance, Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN).

Table 4.8: Summary of Results - Min-Max [0,1]

Metric Baseline Re-sampled DF DF+Chi2 DF+SVD

D1
Avg. acc 0.68 0.70 0.70 0.70 0.70

Pos. recall 0.39 0.45 0.45 0.45 0.44

D2
Avg. acc 0.85 0.88 0.88 0.88 0.87

Pos. recall 0.72 0.78 0.78 0.78 0.77

D3
Avg. acc 0.73 0.75 0.75 0.75 0.75

Pos. recall 0.54 0.57 0.58 0.57 0.56

4.10 Summary and Conclusion

The principal goal of this chapter is to analyse the traditional text mining techniques

to detect software-vulnerability-related communication. Whereas, the sub-goal is to

investigate the impact of features representations, balancing and feature reduction

techniques for the performance of classification models. We performed a systematic

experiment using different combinations of algorithms, features representations and

dimensionality reduction to create efficient and accurate models.
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The algorithms used were the traditional SVM and Naïve Bayes, as they are suitable

for a large number of word features and commonly used in text-classification tasks.

For feature representation, we used the traditional bag-of-words, word n-grams and char

n-grams. Also, in dimensionality reduction, we have used document frequency reduc-

tion, feature selection (chi-square) and feature extraction (SVD) techniques for improv-

ing the efficiency of the models.

These experiments were performed in two different classification approaches: binary

and multi-class classification. In the former approach, the labels "yes" and "undecided"

were assigned as positive instances, whereas the latter approach treated them sepa-

rately. The results have shown that, in general, both approaches are equally suitable

for the task of detection of software vulnerabilities communication.

Furthermore, it is accepted that, due to the few instances of positive class (malicious)

compared to negative class (non-malicious), the model over-assigns the negative in-

stances, which leads to poor performance in terms of Recall (Santos et al., 2018). For

this reason, we investigated the use of augmentation techniques (random oversam-

pling) to increase the number of instances of the minority class and thus improve the

recall metric of the model.

All evaluations were performed through three different datasets, each one collected

from a different internet domain (Surface Web, Deep Web, and Dark Web). The sum-

mary of the achievements for all steps taken in this work can be seen in Table 4.8. With

respect to them, it has been concluded:

• On average, the model created with SVM performs better than the Naïve Bayes

algorithm. SVM using char n-grams and BoW features representations are the

best combination of the classification models tested in this chapter.

• The Binary classification approach (which uses undecided as positive instances)

and multi-class (which used all the 3 classes separately), on average, leads to the

same performance. Only D1 and D2, which is a dataset with a lower proportion

of undecided compared to D3, has benefited from multi-class strategy compared
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to the binary classification. Also, D1 and D2 datasets contain a lower average of

word per message. We believe that these two mentioned characteristics are key

for using a multi-class approach for detecting hacker communication.

• The random sampling technique has shown to be useful for training models with

imbalanced quantity of instances within the classes. In this experiment, we have

an increase in Positive Recall of 5%, on average, by oversampling the minority

class. Models trained in D2 and D3, achieve the best positive recall (with less

oversampling) by increasing the number of minority class from 350% and 300%,

respectively, whilst D1 has reached its best in 450% resampling.

• The same detection performance of the models can be achieved by reducing the

number of features. With DF reduction, by removing the least and the most

often features, we achieved a drop of 50% of the total number of word features,

while maintaining the same classification performance. To further reduce the

dimensionality of the model, Chi-Square and SVD techniques can be used on

top of DF at the levels of 50% and 10% respectively.
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CHAPTER 5

Detection of Software Vulnerability-related

Communication Using Deep Learning-based Models

In Chapter 4, we see that traditional algorithms assume that data can be divided by

a linear decision boundary. However, for some text classification tasks, these linear

models do not achieve their best performance (Kamath et al., 2018). Consequently, the

use of Deep Learning (DL) algorithms has been presented as an option for improving

the accuracy of text classification, as they are more suited for non-linear and complex

data (Abiodun et al., 2018). As a result, in this chapter, we investigate how DL algo-

rithms can be combined with Language Models (LM) for improving the detection of

software vulnerability communication. Throughout the remainder of this chapter, we

use the terms Word Embedding (WEMB) and Sentence Embedding (SEMB) to refer to

two distinct categories of LM.

Recently, there has been a surge of state-of-the-art LM in NLP tasks. They are com-

monly categorised as Word/Sentence Distributed representation. Additionally, to im-

prove the performance of models in text classification tasks, they can be combined

with different DL architectures, including the well-known Recurrent Neural Networks

(RNN) and text-based Convolutional Neural Network (CNN) (Kim, 2014).
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Moreover, as mentioned in the literature review, Chapter 2, the WEMB and SEMB

Language Models are considered an evolution over traditional representation, such as

bag-of-words (BoW) and Word- or Char- n-grams. A well-known characteristic of such

models is the ability to infer the semantic information of word (or sentence) based on

capturing contextual word usage as part of the embedding training task. As a result,

they have shown better detection performance in a range of different downstream

text classification tasks, such as spam detection (Lee and Kang, 2019), abusive content

detection (Chen et al., 2017a) and news categorisation (Wu et al., 2017).

To determine the optimum classification model for out detection task, we have com-

bined and evaluated different algorithms (i.e., CNN, RNN and SVM) with a variety of

LM (i.e., Word2vec, Glove, Sen2vec, Inferset, SentEncoder), using five different datasets

collected from different sources (i.e., Forums, marketplace and Twitter). For WEMB

and SEMB, we have used pre-trained models trained in large corpus extracted from

internet content such as Wikipedia, Twitter, and News. Moreover, we have compared

the pre-trained WEMB with our trained WEMB, which uses a large corpus of soft-

ware vulnerability descriptions. This content was extracted from NIST Vulnerability

Database (NVD), a well-known database used by a security specialist to prioritise se-

curity updates in their software assets.

This chapter is organised as follows: In Section 5.1, we begin by describing the char-

acteristics of the dataset and the steps taken before the creation of the model, for in-

stance, pre-processing and oversampling. Afterwards, in Section 5.2, we explain the

selected language models that will act as a feature representation for the classification

model, and, in Section 5.3, we describe the CNN and RNN algorithms used to cre-

ate the DL-based classifiers. In Section 5.4, we provide the baseline model, which is

an extension of the previously experiment done in Chapter 4. We use these baseline

models to compare the performance with the models presented in Section 5.5, which

uses Word Embedding as feature representation. Furthermore, in Section 5.5.2, we

train a language model in a software-security vocabulary context to compare with a

general-purpose language model in a downstream classification task. Furthermore,
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we investigate the use of SEMB models with traditional SVM classifiers in Section 5.6,

and in Section 5.7, we investigate the accuracy of Deep Learning-based algorithms as

classifiers for detection of software vulnerability communication. Finally, in Section

5.8, we present a discussion and, in Section 5.9, the summary and conclusion of this

chapter.

The experiment in this chapter was published in:

• Queiroz, A. L., Mckeever, S., and Keegan, B. (2019). Eavesdropping hackers: De-

tecting hacker threats: Performance of Word and Sentence Embedding models in

identifying hacker communications. In The 27th AIAI Irish Conference on Artificial

Intelligence and Cognitive Science, volume 2563, pages 116–127, Ireland.

5.1 Datasets

In this experiment, we used the 5 datasets (D1, D2, D3, D4 and D5) from different

hacker community sources. Each message was labelled by the PLA scheme as de-

scribed in Section 3.3.3 and the purpose, content and usage of each source are de-

scribed in Section 3.2. The messages within these datasets share the following common

characteristics:

1. All posts are in some way related to computer technologies, including the secu-

rity aspects of software, systems, network and protocols.

2. All datasets have an imbalanced number of classes, containing fewer positive

instances (target class) than negative instances (non-relevant target class)

3. The purpose of these messages is the sharing knowledge about hacking/hackable

technologies among peers

In Table 5.1, we outline the description of the dataset used in the following sections

(before resampling).
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Table 5.1: Dataset Description (Before Resampling)

ID Source Type No. of
instances

Distrib.
(pos/neg)

Avg. words
per msg.

D1 Hacker Forum Deep web 1,682 10/90% 50

D2 Twitter Surface web 1,927 15/85% 13

D3 Marketplace Dark Web 1,921 16/84% 169

D4 Hacker Forum Deep web 1,966 13/87% 78

D5 Hacker Forum Deep web 1,974 5/95% 68

Data Pre-processing

The pre-processing procedures in this experiment are similar to what was done with

traditional models, Chapter 4. All steps to clean and reduce the input noise have been

already described in Section 4.1 (Data Pre-processing).

5.1.1 Random Oversampling the Positive Instances

As seen in Chapter 4, the random oversampling technique has provided an improve-

ment of recall measure on traditional models trained with an imbalanced number of

instances. As a result, we have applied the same method for all experiments in this

chapter. As seen in Table 5.1, the number of instances in all 5 datasets is imbalanced,

with the positive class under-represented relative to the negative class. Therefore, we

have oversampled the positive instances by 350% in all datasets, which is the me-

dian optimal values found in Queiroz et al. (2019). After re-sampling, the new ratio

of instances is shown in Table 5.2. The oversampling has provided a more balanced

dataset.

