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Abstract: 

Vibrational spectroscopy, based on either infrared absorption or Raman scattering, has attracted 
increasing attention for biomedical applications. Proof of concept explorations for diagnosis of oral 
potentially malignant disorders and cancer are reviewed, and recent advances critically appraised. 
Specific examples of applications of Raman microspectroscopy for analysis of histological, cytological 
and saliva samples are presented for illustrative purposes, and the future prospects, ultimately for 
routine, chairside in vivo screening are discussed.  
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1. Introduction 

Oral cancers are prevalent worldwide, and, in 2018, had estimated age-standardised incidence rate 
(World) for both sexes, all ages, of 4 per 100,000 population [1]. Critically, carcinoma of the oral 
cavity has a very poor overall 5 year survival rate of approximately 50%, due mostly to late stage 
diagnosis [2]. Oral squamous cell carcinoma (OSCC) is the predominant malignancy and is more 
common in males than females, having a ratio of 1.5:1, and in older persons (aged 50 or over) [3]. 
Nevertheless, there are currently changes in the trend, manifest as an increase in incidence in young 
persons, which may be due to HPV infection as opposed to the traditional risk factors such as 
smoking and tobacco [4].  

OSCC arises in the squamous epithelium and, like all cancers, is a multi-step process in which cells 
acquire mutations that allow them to evade immune surveillance and divide uncontrollably. It can 
manifest as an endophytic (inward) or exophytic (outward) growth, which can either arise de novo or 
from oral potentially malignant disorders (OPMD), typically either from a leukoplakia (white plaques 
of questionable risk having excluded (other) known diseases or disorders that carry no increased risk 
for cancer), erythroplakia (red patch) or erythroleukoplakia (mixed red and white patch) [5]. Most 
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OPMD are symptomless, but some may be associated with bleeding, or soreness. The risk of 
malignant transformation of these OPMD is determined by a numbers of factors, with the degree of 
dysplasia being the most significant. The current recommendation for management of OMPDs is that 
risk factors are addressed and moderate and severely dysplastic oral lesions are excised, while 
OPMD with no dysplasia is usually followed up annually, mild dysplasia reviewed every 6-12 months 

OSCC usually present clinically as a persistent ulcer or hard lump in the oral mucosa, but leukoplakias, 
erythroplakias and erythroleukoplakias may be found, on biopsy, to harbour OSCC. Patients with 
advanced OSCC may present with symptoms like difficulty of swallowing or speaking, or swollen lymph 
nodes in the neck [6]. Following appropriate referral, any suspicious lesion is biopsied and sent for 
histopathological examination, which is the gold standard for oral cancer diagnosis. After the initial 
diagnosis of OSCC is made, the cancer staging to determine the tumour size,  presence of lymph node 
or distant metastasis is determined by the use of imaging techniques such as MRI, CT, and PET scans 
[7]. Cancer stage at diagnosis is the single most important prognostic factor.  

Early diagnosis is therefore critical in the management of oral cancer, [8].The low rate of early 
diagnosis of OSCC can be partially attributed to the late recognition of such OPMDs prior to 
malignant transformation [9, 10]. Visual observation of mucosal abnormalities by a dentist or 
hygienist is the most common starting point of diagnosis, and therefore optical methods play a 
potential role, currently, and in prospective advances in methodologies for early stage diagnosis 
[11]. In particular, the vibrational spectroscopic techniques of infrared (IR) absorption and Raman 
scattering spectroscopies promise the potential for objective, label free, in vivo or ex vivo analysis, 
which is based on the molecular content of the sample, rather than simply the morphological 
appearance of abnormalities, a process which can be highly subjective. 

This paper describes research efforts towards the development and validation of vibrational 
spectroscopic methods, typically employing commercially available spectroscopic instrumentation, 
for the early identification of abnormalities in the oral cavity in tissue, cells and saliva, reviewing 
literature to date. Specific examples of the application of Raman microspectroscopy, based on work 
of the authors, are presented. Future perspectives are presented, also in the context of the potential 
of the technique for in vivo screening and monitoring. 

2. Histopathology 

Both IR and Raman spectroscopies provide a biochemical “fingerprint” of the sample under 
interrogation, on the basis of the distinctive vibrations of the constituent molecules. They are, 
however, fundamentally different techniques, as evidenced starkly by the fact that, while Raman 
spectroscopy is commonly carried out in the visible or near infrared region of the spectrum, IR 
spectroscopy is commonly carried out in the mid-infrared region. Both can be carried out in the 
microscopic mode (for further information and comparison of methodologies, see for example [12]), 

in which, intrinsic limitations to spatial resolution imply that Raman can probe areas of <1 m, 

whereas IR is typically limited to ~10 m. In the field of spectro-histopathology [13], however, the 
requirement to rapidly scan large areas of tissue probably currently favour the use of IR rather than 
Raman spectroscopy. 

A number of early stage studies demonstrated that Fourier Transform IR (FTIR) microspectroscopy, 
can be employed to effectively differentiate abnormal and normal states in excised oral tissues, and 
pointed towards the differences in biochemical composition underpinning the differentiation. 
Schultz et al. [14] undertook a study which attempted to identify the biochemical differences 
between well and poorly differentiated oral/oropharyngeal SCC, and demonstrated that spectral 
features of DNA and keratin can provide the basis for differentiation of clinically classified normal 
and OSCC biopsies. The prominence of keratin structures in OSCC samples was also explored [15]. 
Wu et al. [16] demonstrated that normal and malignant oral tissues can be discriminated on the 
basis of the relative lipid and protein content of fresh oral tissue samples. Comparing tissue from 



normal subgingival sites and OSCC, Fukuyama et al. [17] demonstrated that the spectral 
characteristics of normal tissue are more strongly influenced by contributions of keratin and 
collagen, compared to the spectra of abnormal samples. Increasingly sophisticated FTIR 
spectroscopic imaging methods have provided the capacity to explore different aspects of oral 
cancer and cancer development. By generating 3D infrared chemical maps, Bruni et al. [18] showed 
that proliferating and regressive states of head and neck tumours can be identified. A study using 
FTIR spectroscopy to explore chemopreventive effects of drug-loaded nanoparticles on oral 
carcinogenesis in animal models has also been reported [19].  

Applications of Raman spectroscopy in oral cancer diagnostics began with the analysis of normal and 
dysplastic tissue in a rat model by Bakker Schut et al. [20], who achieved sensitivity and specificity of 
100% for dysplasia induced in the palate by topical application of the carcinogen 4-nitroquinoline 1-
oxide. There followed a study of human oral cancer biopsies by Venkatakrishna et al. [21] who 
obtained an average classification efficiency of 88%. A study carried out by Krishna et al. in 2004 [21] 
demonstrated the applicability of formalin-fixed oral tissues for optical pathology, revealing 
significant differences in the epithelial region of normal and malignant samples, arising from the 
protein composition, conformational/structural changes, and possible increase in protein content in 
malignant epithelia. In 2006, Malini et al. [22] demonstrated the efficacy of Raman spectroscopic 
methods in discriminating normal, cancerous, precancerous, and inflammatory conditions. Lipid rich 
features in normal conditions and prominent protein features in tumours and other pathological 
conditions were observed. Classification between different groups using multivariate statistical 
methods produced 100% sensitivity and specificity [22]. Raman mapping of tissue sections further 
elucidated biochemical changes within different epithelial layers, which are associated with disease 
onset [23, 24]. A study by Sunder et al. [25] demonstrated that oral carcinomas of different 
pathological grades can also be differentiated on the basis of the relative intensities of bands 
associated with lipids and proteins. 

Cals et al. undertook a study of excised tongue tissue samples (11 OCSCC and 14 normal) of 10 
patients, to establish multivariate classification models based on Principal Components Analysis 
(PCA) – Linear Discriminant Analysis (LDA), a binary tumour versus non-tumorous tissue model 
showing an accuracy of 91%, sensitivity of 100%, and specificity of 78% [26]. A further study 
specifically explored samples of OSCC from excised tongue tissue (44 samples from 21 patients) and 
produced a range of anatomically subclassified spectra, characteristic of OSCC, surface squamous 
epithelium, muscle, adipose tissue, connective tissue, gland, and nerve [27]. Least squares fitting 
each characteristic spectrum with combinations of biochemical constituent spectra revealed that the 
carbohydrates, proteins and amino acids content was the strongest discriminator between OSCC and 
healthy tissue. Jeng et al. explored the use of Raman microspectroscopy to differentiate excised 
tumour and normal tissue samples from different anatomical regions; the tongue, the buccal 
mucosa, and the gingiva of the oral mucosa [28]. Although a high degree of classification was 
observed for all sites, analysis of the gingiva was seen to yield the highest values of accuracy (91%), 
sensitivity (92%) and specificity (91%). In addition to protein and amino acid, variations of beta-
carotene content were identified as a potential biomolecular marker of oral cancer. Jeng et al. 
compared the performance of the classifier algorithms, PCA - LDA and PCA - quadratic discriminant 
analysis (QDA), the latter performing better, while Yu et al. applied deep convolutional neural 
networks to classify squamous cell carcinoma and non-tumorous tissue of the tongue, achieving high 
values of sensitivity (99.31%) and specificity (94.44%) [29]. 

