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ABSTRACT

We introduce novel statistical simulation approaches to include the effect of
surface roughness in coupled mechanical, electronic and thermal processes
in N/MEMS and semiconductor devices in the 10 nm - 1 µm range. A model
is presented to estimate roughness rms ∆ and autocorrelation L from ex-
perimental surfaces and edges, and subsequently generate statistical series
of rough geometrical devices from these observable parameters. Using such
series of rough electrodes under Holm’s theory, we present a novel simu-
lation framework which predicts a contact resistance of 80 mΩ in MEMS
gold-gold micro-contacts, for applied pressures above 0.3 mN on 1 µm × 1
µm surfaces. The non-contacting state of such devices is simulated through
statistical Monte Carlo iterations on percolative networks to derive a time
to electro-thermal failure through electrical discharges in the gas insulating
metal electrodes. The observable parameters L and ∆ are further integrated
in semi-classical solutions to the electronic and thermal Boltzman transport
equation (BTE), and we show roughness limited heat and electronic trans-
port in rough semiconductor nanowires and nano-ribbons. In this scope, we
model for the first time electrostatically confined nanowires, where a reduc-
tion of electron - surface scattering leads to enhanced mobility in comparison
to geometrical nanowires. In addition, we show extremely low thermal con-
ductivity in Si, GaAs, and Ge nanowires down to 0.1 W/m/K for thin Ge
wires with 56 nm width and ∆ = 3 nm. The dependency of thermal conduc-
tivity in (D/∆)2 leads to possible application in the field of thermoelectric
devices. For rough channels of width below 10 nm, electronic transport is
additionally modeled using a novel non-parabolic 3D recursive Green func-
tion scheme, leading to an estimation of reduced electronic transmission in
rough semiconductor wires based on the quantum nature of charge carriers.
Electronic and thermal simulation schemes are finally extended to such 2D
semiconductor materials as graphene, where low thermal conductivity is ap-
proximated below 1000 W/m/K for rough suspended graphene ribbons in
accordance with recent experiments.
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“The principles of physics, as far as I can see, do not speak against the
possibility of maneuvering things atom by atom. It is not an attempt to
violate any laws; it is something, in principle, that can be done; but in

practice ... it has not been done because WE are too big.”
–R. P. Feynman, 1986 Dirac Memorial Lectures.
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CHAPTER 1

INTRODUCTION

As electronic devices reached the nanometer scale, the semiconductor in-
dustry entered an era of new challenges where technology computer aided
design (TCAD) has an important role to play. In 1965, Moore predicted that
the number of transistors integrated on a chip would double every eighteen
months. Today, while the dimension of electronic devices reaches atomistic
scales, the idea of following this trend by simply reducing the size of con-
ventional complementary metal oxide semiconductor (CMOS) technologies
has been abandoned. Besides, the field of electronics has evolved toward
a range of applications which is now much broader than the initial logic
and arithmetical operations it was first intended to address. New electronic
devices are integrated today in biological systems, allow mechanical, opti-
cal and chemical sensing or actuating at the nanometer scale, and actively
contribute to pushing our scientific perception further in the twenty-first
century. Many of these new devices now rely on breakthrough technolo-
gies such as nano-electromechanical systems (NEMS), which constitute the
leading edge in mastering the coupled mechanical, electrical and thermal
behavior of materials at the quasi-atomistic scale. In addition, a large class
of these new technologies utilizes novel materials, such as graphene or car-
bon nanotubes, which make full profit of the quantized behavior of energy
transport processes in low-dimensional systems. At the forefront of size re-
duction, graphene constitutes the most advanced state of the art, where the
dimension of the device is effectively reduced to a single atomic layer. In
that respect, the impact of the appearance of such devices in the laboratory
drives theoretical and experimental exploration to new fronts, where the
quantum nature of electronic and heat conduction, as well as the atomistic
nature of material deformation, is pivotal in understanding the physics of
new devices.