Table 5.2: Dataset Description (After Resampling)

D1 (+/-) % D2 (+/-) % D3 (+/-) % D4 (+/-) % D5 (+/-) %

Before (10/90) (15/85) (16/84) (13/85) (05/95)

After (34/66) (45/55) (47/53) (41/59) (19/81)
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5.2 Word and Sentence Level Distributed Representation

In this section, we provide the language models selected for composing our classi-

fication model. They are divided into two categories, WEMB and SEMB as seen in

Chapter 2. We selected a portion of the language models found in the literature. In the

following, we detail our choice for these models and its characteristics.

5.2.1 Word Embedding (WEMB) models:

The WEMB’s principal purpose is the creation of an "embedding" vector in which sim-

ilar words can be found near to each other in a vector space. Also, these models are

commonly used as input of text classification algorithms in downstream task classifi-

cation. WEMB models can be categorised according to the creating task, which is by

prediction task or using words co-occurrence matrix. The former uses Neural Network

architecture, whereas the latter perform a factorisation of the co-occurrence matrix. In

Figure 5.1, we provide examples of models per category.

PREDICTION CO-OCURRENCE

WORD EMBEDDINGS

WORD2VEC

FASTTEXT

GLOVE

Figure 5.1: Word Embedding Categories

The most predominant models in the literature are Word2vec (Mikolov et al., 2013) and

Glove (Pennington et al., 2014). Differently from the classical bag-of-words and n-grams

language model, these models adjust vector values according to the word-context in-

formation. Moreover, word2vec calculates local-context information of words, while

Glove provides two context-information, local and global. Furthermore, similarly to

the traditional BoW feature representation, the drawback is that these models do not

account for the order in which the word appears, which impacts on the distinction of
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sentences made up of the same words in a different order. Another well-known mod-

els is the FastText language model (Bojanowski et al., 2017). Similarly to word2cec, this

model is created by an unsupervised prediction-based task and uses the same funda-

mental architecture of skip-gram, although it treats the words as a bag of char n-gram

instead of unique words.

In this experiment, we have decided to use the most relevant model from each cate-

gory, prediction and co-occurrence (as seen in Figure 5.1). This selection allows us to have

a representative idea of how the models under these categories contribute to the clas-

sification performance in our specific task. As a result, we have selected the word2vec

model, as it represents the first and most used word-similarity model under the pre-

diction category. We have also selected Glove, which was the first model presented

under the co-occurrence category. For representing the entire message (hacker com-

munication), we are using a technique called averaging (Wieting et al., 2015), which is

the simplest approach and has provided positive performance. This technique consists

of averaging vectors according to the words occurring in the messages.

5.2.2 Sentence Embedding (SEMB) models:

The basic difference regarding SEMB to WEMB is that this language model is consider-

ing the entire sentence to create the embedding vector. This way, similar sentences are

mapped to a close vector space. With this, the model overcomes one of the limitations

of WEMB, the word order problem Le and Mikolov (2014). Thus, in SEMB, sentences

with the same word in a different position (thus, different meaning) are represented by

different vector values. Similarly to WEMB, SEMB can be categorised by the method

they were created, that can be: Unsupervised, Supervised and Multi-task. Multi-task rep-

resents the model created with Unsupervised and Supervised approaches. Figure 5.2 presents

these categories with examples of these models.

In this experiment, we have decided to select one of each category, which are: Sent2Vec

(Le and Mikolov, 2014) (unsupervised), InferSent (Conneau et al., 2017) (supervised)
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MULTI-TASK

GENSEN

SENT2VEC
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Figure 5.2: Sentence Embedding Categories

and SentEncoder (Cer et al., 2018) (multi-task).

5.3 Deep-learning Classification Algorithms

Besides the traditional SVM algorithm used in the baseline results and discussed in

Section 4.2.1, we have also investigated two advanced Neural Network-based algo-

rithms, the Convolutional Neural Network (CNN) and Recurrent Neural Network

(RNN), briefly introduced in Chapter 2 (Section 2.2.3). In this section, we explain

the intuition behind the algorithms as well as the configuration used in our experi-

ment.

5.3.1 Convolution Neural Network (CNN)

Convolution Neural Network has been providing remarkable results in several tasks

such as image classification (Krizhevsky et al., 2017, Lecun et al., 1998) and speech

recognition (Huang et al., 2014, Palaz et al., 2015). However, due to the successful

results in image classification, this architecture was adapted for Natural Language

tasks, as text classification (Amir et al., 2016, Gan et al., 2016, Ren et al., 2016, Young

et al., 2017).

In this experiment, we adopted the text-based CNN architecture of Kim (2014) work
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and the hyper-parameters values are based on a study done by Zhang and Wallace

(2015). In the latter work, the authors have provided an investigation of the optimal

hyper-parameters by evaluating the performance of a CNN model across nine sen-

tence classification tasks, for instance, sentiment analysis, customer review, opinion

polarity and irony detection. The representation of this architecture is exemplified by

Figure 5.3, where the input layer is represented by WEMB values of words in a sen-

tence. In this example, we use a 7x5 matrix, where 7 is the number of words in a sen-

tence and 5 the embedding values of the word (dimensions). The WEMB used is one

of those seen in Section 5.2.1. Afterwards, these values are mapped (reduced) through

a variety of convolutional filters (sizes 3, 4, and 5) to a small vector. In sequence,

these values are reduced more using an operation called max-pooling. Finally, these

max-pooled values are concatenated together and connected to a final softmax layer

function, which gives the probability of the message being from a target or non-target

class.

Word 

Embeddings 

Matrix (7x5)

Filter sizes 

(3,4,5)
Filter maps

Max polled filter 

maps and 

concatenation

Probability of 

each class 

(2 classes)

Convolution Max-polling Softmax

Figure 5.3: CNN Architecture (Based on Zhang and Wallace (2015))
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CNNs were originally used for image classification. As a consequence, the input is

usually a fixed-size image matrix. However, with text, we have a variable-size matrix,

as a sentence might have different quantities of a word. To solve this problem, we have

added a technique called zero-padding, applied to short posts to achieve the defined

fixed-size.

As seen in Nam and Hung (2019), this technique might affect the efficiency of the

model in terms of accuracy and training time. To define only the necessary padding

to short sentences, we define the fixed-size input as the size of the longest sentence

excluding the outliers (very long sentences). Figure 5.4 shows a comparison of results

using fixed-length input either maintaining or excluding the outliers. It is seen that

excluding the outliers provides better for permanence in the majority of the datasets.

In CNN + Glove models, this procedure has helped to improve in 3 of 5 datasets (D2,

D3 and D5), while for CNN + word2vec, it has helped to improve 2 of 5 datasets (D2

and D5). D3 and D4, however, are tied with the same performance.
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Model = CNN+Word2vec
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Maintaining
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Figure 5.4: Comparison of Strategies for Finding the Fixed Input Length for CNN

Finally, we used the Adam optimiser instead of the popular Stochastic Gradient Descent

(SGD), as it has presented more efficiency with faster convergence results (Kingma

and Ba, 2014). As loss function, we have used the categorical cross-entropy. The other

parameters used are the same as Zhang and Wallace (2015), and can be seen in Table

5.3.
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Table 5.3: CNN Parameters

Activation.
Func.

Filter
size

Feat.
map

Dropout
Rate Regul. Mini

Batch Epoch

ReLu 3,4,5 100 0.5 L2 50 50

5.3.2 Recurrent Neural Network (RNN)

As discussed previously in Chapter 2, RNNs have the ability to encode sequential in-

formation in their cells. This characteristic makes it suitable for some sequential data,

for instance, audio, video and text. However, RNN as well as the most used RNN-

based architecture, LSTM, only allows encoding information in one direction (left-to-

right), which limits the amount of contextual information retained in its cells. To over-

come this limitation and also to capture more contextual information of sequential

data, the authors Graves and Schmidhuber (2005) proposed a new LSTM architecture

called BiLSTM, where it is possible to encode both sides information (left-to-right and

right-to-left). Therefore, in this chapter, we have opted to use the BiLSTM model in-

stead of unidirectional LSTM.

Furthermore, similarly to CNN, we have used Word Embedding vector as input to the

model and softmax function as output layer. Also, the other hyperparameters on this

model are based on the optimal values found for sentence categorisation tasks pre-

sented by Reimers and Gurevych (2017). In table 5.4, we provide these hyperparame-

ter values. The dropout is used in the recurrent units as well as output layers.

Table 5.4: BiLSTM Parameters

Activation.
Func.

Dropout
rate Regul. Recurrent Units Mini

Batch Epoch

ReLu 0.5 L2 100 32 50
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5.3.3 Deep-learning Models Summary

In this chapter, we are using the models presented in Table 5.5. It is possible to see

their characteristics, such as algorithm and feature representation. Also, for feature

representation, we provide information regarding the type of pre-trained model, the

source used for training and dimension size. Moreover, we use the ID in column Model

to identify the models throughout this chapter.

Table 5.5: Summary Configuration.

Model Algorithm Feat.
Representation.

