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In silico and in vitro screening for potential anticancer candidates 
targeting GPR120 
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A B S T R A C T   

The G-protein coupled receptor - GPR120 has recently been implicated as a novel target for colorectal cancer 
(CRC) and other cancer managements. In this study, a homology model of GPR120S (short isoform) was 
generated to identify potential anti-cancer compounds targeting the GPR120 receptor using a combined in silico 
docking-based virtual screening (DBVS), structure–activity relationships (SAR) and in vitro screening approach. 
SPECS database of synthetic chemical compounds (~350,000) was screened using the developed GPR120S 
model to identify molecules binding to the orthosteric binding pocket followed by an AutoDock SMINA rigid- 
flexible docking protocol. 

The best 13 hit molecules were then tested in vitro to evaluate their cytotoxic activity against SW480 – human 
CRC cell line expressing GPR120. The test compound 1 (3-(4-methylphenyl)-2-[(2-oxo-2-phenylethyl)sulfanyl]- 
5,6-dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one) showed ~ 90% inhibitory effects on cell 
growth with micromolar affinities (IC50 = 23.21–26.69 µM). Finally, SAR analysis of compound 1 led to the 
identification of a more active compound from the SPECS database showing better efficacy during cell-based 
cytotoxicity assay –5 (IC50 = 5.89–6.715 µM), while a significant reduction in cytotoxic effects of 5 was 
observed in GPR120-siRNA pre-treated SW480 cells. 

The GPR120S homology model generated, and SAR analysis conducted by this work discovered a potential 
chemical scaffold, dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one, which will aid future research 
on anti-cancer drug development for CRC management.   

GPR120 is a member of the Class A Rhodopsin-like G-protein coupled 
receptor (GPCR) family and the free-fatty acid receptors (FFAR) sub
family and exists in two homologous human isoforms (a short isoform at 
361 amino acids and a long isoform at 377 amino acids).1,2 It is also 
known as Free Fatty Acid 4 receptor (FFA4) – as its endogenous ligands 
have been identified as poly-unsaturated long-chain free fatty acids 
(PUFFA).3–5 GPR120 over-expression has been reported in colorectal 
cancer (CRC) cell lines, at approximately 2–3 folds higher occurrence 
than for normal colorectal cells.6 In CRC, GPR120 overexpression has 
been correlated with enhanced protein expression of proangiogenic 
factors such as vascular endothelial growth factors (VEGF), 
cyclooxegenase-2, and interleukin-8, as well as enhanced chemotactic 
activity of tumour cells.6 This increased activity has been characterised 

as GPR120-induced activation of the PI3K/Akt-NF-κB signalling 
pathway.6 GPR120 has also been reported to augment chemoresistance 
in breast cancer treatment by cross-talk through the Akt/NF-κB 
pathway.7 An extensive review by Senatorov and Moniri8 outlines the 
regulating role of GPR120 in various human cancers such as breast 
cancer, osteocarcinoma, melanoma prostate cancer, lung cancer, 
pancreatic cancer, and CRC.8 

Tumour cells are known to secrete pro-angiogenic factors9,10 and 
over-expression of GPR120 in CRC cell lines might be further stimu
lating the development of tumour angiogenesis. As well, GPR120 ago
nism is reported to result in lower rate of cell proliferation and cell 
migration and increased rate of apoptosis in various cancer cell lines and 
animal models.8 Most of the FDA approved anti-angiogenic drugs10 are 
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prescribed in combination with cytotoxic agents for effective CRC 
treatment. As GPR120 is involved at two extreme ends of the cancer 
therapeutics spectrum and tumour angiogenesis, it is of significant in
terest to develop and characterise small molecular anticancer agents 
targeting GPR120. Research studies, so far, have resulted in develop
ment of few potent GPR120 agonists only, such as TUG891 (see Fig 1), 
and a negative allosteric modulator, AH7614.11 