Although there have been numerous proof-of-concept studies to demonstrate the potential of both 
IR and Raman spectroscopies for spectro-histopathology, an issue which continues to arise is that of 
sample presentation [30, 31]. Although unadulterated, fresh tissue biopsies are preferable, the gold-
standard histopathological method employs a process of formalin fixation followed by paraffin wax 
embedding. The tissue is first dehydrated and then infiltrated with paraffin wax, such that the 
samples are stabilised and can be stored for years. These formalin fixed paraffin preserved (FFPP) 



archival tissue libraries can potentially be a vast resource for retrospective studies of patient history 
and disease progression. Unfortunately, the lipid-like paraffin wax can interfere with either FTIR or 
Raman spectroscopic analysis [32, 33]. A number of different approaches to remove the paraffin wax 
have been tested. The normal clinical protocols of chemical dewaxing have been demonstrated to be 
only partially effective [33], and also dependent on the clinical pathology [34], while so called “digital 
dewaxing” has been shown to be only partially successful [35]. Toward high throughput automated 
analysis, Pallua et al. [36] demonstrated that high quality FTIR microspectroscopic images can be 
obtained from formalin-fixed paraffin-embedded tissue microarray sections, providing molecular 
level information as the basis for diagnosis. However, the symmetrical C-C vibrations of the wax 
molecule backbone are particularly strong in Raman spectroscopy, and, as the embedded wax is 
microcrystalline, and the source laser usually polarised, it has been shown that the difficulties in the 
subtraction of the wax contributions to the Raman spectra of tissue are due to the continuous 
variability of the spectra [37]. However, by employing a matrix of (300) reference spectra of the wax, 
Ibrahim et al. demonstrated the effective removal of its contamination, as well as that of the glass 
substrate (Figure 1), from the spectra of both epithelial and connective tissue of oral biopsies (Figure 
2) [37].  

 

Figure 1: Mean Raman spectra of epithelial and connective tissue before (left) and after (right) 
digital wax removal. Shading denotes the standard deviation [37]. 

 

Figure 2: Representative H&E images showing the regions of epithelium (darkly stained) and 
connective tissue (lightly stained) [37]. 

Using the digital processing protocol, Ibrahim explored the potential of vibrational spectroscopy, 
specifically Raman, to monitor the early stage progression of oral cancer [38]. OSCC is commonly 
preceded by a range of cell and tissue alterations, termed dysplasia, which indicate an increased risk 
of malignant transformation. Dysplasia is classified according to severity into mild, moderate, 

severe/ carcinoma in situ. The initial study therefore undertook to attempt to discriminate 



between mild, moderate and severe dysplasia in FFPP tissues from biopsies of 4 patients who 
had undergone multiple biopsies over time [38]. Two maps were taken for each pathology, one 

of epithelium and one of connective tissue. Each consisted of 200 spectral points (~1 m) taken 
at 10 μm intervals. Using a Partial Least Squares, Discriminant Analysis (PLSDA) approach, high 
degrees of sensitivity and specificity were achieved for classification of each grade of dysplasia, 
in both tissue regions (Table 1). 

 
Table 1: Sensitivity and specificity values obtained for the PLSDA classification model 

Expanding the study to a cohort of 57 patients, the spectroscopic differences between benign, 
mild, moderate, severely dysplastic and OSCC FFPP tissues were explored [38, 39]. Although the 
sensitivities and specificities for each grade of dysplasia were in some cases rather low (Table 2), 
the performance was considerably improved by grouping the mild and moderate groups (Table 
3), although clinically, mild is considered low risk while moderate and severe dysplasia are 
considered high risk. 

 

Table 2: Sensitivity and specificity values obtained from PLSDA classification of epithelial tissue.  

 

Table 3:  PLSDA classification of epithelial tissue combining the mild and moderate groups 

As the study was based on a heterogeneous group of patients with different gender, age, habits, 

medical histories and lesion clinical features, the relatively poor performance of the discriminative 

models prompted an investigation of the potential influence of patient factors and clinical features 

on Raman classification, such as smoking, alcohol consumption, and anatomical site Tobacco 

smoke contains carcinogens and has a well established role in the development of both 

dysplastic [40] and malignant [41] oral lesions. Similarly, alcohol consumption has been 

associated with the development of both oral dysplasia [40] and cancer [41]. The incidence of 



oral cancer is higher in males than females [42, 43], which is likely due to habits such as smoking 

and alcohol consumption rather than a genetic predisposition, although the prognosis is the 

same [44]. Gender was not found to have an association with the development of oral dysplastic 

lesions [40]. Further variability can arise because of the different sites of anatomical origin of 

the lesion. Oral cancer refers to any cancer in the oral cavity proper which includes; the tongue, 

labial and buccal mucosa, palate, gingiva, alveolar ridges and floor of the mouth. These areas 

vary in degree of keratinisation, vascularity and lymphatic drainage [44] and thus anatomic site 

may also influence the spectroscopic signatures upon which a classification is to be based.  

Ibrahim et al. used patient metadata to subdivide the sample spectra, regardless of 
histopathological diagnosis, into groups according to gender, smoking habits, alcohol 
consumption and site of lesion [39]. The analysis indicated no discrimination based on gender, or 

alcohol consumption. Although the lesions came from different anatomical sites in the oral cavity, 
including the tongue, buccal mucosa, soft palate, hard palate and labial mucosa, the PLSDA 
classification results were very varied and inclusive, probably due to the low number of samples 
per site, although grouping according to keratinised (tongue and hard palate) and non-
keratinised (soft palate, buccal and labial mucosa) did show some degree of discrimination. A 

degree of discrimination was also evident in the epithelia of 3 groups; non-smoker, ex-smokers 
(previous smokers) and smokers. 

Notably, all the pathologies showed the presence of inflammation, increasingly so with 
increasing severity of dysplasia, consistent with a previous study that has shown increasing 
inflammatory cell infiltration with increasing severity of oral dysplasia and SCC [45]. PLSDA 
indicated a high degree of sensitivity and specificity for discrimination of inflamed vs non-
inflamed for all the pathologies combined, in both epithelial (68% and 70%), and connective 
tissue (77% and 86%). The presence of inflammation in the tumour microenvironment has been 
well documented [46, 47] and is due to multiple factors. The environmental factors that prompt 
carcinogenesis, such as alcohol and smoking, have been shown to trigger an inflammatory 
response [48]. Furthermore, the tumour cells release inflammatory mediators which generate 
an inflammatory microenvironment that promotes cancer growth, invasion and metastasis [49]. 
A study looking at OSCC surgical margins found that inflamed connective tissue was more likely 
to misclassify with SCC than non-inflamed connective tissue [50]. The presence of inflammation, 
particularly in the connective tissue of biopsies, is therefore potentially the most profound 
factor which may confound the diagnostic accuracy of the technique. 

3. Cytology:  

Oral exfoliative cytology could potentially offer a minimally invasive means of monitoring dysplastic 
lesions in the oral cavity. Dysplastic and cancerous cells tend to have fewer and weaker connections 
to each other and to their neighbouring normal cells in the surrounding tissue and thus can easily be 
collected from the surface of the lesion. Oral brush biopsy is a well-tolerated, minimally invasive and 
safe method for harvesting cells from the oral cavity but oral cytology has not been widely adopted 
because of poor sensitivity for identification of dysplasia and cancer [51]. Other techniques, such as 
DNA analysis and molecular markers, such as melanoma associated antigen A (MAGE-A), lamin-5, 
Tenascin-C and epidermal growth factor receptor (EGFR), have been shown to improve the sensitivity 
and specificity of oral cytology [52]. In addition, as oral brush biopsy detects only cellular changes, a 
surgical biopsy coupled with histopathological assessment must be performed for definitive diagnosis 
of oral lesions. While cancerous cells can be collected from the surface, this does not constitute a 
diagnosis, which requires histological proof of breach of basement membrane. Despite this, brush 
biopsy may be very useful for patients with multiple oral lesions or for monitoring OPMDs 



A limited number of FTIR microspectroscopy studies have been reported, demonstrating the feasibility 
of diagnosis of oral cancers using single exfoliated cells prepared by cyto-centrifugation onto low e 
microscope slides [53–57]. Papamarkakis et al. demonstrated that FTIR microspectroscopy could 
classify oral cells according to anatomical site and that the compositional changes were attributed to 
the expression of keratins in the cells of the tongue and to the expression of collagen in the cells of 
the floor of the mouth [54]. In addition, samples from patients with malignancy associated 
abnormalities were observed to be spectrally similar to a sample from a patient with oral squamous 
cell carcinoma, and spectrally distinct from samples from healthy volunteers. Spectral differences in 
oral cells infected with the herpes simplex virus were also reported. Further studies from the same 
group showed that spectra from exfoliated cells from healthy volunteers could be discriminated from 
exfoliated cells from patients with oral dysplasia and cancer [55–57]. 

Similarly, only a limited number of Raman microspectroscopy studies have focussed on oral exfoliated 
cells. Sahu et al. [58] demonstrated discrimination between patients with oral cancer and healthy 
volunteers based on increased DNA and differences in protein secondary structure using pellets of 
oral exfoliated cells and the work was extended to detection of OPMDs [59]. Behl et al. [60] reported 
a new method for Raman microspectroscopy of single oral exfoliated cells prepared as liquid based 
cytology samples onto glass slides. A complete methodology incorporating sample collection, sample 
preparation, spectral acquisition and data pre-processing and analysis was developed (Figure 3). 

 
Figure 3: Optimised protocol for the Raman microspectroscopic study of oral exfoliated cells [60]. 

Further work by Behl et al. [61] analysed brush biopsy cytological samples from healthy donors and 
from patients with OPMDs, leukoplakia, erythroplakia and erythroleukoplakia, showing mild, 
moderate or severe dysplasia on histological analysis. Sensitivities of 94% and 86% and specificity of 
85% were achieved for discrimination between oral exfoliated cells from healthy donors and from 
patients with OPMDs, for spectra recorded from the cytoplasm and nucleus respectively, as shown in 
Figure 4, for the example of cytoplasm. 