As an example, the complexity of the multi-scale and multi-physics nature
of low dimension devices is well illustrated by the mere scenario of conduc-
tion in a real semiconductor wire of a few nanometers in diameter. At this
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scale, the wave nature of charge carriers must be taken into account in or-
der to capture the quantization of allowed energies resulting from electronic
confinement within the nanowire (NW) structure. As electronic waves prop-
agate through the imperfect wire, roughness patterns at its surface interfere
with these waves in non-negligible proportions, thus hindering conduction.
Similarly, electronic waves exchange energy with the atomic crystal lattice
and generate heat waves. Subsequently, as thermal conduction occurs, heat
waves will also interfere with imperfections of the wire surface. Hence, the
latter problem which, at the macro scale, would be mostly captured by
Kirchhoff’s and Joule’s equations, requires at the nano-scale careful exam-
ination of atomic configurations and a detailed comprehension of the low
scale geometry of the device surfaces.

Nonetheless, pushing scientific innovation to this level of accuracy presents
tremendous challenges. Many uncertainties remain due to the difficult the-
oretical exploration of atomistic phenomena and the enormous investment
that the manufacturing of such devices represents. An accurate understand-
ing of the interaction between matter and mechanical and electromagnetic
waves should be carried further down to smaller sizes. And most impor-
tantly, based on a solid understanding of these phenomena, common, stan-
dard and reliable design patterns need to be identified for this novel class of
devices. In order to meet that need, the typical response of the industry has
been catalyzed through repetitive prototypical iterations in the laboratory,
until best of breed solutions emerged. In this scope, a key step in reducing
the design time of nanoscale devices is the development of efficient simula-
tion tools that will allow experimentalists to test their thought experiments
in a few hours instead of months [1]. In that respect, due to the inad-
equacy of current simulation tools, algorithmic innovation is necessary in
several areas. Consequently, new research initiatives have recently emerged
such as the IMPACT center for advancement of MEMS/NEMS VLSI at
the University of Illinois, in order to “develop and enhance the understand-
ing of experimentally observed, fundamental multi-physics and multi-scale
principles and processes governing MEMS/NEMS performance.” In such
initiatives, we cannot but insist on the multi-physics nature of the scien-
tific protocol. Remarkably, the major limitation to device scaling today is
the heat generation arising from the transport of considerable electrical cur-
rents at small scales. Besides, much uncertainty in the assessment of device
performance arises from the considerable effect of the interaction between
random fluctuations of the systems interfaces and the wavelike nature of the
particles involved in conduction. The multi-scale aspect of the problem is
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non negligible as well, as the interesting properties extracted from atomistic
behaviors eventually need to be integrated in large scale systems.

We introduce in this dissertation a series of novel simulation schemes that
allow computationally efficient inclusion of the atomic scale surface geom-
etry in statistical models of coupled thermal conduction, electronic trans-
port, and mechanical deformation in M/NEMS, thermoelectric, and tran-
sistor applications. In each of these areas, the ability to efficiently model
surface roughness is key to understanding the subsequent coupling between
propagation of charge and heat carriers and, in the case of MEMS, the as-
sociated mechanical deformation resulting from asperities at the boundary
of these devices. In the area of M/NEMS the model we introduce shows
good agreement with experimental observations on the coupling between
applied pressure and contact resistance in gold micro-contacts. In the field
of thermal transport, inclusion of similar roughness models in semi-classical
simulations of heat conduction shows unprecedented agreement with exper-
iments on nanowires. In particular, this study holds strong promise for
application of artificialy rough semiconductor nanowires as efficient thermo-
electric materials, where the geometry of the wire surface is engineered to
decouple heat and electronic transport. In the area of electronic transport,
we introduce in this dissertation a quantum model based on a non-parabolic
3D recursive Green function approach which allows one to accurately ac-
count for the electronic quantum resistance caused by the asperities at the
boundary of real semiconductor nanowires of diameter D < 10 nm. Based
on the validation of these models with experimental measurements, the sim-
ulation frameworks are extended to novel materials and structures, such as
graphene based applications, quantum modulated transistors (QMTs), and
patterned semiconductor sheets.