Due to advances in protein engineering, the availability of GPCR 
crystallographic structures in the RCSB Protein Data Bank12 has 
increased and allows the collection of structural data on GPCRs for early 
stage computer aided drug discovery (CADD). GPCRs crystal structure 
data can also be used as the reference templates for comparative 
modelling or homology modelling (HM), to predict the three dimen
sional (3D) structure of homologous GPCRs. Such in silico homology 
models of GPCRs have been successfully employed in virtual screening 
(VS) studies to identify lead molecules for developing therapeutic agents 
acting as agonists, inverse agonists, or antagonists.13,14. This method
ology is termed structure-based virtual screening (SBVS) and more 
specifically docking-based virtual screening (DBVS) is the most applied 
in practice.15,16. 

In recent years, in silico VS studies followed by in vitro experiments 
have been successfully utilised to discover potential leads for developing 
GPCR ligands.17 These in silico VS provide a faster and economical 
alternative to the wet-lab high-throughput screenings.18 In addition to 
VS, analysis of structure–activity relationships (SARs) can lead to the 
design of potent and stable compounds by making rational structural 
modifications19,20. 

In this study, a GPR120 DBVS protocol was developed utilising 
molecular docking with an in-house homology model in iterative com
bination with an in vitro cytotoxicity screening assay and SAR analysis, 
resulting in the identification of novel compounds with anticancer 

potential and predicted to act through GPR120. 

Methods 

VS was performed on the Irish Centre for High-End Computing 
(ICHEC – www.ichec.ie) cluster. ICHEC provided CPU core units for 
computational processing and data storage space. The visual analysis 
and homology model building were carried out on an in-house 8 node 
(Intel® Core™ i7-4790 CPU @ 3.60 GHz × 8) Linux cluster. The visual 
analysis and image rendering was performed using PyMol Open-source 
version 2.1.021 and Biovia DS Client visualiser 2019.22 

Homology modelling 

The FASTA sequences of human GPR120 short isoform, termed 
GPR120S - (UniProt ID: Q5NUL3-2) was retrieved from the UniProt 
database (https://www.uniprot.org Uniprot 2016). The sequence was 
used for BLASTP analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi) run 
against the protein databank (PDB) to identify 3D determined protein 
structures according to the best multiple sequence alignment (MSA) 
score generated. The human Delta-like opioid receptor PDB-ID: 4N6H 
and human Orexin 2 receptor PDB-ID: 4S0V were used as template 
structures. Using the multiple sequence alignment of GPR120S and the 
templates, comparative 3D structural models were generated and vali
dated using MODELLER (v9.14).23 An in-house python pipeline (incor
porating MODELLER) was developed using the KNIME platform 
(Konstanz Information Miner)24 to automate the process from genera
tion of 100 models using the MSA of selected templates to side-chain 
rotamer optimisation using SCWRL425 and evaluation of homology 
models by MODELLER’s DOPE (Discrete Optimized Protein Energy) 
score function.23 The models were ranked by the DOPE statistical 

Fig. 1. Selected docked pose of TUG891 (binding score − 9.87591) illustrating hydrogen bond interactions with Arg99 of GPR120S and a 2D interaction map of 
TUG891 in the orthosteric pocket binding pocket. The 3D images were visualized and rendered in PyMol v2.1.0.21 The 2D interaction maps were generated in BIOVIA 
DS Client visualizer 2019.22 
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potential scoring models. The best models with the lowest DOPE values 
were then assessed for stereochemical properties using the MolProbity 
webserver26 and their phi-psi Ramachandran plot were generated by 
using the PROCHECK online tool,27 validation process (unpublished 
work). 

Ligand library preparation 

The SPECS database (www.specs.net) of synthetic chemical com
pounds (~350,000) was retrieved and processed in Biovia Discovery 
Studio’s Pipeline Pilot v9.1 from Dassault Systèmes22 to generate ste
reoisomers and tautomers, and remove compounds with molecular 
weight (greater than) > 650 and (less than) < 250 Dalton. The filtered 
chemical database was energy minimised using MMFF94 forcefield 
(steepest descent) in the open-source OpenBabel software package (htt 
p://openbabel.org/) and saved in sdf format. 

