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ABSTRACT 

Artificial Intelligence (AI) more specifically Deep Learning (DL) incorporating with image 

processing is being employed widely to solve different refractory problems by academia and 

industry from the ophthalmology discipline. The microvascular structure of the human retina 

shows remarkable abnormalities responding to different kinds of hazardous ophthalmic and 

cardiovascular diseases. The high dimensionality and complex hierarchical microvascular 

structure of the human retina, and random retinal image accumulation create enormous size 

data. This scenario is offering the challenge of understanding and managing retinal image 

data. The original input data need to be projected into output data which has a smaller number 

of features whilst as much as possible preserve its native information. This process is known 

as feature extraction. A recently introduced DL approach, Convolutional Neural Network 

(CNN), is dedicated to extract and quantify the complex hierarchical image features with 

more abstraction. The supervised CNN methods employ different algorithms that iteratively 

learn from data for analyzing data and predicting outcomes. The implementation of CNN 

methods has proved their efficiency in the identification, localization, and quantification of 

interesting retinal image features such as exudates, microaneurysms. These features are 

considered remarkable signs for detecting Diabetic Retinopathy (DR), Hypertensive 

Retinopathy (HR), and stroke. The quantitative features such as vessel widening and 

deviation in bifurcation angle are also relative to these diseases. The recently reported DL-

based retinal image feature extraction methods are not dedicated to extracting retinal vessel 

segments from multiple locations of the retinal image. Extracting retinal vessel segments 

from the retinal image is important for vessel diameter and bifurcation angle quantification. 

Moreover, employing inappropriate image processing techniques at the pre-processing level 

can lead to poor system performance. This work is dedicated to developing an image 
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processing-based AI method for retinal vessel extraction from retinal images. This thesis 

includes a brief explanation of the proposed method, Faster Region-based Convolutional 

Neural Network (Faster RCNN) for retinal image feature extraction. At the initial stage of 

this proposed method, fundamental image processing was used for retinal image pre-

processing. The retinal images were taken from the different public databases to train, test, 

and validate the performance of this proposed method. This proposed method obtained 

91.82% Mean Average Precision (mAP), 92.81% sensitivity, and 63.34% Positive Predictive 

Value (PPV). According to the performance analysis, it can be expected to integrate this 

proposed method into the ophthalmic diagnostic tools after further development, evaluation, 

and validation. 

Keywords: Retinal imaging, cardiovascular diseases, feature extraction, artificial 

intelligence, deep learning  
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Pengekstrakan Ciri Mikovaskular Retina Menggunakan Rangkaian Neural 

Konvolusional Yang Lebih Cepat di Wilayah 

 

ABSTRAK 

Kecerdasan Buatan (AI) lebih khusus Deep Learning (DL) yang digabungkan dengan 

pemprosesan imej digunakan secara meluas untuk menyelesaikan masalah refraktori yang 

berbeza oleh akademisi dan industri dari disiplin oftalmologi. Struktur mikrovaskular retina 

manusia menunjukkan kelainan yang luar biasa yang bertindak balas terhadap pelbagai 

jenis penyakit oftalmik dan kardiovaskular yang berbahaya. Struktur mikrovaskular hierarki 

dimensi tinggi dan kompleks retina manusia, pengumpulan gambar retina rawak 

menghasilkan data ukuran yang sangat besar. Senario ini memberikan cabaran untuk 

memahami dan mengurus data gambar retina. Data input asal perlu diproyeksikan ke dalam 

data output yang memiliki jumlah fitur yang lebih kecil sementara sebanyak mungkin 

menyimpan maklumat asalnya. Proses ini dikenali sebagai pengekstrakan ciri. Pendekatan 

DL yang baru diperkenalkan, Convolutional Neural Network (CNN), telah diperkenalkan 

yang didedikasikan untuk mengekstrak dan mengukur ciri-ciri gambar hierarki yang 

kompleks dengan lebih banyak abstraksi. Kaedah CNN yang diselia menggunakan algoritma 

yang berbeza yang secara berulang-ulang belajar dari data untuk memperbaiki dan 

menggambarkan data dan meramalkan hasil. Pelaksanaan kaedah CNN telah membuktikan 

kecekapan mereka dalam pengenalpastian, penyetempatan, dan pengukuran ciri-ciri 

gambar retina yang menarik seperti lesi, eksudat, mikroaneurisma. Ciri-ciri ini dianggap 

sebagai tanda luar biasa untuk mengesan penyakit kardiovaskular seperti Diabetic 

Retinopathy (DR), Hypertensive Retinopathy (HR), dan strok. Ciri-ciri kuantitatif seperti 

pelebaran kapal dan penyimpangan dalam sudut bifurkasi juga relatif terhadap penyakit ini. 