Pre-train.
model Source Dim.

size

MDL-1 SVM WEMB Word2vec Google News 300

MDL-2 SVM WEMB Glove Common Crawl 300

MDL-3 SVM SEMB Sent2vec SNLI 600

MDL-4 SVM SEMB InferSent Wikipedia 4096

MDL-5 SVM SEMB SentEncoder Wiki, Web News, SNLI 512

MDL-6 CNN WEMB Glove Common Crawl 300

MDL-7 CNN WEMB Word2vec Google News 300

MDL-8 RNN WEMB Glove Common Crawl 300

MDL-9 RNN WEMB Word2vec Google News 300

5.4 Baseline Models (Extended Experiment)

In this section, we present the results of the baseline classification models used for

detecting software vulnerability communication using 5 datasets. These models use

SVM algorithm combined with traditional feature representation (BoW, word n-grams

(1,4) and char n-gram (1,4)). In addition to the previous experiment shown in Chap-

ter 4, we have included two more hacker forum datasets to complement the results.

The results presented in Table 5.6 shows that BoW and char n-gram provide compa-

rable performance, recording, on average, 0.75 and 0.55 of Average Class Accuracy

and Positive Recall. Also, it shows that word n-grams feature representation achieved
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the poorest performance, with 0.68 and 0.38 in the same metrics. This experiment

emphasises that BoW and char n-gram are the best choice among traditional classifica-

tion models. However, considering computational performance, BoW is more efficient

than char n-grams due to the need of less features. As a result, we are using SVM+BoW

model as a baseline for the following experiments in Section 5.5.

Table 5.6: Baseline Results Using SVM and Traditional Feature Representation

Metric Bag-of-Words Word
n-gram(1,4)

Char
n-gram(1,4)

D1
Avg. acc 0.70 0.64 0.71

Pos. recall 0.45 0.32 0.47

D2
Avg. acc 0.88 0.78 0.86

Pos. recall 0.78 0.57 0.76

D3
Avg. acc 0.75 0.71 0.76

Pos. recall 0.57 0.47 0.60

D4
Avg. acc 0.70 0.64 0.68

Pos. recall 0.46 0.32 0.44

D5
Avg. acc 0.74 0.64 0.75

Pos. recall 0.50 0.30 0.52

Avg
Avg. acc 0.75 0.68 0.75

Pos. recall 0.55 0.39 0.55

5.5 Analysis of WEMB as Feature Representation

This section is focused on answer the following: (1) Whether robust WEMB language

models provide better accuracy compared to the traditional BoW as feature representa-

tion in detecting software vulnerability communication, and (2) Whether the security

specialised WEMB is most suited for this task, compared to a common (not specialised

vocabulary) WEMB model.

To answer the first question, we have used WEMB models pre-trained with general-

purpose vocabulary extracted from a range of sources, such as Google News, Wikipedia,
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Twitter and Internet sites. We use these models in combination with SVM algorithm

to create the classification model. Afterwards, we compare the achieved results with

our baseline model, SVM+BoW.

To answer the second question, we have used a WEMB model trained in a security-

focused vocabulary. The source used for training is a well-known security database

of vulnerability descriptions maintained by the National Institute of Standards and

Technology (NIST). Afterwards, we compare the performance of both classification

models, security and general-purpose vocabulary.

To provide a thorough analysis of these language models, we have considered some

characteristics, for instance, dimension, the number of tokens trained, volume of vo-

cabulary and proportion of overlapping words.

5.5.1 Pre-trained WEMB Models: General-purpose Vocabulary

As discussed in Section 5.2.1, one of the investigated models is the word2vec, intro-

duced by Mikolov et al. (2013), which is based on a three-layer neural network. We are

using the pre-trained Skip-gram model, publicly available in https://code.google.

com/archive/p/word2vec/. Another popular WEMB model investigated is Glove, in-

troduced by Pennington et al. (2014), differently from the previous model, this is based

on the factorisation of a word co-occurrence matrix. The pre-trained Glove model is

available in https://nlp.stanford.edu/projects/glove/.

Both models are created with general-purpose vocabulary. As seen in Table 5.7, word2vec

skip-gram (SG) uses Google News, while the Glove (G1) uses Wikipedia, (G2) uses In-

ternet content and (G3) uses Twitter as corpus. In addition, they vary in dimension

size (ranging from 200 to 300), training size (ranging from 6 billion to 100 billion of to-

kens), and size of vocabulary (400 thousand words to 3 million words). Each of these

models is identified by the names on ID column for the remainder of this section.

We have analysed the suitability of these models in a downstream classification task
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Table 5.7: WEMB Pre-Trained Models Description

ID Type Source Dimension Trained size Vocab. size

SG SkipGram1 Google News 300 100B 3M

G1 Glove Wikipedia 2014 300 6B 400K

G2 Glove Common Crawl 300 42B 1,9M

G3 Glove Twitter 200 27B 1,2M
1 Word2vec

to detect software vulnerabilities communication. As mentioned in Section 5.2.1, for

representing the entire messages, we are averaging the WEMB values of each word

within the sentence to a unique vector dense method. The results of these models

using WEMB are provided in comparison with the baseline model (SVM+BOW) in

Figure 5.5. It is seen that all models using WEMB do not provide improvement com-

pared to the baseline. Furthermore, comparing the use of WEMB language models,

we see that the most suitable for this task is the Glove language model. Also, among

all different Glove language models, SVM+G2 recorded the best results with the mean

Avg. Class Accuracy of 0.64, followed by SVM+G1 and SVM+G3, with 0.62 and 0.61

respectively. This result indicates that general-vocabulary WEMB model is not better

than traditional feature representation, for instance, BoW.

Additionally, the results suggest that the training size (number of tokens), as well as

the size of vocabulary, has an influence on the performance of the classification model

using WEMB as feature representation. As seen in Table 5.7, the best WEMB model,

G2, which has achieved the best results, is also the biggest model in terms of number

of tokens and vocabulary size compared to the others.

Another factor that affects the results is the proportion of Out-of-Vocabulary (OoV)

words, that is, the proportion of words that lack embedding representation due to

specificity of vocabulary (rare words) (Won and Lee, 2018). In Table 5.8, we present

the overlapping proportion of words each dataset (D1, D2 and D3) has in common

with the pre-trained language models (SG, G1, G2 and G3). By this table, we see that
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D2 has the larger proportion of overlapping words compared to D1 and D3. As a

result, the model created with this dataset has provided the best individual perfor-

mance, followed by D3 and D1, which has a lower proportion of overlapping mes-

sages and lower performance respectively. In other words, the higher the proportion

of overlapping messages between dataset and WEMB model, the better the perfor-

mance achieved by the classification model.

Table 5.8: Proportion of Words For Each Dataset Within Pre-Trained WEMB Models

ID D1 D2 D3

SG 57% 81% 74%

G1 62% 85% 80%

G2 75% 92% 89%

G3 61% 83% 76%

SVM+BOW SVM+SG SVM+G1 SVM+G2 SVM+G3
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Figure 5.5: SVM using Bag-of-words (BoW) and Word Embedding (SG, G1, G2, G3) as
Feature Representation
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5.5.2 Pre-trained WEMB Models: Security Vocabulary

In this section, we analyse the use of security-specific vocabulary for training the lan-

guage models. For doing this, we have trained a Word2Vec model with a security

corpus collected from National Vulnerability Database (NVD). This database is a cata-

logue of information related to real software vulnerabilities. In this catalogue, different

types of information are available, such as the description of each vulnerability, a list

of affected software, the severity (Low, Medium, High and Critical), software vendors

and others. From these datasets, we have used only the vulnerability descriptions dis-

closed over 10-year period to train our language model, representing 102,292 descrip-

tions from 2009 to 2019. The total number of tokens within this corpus is 3,444,195,

which have resulted in the total size of the vocabulary of 64,765 words.

In Table 5.9, we present a comparison of the overlapping proportion between the

dataset and the language models created with security-specific and common-specific

vocabulary. Also, we provide some characteristics as the number of tokens for train-

ing, the size of vocabulary and dimension per model.

Table 5.9: Comparing Language Models Trained With Different Vocabulary (General-
x Security-focused)

Corpus
Word in common (%)

Train Size Vocab. Size Dim
D1 D2 D3

General 57% 81% 74% 100B 3M 300

Security 34% 57% 40% 3M 64K 300

We observed that, in general, the datasets D1, D2, D3 have fewer words in common

with the language model trained with security-specific vocabulary compared to the

common-specific vocabulary. Moreover, it is noted that a considerable difference ex-

ists regarding the number of tokens each model was trained with. One is trained

with 3M tokens and the other with 100B. As a result, the size of the vocabulary of the

security-vocabulary model is 64k, whereas the general-vocabulary is far more, with
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3M words.