 
Figure 4: PLS-DA predictive model for cytoplasm (normal vs lesion) a) score plot, b) Latent variable 1, 
c) predictive model and d) confusion matrix [61]. 

The discrimination was observed to be mainly based on lipidic contributions from the OPMD samples. 
This could be attributed to the fact that, during cell division, cells need energy, and this requirement 
is fulfilled by upregulating the lipid metabolism within the cell. Key spectroscopic features which were 
seen to be prominent in the PCA differentiation of healthy donors and from patients with OPMDs are 
identifiable in the Raman spectra of palmitic acid and C14-Ceramide (Figure 5). It is known that, if 
ceramide synthesis is mediated by a de-novo pathway, it condenses serine and palmitoyl-CoA (beta-
oxidised form of palmitic acid) as precursors in the endoplasmic reticulum [62]. It was demonstrated 
that the differentiating PCA loading, in the region 600-1400 cm-1, could be well fitted by a weighted 
difference of the spectra of palmitic acid and C14-Ceramide. Sphingolipids such as ceramides and 
sphingosine are building blocks for the eukaryotic plasma membrane. They have an important role to 
play in intra- or intercellular messengers, signal transduction, inflammation, angiogenesis, metabolic 
syndrome, neurodegeneration, and cancer/cancer therapy [63]. In mammalian cells, there are >28 
enzymes for ceramide metabolism and about >200 distinct structures. Through this explorative study, 
although there are many other contributing factors to the differentiating loading which were not 
fitted, it was successfully demonstrated that ceramides may play an important role in the 
discrimination of OPMD samples from healthy volunteer samples using Raman microspectroscopy and 
could therefore act as a spectral marker. Furthermore, this study also indicated that, in OPMDs, 
ceramide concentration increases in the cell, allowing differentiation of healthy volunteer samples 
from the OPMD patient samples. 



 
Figure 5: Loading of differentiating principal component for healthy volunteer samples and dysplasia 
samples indicating bands at 1065 and 1130 cm-1, also observed in the Raman spectra of C14-ceramide 
and palmitic acid  

The study also investigated the influence of age, gender, anatomical site, smoking and alcohol 
consumption on the classification model. Age, gender, smoking and alcohol consumption were not 
found to be confounding factors whereas anatomical site was found to influence the classification 
model. Spectra from gingiva and alveolar mucosa were found to be different to spectra from buccal 
mucosa and ventral surface of the tongue (Figure 6). As both gingiva and alveolar mucosa are rich in 
lipids such as ceramides, saturated fatty acids and cholesterol, which act as an antibacterial barrier 
against infection, cells from these sites showed a similar lipidic spectral profile to cells from OPMDs. 
Thus, it was concluded that future studies should use separate classification models for buccal mucosa 
/ tongue and for gingiva / alveolar mucosa, and notably, a PLS-DA model based only on buccal mucosa 
achieved sensitivities and specificities as high as 99% [61]. 

 
Figure 6: a) PLS-DA score plot for nuclear spectra from healthy donors (normal) vs patients (lesions), 
b) depicting anatomical sites [61]. 

Field cancerisation, which can result in multiple OPMDs and in second primary tumours and 
recurrences, has also been investigated in oral cytology samples [59, 64]. In the studies of pellets of 



exfoliated cells, Sahu et al. observed an overlap of spectra of cells from contralateral normal sites and 
spectra from cells from tumour sites in oral cancer patients, indicative of field cancerisation [59]. In 
the study of Behl et al., oral exfoliated cells were collected from healthy volunteers and from patients 
with OPMDs, both from the lesion and from contralateral clinically normal mucosa. The study showed 
that the contralateral normal samples could be classified as spectrally different from the healthy 
volunteer samples and showed spectral features similar to the lesion samples, particularly in patients 
who had developed multiple lesions [64]. The effect of smoking, alcohol consumption, degree of 
dysplasia and gender were explored to understand the factors contributing to the spectral overlap 
between lesion samples and contralateral normal samples but none of these were found to be 
confounding factors. 

4. BioFluid analysis: 

As an alternative to histological and/or cytological biopsies, bodily fluids (e.g. plasma, serum, saliva 
or urine) are emerging as an important source of samples for disease diagnosis and therapeutic 
monitoring, as their collection is relatively simple, largely non-invasive, and cost effective [65–69] 
and analysis of biofluids using IR and Raman spectroscopies for diagnostic applications has become 
increasingly prevalent [70–74]. However, diagnosis based on biofluids does suffer from limitations, 
such as low analyte concentration, longer acquisition time, and is prone to experimental errors. In 
the case of FTIR spectroscopy, the relatively strong water absorption means that samples are usually 
dried before measurement using the Attenuated Total Reflection technique [75], potentially 
impacting significantly on the clinical workflow [76]. In the case of Raman spectroscopy, signal 
enhancement using nanoparticles or surface coatings is an active area of research [77]. 
Nevertheless, it has been demonstrated that quantitative evaluation of high and low molecular 
weight constituents [78–80], as well as exogenous factors such as viruses [81, 82] and 
chemotherapeutic agents [83] can be performed on blood serum, in its native aqueous state [84, 
85]. Concentration of samples using centrifugal filtration devices has been shown to allow 
measurement of the analytes in the native aqueous environment [86]. This also allows fractionation 
according to molecular weight of the constituent analytes, potentially allowing the targeting of 
molecular biomarkers of a disease.  

Raman spectroscopic analysis of blood samples has also been applied to oral cancer diagnostics. It 
has been demonstrated that serum samples from patients that had been diagnosed with buccal 
mucosa and tongue cancer can be distinguished from those from healthy volunteers [87]. Amino 
acids and lipids were the most significant Raman bands identified in the analysis, and an efficacy of 
85% was determined. Raman spectroscopy of serum samples was also able to predict a potential 
reoccurrence of oral cancer [87]. 

In a study of urine samples of healthy subjects and oral cancer patients using Raman spectroscopy, it 
was demonstrated that the technique can provide diagnostic discrimination with an accuracy of 94% 
[88]. Voided raw urine was collected from 167 patients and spectroscopic evaluation revealed 
elevated intensities of features associated with uric acid, specifically C–C stretching at 558 and 649 
cm−1 and N–H stretching at 798 cm−1, in cancer patients compared to healthy volunteers. Four 
Raman bands related to creatinine also showed increases, while the band at 692 cm−1 was only 
present in cancer patients.  

Amongst biofluids, saliva has gained increasing interest as a diagnostic fluid, since it represents a 
non-invasive, safe and cheap source of complex biomolecular information which can easily be 
obtained from the oral cavity [89]. Whole saliva refers to the complex mixture of fluids from the 
salivary glands, the gingival crevice, oral mucosa transudate, in addition to mucus of the nasal cavity 
and pharynx, non-adherent oral bacteria, food debris, desquamated epithelial and blood cells. Saliva 
is composed of more than 99% water. Saliva also contains a variety of electrolytes, including sodium, 
potassium, calcium, magnesium, bicarbonate, and phosphates. Also found in saliva are 
immunoglobulins, proteins, enzymes, mucins, and nitrogenous products, such as urea and ammonia 



[90]. Recent years have seen the development of salivary diagnostic tools to potentially monitor 
various oral diseases, ranging from periodontal diseases, dental caries to infections and autoimmune 
diseases, although saliva may be used not only to potentially detect oral diseases but also systemic 
ones, showing versatility and merit in diagnostic scope. Salivary biomarkers have already shown 
promising results in the diagnosis of many diseases, such as periodontitis [91], HIV [92], Hepatitis B 
[93], and even measles [94]. Immunoassays have been developed to detect secretory IgA and serum-
derived IgG (from crevicular fluid) found in saliva for various diseases, as well as saliva has shown 
potential for hormone and drug screening [95]. 

A systematic review of the literature on vibrational spectroscopic analysis of saliva for diagnostic 
applications was recently performed by Derruau et al. [96–103]. Of the identified relevant studies, 
those relating to oral pathologies were exclusively studied by Raman spectroscopy, and a slightly 
earlier review of the literature reporting analysis of saliva samples for the diagnosis of oral cancer by 
Calado et al. [104] revealed the literature to be very sparse, and that the majority of studies to date 
have been carried out using Surface Enhanced Raman scattering techniques [94]. Values of 
sensitivity, specificity and/or classification efficiency higher than 90% were demonstrated for the 
diagnosis of OSCC. Peaks/bands associated with salivary components such as proteins, glycoproteins 
and lipids were variably identified as potentially associated with the presence of OSCC/oral epithelial 
dysplasia in all the studies reviewed. A more recent study examined different sampling 
methodologies, including air-dried, lyophilised, pellet and supernatant sampling, and concluded that 
the former two forms may be more appropriate for saliva sampling [95]. The method was tested for 
classification of oral cancer and healthy subjects (n= 27), yielding 90 % differentiation efficiency. 