Virtual screening and molecular docking 

Molecular docking analysis was performed between the prepared 
ligands and the homology model of GPR120S (unpublished work) which 
was pre-processed in MGLs’ AutoDock tools (www.autodock.scripps. 
edu)28 to add polar hydrogens, charges by Kollman charge and assign 
torsion angles. The rigid-flexible docking protocol was followed by using 
Autodock SMINA (scoring and minimization in AutoDock VINA).29 The 
binding site grid box was visually defined by employing AutoDock tools’ 
Grid setting feature, based on the site-specific mutation study by Hudson 
et al. 201430 to include residues – Arg99(TM2), Trp104 (ECL1), Phe115 
(TM3), Trp207, Phe211 (TM5), Trp277 (TM6) and Phe304 (TM7), 
deemed essential for ligand binding. The grid size dimensions were 40 ×
60 × 60, with the (61.822, 59.75, 46.597) point set as the centre co
ordinates of the pocket. TUG891, being a selective potent agonist of 
GPR120,31 was used as the reference ligand for docking analysis. 

The docked poses generated by AutoDock SMINA were rescored with 
three different scoring functions, AutoDock Vina,32 NNScore 2.0 (neural 
network based scoring function)33 and DLSCORE (Deep learning based 
scoring function) https://github.com/sirimullalab/DLSCORE), to 
calculate the consensus binding affinity score (Cscore) using Eq. (1). 
AutoDock VINA and SMINA predicts the binding affinities as Gibbs free 
energy (ΔG kCal/mol) while NNScore 2.0 and DLSCORE predicts the 
binding affinities as pKd values34. 

Cscore =Vscore+Sscore+(− NNscore)+(− DLscore)/Number of scoring functions
(1)  

where: Cscore is consensus docking score. Vscore is docking using Auto
Dock Vina’s default scoring function. Sscore is docking score using SMI
NA’s default scoring function. NNscore is docking score using NNScore 
2.0 function. DLscore is docking score using DLScore function. 

The ligands with a Cscore lower than − 9 were further analysed 
manually using the PyMol Open-source version 2.1.021 to enlist mole
cules for phase I of the in vitro screening based on their diverse scaffold 
chemistry. For phase II of in vitro screening, the chemical scaffold of the 
most cytotoxic test compound (from phase I) was used for a substructure 
search from the SPECS database docked pool using Discovery Studio’s 
Pipeline Pilot from Dassault Systèmes 201722. 

Cell culture and materials 

SW480, a human CRC cell line was cultured in RPMI1640 growth 
media supplemented with 10% (v/v) Fetal Bovine Serum and incubated 
at 37 ◦C ± 1 ◦C in a humidified atmosphere with 5% CO2. The cell 
culture media and reagents were procured from Sigma-Merck, unless 
otherwise mentioned. The test compounds for in vitro screening assays 
were procured from SPECS (www.specs.net). A stock solution of test 
compounds (20 mM) was prepared in 100% (w/v) DMSO and stored at 

− 20 ◦C. 
SW480 cells were transfected with 50 nM GPR120 (human) − 27mer 

siRNA duplex (SR317391) using siTran 2.0 siRNA transfection reagent 
(OriGene – www.origene.com) according to manufacturer’s instructions 
after overnight seeding. Universal scrambled siRNA duplex (SR30004) 
was used as negative control in transfection experiments. 