However, despite the security model being smaller than the general-specific, the clas-

sification performance of both models achieved very similar results. As seen in Figure

5.6, the models trained with the security-vocabulary recorded the best Avg. Class Ac-

curacy and Recall in 2 of 3 datasets (D2, D3), which suggests that the use of language

models with security-vocabulary corpus has a positive influence on the results. These

models provided comparable results with general-vocabulary models using fewer to-

kens for training and also having fewer words in common.
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Figure 5.6: Classification Performance General x Security Vocabulary Models

5.6 Analysis of SEMB Models as Feature Representation

As previously mentioned in section 5.2.2, SEMB models improved over WEMB with

regards to the word-order limitation. However, it is not known whether this improve-

ment is translated into better classification accuracy on classification models for de-

tecting software vulnerability communication. As a result, in this section, we inves-

tigate the performance of models using SEMB as feature representation in our spe-

cific classification task. Furthermore, we compare a range of different combinations of

models, grouped in the following categories: SVM+WEMB (MDL-1 and MDL-2) and

SVM+SEMB (MDL-3, MDL-4 and MDL-5). The results of these models, in terms of
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average class accuracy and positive recall, can be seen in Table 5.10 and the details of

each individual model configuration is seen in Table 5.5.

Analysing the result of this experiment, we have observed a very large difference

between SVM+SEMB and SVM+WEMB performance. On average, the best WEMB

model does not outperform the worst SEMB model. Additionally, WEMB presented a

poor recall performance of 0.23 and 0.33 for MDL-1 and MDL-2.

Considering only the SEMB models MDL-3 (Sent2vec), MDL-4 (InferSent) and MDL-5

(SentEncoder), we see that MDL-5 has achieved the best result, with 0.82 and 0.74 of

average class accuracy and positive recall respectively. It should also be noted that

the second-best is MDL-3, with 0.75 and 0.60 of average class accuracy and positive

recall.

The results suggest that SEMB are better models to use in detection of software vul-

nerability communication as they are more robust in terms of sentence representation.

With regards to the best results, MDL-5, the main difference compared to the other

SEMB models investigated is that this model uses a multi-task architecture (SentEn-

conder), which uses unsupervised and supervised approaches to create the final em-

bedding vector.
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Table 5.10: Experimental Results with Best Metric in Bold per Category and per
Dataset

SVM+
Word. Emb.

SVM+
Sent. Emb

MDL-1 MDL-2 MDL-3 MDL-4 MDL-5

D1
Avg. acc 0.54 0.55 0.68 0.68 0.81

Pos. recall 0.09 0.10 0.50 0.41 0.72

D2
Avg. acc 0.75 0.80 0.80 0.86 0.88

Pos. recall 0.63 0.73 0.70 0.75 0.87

D3
Avg. acc 0.62 0.65 0.81 0.78 0.83

Pos. recall 0.33 0.45 0.71 0.63 0.78

D4
Avg. acc 0.54 0.62 0.71 0.73 0.77

Pos. recall 0.14 0.38 0.57 0.52 0.70

D5
Avg. acc 0.49 0.49 0.73 0.73 0.81

Pos. recall 0.00 0.00 0.53 0.49 0.66

Avg
Avg. acc 0.58 0.62 0.75 0.75 0.82

Pos. recall 0.23 0.33 0.60 0.55 0.74

5.7 Analysis CNN and RNN as Classification Algorithm

Until now, we have been using linear algorithms classifiers, such as the linear SVM and

Naïve Bayes. These algorithms are known for mapping the data features space values

into a linear decision boundary (Hastie et al., 2009). However, this type of algorithm

does not always provide the best prediction performance, especially when the pre-

diction output is characterised by non-linear patterns. As a result, in this section, we

perform experiments using deep learning-based algorithms as classifiers, as they pro-

vide state-of-the-art results when dealing with non-linear data. With this experiment,

we want to investigate whether the use of deep learning algorithms for our specific

task improves the detection performance compared to the best traditional model seen

so far (MDL-5).
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As a result, we selected CNN and RNN as they have been widely used in text clas-

sification as well as other NLP tasks (Gan et al., 2016, He et al., 2015, Hochreiter and

Schmidhuber, 1997, LeCun et al., 1990). The architectural details of these algorithms

are provided in Section 5.3.1 (CNN) and Section 5.3.2 (RNN). In Table 5.5, we provide

identification and characteristic of the model built with these algorithms. For mod-

els built with CNN, the identifiers are MDL-6 and MDL-7, using Glove and word2vec

as feature representation. For models built with RNN, the identifiers are MDL-8 and

MDL-9, also using Glove and word2vec respectively.

In Table 5.11, we provide the results of these models. We see the best results so far in

detecting software vulnerability communication compared to the previous results in

Section 5.6. The performance of the model MDL-6, MDL-7, MDL-8 and MDL-9, which

uses DL-based algorithms as classifier overcomes the best previous model, MDL-5

(SVM+SentEncoder). Comparing only the CNN- and RNN- based models, we see that

MDL-7 (CNN + word2vec) achieved the best results, with 0.96 of average class accuracy

and 0.93 of positive recall, in average, whereas MDL-8 (RNN + Glove), the second-best

model, achieved 0.84 and 0.77 in the same metrics respectively. In terms of feature

representation, we have observed only a small difference in performance either by

using Word2Vec or Glove, which suggests that both language models are equally suit-

able for the task. Another point to mention is that MDL-8 (the second-best model

overall) does not improve with great extent compared to the previous model, MDL-5

(SVM+SentEncoder). The former achieves 0.74 and the latter 0.77 of recall. However,

the training time of MDL-8 (RNN) is much longer than MDL-5 (SVM), which might

be seen as a bottleneck in a real-life situation depending on the size of the training and

computational resource available.
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Table 5.11: Experimental Results CNN and RNN Based Models)

CNN+
Word Emb.

RNN+
Word Emb

MDL-6 MDL-7 MDL-8 MDL-9

D1
Avg. acc 0.95 0.95 0.80 0.82

Pos. recall 0.91 0.91 0.74 0.75

D2
Avg. acc 0.98 0.98 0.94 0.90

Pos. recall 0.97 0.96 0.84 0.81

D3
Avg. acc 0.95 0.95 0.82 0.81

Pos. recall 0.92 0.92 0.72 0.71

D4
Avg. acc 0.96 0.97 0.83 0.81

Pos. recall 0.92 0.95 0.79 0.74

D5
Avg. acc 0.95 0.95 0.84 0.82

Pos. recall 0.90 0.91 0.77 0.76

Avg
Avg. acc 0.95 0.96 0.84 0.83

Pos. recall 0.92 0.93 0.77 0.75

5.8 Discussion

Comparing the results of the experiment (Section 5.6) to the baseline (Section 5.4),

we notice that replacing classical feature representation with the semantically richer

WEMB language models does not result in better classification performance. This is

similar to Zhang et al. (2015), which WEMB has not improved over traditional clas-

sifiers (linear algorithm + n-grams). Also, in a sentiment analysis task, as shown in

Liu (2017), and spam detection in SMS messages, presented by Lee and Kang (2019),

WEMB models have not provided any improvement over traditional classifiers. These

results highlight that the accuracy of machine learning models is tied in with find-

ing an appropriate combination of algorithms and input features for the specific task

Perone et al. (2018), in which the experimentation and evaluation are the tools for

achieving the best results.
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With regards to SEMB models, we have noticed an improvement in detection of hacker

communication compared the traditional and WEMB models. As we previously dis-

cussed, traditional representations such as BoW, n-grams, and even distributed rep-

resentations, such as word2vec and Glove do not consider the order in which a word

occurs in a sentence, whereas all SEMB models do inherit this property (See the com-

parison in Table 3.9). Therefore, the results achieved suggest that, in downstream clas-

sification tasks, this property is the key attribute that provides more accurate models

for our specific task.

5.9 Summary and Conclusion

Detection of potential cyber threat communications in hacker forums and social me-

dia is a difficult task due to the technical vocabulary and ambiguity of certain posts.

In this research, we performed an experiment with different configurations of classi-

fication algorithms and language models for detecting malicious messages related to

software vulnerabilities in forums and social media. We have evaluated these models

through 5 different labelled datasets (D1 to D5). Taking this into account, it has been

concluded:

(1) SEMB feature representation is the best embedding for improving classification

performance on linear SVM model compared to WEMB and other traditional repre-

sentations, such as BoW, n-gram and char n-gram. In this work, 2 out of 3 models with

SEMB were able to overcome the best baseline models. MDL-3 (Sent2vec) and MDL-5

(SentEconder), achieved 60% and 74% of recall, respectively, and MDL-4 (InferSent)

recorded the same performance as the baseline, 55% of recall.

(2) In terms of pre-trained WEMB as feature representation, we observed that (1) they

are not better than traditional feature representation, such as BoW, n-gram and char n-

gram, (2) it was noticed there are two factors that influence the performance of WEMB

in a downstream classification task, one is the size of vocabulary and other is the di-
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mension size. (3) Security-vocabulary pre-trained WEMB provided comparable re-

sults with General-vocabulary WEMB, although trained in much fewer data. These

results suggest that a WEMB trained in a security context can outperform General

pre-trained embedding if trained on similar dataset size.