Notable in the reviews of Derruau et al. [105] and Calado et al. [105] is the inconsistency of the 
methodologies employed to date, particularly with regard to the sample collection process. Saliva 
can be either stimulated (e.g. by mastication) or non-stimulated, and the contribution of each 
salivary gland to, and therefore the average compositions of, each can vary significantly. Raman 
analysis of stimulated and non-stimulated saliva from the same donors, however, confirms the 
significance of the different compositions [105]. In terms of clinical workflow, however, collection 
times for non stimulated saliva (10-15 minutes) are significantly longer than those for stimulated 
saliva (2-3 minutes), and so the latter methodology is more favourable for translation to the clinic, 
and was utilised for a proof-of-concept study exploring Raman spectroscopy for identification of 
OPMDs and OSCC [105]. In a study of saliva samples of 45 OPMD/OSCC patients and 45 normal 
volunteer donors, a binary comparison using PLSDA resulted in a sensitivity and specificity of 86% 
and 89%, respectively. Efforts to classify the OPMDs vs OSCC groups, and mild/moderate/severe 
dysplasia subgroups of OPMD, resulted in significantly lower sensitivity/specificity, although it 
should be noted that, as the patient numbers were rather limited, and even more so when 
subdivided into grades, the analysis was necessarily performed on very imbalanced data pairs of 
subsets which can impact the data analysis protocol. However, using a randomised selection process 
to balance the datasets, sensitivity and specificity of 75% and 72% were achieved for classification of 
the OPMDs vs OSCC groups [106]. The influence of patient factors and potential confounding factors 
on the Raman spectroscopic classification through saliva analysis was also explored in the same 
dataset. Partial least squares discriminant analysis did not show any statistical influence of the 
gender, age profile or alcohol consumption habits of the groups, although it was noticeable that the 
smoker control and patient groups seemed to exhibit a high degree of misclassification, which could 
represent a possible confounding factor for the misdiagnosis of smokers as having dysplasia [30].  

5. In Vivo: 

Although IR spectroscopy provides a detailed fingerprint of the biochemical content of a sample, it 
has predominantly been used for the analysis of human tissues ex vivo. Its application to in vivo 
diagnosis is limited, because of the short penetration depth and the relatively strong IR absorption 
of water in both the fingerprint (~1640 cm-1) and high wavenumber (~3200-3300 cm-1) regions of the 



spectrum. Conventional optical fibers have limited transparency in the infrared region, and, although 
mid-infrared probes have been explored for in vivo applications [107], Raman spectroscopy is 
generally considered a more favourable option for in vivo applications [108]. Using fiber optic 
probes, Guze et al. undertook an in vivo Raman spectroscopy study to establish whether the 
spectroscopic signatures of normal oral mucosa are reproducible across different anatomic sites and 
subjects of different race and gender [109]. Spectroscopic sampling of the; buccal mucosa, gingiva, 
dorsal and ventral surfaces of the tongue, floor of the mouth, mucosa of the lower lip, and hard 
palate, indicated that different sites are differentiated on the basis of degree of keratinisation. 
Bergholt et al. [110] performed a more detailed characterisation of the in vivo Raman spectroscopic 
profiles of a similar range of anatomical regions, fitting of the spectra with those of reference 
biochemical constituents. The study concluded that the histological and morphological 
characteristics of the different sites have a significant influence on the in vivo Raman profiles, and 
demonstrated, using partial least squares-discriminant analysis, that the different sites can be 
classified with an accuracy of ~85%. Sahu et al. [111] demonstrated that in vivo Raman spectroscopy 
methods can also be utilised to understand age-related changes in the oral mucosa. Singh et al. [112] 
verified that such in vivo analyses can be performed within clinically feasible timeframes and notably 
the potential to differentiate normal and pathologically abnormal regions was demonstrated, 
despite the anatomical variability [113], while a further study explored tobacco-induced cancer field 
effects in the oral mucosa [114].  

Inadequate resection margins in oral cancer surgery increase the likelihood of local recurrence [50]. 
The use of Raman spectroscopy as an aid in delineation of surgical margins has been explored 
extensively in recent years [115], and notably it has been shown that OSCC can be discriminated 
from surrounding normal structures with a high degree of accuracy, although it is more likely to 
misclassify with surrounding normal and dysplastic epithelium [116]. Water concentration was found 
to be higher in tumours compared to the surrounding normal tissue, therefore potentially acting as 
an in vivo guide to surgical resection [117]. An in-vivo study by Malik et al. even found that Raman 
spectroscopy can predict local recurrence in oral cancers with a sensitivity of 80% and specificity of 
30% [118]. 

6. Discussion and Future Perspectives 

In the various areas of potential clinical application, vibrational spectroscopies have been 

demonstrated to hold much promise in the identification, diagnosis and treatment of oral cancers, at 

least at the proof of concept level. In addition to identification of the presence of disease, the 

techniques can potentially differentiate between high grade (moderate/severe dysplasia) and low 

grade (no/mild dysplasia) lesions, and between dysplasia and inflammation. It is important to 

consider, however, the relative merits of the techniques, and the potential for achieving their 

translation. In all cases, both IR absorption and Raman spectroscopies offer the benefits of being 

label free, non destructive, and capable of delivering an objective analysis which is based on the 

biomolecular composition of the sample, which can be manifest at the early stages of the disease 

development, rather than morphological changes, the assessment of which can be subjective, and 

manifest only at the later stages of disease progression. 

In the case of analysis of tissue biopsies, imaging or mapping of considerably large areas is required, 

which is time consuming, and computationally intensive. The former consideration probably favours 

the use of IR absorption techniques. The incorporation of Focal Plane Array detectors in FTIR 

microscopes enables the simultaneous acquisition of several thousands of spectra [119] and the 

more recent emergence of tuneable IR quantum cascade laser spectrometer systems potentially 

offers a further step change in data acquisition and processing speeds, which renders the feasibility 

of rapid screening of large tissue areas more credible [120]. In comparison, the lower spatial 

resolution and/or challenge of the relatively low signal to noise of Raman microspectroscopy makes 



it difficult for the technique to rapidly screen large areas. Notably, however, the similarly emerging 

techniques of Coherent Raman Scattering (CRS) [121] provide enhancement of signals by several 

orders of magnitude and are capable of rapid 3D mapping of bio-molecules with sub-micron 

resolution [122]. CRS microscopy can be implemented by recording the coherent anti-Stokes Raman 

scattering (CARS) or stimulated Raman scattering (SRS) signal, and both modalities have been 

explored for clinical and biological studies[123], including rapid, in-situ label-free acquisition of H&E 

like images based on the ratio of Raman signals at 2930 and 2845 cm-1, reflecting the different lipid 

and protein contents [124]. The debate on the relative merits of the two techniques for rapid 

screening of histological samples continues, therefore. An important consideration in the 

applications of such label free techniques to tissue based diagnostics, however, is the observation of 

confounding factors of inflammation in the connective tissue, smoking status, and anatomical site. 

The higher intrinsic spatial resolution of Raman microspectroscopy makes it more amenable to the 

less invasive cytological applications, and the methodologies based on exfoliated cells are readily 

adaptable from cervical cytology, which is well established in clinical screening programmes 

internationally, with minimal interruption of workflow [125]. The subcellular regions of nucleus and 

cytoplasm can be interrogated independently, and it has been observed that they afford 

comparable, high degrees of sensitivity and specificity of diagnosis [86]. Cytological based diagnosis 

can notoriously lead to false negative results, due to the sparsity of morphologically abnormal cells 

on the slide, and consequently low sensitivities [126]. Critically, however, in both cervical [76] and 

oral [86] cytological samples, it has been demonstrated that morphologically normal cells exhibit 

abnormal Raman spectroscopic signatures which can be associated with early onset of disease, 

resulting in significantly increased sensitivities compared to morphologically based cytological 

diagnostic tests. Anatomical site was seen to be the most obvious potential confounding factor, but 

it was argued that independent multivariate prediction models can be constructed for keratinised 

and non-keratinised anatomical regions. The ability to detect and identify field cancerisation 

presents the possibility to predict the recurrence of multiple lesions. 

Saliva represents an even less invasive “liquid biopsy” which shows potential for oral cancer 

diagnostics, and can readily be probed using either IR or Raman spectroscopy. The differences in 

diagnostic potential of stimulated and non-stimulated saliva samples has to date not fully been 

explored, and critically the relative influences of systemic or localised oral disease on their 

biochemical compositions, which could compromise the specificity of the diagnosis, is not yet clear. 

Within the context of the increasing application of vibrational spectroscopic techniques for 

diagnostic screening of biofluids, IR has the disadvantage that the requirement of drying can 

interrupt the clinical workflow [76], although Raman analysis of biofluids also commonly employs a 

concentration step, for example through centrifugal filtration [86]. 

In terms of computational aspects, histopathological applications are probably the most demanding. 

Both IR and Raman mapping can generate large datasets, the recording, preprocessing and analysis 

of which can take hours [125]. For all applications, however, once a reference database to establish 

a predictive model has been, comparative screening of an individual sample is relatively rapid, and 

“chairside” in vitro analysis could potentially be performed in quasi realtime. In the case of either 

cytological or biofluid based diagnostic applications, a real significant impact would be the ability to 

implement the screening in vivo, or “chairside”, as part of a routine dental or oral hygiene check-up, 

or post treatment follow up clinics. In terms of initial capital costs, this makes ATR-FTIR a more 

attractive alternative to that of Raman. Nevertheless, more compact, less expensive, but 

high specification Raman microscopic systems for cytological applications are becoming 

increasingly available, and significantly lower cost fiber based options may be a viable 



alternative for biofluid analysis, reducing capital costs to ~€10-20k, comparable to those of 

compact ATR-FTIR instruments. Of course, the ability of such systems to provide sufficient 

sensitivity and specificity would potentially enable routine chairside in vivo screening of oral 

lesions and the requirement for invasive biopsies could be reduced. This technology could also 

be used to assist in directing the clinician to the most appropriate biopsy site in the case of extensive 

oral lesions or for intra-operative assessment of surgical margins.  

Acknowledgements 
Aspects of the work referred to or reproduced in this review were funded by Science Foundation 

Ireland (12/IP/1494), Dublin Institute of Technology Fiosraigh Postgraduate Scholarship Scheme, and 

Science without Borders (Brazil). 