Kaedah pengekstrakan ciri retina berasaskan DL yang baru dilaporkan tidak dikhususkan 
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untuk mengekstrak segmen kapal retina dari beberapa lokasi gambar retina. Mengekstrak 

segmen kapal retina dari imej retina adalah penting untuk pengukuran diameter kapal dan 

sudut bifurkasi. Lebih-lebih lagi, menggunakan teknik pemprosesan gambar yang tidak 

sesuai pada tahap pra-pemprosesan boleh menyebabkan prestasi sistem yang buruk. Karya 

ini didedikasikan untuk mengembangkan kaedah AI berasaskan pemprosesan gambar untuk 

pengambilan kapal retina dari gambar retina. Tesis ini merangkumi penjelasan ringkas 

mengenai kaedah yang dikembangkan yang telah dilakukan untuk merancang pendekatan 

DL untuk pengekstrakan fitur gambar retina yang memanfaatkan RCNN yang Lebih Cepat. 

Pada tahap awal metode yang dicadangkan ini, pemrosesan gambar mendasar telah 

digunakan untuk pra-pemprosesan gambar retina. Gambar retina telah diambil dari 

pangkalan data awam yang berlainan untuk melatih, menguji, dan menilai prestasi kaedah 

yang dicadangkan ini. Kaedah DL, CNN yang dicadangkan ini memperoleh Ketepatan 

Purata Purata (mAP) 91.82%, kepekaan 92.81%, dan Nilai Ramalan Positif (PPV) 63.34%. 

Menurut analisis prestasi, diharapkan dapat menyatukan kaedah yang dicadangkan ini ke 

dalam alat diagnostik oftalmik setelah pengembangan, penilaian, dan pengesahan lebih 

lanjut. 

Kata kunci: Pengimejan retina, penyakit kardiovaskular, pengekstrakan ciri, kecerdasan 

buatan, pembelajaran dalam 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Study Background 

Image Processing is a method where mathematical operations are implemented for 

signal processing systems by feeding image or video as input and getting either image or its 

related features or parameters in a group as the output (Gonzalez & Woods, 2008; Kipli et 

al., 2018). It is being utilized in image enhancement, data compression, machine vision, and 

manages problems from edge detection to pattern recognition and reconstruction (Adelson 

& Anderson, 1984; Knutsson, 1984). In the field of biomedical engineering, the application 

of digital image processing is dedicated to researches and diagnosis of diseases. This 

technology is also used in planning and supervising treatment for that diseases, and 

simultaneously monitoring the disease's state (Hill et al., 2001). In the medical sector, the 

importance of digital image processing is immense as it helps to diminish unexpected errors 

and obtain higher precision (Suckling et al., 1994). 

For securing the expected results and creating automated applications in the medical 

sector, researchers are contributing to the advancements of image processing technology. 

Analysis of fundus retinal images is one of the most important sub-fields of biomedical 

engineering. Diabetic Retinopathy (DR) and Hypertensive Retinopathy (HR) are related to 

the changes in the microvasculature of retinal blood vessels, because of the simple and non-

invasive visualization of the microvascular structure of retinal blood vessels (Abbasi-

sureshjani et al., 2016; James, 2000; Witt et al., 2006). For this reason, analysis of the human 

fundus eye images has become the key point of diagnosing life-threatening cardiovascular 

diseases. 
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Several changes in the microvascular structure of the human retina are found to be 

associated as the pre-indicator of a subsequent vascular event such as hypertension, diabetes, 

and ischemic stroke (De Silva et al., 2011). Different research showed that acute stroke and 

ocular funduscopic abnormalities are related even though various vascular risk factors and 

blood pressure are optimally controlled (Henderson et al., 2011). The destruction of retinal 

arterioles and venules is found to be consistent with HR which can lead to blindness. 

Different methods of classification had been drawn up to simplify the early prediction of HR 

(Grosso, 2005). According to the population-based study of Y et al., (2013), there is a close 

association between HR and the risk of stroke.  Some of the population-based studies 

revealed that the retinal image features such as hard exudates, microaneurysm, Cotton Wool 

Spot (CWS) are related to diabetes, hypertension, and stroke. Their research also showed 

that the changes in vessel diameter and bifurcation angle were associated with cardiovascular 

diseases and stroke mortality even the people were free from other stroke risk factors (Baker 

et al., 2008; Wang et al., 2011). Figure 1.1 shows the normal retina and retina with 

abnormalities. 