(3) In terms of classification performance overall models, we found that the best model,

MDL-7 (CNN + WEMB (word2vec)) can achieve 93% of positive recall and 96% of av-

erage class accuracy and MDL-8 (RNN + WEMB (Glove)), the second-best model, can

achieve 0.77 of positive recall and 0.84 of average class accuracy. However, the train-

ing time of the RNN model is much superior to CNN, which can be a bottleneck for

a real-life situation depending on the size of the training data. We believe that this

configuration shows promise as an optimal approach for detecting posts related to

software vulnerabilities. In practice, these models can be used by companies for pri-

oritising security updates (patching) of vulnerable systems in their assets.
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CHAPTER 6

Effects of Concept Drift on Classification Models

Applied to Software Vulnerability Communication

In recent times, machine learning algorithms have been popularised due to their ca-

pacity for solving real-world problems through the discovery of useful patterns in

data. These algorithms have revolutionised tasks such as image recognition (e.g.,

handwriting and face classification) and natural language understanding (e.g., sen-

timent analysis, Named-entity recognition). The enthusiasm surrounding data-driven

learning approaches has expanded to a wide range of domains, including cyber secu-

rity (Greengard, 2016).

In general, machine learning models applied to cyber security tasks are designed with

the assumption of a static world view, which states that the model trained with cur-

rent data will be useful for predicting long time future data. Such an assumption does

not accommodate dynamic changes of concept in certain problems over long periods

(Sethi and Kantardzic, 2018). As a result, the accuracy of these models can be af-

fected, which render them less effective or useless as time goes on. This phenomenon

is known as Concept drift and it is commonly seen in natural language tasks where

the language usage and meaning change constantly (Guerra et al., 2014, Wang et al.,
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2013).

In cyber security initiatives that use hacker communications, variations in the concept

are observed when new forms of malicious hacking emerge and are shared in social

media channels. Supporting this, the authors in Zhao et al. (2016) provided a study on

different hacker jargon used to express well-known security issues in hacker forums.

These forms of expression are not static and are susceptible to changes over time. Also,

as seen in Chatterjee and Thekdi (2020), between 2013 to 2017, there was an increase

in new types of vulnerabilities in software that were not previously categorised ac-

cording to a stabilised taxonomy. This implies that hackers are communicating this

information by using different words and grammatical structures for expressing new

concepts. As a consequence, in this dynamic context cyber defenders are trying to

operate to protect computer systems from cyber threats.

Followed by this discussion, our aim in this chapter is to investigate the extent and ef-

fect of Concept Drift on the accuracy of Machine Learning (ML) models used to detect

software vulnerabilities mentioned in social media posts. We base our experiment in

the following research questions:

• Does the accuracy of our machine learning models, created to detect software

vulnerabilities communication in social media posts, degrade over time, indicat-

ing Concept Drift?

• Can we alleviate this problem using a typical Concept Drift solution method?

The structure of this chapter is as follows: In Section 6.1, we review a selection of re-

lated works on Concept Drift, some are applied to the security domain. In Section 6.2,

we describe the experimental approach, including dataset and static/dynamic evalua-

tion methodology used to measure the performance of the model throughout a period.

In Section 6.3, we provide an analysis of the performance of the model in the 1 year

using Twitter (Surface Web) and hacker forum (Deep Web) datasets. In Section 6.4, we

measure the slope of the line to identify the best approach to contain the deterioration

of performance in these models. Finally, in Section 6.4, we conclude presenting the
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contributions of this chapter.

The experiments in this chapter were published in:

• Queiroz, A. L., Keegan, B., and Mckeever, S. (2020). Moving Targets: Addressing

Concept Drift in Supervised Models for Hacker Communication Detection. In

International Conference on Cyber Security and Protection of Digital Services (Cyber

Security), pages 1–7.

6.1 Concept Drift and Security Research

The field of Concept Drift is an entire research domain with studies focused on pro-

viding forms of avoiding performance decrease as a result of changes in the concept.

These are usually focused on triggering the retraining of models when changes in the

underlying distribution of the incoming data are detected. For instance, in Bifet and

Gavaldà (2009), the authors proposed an algorithm that observes the change in the

distribution of the data using a dynamic sliding window. Furthermore, an algorithm

proposed by Ross et al. (2012) detects the drift in an on-line manner without the need

for storing data points in memory, which provides a more efficient algorithm in terms

of computational resource.

However, recent work with a similar purpose as this research (hacker communication

detection) has shown little or no concern with the evolving nature of communications

amongst peers in social media platforms. Furthermore, in the security domain, more

specifically in malware analysis, a study has identified that the performance of ma-

chine learning models is affected by the rapidly evolving (drift) of malware software,

as a result, further unseen malware is not identified by models trained in a long time

past data (Jordaney et al., 2017). Moreover, this study has highlighted that computer

security is a dynamic problem, with new forms of attack rising rapidly and changing

over time.
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6.2 Experimental Approach

The experiment presented here is guided by two principal goals: The first is to analyse

whether machine learning models applied to this research purpose degrade over time.

Such an effect is indicative of Concept Drift. The second is to analyse a method to

alleviate this problem, avoiding performance degradation and allowing a more time-

resistant model.

To achieve these goals, this experiment has focused on evaluating the temporal changes

to investigate the robustness of machine learning models applied to detect vulnerabil-

ity communication. Thus, to visualise eventual changes in performance, the models

are trained and tested in an organised manner, which considers the date and time that

the messages were posted on social media platforms. By this, we are also providing a

simulation of the use of these classification models in a real-life situation.

Furthermore, we have selected datasets from different sources (D1, D2 and D4), which

consists of user posts gathered from Surface Web (Twitter) and Deep Web (hacker fo-

rums). Additionally, these datasets were selected to achieve a minimum of 10% (ap-

proximately) proportion of positive instances within the first months of the year (first

4 months), which leaves us with sufficient time for evaluating the following 8 months

data (total 1-year period). Hence, we can apply sampling and reduction techniques

seen in Chapter 4, including random sampling to increase the performance of the start

model as done in Queiroz et al. (2019).

The importance of evaluating accordingly is to investigate how long the model would

retain performance after its creation - in other words, to measure the robustness of the

model against the changes in the concept. Finally, in the following subsections, we

describe in details the steps for performing this experiment, i.e., how the labels of the

dataset were handled and the methodology, which includes how we have performed

the Prequential Evaluation using Monthly Time Window (MTW).
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6.2.1 Transforming into a Binary Classification Task

In this experiment, we have followed the same binary approach we discussed in Chap-

ter 4, as it has shown similar results to the multi-class approach. Also, from a security

standpoint, it is prudent to capture the Undecided messages as a potential malicious

problem. Therefore, we have transformed this task into binary classification by plac-

ing the Undecided and Yes messages into the positive class, whereas No messages are

the negative class. Further details on the description of the dataset used can be referred

back to 3.2 and the performed labelling task is found in Section 3.3.3.

It can be observed that all datasets have an imbalanced number of instances of positive

and negative classes, with the minority proportion of these messages representing the

positive, thus, software vulnerability communication. In Table 6.1, the proportion of

instances within the classes, as well as respect to the number of posts and the average

number of words is shown.

To compare these experiments fairly we choose to use a 1-year peak for each, as the

shortest dataset has approximately a 1 year range.

Table 6.1: Dataset Description

ID Source Type No. of
inst.

Distrib.
(pos/neg)

Avg.
words

D1 Hacker Forum Deep web 1,682 10/90% 50

D2 Twitter Surface web 1,927 15/85% 13

D4 Hacker Forum Deep web 1,966 13/87% 78

6.2.2 Methodology

The methodology for creation and evaluation of models is based on the timestamp

of the messages, where the training instances (used to create the model) occurs in a

period before the testing instances (used to evaluate the model) as seen in Figure 6.1.

Each evaluation is given by a Monthly Time Window (MTW) in a Predictive Sequential
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Evaluation (Prequential). In this approach, we provide the accuracy of the model for

each MTW, such that its performance is tracked over time.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

w0 w1 w2 w3 w4

Training instances

Testing instances

Evaluation

Figure 6.1: Monthly Time Window (MTW) Instances for Training/Testing the Model
in 1-year Period, and Evaluation Checkpoints at w0,w1,w2,w3,w4

Prequential Evaluation

Considering the changing nature of hacker language with the emergence of new forms

of exploiting software vulnerabilities, we hypothesise that models trained in past in-

stances will not present the same performance in new, or future, instances due to the

Concept Drift. For this reason, we propose to simulate the use of these models in real-

life situations, where the model is trained and evaluated with consideration of the time

when the messages occur in the social media platform. The data used as input to the

model is therefore organised by date of publication. For this streaming task, we are

using Sliding Window prequential evaluation similar to Hidalgo et al. (2019), which

in our case the windows are fixed by months of the year.
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Monthly Time Window

To evaluate the performance of the model over 1-year period, we selected the use of

a monthly time window to train and test the model. These time windows are organ-

ised for every 2 months (bimester), although, for the training phase of the experiment,

we have used 2 bimesters (4 months) due to the need of a minimum number of posi-

tive instances for applying oversampling technique as done in Queiroz et al. (2019).

This technique provides a performance enhancement of models built using imbal-

anced data. For the remainder of this work, the notations shown on the graphs are

as follows: w0, is the start model, which is trained and cross-validated in 2 bimesters

messages, whereas the time window w1,w2,w3,w4 are the results of the test phase with

the incoming messages with messages of one bimester each.