References 
 

1.         Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 

70:7–30 . https://doi.org/10.3322/caac.21590 

2.         Poh CF, Macaulay CE, Laronde DM, Michele Williams P, Zhang L, Rosin MP (2011) Squamous 

cell carcinoma and precursor lesions: Diagnosis and screening in a technical era. 

Periodontology 2000 57:73–88 . https://doi.org/10.1111/j.1600-0757.2011.00386.x 

3.         Hussein AA, Helder MN, de Visscher JG, Leemans CR, Braakhuis BJ, de Vet HCW, Forouzanfar T 

(2017) Global incidence of oral and oropharynx cancer in patients younger than 45 years 

versus older patients: A systematic review. European Journal of Cancer 82:115–127 . 

https://doi.org/10.1016/j.ejca.2017.05.026 

4.         Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Paula Curado M, Ferlay J, Franceschi S, 

Rosenberg PS, Bray F, Gillison ML (2013) Worldwide trends in incidence rates for oral cavity 

and oropharyngeal cancers. Journal of Clinical Oncology 31:4550–4559 . 

https://doi.org/10.1200/JCO.2013.50.3870 

5.         Bánóczy J (1997) Oral cancer and precancerous lesions. Fogorvosi szemle 90 Spec No:27 . 

https://doi.org/10.3322/canjclin.52.4.195 

6.         Varela-Centelles P, López-Cedrún JL, Fernández-Sanromán J, Seoane-Romero JM, Santos de 

Melo N, Álvarez-Nóvoa P, Gómez I, Seoane J (2017) Key points and time intervals for early 

diagnosis in symptomatic oral cancer: a systematic review. International Journal of Oral and 

Maxillofacial Surgery 46:1–10 . https://doi.org/10.1016/j.ijom.2016.09.017 

7.         Genden EM, Ferlito A, Silver CE, Takes RP, Suárez C, Owen RP, Haigentz M, Stoeckli SJ, Shaha 

AR, Rapidis AD, Rodrigo JP, Rinaldo A (2010) Contemporary management of cancer of the oral 

cavity. European Archives of Oto-Rhino-Laryngology 267:1001–1017 . 

https://doi.org/10.1007/s00405-010-1206-2 

8.         Massano J, Regateiro FS, Januário G, Ferreira A (2006) Oral squamous cell carcinoma: Review 

of prognostic and predictive factors. Oral Surgery, Oral Medicine, Oral Pathology, Oral 

Radiology and Endodontology 102:67–76 

9.         Schneider IJC, Flores ME, Nickel DA, Martins LGT, Traebert J (2014) Sobrevida de pacientes 

com câncer de lábio, boca e faringe: Um estudo de coorte de 10 anos. Revista Brasileira de 

Epidemiologia 17:680–691 . https://doi.org/10.1590/1809-4503201400030009 



10.        Varela P, Manuel J, Gmez I, Diz-Dios P, de Melo NS, Seoane J (2012) Timing of Oral Cancer 

Diagnosis: Implications for Prognosis and Survival. In: Oral Cancer. InTech 

11.        Singh SP, Ibrahim O, Byrne HJ, Mikkonen JW, Koistinen AP, Kullaa AM, Lyng FM (2016) Recent 

advances in optical diagnosis of oral cancers: Review and future perspectives. Head and Neck 

38:E2403–E2411 

12.        Byrne HJ, Sockalingum GD, Stone N (2011) Raman microscopy: Complement or competitor? 

In: RSC Analytical Spectroscopy SeriesDevelopment of a high throughput (HT) Raman 

spectroscopy method for rapid screening of liquid blood plasma from prostate cancer 

patients 

13.        Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljković M, Krafft C, Popp J (2013) Molecular 

pathology via IR and Raman spectral imaging. Journal of Biophotonics 6:855–886 

14.        Schultz CP, Liu KZ, Kerr PD, Manisch HH (1998) In situ infrared histopathology of 

keratinization in human oral/oropharyngeal squamous cell carcinoma. Oncology Research 

10:277–286 

15.        Schultz CP, Mantsch HH (1998) Biochemical imaging and 2D classification of keratin pearl 

structures in oral squamous cell carcinoma. Cellular and molecular biology (Noisy-le-Grand, 

France) 44:203–210 

16.        Wu JG, Xu YZ, Sun CW, Soloway RD, Xu DF, Wu QG, Sun KH, Weng SF, Xu GX (2001) 

Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques. 

Biopolymers - Biospectroscopy Section 62:185–192 . https://doi.org/10.1002/bip.1013 

17.        Fukuyama Y, Yoshida S, Yanagisawa S, Shimizu M (1999) A study on the differences between 

oral squamous cell carcinomas and normal oral mucosas measured by Fourier transform 

infrared spectroscopy. Biospectroscopy 5:117–126 . https://doi.org/10.1002/(SICI)1520-

6343(1999)5:2<117::AID-BSPY5>3.0.CO;2-K 

18.        Bruni P, Conti C, Giorgini E, Pisani M, Rubini C, Tosi G (2004) Histological and microscopy FT-

IR imaging study on the proliferative activity and angiogenesis in head and neck tumours. 

Faraday Discussions 126:19–26 . https://doi.org/10.1039/b306787b 

19.        Krishnakumar N, Sulfikkarali NK, Manoharan S, Nirmal RM (2013) Screening of 

chemopreventive effect of naringenin-loaded nanoparticles in DMBA-induced hamster buccal 

pouch carcinogenesis by FT-IR spectroscopy. Molecular and Cellular Biochemistry 382:27–36 . 

https://doi.org/10.1007/s11010-013-1715-6 

20.        Bakker Schut TC, Witjes MJH, Sterenborg HJCM, Speelman OC, Roodenburg JLN, Marple ET, 

Bruining HA, Puppels GJ (2000) In vivo detection of dysplastic tissue by Raman spectroscopy. 

Analytical Chemistry 72:6010–6018 . https://doi.org/10.1021/ac000780u 

21.        Venkatakrishna K, Kurien J, Pai KM, Valiathan M, Kumar NN, Krishna CM, Ullas G, Kartha VB 

(2001) Optical pathology of oral tissue: A Raman spectroscopy diagnostic method. Current 

Science 80:665–669 

22.        Malini R, Venkatakrishna K, Kurien J, Pai KM, Rao L, Kartha VB, Krishna CM (2006) 

Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman 

spectroscopy study. Biopolymers 81:179–193 . https://doi.org/10.1002/bip.20398 



23.        Cals FLJ, Bakker Schut TC, Koljenovic ̈S, Puppels GJ, de Jong RJB (2013) Method development: 

Raman spectroscopy-based histopathology of oral mucosa. Journal of Raman Spectroscopy 

44:963–972 . https://doi.org/10.1002/jrs.4318 

24.        Behl I, Kukreja L, Deshmukh A, Singh SP, Mamgain H, Hole AR, Krishna CM (2014) Raman 

mapping of oral buccal mucosa: a spectral histopathology approach. Journal of Biomedical 

Optics 19:126005 . https://doi.org/10.1117/1.JBO.19.12.126005 

25.        Sunder NS, Rao N, Kartha V, Ullas G, Kurien J (2009) Laser Raman spectroscopy: A novel 

diagnostic tool for oral cancer. Journal of Orofacial Sciences 1:40–42 

26.        Cals FLJ, Koljenović S, Hardillo JA, Baatenburg de Jong RJ, Bakker Schut TC, Puppels GJ (2016) 

Development and validation of Raman spectroscopic classification models to discriminate 

tongue squamous cell carcinoma from non-tumorous tissue. Oral Oncology 60:41–47 . 

https://doi.org/10.1016/j.oraloncology.2016.06.012 

27.        Cals FLJ, Bakker Schut TC, Caspers PJ, Baatenburg De Jong RJ, Koljenović S, Puppels GJ (2018) 

Raman spectroscopic analysis of the molecular composition of oral cavity squamous cell 

carcinoma and healthy tongue tissue. Analyst 143:4090–4102 . 

https://doi.org/10.1039/c7an02106b 

28.        Jeng M-J, Sharma M, Sharma L, Chao T-Y, Huang S-F, Chang L-B, Wu S-L, Chow L (2019) 

Raman Spectroscopy Analysis for Optical Diagnosis of Oral Cancer Detection. Journal of 

Clinical Medicine 8:1313 . https://doi.org/10.3390/jcm8091313 

29.        Yu M, Yan H, Xia J, Zhu L, Zhang T, Zhu Z, Lou X, Sun G, Dong M (2019) Deep convolutional 

neural networks for tongue squamous cell carcinoma classification using Raman 

spectroscopy. Photodiagnosis and Photodynamic Therapy 26:430–435 . 

https://doi.org/10.1016/j.pdpdt.2019.05.008 

30.        Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM, Lasch P, Heraud P, Sulé-Suso 

J, Sockalingum GD (2015) Spectropathology for the next generation: Quo vadis? Analyst 

140:2066–2073 . https://doi.org/10.1039/c4an02036g 

31.        Baker MJ, Byrne HJ, Chalmers J, Gardner P, Goodacre R, Henderson A, Kazarian SG, Martin FL, 

Moger J, Stone N, Sulé-Suso J (2018) Clinical applications of infrared and Raman 

spectroscopy: State of play and future challenges. Analyst 143:1735–1757 . 

https://doi.org/10.1039/c7an01871a 

32.        Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, 

Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-

Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR 

spectroscopy to analyze biological materials. Nature Protocols 9:1771–1791 . 

https://doi.org/10.1038/nprot.2014.110 

33.        Ó Faoláin E, Hunter MB, Byrne JM, Kelehan P, Lambkin HA, Byrne HJ, Lyng FM (2005) Raman 

spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents. Journal 

of Histochemistry and Cytochemistry 53:121–129 . https://doi.org/10.1369/jhc.4A6536.2005 