In vitro screening by cell-based cytotoxicity assay 

Alamar blue based cytotoxicity assays were performed to determine 
inhibitory effects of the test compounds. SW480 cells were seeded at 
10,000, 5,000 and 2500 cells per well in 96-well plates for 24, 48 and/or 
72 h drug treatment, respectively. Required dilutions of test compounds 
were freshly prepared in 0.5% (v/v) DMSO growth media for cytotox
icity assays. After the treatment period, drug concentrations were 
replaced with 6% (v/v) alamar blue dye solution and the cells were 
incubated for 3 h under cell incubation conditions. Finally, the fluo
rescence signal was read using 560 nm excitation and 590 nm emission 
filters with Varioskan LUX Multimode Microplate Reader from Ther
moFisher Scientific. 

siRNA transfected cells were harvested after 24 h of transfection and 
used for cytotoxicity assays as explained above. 

Statistical analysis 

All data was presented as mean ± standard error of the mean (SEM). 
For the analysis and graphic representation of biological experimental 
IC50 values were calculated (GraphPad Prism 6 Software, La Jolla CA) 
using dose–response curves for the compounds. For plotting the dos
e–response curve, a non-linear regression curve fitting method was used 
where the mean positive control (50% DMSO in growth media) was 
defined as 0% and the mean vehicle control (0.5% DMSO in growth 
media) was defined 100%. For significance analysis, two-way analysis of 
variance (ANOVA) followed by Tukey’s multiple comparison test was 
performed. P < 0.05 was considered statistically significant. 

Results and discussion 

Homology model of GPR120 

The human GPR120S receptor model was developed using the 
MODELLER homology modelling tool.23 The model which scored best 
(DOPE score − 41156.738) as per the MODELLER scoring function was 
chosen as the final model and subjected to further energy minimization. 
The α-carbon RMSD (root mean squared deviation) between the tem
plates 4N6H, 4S0V and the developed human GPR120S model is 1.386 Å 
and 0.652 Å, respectively. Poor rotamers and sidechain rotations, above 
the permitted range of 0.3%, were removed and replaced by SCWRL4 
with the average sidechain rotamer from its backbone-dependent 
rotamer library based on kernel density estimates. The comparative 
analysis of the stereochemical parameters of the GPR120S model by 
Molprobity webserver showed high reliability of the generated models. 
The Ramachandran psi-phi evaluation showed that all helical amino 
acids are located in the region favouring a right-handed α-helix with no 
residues (0%) in a sterically disallowed region and 98–99% residues in 
the favoured regions. The GPR120S model was embedded in a lipid 
bilayer model and energy minimised (unpublished work). 

Molecular docking of TUG891 to the GPR120S model 

The docked pose of TUG891 – a potent GPR120 selective agonist, 
with the receptor binding pocket is shown in Fig 1. An arginine in TM2 
(Arg99) is critical for interaction between the receptor and the -COOH 
group of its ligands by various studies.30,31,35,36 Six other specific resi
dues are essential for TUG891, and other GPR120 agonists binding and 
interaction which are: Trp104 (ECL1), Phe115 (TM3), Trp207, Phe211 
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(TM5), Trp277 (TM6) and Phe304 (TM7).30 Interactions with these 
seven residues were selected as the main criterion for docked binding 
pose selection of TUG891.30,31 Automated protein–ligand interaction 
analysis using the PLIP webserver37 identified strong noncovalent in
teractions of residues forming contacts with TUG891 docked to the 
orthosteric binding pocket of GPR120S (Fig 1). 

The selected docked pose for TUG891 (binding score − 9.875) had 
interactions with Arg99 in all the predicted poses. The carboxylic acid of 
TUG891 forms a salt bridge (hydrogen bond and attractive charge 

interaction) with the Arg99 side-chain at a distance of 4.32 Å and a 
strong T-type (perpendicular) π-π stacking interaction between Phe115 
and the second aromatic ring structure of TUG891. Other equitable 
hydrophobic and van der Waals interactions were also observed to sta
bilize the docked TUG891 in the orthosteric binding pocket. 

In silico virtual screening 

For virtual screening, the SPECS database (www.specs.net) con
taining ~ 350,000 commercially available well-characterised and drug- 
like molecules was screened against the GPR120S homology model. 
AutoDock SMINA was used as the molecular docking algorithm and the 
docked poses were rescored using an in-house consensus scoring func
tion from Equation I (see methods). The best scoring poses docked into 
the receptor were manually evaluated by comparison with the docked 
pose of TUG891. 