6.3 Analysing the Concept Drift in a 1-year Period

In this section, we firstly describe the creation (training) of the start model, which is

the baseline for the following two evaluation approaches: Static and Dynamic. The

main difference regarding these two approaches is that, in Static, the model is not re-

trained during the evaluation period of 8 months, while in the Dynamic approach, the

model is re-trained with new instances of each month after its evaluation. These two

approaches are better exemplified in Figure 6.2 and details are described in Section

6.3.2 and 6.3.3, respectively.

Furthermore, for creating the models, we used Support Vector Machine (SVM) with

linear kernel, and Bag-of-words (BoW) as feature representation. This combination

was used in previous experiments (Chapter 4) and has provided reasonable computa-

tional performance and accuracy. Additionally, we choose not to tune the hyperparam-

eters of SVM algorithm (e.g., parameter C) as these values are data-dependent, which

means that the optimal hyperparameters can be used only for the applied dataset.

As a result, to fairly compare the models’ performance in all datasets, we have used
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Static

Model

Result Wn

PnTest sample

(a) Static Evaluation

Dynamic

Model Result

Test sample

Update

Wn

Pn

Pn

(b) Dynamic Evaluation

Figure 6.2: Experimental Procedure, Where P = sample, and W = result in Avg acc.
and n = period

the same hyperparameters values for all models, which are default values of SVM in

Sci-kit 0.20.2v.

Finally, in Table 6.3, we see a detailed description of each phase of the experiment.

This table has also provided information regarding the number of instances in each

phase, the proportion in each class, and the phases of the evaluation.

6.3.1 Start model (Training Phase)

All experiments presented in this paper begin with the start model, with its perfor-

mance reported in the figures of this chapter as w0. For training these models, we

have used imbalanced datasets which contains a few instances of positive class (ap-

proximately 10%). As mentioned in Section 4.5, this is not the ideal proportion for

creating a classifier, which might affect the performance of the model negatively (Gan-

ganwar, 2012). To provide a better condition, we have increased the actual number of

positive instances by using random oversampling technique, as shown in Section 4.6.

This technique is also used to enhance the accuracy of models.

Furthermore, we evaluate the performance of the start model using a 10-fold-cross

validation. The values recorded for the hacker forums datasets (D1 and D4) are 67%
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and 68%, respectively, and Twitter dataset (D2) is 77%, seen in Table 6.2. We highlight

that the sampling was applied only in training folds of the cross-validation, leaving

the test folds without oversampling. The average results of each fold are reported in

w0. This sampling represented an increase of the positive instances, which achieved

33% of the dataset, as seen in Table 6.3

As seen in Table 6.3, the static model (w0) achieved 33% positive and 67% negative

instances after sampling. However, the random sampling is not applied into test

(w1,w2,w3,w4) to avoid a biased result. Instead, each test time-window persists with

the exact number of instances that correspond to that period.

Table 6.2: Start Model Avg. Class Accuracy per Dataset

SVM+BOW

D1 0.67

D2 0.77

D4 0.68

6.3.2 Static Model Evaluation

In this section, we aim to answer the first question stated in the introduction of this

chapter: "Does the accuracy of machine learning models, created to detect software

vulnerabilities communication in social media posts degrade over time?". To answer

this, we have tested the performance of the start model (w0) over a sequence of un-

seen instances (w1,w2,w3,w4). These instances are organised accordingly with the

time they were posted on social media. Also, the start model is not re-trained during

the test. The performance recorded for w0 is given by the results of the Static Model

trained in 4 month period, whereas for w1,w2,w3,w4 are provided by the evaluation

over instances of 2-months (bimester) period, with a total of 1-year period.

The performance evaluation is presented per each dataset (D1, D2, D4). Moreover,

we have plotted the performance of each model along with a regression line that best
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fits these data points over time. This line also represents the rise over run ratio of the

model in which the slope is calculated and shown in Section 6.4. The x-axis represents

the time window and the y-axis is the performance of the model in average class accu-

racy for that period. According to Figure 6.3, we observe an apparent drift occurring

only in both hacker forums datasets (D1 and D4), which is seen by a negative tendency

line. Whereas, for D2 (Twitter), we see no apparent deterioration of the performance

with an almost flat tendency line.

These results suggest that models created with hacker forums source (D1 and D4) are

more sensitive to Concept Drift. This effect is perceived by the performance decrease

in models in less than 1-year period. Additionally, through inspection of the perfor-

mance values in 1-year period, it is seen that D1 starts at 61% and ends in w4 with 59%,

whereas D4 has recorded a bigger drift, starting at 68% and ending at 56%. Regarding

the model with positive slope, D2 (Twitter), we see the start and ending performance

at the same value, 77% avg. class acc, and the lowest performance is only seen w1, at

76%.

Finally, despite the contents in D1, D4 (hacker forums) and D2 (Twitter) are related to

security and technology in general, they vary in purpose. Twitter is used to inform a

broad audience (expert or not), whereas hacker forums are mainly used by computer

experts, thus, more likely to contain a variate vocabulary, which includes technical

language. Thus, this explains the different performance of these models.

6.3.3 Dynamic Model Evaluation

In this section, we aim to answer the second question stated in the introduction of

this chapter: "Can we alleviate this problem using a typical Concept Drift solution

method?". To answer this question, we perform a Dynamic Evaluation, where the

model is periodically re-trained with incoming instances in a systematic manner in

two different forms:
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• First, we investigate the optimal proportion of instances for updating the model

using different proportions (25%, 50%, 75% and 100%) and compare these results

with the baseline Static model.

• Second, on top of the optimal proportion found previously, we add different

weights on the incoming instances. The values are in a ratio of 2:1, 3:1, 5:1 and

10:1 (newest:old). With this, we aim to understand whether this approach can be

used to enhance the accuracy of the models over time. Afterwards, we compare

these results against the previous Dynamic Evaluation (unweighted instances)

The following subsections provide more details and results of these two dynamic ap-

proaches.

Dynamic Updating (unweighted instances)

In this experiment, we have performed a periodic update of the start model (w0) using

instances from time windows w1,w2,w3,w4, such that the model is first tested with

sample Pn to provide the result for Wn and is re-trained with the same Pn instances in

sequence, as seen in Figure 6.2 (b).

The instances are selected randomly by different proportions (25%, 50%, 75% and

100%). The criterion for defining the optimum values would be the models that need

the lowest re-training proportion and achieve highest performance accuracy over time.

Low re-training proportion means a reduction on the resource needs to provide the la-

bels (expert labellers). In Figure 6.4, we see the start model retrained by a different

proportion of instances and its respective results over time. The results are provided

per dataset.

The first impression we have looking at this graph is that updating the model with the

newest instances is effective in improving the performance over time. This is noticed

by comparing the performance enhancement of all Dynamics with the Static models

(thick blue line) in all re-trained proportions. This is also true in all three datasets (D1,
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D2, D4)

It is also worth highlighting that, updating the model with 100% of the incoming in-

stances provides, as expected, the best results. However, reducing the update propor-

tion to 50% of the incoming instances still achieves comparable results to 100% in the

majority of the datasets. This is a fair trade-off to consider for real-life application of

supervised classification models. The 50% proportion provides a significant reduction

of messages to be labelled by human experts, as a consequence, it provides a reduction

in time and expert people needed to perform the labelling task. Thus, we considered

this as the optimal updating proportion for our applied problem.

Dynamic Update (weighting Instances)

In this experiment, we performed a periodic update of the start model (w0) using

instances from time windows w1,w2,w3,w4, such that the model is first tested with

sample Pn to provide the result for Wn and is re-trained with the same Pn instances

in sequence. However, in constrast to the first part, the most recent time window

instances are weighted in different proportions, for instance, x2 (2:1), x3 (3:1), x5 (5:1)

and x10 (10:1).

Additionally, this experiment is done on top of the optimal proportion values achieved

in the last experiment (50% proportion relabelling). With this experiment, besides

enhancing the performance of the model, we want to evaluate the effects of weighting

the newest instances. In other words, we want to observe how important the newest

instances are for the performance of the model.

Fig 6.5 shows how the model has performed after applying weights on top of the

50% of random instances. The thicker (blue) line represents the previous model re-

trained with 50% random instances without weight, whereas the thin line represents

the model retrained with the same 50% random instances, with different proportion

of weights on them x2 (2:1), x3 (3:1), x5 (5:1) and x10 (10:1). Visually, we see that

the models with weighting schemes have performed best compared to the baseline
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(thicker line).

6.4 Measuring the Degree of Drift of Models

In Zliobaite et al. (2016) and Kadam (2019), the authors have provided a visual ex-

planation of four common drift patterns, they are: Sudden, Incremental, Gradual and

Reoccurring. According to these concepts and by analysing the graphical performance

over time in Figure 6.3, it is noted that a gradual drift in the model in D1 and D4,

wherein D2 stays practically flat. However, to precisely measure this drift, we provide

a calculation of the slope of the line for each dataset (D1, D2 and D4) throughout a

1-year period.

In the final set of results, negative values mean that the performance of the model

points towards decreasing over time, whereas the positive values represent the oppo-

site, pointing to an increase over time. In table 6.4 we present the slope calculation.