34.        Fullwood LM, Griffiths D, Ashton K, Dawson T, Lea RW, Davis C, Bonnier F, Byrne HJ, Baker MJ 

(2014) Effect of substrate choice and tissue type on tissue preparation for spectral 

histopathology by Raman microspectroscopy. Analyst 139:446–454 . 

https://doi.org/10.1039/c3an01832f 



35.        Tfayli A, Gobinet C, Vrabie V, Huez R, Manfait M, Piot O (2009) Digital dewaxing of Raman 

signals: Discrimination between nevi and melanoma spectra obtained from paraffin-

embedded skin biopsies. Applied Spectroscopy 63:564–570 . 

https://doi.org/10.1366/000370209788347048 

36.        Pallua JD, Pezzei C, Zelger B, Schaefer G, Bittner LK, Huck-Pezzei VA, Schoenbichler SA, Hahn 

H, Kloss-Brandstaetter A, Kloss F, Bonn GK, Huck CW (2012) Fourier transform infrared 

imaging analysis in discrimination studies of squamous cell carcinoma. Analyst 137:3965–

3974 . https://doi.org/10.1039/c2an35483g 

37.        Ibrahim O, Maguire A, Meade ADD, Flint S, Toner M, Byrne HJJ, Lyng FMM (2017) Improved 

protocols for pre-processing Raman spectra of formalin fixed paraffin preserved tissue 

sections. Analytical Methods 9:4709–4717 . https://doi.org/10.1039/c6ay03308c 

38.        Ibrahim O (2017) The Potential of Raman Spectroscopy in the Diagnosis of Premalignant Oral 

Lesions Premalignant Oral Lesions. Technological University Dublin 

39.        Ibrahim O., Toner M., Flint S., Byrne H.J. LFM (2020) The potential of Raman spectroscopy in 

the diagnosis of dysplastic and malignant oral lesions. Cancers (submitted: 

40.        Jaber MA, Porter SR, Gilthorpe MS, Bedi R, Scully C (1999) Risk factors for oral epithelial 

dysplasia - The role of smoking and alcohol. Oral Oncology 35:151–156 . 

https://doi.org/10.1016/S1368-8375(98)00106-7 

41.        Hashibe M, Brennan P, Benhamou S, Castellsague X, Chen C, Curado MP, Maso LD, Daudt 

AW, Fabianova E, Wünsch-Filho V, Franceschi S, Hayes RB, Herrero R, Koifman S, la Vecchia C, 

Lazarus P, Levi F, Mates D, Matos E, Menezes A, Muscat J, Eluf-Neto J, Olshan AF, Rudnai P, 

Schwartz SM, Smith E, Sturgis EM, Szeszenia-Dabrowska N, Talamini R, Wei Q, Winn DM, 

Zaridze D, Zatonski W, Zhang ZF, Berthiller J, Boffetta P (2007) Alcohol drinking in never users 

of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: Pooled 

analysis in the international head and neck cancer epidemiology consortium. Journal of the 

National Cancer Institute 99:777–789 . https://doi.org/10.1093/jnci/djk179 

42.        Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Paula Curado M, Ferlay J, Franceschi S, 

Rosenberg PS, Bray F, Gillison ML (2013) Worldwide trends in incidence rates for oral cavity 

and oropharyngeal cancers. Journal of Clinical Oncology 31:4550–4559 . 

https://doi.org/10.1200/JCO.2013.50.3870 

43.        Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 

2012. CA: A Cancer Journal for Clinicians 65:87–108 . https://doi.org/10.3322/caac.21262 

44.        Massano J, Regateiro FS, Januário G, Ferreira A (2006) Oral squamous cell carcinoma: Review 

of prognostic and predictive factors. Oral Surgery, Oral Medicine, Oral Pathology, Oral 

Radiology and Endodontology 102:67–76 . https://doi.org/10.1016/j.tripleo.2005.07.038 

45.        Mashhadiabbas F, Fayazi-Boroujeni M (2017) Correlation of vascularization and inflammation 

with severity of oral Leukoplakia. Iranian Journal of Pathology 12:225–230 . 

https://doi.org/10.30699/ijp.2017.25044 

46.        Negus RPM, Stamp GWH, Hadley J, Balkwill FR (1997) Quantitative assessment of the 

leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C 

chemokines. American Journal of Pathology 150:1723–1734 



47.        Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: Mechanisms 

and clinical impact. Seminars in Cancer Biology 21:131–138 

48.        Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M (2010) Tobacco Smoke Promotes Lung 

Tumorigenesis by Triggering IKKβ- and JNK1-Dependent Inflammation. Cancer Cell 17:89–97 . 

https://doi.org/10.1016/j.ccr.2009.12.008 

49.        Feller L, Altini M, Lemmer J (2013) Inflammation in the context of oral cancer. Oral Oncology 

49:887–892 . https://doi.org/10.1016/j.oraloncology.2013.07.003 

50.        Cals FLJ, Bakker Schut TC, Hardillo JA, Baatenburg De Jong RJ, Koljenović S, Puppels GJ (2015) 

Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical 

margins. Laboratory Investigation 95:1186–1196 . https://doi.org/10.1038/labinvest.2015.85 

51.        H. Alsarraf A, Kujan O, Farah CS (2018) The utility of oral brush cytology in the early detection 

of oral cancer and oral potentially malignant disorders: A systematic review. Journal of Oral 

Pathology and Medicine 47:104–116 . https://doi.org/10.1111/jop.12660 

52.        Mehrotra R (2012) The role of cytology in oral lesions: A review of recent improvements. 

Diagnostic Cytopathology 40:73–83 . https://doi.org/10.1002/dc.21581 

53.        Diem M, Papamarkakis K, Schubert J, Bird B, Romeo MJ, Miljković M (2009) The infrared 

spectral signatures of disease: extracting the distinguishing spectral features between normal 

and diseased states. Applied Spectroscopy 63:307A-318A . 

https://doi.org/10.1366/000370209789806894 

54.        Papamarkakis K, Bird B, Schubert JM, Miljković M, Wein R, Bedrossian K, Laver N, Diem M 

(2010) Cytopathology by optical methods: Spectral cytopathology of the oral mucosa. 

Laboratory Investigation 90:589–598 . https://doi.org/10.1038/labinvest.2010.1 

55.        Diem M, Miljković M, Bird B, Mazur AI, Schubert JM, Townsend D, Laver N, Almond M, Old O 

(2016) Cancer screening via infrared spectral cytopathology (SCP): Results for the upper 

respiratory and digestive tracts. Analyst 141:416–428 . https://doi.org/10.1039/c5an01751c 

56.        Miljković M, Bird B, Lenau K, Mazur AI, Diem M (2013) Spectral cytopathology: New aspects 

of data collection, manipulation and confounding effects. Analyst 138:3975–3982 . 

https://doi.org/10.1039/c3an00185g 

57.        Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljković M, Krafft C, Popp J (2013) Molecular 

pathology via IR and Raman spectral imaging. Journal of Biophotonics 6:855–886 . 

https://doi.org/10.1002/jbio.201300131 

58.        Sahu A, Tawde S, Pai V, Gera P, Chaturvedi P, Nair S, Krishna CM (2015) Raman spectroscopy 

and cytopathology of oral exfoliated cells for oral cancer diagnosis. Analytical Methods 

7:7548–7559 . https://doi.org/10.1039/c5ay00954e 

59.        Sahu A, Gera P, Pai V, Dubey A, Tyagi G, Waghmare M, Pagare S, Mahimkar M, Murali Krishna 

C (2017) Raman exfoliative cytology for oral precancer diagnosis. Journal of Biomedical Optics 

22:1 . https://doi.org/10.1117/1.jbo.22.11.115003 

60.        Behl I, Calado G, Ibrahim O, Malkin A, Flint S, Byrne HJ, Lyng FM (2017) Development of 

methodology for Raman microspectroscopic analysis of oral exfoliated cells. Analytical 

Methods 9:937–948 . https://doi.org/10.1039/c6ay03360a 



61.        Behl I, Calado G, Malkin A, Flint S, Galvin S, Healy CM, Pimentel ML, Byrne HJ, Lyng FM (2020) 

A pilot study for early detection of oral premalignant diseases using oral cytology and Raman 

micro-spectroscopy: Assessment of confounding factors. Journal of Biophotonics. 

https://doi.org/10.1002/jbio.202000079 

62.        Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: From 

synthesis to breakdown. Advances in Experimental Medicine and Biology 688:1–23 . 

https://doi.org/10.1007/978-1-4419-6741-1_1 

63.        Hannun YA, Obeid LM (2011) Many ceramides. Journal of Biological Chemistry 286:27855–

27862 . https://doi.org/10.1074/jbc.R111.254359 

64.        Behl I, Calado G, Vishwakarma A, Flint S, Galvin S, Healy CM, Leite Pimentel M, Malkin A, 

Byrne HJ, Lyng FM (2020) Raman microspectroscopic study for the detection of oral field 

cancerisation using brush biopsy samples. Journal of Biophotonics 13: . 

https://doi.org/10.1002/jbio.202000131 

65.        Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW (2013) Salivary 

biomarkers: Toward future clinical and diagnostic utilities. Clinical Microbiology Reviews 

26:781–791 . https://doi.org/10.1128/CMR.00021-13 

66.        Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) 

Biomarkers: Mining the biofluid proteome. Molecular and Cellular Proteomics 4:409–418 . 

https://doi.org/10.1074/mcp.M500006-MCP200 

67.        Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, Field E, Schatz CR, 