The docking-based virtual screening with a score cut off set at − 9 (w. 
r.t binding score of TUG891 of − 9.8) followed by a manual docking-pose 
analysis resulted in 13 compounds (Table 1) being selected for the first 
phase of in vitro screening through Alamar Blue cytotoxicity assay. As 
per the docking evaluation, these compounds are predicted to bind to 
the orthosteric binding pocket of GPR120S (see Fig 2) as well as having 
similar hydrophobic and / or electrostatic interactions with one or more 
of the residues reported essential for the pharmacological activity of the 
receptor. 

The electrostatic potential surface maps shown in Fig 2 reveal that 
the GPR120S binding pocket is lined with negatively charged residues 
(red colour) which can interact with ligand molecules via hydrogen 
bond contacts, whereas the opening of the pocket is surrounded by 
neutral or weak potential residues. Theoretically ligands with a strong 

Table 1 
Virtual-HTS hit compounds from the SPECS database with scores from each 
scoring function and the consensus score (Cscore).  

SPECS_ID VINA NNScore DLScore SMINA Cscore 

AN-970/ 
40920574 

− 14.0799  10.6167  7.5808 − 14.0822 − 11.589 

AK-968/41925665 − 14.1500  8.4778  8.1736 − 14.1543 − 11.238 
AO-299/ 

41877474 
− 13.3325  9.3340  8.2664 − 13.3348 − 11.066 

AE-848/32608035 − 13.0308  9.5607  8.3752 − 13.0307 − 10.999 
AN-970/ 

40920575 
− 12.8216  9.9850  7.6430 − 12.8253 − 10.818 

AG-690/40104520 − 13.1039  8.8878  8.1416 − 13.1031 − 10.809 
AJ-292/40857565 − 13.1769  8.3250  8.0350 − 13.1788 − 10.678 
AN-758/ 

14707017 
− 12.5595  9.5580  7.3621 − 12.5586 − 10.509 

AK-968/15252756 − 12.5863  8.3809  8.2112 − 12.5838 − 10.441 
AO-081/ 

14456496 
− 11.7869  9.2246  7.7837 − 12.2584 − 10.263 

AK-968/12713190 − 12.3380  8.5407  7.6893 − 12.3375 − 10.226 
AB-131/42301549 − 12.2715  8.4730  6.8798 − 12.8521 − 10.119 
AG-690/12137150 − 12.2680  6.8487  7.0743 − 12.2687 − 9.614  

Fig. 2. Docking simulation of 13 test molecules with surface topology of the GPR120S orthosteric binding pocket (a). Zoomed in view of the electrostatic potential 
molecular surface of the orthosteric binding pocket as viewed from above (b) was calculated with APBS (Adaptive Poisson-Boltzmann Solver) plugin in PyMOL. Blue 
denotes a positively charged surface; red denotes a negatively charged surface. The bound test molecules are shown as green stick models. The 3D images were 
visualized and rendered in PyMol v2.1.0.21 
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positive charge should be able to enter the binding tunnel without facing 
any resistance from the neutral or weakly charged residues at the 
opening.38 Once the ligand enters the pocket the strong attractive 
charges should stabilise the protein–ligand binding, playing an impor
tant role in the binding kinetics. Steered molecular dynamics (SMD) 
studies can be insightful to further probe the binding kinetics of ligands 
w.r.t the charged surfaces of binding tunnel.38,39 

In vitro cytotoxicity assay 

The selected 13 compounds from the in silico VS were evaluated for 
their potential anticancer activity by an alamar blue cytotoxicity assay 
(see methods) using SW480 cells expressing GPR120.6 For initial 
screening, the SW480 cell-line was treated with three concentrations 
(100, 10 and 1 µM) of each test compound for 72 h. As illustrated in Fig 

3a, most of the compounds (11 out of 13) displayed null to negligible 
(~30%) cytotoxicity against SW480 cells at the highest tested concen
tration of 100 µM. However, two of the test compounds showed signif
icant (>90%) inhibitory effects on cell growth with micromolar 
affinities (at 100 µM), reported in Fig 3a. 