The values for each model are presented. Also, we have used the Static model as the

baseline for comparison. The dynamic models are all trained with the optimal values

of 50% re-training.

As previously observed, by retraining the model with 50% of incoming instances, the

performance over time is improved over the baseline static. In other words, the min-

imum of 50% of retraining of the incoming messages is sufficient to avoid the drift.

This result strongly suggests that there is no need to provide labels to all incoming

instances. The direct benefit of this results in the reduction of the labelling task work-

load of 50%, which also reduces the time and human resources need to perform the

task.

Moreover, it was observed that when weighting the newest incoming samples, we

achieved further improvements. All Dynamic models with 50% relabeled + weights

(x2, x3, x5, x10) have improved over the Dynamic model without any weights. Con-

sidering the average results, the optional configuration for avoiding performance de-
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terioration over time is given by Dyn. retraining 50% + weights on 3:1 proportion. We

have also noticed that there is no need to add weights above 3:1 proportion, as this

does not provide any further improvement.

Table 6.4: Slope of the Line for Static and Dynamic Models

D1 D2 D4 Avg

Static. (Baseline) -.020 +.005 -.019 -.011

Dyn. (50% relabeled) +.001 +.015 +.003 .005

Dyn. (50% relabeled + x2 weight) +.008 +.019 +.003 .010

Dyn. (50% relabeled + x3 weight) +.005 +.017 +.012 .011

Dyn. (50% relabeled + x5 weight) -.001 +.022 +.008 .009

Dyn. (50% relabeled + x10 weight) .000 +.022 +.007 .009

6.5 Summary and Conclusion

In this chapter, we have investigated how Concept Drift affects the accuracy of ma-

chine learning models applied to the detection of software vulnerability communica-

tion in social media and hacker forums. As the nature of computer security and lan-

guage is dynamic, we confirm our expectation that the performance of these models

might decrease with the rapidly changing concepts within a 1-year period. However,

models trained and applied to Twitter messages do not show apparent drift in this

same period. We believe that, compared to other hacker forums, Twitter provides

shorter and less variable post content with regards to novelty on hacker techniques

and exploitation tools. Thus, we imply that the drift on this platform is not enough

to affect the performance of such models. Additionally, we imply that, as this social

platform is used mostly by providing information to a large spectrum of people, the

technical information posted by security researchers is provided in a more direct style,

considering the non-expert audience. Thus, they do not deepen into the specificity of

technical details and novel terms.
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Furthermore, to provide a solution to the drift problem, we have investigated tech-

niques such as periodic update and weighting. We have found that by updating the

model with 50% of incoming instances (2 months period) while giving them weights

in a proportion of 3:1 is sufficient to avoid the performance decreasing.

We acknowledge that, in a real-life situation, it still infeasible to perform the labelling

of 50% of messages in larger streams of data. However, with these results, we highlight

two important findings: (1) the importance of retraining the model over new (recent)

messages and weight them to maintain the performance, and (2), not all streamed

messages have the same importance, as the drift can be avoided by at least 50% of the

relabelled data. We also point out that our experiment is limited to the amount of data

we collected. It is recommended that further tests should be carried out using greater

volumes of posts over longer periods.
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CHAPTER 7

Conclusion

This thesis has acknowledged that that software is in a paramount position for modern

society. Today, people are more reliant on software-based devices due to their presence

in every aspect of our lives. While software has been providing advances in commu-

nication technology, it also represents a big challenge in terms of security, privacy,

availability, and reputation of software companies. Regarding software vulnerability,

our recent software history has shown that these flaws are introduced (intentionally

or not) and others will try to take advantage of this situation, for personal or financial

reasons.

In this context, this research is leveraging the recent advances in machine learning to

minimise this problem by investigating the occurrence of vulnerabilities communica-

tions in social media, thus providing an automatic model for acquiring information re-

garding malicious activities that exploit the flaws found in software products. Current

approaches have been tackling this problem by improving the quality of the product

during the development life cycle phase, however, these methods do not account for

an already available (released) software. Moreover, in a security point of view, we can-

not guarantee that all software providers are following the best practices for ensuring

the quality and security of their products.
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As a result, in this thesis, we have investigated the applicability of supervised machine

learning and text classification techniques for automatically detect malicious commu-

nication regarding software exploitation in social media and hacker forums. Thus, the

contributions of this work are based on a Cyber Security Intelligence approach, aiming

to highlight any potential vulnerability being discussed in social network channels. A

summary of the contributions provided in this thesis is in the following section.

7.1 Summary of Contributions

The contributions of this thesis have considered the application of these models in

real-life situation. We highlight that the techniques used to build the classification

models are not limited to the sources used in this thesis. They can be used also in

other types of sources, for instance, Reddit, StackOrverflow, Github and for a different

classification tasks, such as detection of private data leakage, detection of coordinate

DDOS attacks communication or detection of user account and credit card number

sharing. The summary of the contributions are listed below:

• A new labelled dataset was provided in the domain of software vulnerabil-

ity communication. In Chapter 2, we have mentioned the lack of gold standard

datasets in the security domain, especially in software vulnerability communica-

tion subdomain. This problem affects the reproducibility of results and further

comparison. To fill this gap, we provided labelled datasets containing messages

regarding vulnerabilities in software from 5 different social media sources and

collected from 3 cyber domains (Surface web, Deep Web and Dark Web). These

messages contain mentions of hacking tools, Proof of Concepts (PoC) descrip-

tions, tutorials and exploits. Additionally, the timestamp of these messages is

also provided. In Chapter 3, we described how we performed the selection of

messages related to our research purpose. Furthermore, we described how they

were systematically labelled by multiple annotators to guarantee that the ambi-

guity of the posts and the subjectivity of the annotator did not affect the quality of
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labels. Additionally, instead of using only binary labels for vulnerability commu-

nication, such as Yes and No, we have introduced a third label called Undecided

to capture the real-world scenario where messages are not very explicit in their

meaning.

• Oversampling techniques on imbalanced datasets enhanced the performance

of traditional classification models aimed to detect software vulnerability com-

munication. In Chapter 4, we provided experiments using different models cre-

ate with 3 different datasets (Hacker forum, Twitter and Marketplace). In all

three datasets, the classification performance improved when randomly over-

sampled techniques were applied in the minority class instances. The improve-

ment can achieve a performance increase of 5%, on average. Additionally, to

provide a "good enough" oversampling, we followed the first optimal rule, where

the sampling proportion of 300% to 450% could be applied for increasing the

performance without overfitting the model.

• Optimal techniques for efficiency of traditional classification models. In Chap-

ter 4, through empirical experimentation, we provided the optimal approaches

for reducing the dimensionality of traditional classification models using fea-

tures selection and features extraction techniques. Therefore, we observed that

we can reduce the number of features to less than 50% by removing the least

frequent words (i.e., appears in less than 0.1% of messages) and most frequent

words (i.e., appears in more than 20% of messages) without losing the overall ac-

curacy of the model. On top of frequency reduction, we can reduce by a further

50% by applying the Chi-square Feature Selection or 90% by applying the SVD

Feature Extraction.

• Specific-vocabulary language models are potentially better than general-vocabulary

language models for detection of software vulnerability communication. In

Chapter 5, we compared the use of specific-vocabulary and general-vocabulary

language models in downstream task classification. We used the description of
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software vulnerabilities in NVD database to create a word2vec specific-vocabulary

model. Despite the specific-vocabulary model being trained in much less data

(3M tokens) compared to general-vocabulary model (100B tokens), it achieved a

slightly better result in 2 of 3 datasets in both metrics, Positive Recall and Avg.

Class Accuracy. This result indicates that, if the specific-vocabulary model was

trained in more data, the resulting accuracy would improve

• Sentence Embedding language models as features representation enhanced

classification performance of models aimed to detect software vulnerability

communication. In Chapter 5, we provided a downstream classification task

using a range of SEMB models as feature representation. As a result, SEMB as

features representation is better suited for classifiers compared to WEMB. Addi-

tionally, models built with SentEncoder architecture (as features representation)

has provided the best result in 5 of 5 datasets, compared to the other that uses

SVM algorithm, achieving 74% of Positive Recall, followed by word n-grams and

char n-grams with 55%, and WEMB, 33% (on average).

• CNN and RNN-based Deep Learning architectures are better suited for de-

tection software vulnerability communication compared to traditional algo-

rithms. In Chapter 5, we provided a downstream classification task using two

different types of Deep learning architecture, the text CNN and BiLSTM. Both

have achieved the best overall results. BiLSTM recorded, on average, 84% and

77%, of Avg. Class Accuracy and Positive Recall respectively, while text CNN

recorded 96% and 93% in the same metrics.

• Performance of models created with hacker forums content degrades in a less

than 1-year period, indicating Concept Drift. In Chapter 6, we simulated the

real-life use of these classification models to evaluate the performance over a 1-

year period. We performed a stream-based evaluation to identify whether the

performance degrades. The performance recorded for models trained in hacker

forums showed a tendency to decrease, indicating that they are more sensitive
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to Concept Drift within a 1-year period. However, for the model trained with

Twitter dataset, the performance did not show the same behaviour. These re-

sults suggest that the models created with technical-vocabulary source (i.e., a

source that contains a large number of specialised words as Hacker Forums), are

more sensitive to changes in concept, thus degrade faster than models trained

with general-purposed-vocabulary source (i.e., source aimed to communicate to

a broad audience as Twitter).