Estock MA, Ahmed N, Anderson NG, Steiner S (2004) Characterization of the human urinary 

proteome: A method for high-resolution display of urinary proteins on two-dimensional 

electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4:1159–

1174 . https://doi.org/10.1002/pmic.200300661 

68.        Pieper R, Gatlin CL, Makusky AJ, Russo PS, Schatz CR, Miller SS, Su Q, McGrath AM, Estock 

MA, Parmar PP, Zhao M, Huang ST, Zhou J, Wang F, Esquer-Blasco R, Anderson NL, Taylor J, 

Steiner S (2003) The human serum proteome: Display of nearly 3700 chromatographically 

separated protein spots on two-dimensional electrophoresis gels and identification of 325 

distinct proteins. Proteomics 3:1345–1364 . https://doi.org/10.1002/pmic.200300449 

69.        Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6:6326–6353 

. https://doi.org/10.1002/pmic.200600284 

70.        Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, Thiéfin G, 

Sockalingum GD (2016) Developing and understanding biofluid vibrational spectroscopy: A 

critical review. Chemical Society Reviews 45:1803–1818 . https://doi.org/10.1039/c5cs00585j 

71.        Goodacre R, Baker MJ, Graham D, Schultz ZD, Diem M, Marques MP, Cinque G, Vernooij R, 

Sulé-Suso J, Byrne HJ, Faulds K, Hermes M, Fleming H, Bonifacio A, Dluhy R, Gardner P, El-

Mashtoly S, Wood B, Gough K, Fornasaro S, Kazarian S, Jamieson L, Petrich W, Sockalingum 

GD, Stone N, Kendall C, Sinjab F, Haris P, Subaihi A, Remiszewski S, Hellwig P, Sergo V, 

Gerwert K, Phillips C, Campbell CJ (2016) Biofluids and other techniques: general discussion. 

Faraday Discussions 187:575–601 . https://doi.org/10.1039/C6FD90014C 



72.        Leal LB, Nogueira MS, Canevari RA, Carvalho LFCS (2018) Vibration spectroscopy and body 

biofluids: Literature review for clinical applications. Photodiagnosis and Photodynamic 

Therapy 24:237–244 . https://doi.org/10.1016/j.pdpdt.2018.09.008 

73.        Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL (2014) Vibrational 

spectroscopy of biofluids for disease screening or diagnosis: Translation from the laboratory 

to a clinical setting. Journal of Biophotonics 7:153–165 . 

https://doi.org/10.1002/jbio.201400018 

74.        Bunaciu AA, Fleschin Ş, Hoang VD, Aboul-Enein HY (2017) Vibrational Spectroscopy in Body 

Fluids Analysis. Critical Reviews in Analytical Chemistry 47:67–75 . 

https://doi.org/10.1080/10408347.2016.1209104 

75.        Butler HJ, Brennan PM, Cameron JM, Finlayson D, Hegarty MG, Jenkinson MD, Palmer DS, 

Smith BR, Baker MJ (2019) Development of high-throughput ATR-FTIR technology for rapid 

triage of brain cancer. Nature Communications 10:1–9 . https://doi.org/10.1038/s41467-019-

12527-5 

76.        Cameron JM, Butler HJ, Palmer DS, Baker MJ (2018) Biofluid spectroscopic disease 

diagnostics: A review on the processes and spectral impact of drying. Journal of Biophotonics 

11:1–12 . https://doi.org/10.1002/jbio.201700299 

77.        El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and 

absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: 

Applications in oral cancer. Nano Letters 5:829–834 . https://doi.org/10.1021/nl050074e 

78.        Parachalil DR, Brankin B, McIntyre J, Byrne HJ (2018) Raman spectroscopic analysis of high 

molecular weight proteins in solution-considerations for sample analysis and data pre-

processing. Analyst 143:5987–5998 . https://doi.org/10.1039/c8an01701h 

79.        Parachalil DR, Bruno C, Bonnier F, Blasco H, Chourpa I, McIntyre J, Byrne HJ (2019) Raman 

spectroscopic screening of high and low molecular weight fractions of human serum. Analyst 

144:4295–4311 . https://doi.org/10.1039/c9an00599d 

80.        Parachalil DR, Bruno C, Bonnier F, Blasco H, Chourpa I, Baker MJ, McIntyre J, Byrne HJ (2019) 

Analysis of bodily fluids using vibrational spectroscopy: A direct comparison of Raman 

scattering and infrared absorption techniques for the case of glucose in blood serum. Analyst 

144:3334–3346 . https://doi.org/10.1039/c9an00125e 

81.        Mahmood T, Nawaz H, Ditta A, Majeed MI, Hanif MA, Rashid N, Bhatti HN, Nargis HF, Saleem 

M, Bonnier F, Byrne HJ (2018) Raman spectral analysis for rapid screening of dengue 

infection. 200:136–142 . https://doi.org/10.1016/j.saa.2018.04.018 

82.        Nawaz H, Rashid N, Saleem M, Asif Hanif M, Irfan Majeed M, Amin I, Iqbal M, Rahman M, 

Ibrahim O, Baig SM, Ahmed M, Bonnierg F, Byrnee HJ (2017) Prediction of viral loads for 

diagnosis of hepatitis C infection in human plasma samples using raman spectroscopy 

coupled with partial least squares regression analysis. Journal of Raman Spectroscopy 

48:697–704 . https://doi.org/10.1002/jrs.5108 

83.        Parachalil DR, Commerford D, Bonnier F, Chourpa I, McIntyre J, Byrne HJ (2019) Raman 

spectroscopy as a potential tool for label free therapeutic drug monitoring in human serum: 

The case of busulfan and methotrexate. Analyst 144:5207–5214 . 

https://doi.org/10.1039/c9an00801b 



84.        Parachalil DR, McIntyre J, Byrne HJ (2020) Potential of Raman spectroscopy for the analysis 

of plasma/serum in the liquid state: recent advances. Analytical and Bioanalytical Chemistry 

412:1993–2007 . https://doi.org/10.1007/s00216-019-02349-1 

85.        Byrne HJ, Bonnier F, McIntyre J, Parachalil DR (2020) Quantitative analysis of human blood 

serum using vibrational spectroscopy. Clinical Spectroscopy 2:100004 . 

https://doi.org/10.1016/j.clispe.2020.100004 

86.        Bonnier F, Petitjean F, Baker MJ, Byrne HJ (2014) Improved protocols for vibrational 

spectroscopic analysis of body fluids. Journal of Biophotonics 7:167–179 . 

https://doi.org/10.1002/jbio.201300130 

87.        Sahu A, Sawant S, Mamgain H, Krishna CM (2013) Raman spectroscopy of serum: An 

exploratory study for detection of oral cancers. The Analyst 138:4161 . 

https://doi.org/10.1039/c3an00308f 

88.        Elumalai B, Prakasarao A, Ganesan B, Dornadula K, Ganesan S (2014) Raman spectroscopic 

characterization of urine of normal and oral cancer subjects. Journal of Raman Spectroscopy 

46:84–93 . https://doi.org/10.1002/jrs.4601 

89.        Miller CS, King CP, Langub MC, Kryscio RJ, Thomas M v. (2006) Salivary biomarkers of existing 

periodontal disease: A cross-sectional study. Journal of the American Dental Association 

137:322–329 . https://doi.org/10.14219/jada.archive.2006.0181 

90.        Ndembi N, Ngansop C, Moudourou S, Tagny CT, Abimiku A, Mbanya DS, Kaptue LN (2011) 

Can oral fluid testing be used to replace blood-based HIV rapid testing to scale up access to 

diagnosis and treatment in cameroon? Journal of Acquired Immune Deficiency Syndromes 

56: . https://doi.org/10.1097/QAI.0b013e31820a9d1d 

91.        Fisker N, Georgsen J, Stolborg T, Khalil MR, Christensen PB (2002) Low hepatitis B prevalence 

among pre-school children in Denmark: Saliva anti-HBc screening in day care centres. Journal 

of Medical Virology 68:500–504 . https://doi.org/10.1002/jmv.10242 

92.        Nigatu W, Jin L, Cohen BJ, Nokes DJ, Etana M, Cutts FT, Brown DWG (2001) Measles virus 

strains circulating in Ethiopia in 1998-1999: Molecular characterisation using oral fluid 

samples and identification of a new genotype. Journal of Medical Virology 65:373–380 . 

https://doi.org/10.1002/jmv.2044 

93.        Cone EJ, Presley L, Lehrer M, Seiter W, Smith M, Kardos KW, Fritch D, Salamone S, Niedbala 

RS (2002) Oral fluid testing for drugs of abuse: Positive prevalence rates by interceptTM 

immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations. 

Journal of Analytical Toxicology 26:541–546 . https://doi.org/10.1093/jat/26.8.541 

94.        Derruau S, Robinet J, Untereiner V, Piot O, Sockalingum GD, Lorimier S (2020) Vibrational 

spectroscopy saliva profiling as biometric tool for disease diagnostics: A systematic literature. 