The two active compounds - AK-968/12713190 (compound 1) and 
AG-690/40104520 (compound 2), were further tested at a wider con
centration panel to construct a dose–response curve and determine their 
IC50 values (see Fig 3b, c). Both the test compounds were active in cell 
line measurements with modest inhibitory activity at different treatment 
times. The 24 h drug treatments indicated IC50 value of 23.21–26.69 µM 
for 1 and 26.55–33.2 µM for 2. 

As the Dose-response-time (DRT) can highlight the dose–response 
patterns over time in pharmacological studies,40 these two test com
pounds were tested over a longer treatment times of 48 h and 72 h for 

Fig. 3. a) Cytotoxicity assay of test compounds in SW480 cells which express GPR120 at three concentrations 100, 10 and 1 µM. Results from six replicates are 
expressed as the mean ± Standard error. The cytotoxicity of b) Compound 1 (experimental 24 h IC50 23.21 to 26.69 µM) and; c) Compound 2 (experimental 24 h IC50 
26.55 to 33.2 µM) was assayed by using SW480 cells using 9 serial dilutions from 100 µM to 0.39 µM at three different treatment time periods. Results show mean and 
standard error of 5 replica samples. Results are representative of three individual experiments. Where no error bars are visible, they are obscured by the symbol. 
Percent relative cell viability for all treatments were quantified and normalised to the maximal response induced by vehicle control. Data for (a) was analysed by two- 
way ANOVA and asterisk values denote significant differences between 100, 10 and 1 µM treatment for each compound (*P < 0.05; **P < 0.01; ***P < 0.001; ****P 
< 0.0001). 
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their cytotoxicity activity (see Fig 3b, c). After 48 h, the IC50 of both 
compounds drops to ~50–60 µM. Similar effects over time have been 
reported in another oncogenic study41 suggesting that the cells might 
have developed acquired resistance to test compounds at lower con
centration after 48 h of exposure. This acquired resistance might enable 
them to escape the cytostatic state and start cell proliferation which can 
be traced back to the augmented chemoresistance in breast cancer 
treatment through GPR120 overexpression.7 Also, the increased meta
bolic activity of cancer cells can be related to anticancer drug meta
bolism responsible for the resistance to cytotoxic agents,42,43 hence 
reducing the cytotoxicity of these two compounds over time. While the 
72 h experiments showed a slight decrease of 10 µM in IC50 values of 
both compounds, it should be noted that the drug concentrations were 
not replaced over the treatment time intervals. The decreased cell 
growth or increased cytotoxic effects of these two compounds at 72 h 

might be the result of a lack of nutrients and increased metabolic waste 
in the culture solution.44,45 

SAR/similarity search and in vitro screening of SAR compounds 

The top-scoring docked poses of compounds 1 and 2 (see Fig 4) 
predicted that the two molecules interact with a number of residues 
reported significant for protein-ligand binding by Hudson et al 201430 

and which also interacted with the selected docked pose of TUG891 (see 
Fig 1) such as Ile280, Ile284, Val307. Compound 1 consists of a benzo- 
quinazoline ring structure as the chemical scaffold with smaller benzyl- 
methyl and benzyl substituents. The phenylalanine residue at TM3 
(Phe115) shows strong π-π interactions with the main scaffold as well as 
π-sulfur interactions with the sulfanyl linker (see Fig 4). While com
pound 2 consists of a 9-fluorenone as the chemical scaffold with 

Fig. 4. 2D interaction maps of docked poses of compounds 1 and 2. The 2D interaction maps were generated in BIOVIA DS Client visualizer 2019.22  

Table 2 
SAR of Compound 1 with modified groups to determine functional potency.  