• Provided measures for avoiding the performance decrease of models over time,

under Concept Drift effects. In Chapter 6, we discovered that updating the

model periodically is a simple method for avoiding the decrease of performance

over time. Furthermore, by adding weights on the newest instances, we were

able to enhance the performance of the models even more. Also, with the re-

sults, we could infer that there is no need to update the model with all incoming

instances, as it has shown that updating with 50% of incoming instances pro-

vides comparable results to updating with 100%, which also help to reduce the

workload needed to perform the labelling task. Finally, our results also suggest

that the newest instances are very important for the performance of the model, as

it has been shown that by adding weights only in the newest instances improves

the final performance of the model.

7.2 Limitations

The first limitation of this work is in regards to the size of the datasets. Due to the

limited amount of expert knowledge to perform the labelling task, we reduced the

labelling task to 10,000 messages in total. This way, we could perform the labelling task

3 times (by different people), totalling 30,000 labelling actions, thus reducing possible

bias and mistakes in the final label. We believe that, with more labelled examples,

the performance of models could have been maintained for longer periods, avoiding

early re-training, and reaching higher values, especially the traditional classification
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models.

The second point of limitation is in relation to the diversity of the dataset. With our col-

lection of datasets, we have covered 3 Internet domains, Surface Web, Deep Web and

Dark web. However, we have only touched a small part of the possible social media

available on Internet, for instance, in Surface Web, we could have use StackOverflow,

Reddit, or GitHub. Also, in Deep and Dark web, there are a large number of hacker

forums and marketplaces being created at this moment that could be used as a source

for this research. Thus, we believe that the results provided in this thesis could be

reinforced by including more examples of these social media and forums.

Finally, the third limitation is related to the need to update the model with re-trained

instances in order to maintain the performance of the model (mentioned in Chapter

6). As we have previously discussed, this approach requires expert knowledge on an

ongoing basis. Also, as we mentioned, 50% re-labeled instances are suffice to avoid

the decrease of model’s performance. However, we acknowledge that, in a real-life

situations, 50% might not help to reduce the labelling workload, as the volume of

incoming messages might be large. We believe this limitation is an open research

path with regards to finding what are the worth-to-label messages, in other words, the

messages which are more likely to help the model to maintain its accuracy and reduce

even more the workload needed for labelling those instances.

7.3 Future Work

Additionally, with regards to the suggestions mentioned in the limitation section, we

propose the following path as promising future work:

Firstly, we have mentioned that the promotion of good labels are the bottleneck for effi-

cient classification models. To guarantee the quality of these labels, expert knowledge

is required. Such work might therefore be time- and resource-expensive depending

on the volume of the dataset. As a result, we believe that further research could be
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done by sharing the labelled dataset among stakeholders (companies and research in-

stitutions), thus, reducing the workload needed to perform the task. However, if data

needs to comply with privacy laws, the research might be extended to the field of Ho-

momorphic Encryption applied to machine learning, where the main purpose is making

use of encrypted information without necessarily decrypt it for training the models.

This way, we could guarantee the confidentiality and privacy of eventual private in-

formation contained in the dataset. Furthermore, another approach could focus on a

distributed system that allows the models being trained separately. However, the final

weights (parameters) of the model can be shared and synchronised with other models.

This approach has three benefits: (1) a distribution of computational cost and human

workload, (2) the possibility of covering a large range of social media communities,

(3) the improvement of model’s performance.

Secondly, with regards to machine learning applied to text classification, we observed

that this area has been evolving in a fast-pace, with state-of-the-art machine learning

solutions surging very often. Since our experiments with Word and Sentence Embed-

ding, new transform-based language models architecture has benchmarked in vari-

ous NLP tasks, for instance, BERT (Devlin et al., 2018), GPT-2 (Radford et al., 2018)

and recently GPT-3 (Brown et al., 2020). These models have been improving due to

the massive volume of data they were trained in and also their ability to fine-tune to

a specific task (without the need of training in a specific-purpose corpus). However,

training a state-of-the-art model, such as GPT-3, would cost at least $12M with GPU

cloud services providers (INFO-Q, 2020). We believe the financial cost limits research

in many institutions around the world but also opens new opportunities for research-

ing feasible approaches to create a robust language model, in other words, studying

forms of creating such models that use less computational resources.

Finally, the use of other NLP approaches, for instance, Named-entity Recognition

(NER), could be applied for identifying fine-grained information on hacker messages.

This way, we could extract the name of the software and company being hacked as

well as the type of vulnerability, if mentioned in the sentence. Identifying such infor-
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mation is challenging due to the dynamic nature of hacker language, which is con-

stantly including new terms, tools and techniques. The collected information could

add more insights to further cyber security investigation. Furthermore, we believe

that this research it is not only bound to the detection of software vulnerability com-

munication but can also be applied to other malicious activities, for instance, detection

of private data exposure and coordinate DDoS attacks.
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APPENDIX A1

Keywords

Here we see the keywords used to filter the messages of the original dataset.

A1.1 OWASP top 10 Application Security Risk

Injection, Broken Authentication, Sensitive Data Exposure, XML External Entities XXE,

Broken Access Control, Security Misconfiguration, Cross-Site Scripting XSS, Insecure

Deserialization, Insufficient Logging Monitoring

A1.2 SANS top 25 Software Errors

Improper Neutralization Special Elements used Command SQL Injection, Improper

Neutralization Special Elements used Command OS Command Injection, Improper

Neutralization Input Web Page Generation Cross-site Scripting, Unrestricted Upload

File Dangerous Type, Cross-Site Request Forgery CSRF, URL Redirection Untrusted

Site Open Redirect, Buffer Copy without Checking Size Input, Classic Buffer Over-

flow, Improper Limitation Pathname Restricted Directory, Path Traversal, Download

Code Without Integrity Check, Inclusion Functionality Untrusted Control Sphere, Use
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Potentially Dangerous Function, Incorrect Calculation Buffer Size, Uncontrolled For-

mat String, Integer Overflow Wraparound, Missing Authentication Critical Function,

Missing Authorization, Use Hard-coded Credentials, Missing Encryption Sensitive

Data, Reliance Untrusted Inputs Security Decision, Execution Unnecessary Privileges,

Incorrect Authorization, Incorrect Permission Assignment Critical Resource, Use Bro-

ken Risky Cryptographic Algorithm, Improper Restriction Excessive Authentication

Attempts, Use One-Way Hash without Salt
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APPENDIX A2

Survey Pages and Introductory Text

A2.1 D1 - Cracking Arena, D4 - Garage4hackers and D5

- Cracking Fire

On-line hacker forums are common places where hackers find information related to

security, technology and general computing. These places usually work in an ask-

ing and answering basis in order to share hacking techniques and security problems

among peers. Moreover, it is common to find hacking tools (exploits, PoCs, payloads

and malware) associated with cyber-attacks and disruption of on-line services. Know-

ing that, the security initiatives are now using hacker forums as a sources for early-

detecting threats that pose risk to business, governmental infrastructure and compu-

tational assets in general.

This research has focus on study how hacker communication happens among users of

these forum in order to further detection of eventual threat. For this reason, we need

to categorise the messages collected from Cracking Arena as being related (or not) to

hacking and exploitation of vulnerabilities in software or on-line services.
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Page 1 - Introduction Text - for All Hacker Forums
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A2.2 D2 - Twitter Security Experts

People have been using Twitter as a way to quickly and easily share information with

a broad audience. In general, such tool is used by politicians, companies and celebri-

ties to engage people with their agenda. In the same way, Security Experts are using

this social media for informing, debating, and disclosing security-related problems of

software products that we use in our daily life. In general, the content of such com-

munication is related to new security vulnerabilities and forms of exploit them. By

doing this, security experts are trying to engage software-users with the problem of

using insecure software and, as consequence, they are forcing security companies to

pay attention to the quality of software they release to the public.
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Page 1 - Introduction Text - Twitter Security Experts
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A2.3 D3 - Dream Market Marketplace

Dark web marketplaces are known for selling illegal products such as illicit drugs,

fake IDs, stolen credit card numbers and copyrighted software. Moreover, these type

of channels are a common place for finding hacker product that can be used for break

into computer systems and perform other types of hacker activities. Some of these

products are generally associated to cyber-attacks on companies and governmental

agencies. In this survey, you will be presented with a collection of messages from

a Dark Web marketplace called Dream Market. This forum is known as a place for

buying and selling illicit products, among them, hacking tools and other resources for

malicious activities. The Dream market is considered the largest market place on the

dark web space after the shutdown of Alphabay forum.

This research has focus on study how communication is used in hacker forums and

social media for sharing information regarding software vulnerabilities and exploita-

tion of software. For this reason, we need to categorise the messages collected from

Dream Market forum as being related (or not) to hacker products (exploits kit, mal-

ware) or services (guidance/tutorial) that can be used for exploitation of software and

computer systems.
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A2.4 Common pages

Page 2 - Rules for Completing the Survey

Page 3 - Survey
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