Molecules 25:4142 . https://doi.org/10.3390/molecules25184142 

95.        Calado G, Behl I, Daniel A, Byrne HJ, Lyng FM (2019) Raman spectroscopic analysis of saliva 

for the diagnosis of oral cancer: A systematic review. Translational Biophotonics 1: . 

https://doi.org/10.1002/tbio.201900001 



96.        Kho KW, Malini O, Shen ZX, Soo KC (2005) Surface enhanced Raman spectroscopic (SERS) 

study of saliva in the early detection of oral cancer. In: Priezzhev A v., Cote GL (eds) Optical 

Diagnostics and Sensing V. SPIE, p 84 

97.        Feng S, Lin D, Lin J, Huang Z, Chen G, Li Y, Huang S, Zhao J, Chen R, Zeng H (2014) Saliva 

analysis combining membrane protein purification with surface-enhanced Raman 

spectroscopy for nasopharyngeal cancer detection. Applied Physics Letters 104:073702 . 

https://doi.org/10.1063/1.4866027 

98.        Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, Cheng M, Huang Z, Chen J, Zeng Haishan H (2010) 

Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman 

spectroscopy and multivariate analysis. Biosensors and Bioelectronics 25:2414–2419 . 

https://doi.org/10.1016/j.bios.2010.03.033 

99.        Rekha P, Aruna P, Brindha E, Koteeswaran D, Baludavid M, Ganesan S (2016) Near-infrared 

Raman spectroscopic characterization of salivary metabolites in the discrimination of normal 

from oral premalignant and malignant conditions. Journal of Raman Spectroscopy 47:763–

772 . https://doi.org/10.1002/jrs.4897 

100.       Qiu S, Xu Y, Huang L, Zheng W, Huang C, Huang S, Lin J, Lin D, Feng S, Chen R, Pan J (2016) 

Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman 

spectroscopy. Oncology Letters 11:884–890 . https://doi.org/10.3892/ol.2015.3969 

101.       Connolly JM, Davies K, Kazakeviciute A, Wheatley AM, Dockery P, Keogh I, Olivo M (2016) 

Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-

enhanced Raman spectroscopy and multivariate analysis. Nanomedicine: Nanotechnology, 

Biology, and Medicine 12:1593–1601 . https://doi.org/10.1016/j.nano.2016.02.021 

102.       Meenapriya P (2016) Raman Spectroscopic Analysis of Blood, Urine, Saliva and Tissue of Oral 

Potentially Malignant Disorders and Malignancy-A Diagnostic Study. International Journal of 

Oral and Craniofacial Science 2:011–014 . https://doi.org/10.17352/2455-4634.000013 

103.       Qian K, Wang Y, Hua L, Chen A, Zhang Y (2018) New method of lung cancer detection by 

saliva test using surface-enhanced Raman spectroscopy. Thoracic Cancer 9:1556–1561 . 

https://doi.org/10.1111/1759-7714.12837 

104.       Hole A, Tyagi G, Deshmukh A, Deshpande R, Gota V, Chaturvedi P, Krishna CM (2020) 

EXPRESS: Salivary Raman Spectroscopy: Standardization of Sampling Protocols and 

Stratification of Healthy and Oral Cancer Subjects. Applied Spectroscopy 000370282097326 . 

https://doi.org/10.1177/0003702820973260 

105.       Calado G (2020) Development of Methodologies for Raman Spectral Development of 

Methodologies for Raman Spectral Analysis of Human Saliva for Detection of Oral Analysis of 

Human Saliva for Detection of Oral Cancer. PhD Thesis, Technological University Dublin 

106.       Heise HM, Küpper L, Butvina LN (2002) Bio-analytical applications of mid-infrared 

spectroscopy using silver halide fiber-optic probes. Spectrochimica Acta - Part B Atomic 

Spectroscopy 57:1649–1663 . https://doi.org/10.1016/S0584-8547(02)00103-9 

107.       Guze K, Short M, Sonis S, Karimbux N, Chan J, Zeng H (2009) Parameters defining the 

potential applicability of Raman spectroscopy as a diagnostic tool for oral disease. Journal of 

Biomedical Optics 14:014016 . https://doi.org/10.1117/1.3076195 



108.       Bergholt MS, Zheng W, Huang Z (2012) Characterizing variability in in vivo Raman 

spectroscopic properties of different anatomical sites of normal tissue in the oral cavity. 

Journal of Raman Spectroscopy 43:255–262 . https://doi.org/10.1002/jrs.3026 

109.       Sahu A, Deshmukh A, Ghanate AD, Singh SP, Chaturvedi P, Murali Krishna C (2012) Raman 

spectroscopy of oral buccal mucosa: A study on age-related physiological changes and 

tobacco-related pathological changes. Technology in Cancer Research and Treatment 11:529–

541 . https://doi.org/10.7785/tcrt.2012.500304 

110.       Singh SP, Deshmukh A, Chaturvedi P, Murali Krishna C (2012) In vivo Raman spectroscopic 

identification of premalignant lesions in oral buccal mucosa. Journal of Biomedical Optics 

17:1050021 . https://doi.org/10.1117/1.jbo.17.10.105002 

111.       Krishna H, Majumder SK, Chaturvedi P, Gupta PK (2013) Anatomical variability of in vivo 

Raman spectra of normal oral cavity and its effect on oral tissue classification. Biomedical 

Spectroscopy and Imaging 2:199–217 . https://doi.org/10.3233/BSI-130042 

112.       Singh SP, Sahu A, Deshmukh A, Chaturvedi P, Krishna CM (2013) In vivo Raman spectroscopy 

of oral buccal mucosa: A study on malignancy associated changes (MAC)/cancer field effects 

(CFE). Analyst 138:4175–4182 . https://doi.org/10.1039/c3an36761d 

113.       Smits RWH, Koljenovic S, Hardillo JA, ten Hove I, Meeuwis CA, Sewnaik A, Dronkers EAC, 

Bakker Schut TC, Langeveld TPM, Molenaar J, Hegt VN, Puppels GJ, Baatenburg De Jong RJ 

(2016) Resection margins in oral cancer surgery: Room for improvement. Head and Neck 

38:E2197–E2203 . https://doi.org/10.1002/hed.24075 

114.       Jermyn M, Desroches J, Aubertin K, St-Arnaud K, Madore WJ, de Montigny E, Guiot MC, 

Trudel D, Wilson BC, Petrecca K, Leblond F (2016) A review of Raman spectroscopy advances 

with an emphasis on clinical translation challenges in oncology. Physics in Medicine and 

Biology 61:R370–R400 

115.       Barroso EM, Smits RWH, van Lanschot CGF, Caspers PJ, ten Hove I, Mast H, Sewnaik A, 

Hardillo JA, Meeuwis CA, Verdijk R, Hegt VN, Baatenburg De Jong RJ, Wolvius EB, Bakker 

Schut TC, Koljenović S, Puppels GJ (2016) Water concentration analysis by Raman 

spectroscopy to determine the location of the tumor border in oral cancer surgery. Cancer 

Research 76:5945–5953 . https://doi.org/10.1158/0008-5472.CAN-16-1227 

116.       Malik A, Sahu A, Singh SP, Deshmukh A, Chaturvedi P, Nair D, Nair S, Murali Krishna C (2017) 

In vivo Raman spectroscopy–assisted early identification of potential second 

primary/recurrences in oral cancers: An exploratory study. Head and Neck 39:2216–2223 . 

https://doi.org/10.1002/hed.24884 

117.       Bassan P, Sachdeva A, Shanks JH, Brown MD, Clarke NW, Gardner P (2014) Automated high-

throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical 

imaging. In: Gurcan MN, Madabhushi A (eds) Medical Imaging 2014: Digital Pathology. SPIE, p 

90410D 

118.       Kimber JA, Kazarian SG (2017) Spectroscopic imaging of biomaterials and biological systems 

with FTIR microscopy or with quantum cascade lasers. Analytical and Bioanalytical Chemistry 

409:5813–5820 . https://doi.org/10.1007/s00216-017-0574-5 



119.       Maker PD, Terhune RW (1965) Study of optical effects due to an induced polarization third 

order in the electric field strength. Physical Review 137:A801 . 

https://doi.org/10.1103/PhysRev.137.A801 

120.       Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent 

anti-stokes raman scattering. Physical Review Letters 82:4142–4145 . 

https://doi.org/10.1103/PhysRevLett.82.4142 

121.       Schie IW, Krafft C, Popp J (2015) Applications of coherent Raman scattering microscopies to 

clinical and biological studies. Analyst 140:3897–3909 . https://doi.org/10.1039/c5an00178a 

122.       Ji M, Orringer DA, Freudiger CW, Ramkissoon S, Liu X, Lau D, Golby AJ, Norton I, Hayashi M, 

Agar NYR, Young GS, Spino C, Santagata S, Camelo-Piragua S, Ligon KL, Sagher O, Sunney Xie X 

(2013) Rapid, label-free detection of brain tumors with stimulated raman scattering 

microscopy. Science Translational Medicine 5:201ra119-201ra119 . 

https://doi.org/10.1126/scitranslmed.3005954 

123.       Lyng FM, Traynor D, Ramos IRM, Bonnier F, Byrne HJ, Ramos RM, Bonnier F, Byrne J, Ramos 

IRM, Bonnier F, Byrne HJ (2015) Raman spectroscopy for screening and diagnosis of cervical 

cancer. Analytical and Bioanalytical Chemistry 407:8279–8289 . 

https://doi.org/10.1007/s00216-015-8946-1 

124.       Scully C, Bagan J v., Hopper C, Epstein JB (2008) Oral cancer: Current and future diagnostic 

techniques. American Journal of Dentistry 21:199–209 

125.       Mayrand M-H, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, Ratnam S, 

Coutlée F, Franco EL (2007) Human Papillomavirus DNA versus Papanicolaou Screening Tests 

for Cervical Cancer. New England Journal of Medicine 357:1579–1588 . 

https://doi.org/10.1056/nejmoa071430 

126.       Duraipandian S, Traynor D, Kearney P, Martin C, O’Leary JJ, Lyng FM (2018) Raman 

spectroscopic detection of high-grade cervical cytology: Using morphologically normal 

appearing cells. Scientific Reports 8: . https://doi.org/10.1038/s41598-018-33417-8 

  


	Biomedical Applications of Vibrational Spectroscopy: Oral Cancer Diagnostics
	Recommended Citation
	Authors

	tmp.1627911124.pdf.W0tC_