 

Figure 1.1: Normal retina and retina with abnormalities (Namrata & Arora, 2015) 

 

The fundus retinal images are directly captured from a human eye with some other 

landmarks like the microcirculation system of the retina, fovea, optic disc, macula, 
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microaneurysm, and exudates (Huang et al., 2018). This practical, basic image acquisition 

system can be utilized in large-scale screening programs. This imaging system can also be 

used in retinal image examination creating numerical and computational strategies. It is 

helpful to introduce the doctors to some of the symptoms like the hard exudates, 

microaneurysm, hemorrhages, and CWS.  The development of the image analysis technique 

is significant to quantify the vessel width, vessel tortuosity, bifurcation angels, and vessel 

caliber. These techniques can be used for early detection of HR and DR, macular 

degeneration, acute stroke, glaucoma, and some other cardiovascular disease (Abbasi-

sureshjani et al., 2016; Bonaldi et al., 2016; Cheng et al., 2016; Rasmussen et al., 2017; 

Seidelmann et al., 1954; Wigdahl et al., 2016; Witt et al., 2006). 

Artificial Intelligence (AI) is being used vastly in Image Processing (IP) for solving 

different kinds of intractable problems by academia and industry.  Image recognition and 

understanding are considered a remarkable subfield of AI. In biomedical engineering 

especially in ophthalmology, AI  more precisely ML  and DL methods are being applied to 

develop intelligent systems for diagnosing the diseases, planning and supervising treatment 

for that diseases (Kipli et al., 2018). 

In practice, retinal images data have high dimensionality, this led to enormous size 

data. To overcome this problem, ML and DL can be used. Here, the original input data need 

to be projected into output data which has a smaller number of features whilst as much as 

possible preserve its native information. This is known as feature extraction. These task-

driven ML and DL techniques, use a variety of algorithms that iteratively learn from data to 

improve, describe data, and predict outcomes. In a way, this efficaciously contributes to the 

modern ophthalmological diagnostic digital image processing systems. 
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Understanding and overseeing retinal images have become more intricate because of 

the random accumulation of images (Ziad Obermeyer, 2017). The new technologies for 

diagnostic, therapeutic, and clinical information management require intelligent tools to 

oversee them securely, and proficiently. Radiology, pathology, and dermatology have a 

striking similarity to ophthalmology as they are profoundly dependent on diagnostic 

imaging. In recent times, the most efficient applications of AI-based analyses are being used 

in diagnostic imaging (Jiang et al., 2017). Figure 1.2 shows the statistical representation of 

the implementation of AI-based applications in medical technology 

 

Figure 1.2: AI-based application in medical technology (Jiang et al., 2017) 

 

The benefit of AI in medicine is highly impressive. Artificial Intelligence is 

especially reasonable for dealing with the multifaceted nature of 21st-century 

ophthalmology.  Artificial Intelligence can help ophthalmologists to utilize effective 

algorithms for detecting features from enormous volumes of image data.  Employing AI can 

potentially decrease diagnostic and therapeutic mistakes, and encourage customized 

medicine (Schmidt-Erfurth et al., 2018). Moreover, AI can perceive specific patterns of the 

disease and relate novel features to gain creative scientific understanding. If ophthalmologist 

wishes to retain control of their expert in future, they should grasp wise algorithms and 

instruct themselves in applying AI in a useful way (Schmidt-Erfurth et al., 2018). 
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To help the physicians with the early detection of the lethal condition, researchers 

from biomedical engineering disciplines are being involved more enthusiastically. The field 

of AI and digital image processing have a variety of concerns of numerous applications in 

ophthalmology. The used pre-processing techniques of recently reported AI-based retinal 

feature extraction methods are not efficient to process noisy retinal images that contain 

pathology. Moreover, existing AI-based retinal image feature extraction techniques are 

solely dedicated to extracting the blood lesion such as exudates, haemorrhages ( Hoque & 

Kipli, 2021). Extracting the entire vessel structure or significant vessel segments is crucial 

to quantify vessel diameter and bifurcation angle. This study aims at developing an algorithm 

for retinal image vessel extraction employing DL and image processing techniques.  

1.2 Problem Statement 

Analyzing the fundus retinal image, the possibility of this risky cardiovascular 

disease such as DR, HR can be predicted. But most of the existing methods for the extraction 

of retinal image vessels are based on image processing. Image processing-based methods are 

not fully automated. The existing AI-based methods are still in the development phase as 

these methods provide less accuracy in comparison with the manual measurement (City et 

al., 2011). The existing image processing-based methods need the involvement of a good 

number of observers that make the diagnosing systems lengthier. The bulkiness of the 

observers also leads the diagnosing system to provide an inaccurate result. To overcome 

these limitations an AI-based fully automated disease-diagnosing system can play an 

important role in ophthalmology for detecting DR, HR. 

Pre-processing of the retinal image is challenging due to the highly varied 

microvascular structure of the human retina. An inefficient pre-processing strategy can 