Compound 1 substructure Generic chemical formula  

SPECS Compound ID -R1 -R2 Docking Cscore Experimental IC50 (µM) Lipinski’s Violations 

3 AL-281/36997030 -C6H4Cl –CH3 − 9.339 22.92 to 27.58 0 
4 AJ-292/12930007 -C6H4Cl -C5H9 − 9.741 24.26 to 26.95 2 (MW 505; logP 4.57) 
5 AL-281/36997031 -C6H4Cl -C6H5 − 10.706 5.890 to 6.715 2 (MW 513; logP 4.03) 
6 AG-690/12134207 -C6H4Cl -C2H4-C6H5 − 10.213 68.92 to 84.21 2 (MW 541; logP 4.32) 
7 AL-281/36997034 -C6H4Cl -C6H4-O- CH3 − 9.668 6.789 to 7.502 2 (MW 543; logP 4.38) 
8 AN-512/12673388 -C6H4Br -C6H4-CH3 − 10.704 25.54 to 28.87 2 (MW 571; logP 4.77) 
9 AN-512/12674229 -C6H4Br 2,2-(CH3)2-C5H7O − 9.988 N/A 2 (MW 593; logP 4.5)  
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symmetric dimeric naphthalene groups at both ends linked by an ami
nosulfonyl. The presence of dimeric naphthyl substituents showing 
strong hydrophobic π-π stacked interactions at one end and simple 
π-Sigma interactions at the other suggesting strong binding interactions 
in the binding pocket. 

The chemical scaffold of 2 is 9-fluorenone (PubChem CID: 10241) 
which is actively used in preparation of antimalarial drugs, functional 
polymers, and dyes.46 Of the two selected compounds, 1 was prioritized 
based on the strong docking predictions with the GPR120S model, its 
novelty with respect to the literature and the micromolar cytotoxic ac
tivity in CRC cell line, for SAR studies. To expand the SAR profile, the 
generic chemical structure, dihydrospiro(benzo[h]quinazoline-5,1′-cyclo
pentane)-4(3H)-one, in combination with sulfanyl acetone tail was used 
as query for substructure search against the pre-processed SPECS data
base using DS pipeline pilot (Table 2). 

The substructure search resulted in 16 compounds from the pre- 
screened SPECS database. This set of compounds explored R-groups in 
position R1 and R2 of the scaffold (see Table 2) in combination with in 
silico ADME profiling using SwissADME (http://www.swissadme.ch/)47 

to procure the selective compounds for in vitro screening. The analogues 
were selected exploring the alkyl to aryl substitutions at the R2 position 
and simple halobenzene susbstitutions at the R1 position connected by a 
sulfanyl acetone linker keeping dihydrospiro(benzo[h]quinazoline-5,1′- 
cyclopentane)-4(3H)-one scaffold structure intact. Based on the docking 
analysis, manual screening and the availability of compounds at SPECS, 
seven compounds were tested for in vitro cytotoxicity assay in SW480 
cell line as discussed above (see Fig 5a). 

Based on the SAR study, the IC50 values of the new hits enable an 
initial identification of the essential pharmacophore features required in 
the dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one scaf
fold. The presence of an aromatic halogen at the sulfanyl acetone tail 
exhibited an increase in potency (3, 5, 7). However, the substitution of 
chloride in comparison to bromide seems to be more effective for 
pharmacological activity. The drop in potency of 8 w.r.t the parent 
compound (1) and 5 can be related to larger atomic size of bromine atom 
compared to chlorine which can result in decreased solubility and hence 
lowering the bioavailability of the compounds. Although not predicted 
in molecular docking which showed similar binding scores − 10.22, 
− 10.706 and − 10.704 (compounds 1, 5 and 8 respectively), the greater 
size of bromine might be responsible for steric clashes with neighbour
ing residues in the binding pocket which can be further analysed by 
future MD studies. Incorporation of fluoroaromatics at the sulfanyl 
acetone tail may increase the solubility and hence bioavailability of 
these SAR analogues as the fluorine atom is smaller in size and also 
exhibit slight electronegativity which can increase the electrostatic 
bonding affinity of the compounds. 

Substitution of the benzo-methyl at the R2 position in the parent 
structure and 8 by a smaller methyl group (3) or an aromatic six- 
membered group (5) resulted in a significant increase in potency of 
the analogues. The substitution of a non-aromatic cyclic group (4) 
resulted in reduced activity of the parent compound (1). The addition of 
a methoxy group to this aromatic ring at R2 position in 7 resulted in the 
second most active compound of the SAR profiling. The quinazoline ring 
linked to five or six membered aromatic ring structure at R2 position by a 
single C–C bond length seems to be the optimum as when the linker 
length in 5 is increase (-C-C2H4-C-), the cytotoxic activity of 6 registered 
a drastic decrease from ~ 6 µM to ~ 80 µM. The total inactivity of 9 may 
confirm the above inferences as it contains bromo-aromatic group at R1 

position and non-aromatic cyclic ring with a longer linker at the R2 

position. 
SAR analysis is a state-of-the-art and precise method to explore 

bioactive analogues of an active compound which may improve binding 
affinity to a protein target.19,20 Of the present SAR study, analogues (5 
and 7) exhibited the best cytotoxic activity. When both these compounds 
were tested at 5 µM (below experimental IC50) in GPR120-silenced 
SW480 cells, this cytotoxic effect of 5 was significantly suppressed in 
GPR120-siRNA transfected SW480 cells (Fig 5b) while 7 showed ~10% 
higher cytotoxicity levels in siRNA transfected cells. The comparative 
study between GPR120-silenced and control experiments suggested that 
5 exhibited cytotoxic effects through GPR120 binding while cytotoxic 
activity of 7 might be through multiple targets including GPR120. 
However, further in silico and in vitro validation is required to confirm 
their anti-cancer potential targeting GPR120. As literature suggests that 
high levels of GPR120 expression in CRC cell lines increases the cell 
proliferation rate and reduces apoptosis,6 it can be hypothesized that 
compound 5 and 7 inhibit GPR120 and hence increase the apoptosis 
rate. A comparative study of these test compounds against a competitive 
antagonist would be useful, but as mentioned earlier no GPR120 an
tagonists are available to date. AH7614 (4-Methyl-N-9H-xanthen-9-yl- 
benzenesulfonamide) was first reported as a GPR120 selective antago
nist by GlaxoSmithKline in 201448 but its mechanism of antagonism was 
not known. Later collaborative research by the Ulven and Milligan labs 
in 201749 reported that AH7614 was a negative allosteric modulator of 
GPR120. 

In summary, with the identification of the two most active analogues 

Fig. 5. a) Cytotoxicity profile of compound 1 SAR analogues using SW480 cells 
for 24-hour treatment. Results show mean and standard error of 4 replica 
samples. Where no error bars are visible, they are obscured by the symbol; b) 
siRNA-mediated silencing of GPR120 in SW480 cells – Compound 5 and 7 were 
screened against GPR120-siRNA and scrambled-siRNA (control) transfected 
SW480 cells. Results from five replicates are expressed as the mean ± standard 
error, ****p < 0.0001 as indicated (ANOVA, Tukey’s multiple comparisons 
test). Percent relative cell viability for all treatments were quantified and nor
malised to the maximal response induced by vehicle control. 
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from the SAR profiling of parent compound 1 (AK-968/12713190) with 
a dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one scaf
fold, our study has successfully identified a novel scaffold for developing 
potential therapeutics for CRC management. The main scaffold can be 
further enhanced focusing on the substitution and addition of key 
structural groups as mentioned in the SAR study. Future studies will 
confirm the role of GPR120 in the cytotoxic activity exhibited by these 
compounds. 
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