In the latter applications, the essence of the device physical behavior is
tightly bound to surface roughness. For instance, in the area of M/NEMS,
metallic micro-contacts are frequently used in radio-frequency systems as
variable capacitors and controllable electrical switches [2, 3], with particular
advantages over solid state technologies for tunable filter applications. In-
deed, micro-fabricated metal switches offer high off-state and low on-state
impedance, and a wide bandwidth of operation. Nevertheless, both in the
off and on states, failures are still frequent due to overheating and discharges
between contacts. A careful study of electronic and heat exchange as a func-
tion of the pressure applied between contacts reveals that the roughness of
the surface is principally responsible for resistivity at the contact and sub-
sequent heating due to Joule processes. In addition to a statistical study of
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these phenomena, we propose a multiscale framework that models gas dis-
charges between non-contacting electrodes, based on a percolation approach
which reproduces heat and electronic exchange in a gas. Additionally, for
semiconductor applications, nanowires have demonstrated great efficiency
in the areas of field effect transistors [4], interconnects [5], and heterostruc-
tures [6]; and they most recently have drawn much interest for their possible
thermoelectric applications [7, 8, 9, 10, 11]. With widths ranging from a few
hundreds of nanometers down to 10 nanometers and below, the variations of
the nanowire geometry with surface roughness range from a few percent to
almost 20% in the case of the thinnest devices. As such, these fluctuations
have non-negligible impact on the resistance of the device during heat and
electronic conduction. In the most extreme cases, surface roughness may
become the principal mode of scattering of charge or heat carriers, making
entire applications revolve around careful nano-engineering of surface rough-
ness properties [7]. In the pioneering applications of field effect transistors
(FET), electron-surface interaction was studied early on due to its major
impact on conduction in MOSFET channels. Incidentally, the necessity to
engineer thermally efficient devices only appeared in the early 2000s, and
naturally drew attention to the phonon-surface interaction. When the char-
acteristic dimensions of asperities at a rough surface come to the order of
the phonon or electron wavelength (5-30 Å), it is furthemore expected that
the surface scattering rate will be altered to reflect the effect of the interface
roughness. Such mechanisms are crucial to the understanding of electron
transport in transistor inversion layers, where accurate models have been
developed based on perturbation theory [12, 13]. We will present such mod-
els based on a semi-classical approach to electronic transport and apply our
knowledge to engineer efficient FET devices that minimize the intrinsic effect
of surface roughness. In addition, we introduce a novel semi-classical treat-
ment of the interaction between heat waves and surface roughness scattering
based on perturbation theory. The efficiency of the computational approach
allows for a rapid investigation of thermoelectric applications, where en-
gineering of surface roughness enables a decoupling between electronic and
heat transport. This study is further carried to nanowire scales below 10 nm,
where the dimensions explicitly call for a quantum treatment of the inter-
ference between electronic wave functions and the repetitive patterns in the
rough surface of real 3D nanowires. We propose a treatment of this problem
through a novel non-parabolic 3D recursive Green function approach that
we introduce in this dissertation.

The knowledge of surface geometry is central to understanding the physics
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of new electronic applications, ranging from the microscopic scale to the
atomic scale. Within this scope, we should emphasize the statistical nature
of the following study. Indeed, material interfaces are intrisically random,
and no two devices have the exact same geometry when it comes to the
detailed configuration of nanoscale surface fluctuations. As a result, the
following discussion is based on statistical averages, equivalently in time or
in space in the steady state, as per the principle of ergodicity. In view of
this, computational simulations appear as a powerful alternative, where a
series of geometries can be artificially generated on a computer, and phys-
ical properties averaged over this ensemble. In the following chapters, we
will use this statistical Monte Carlo approach in many occasions in order
to derive the average behavior of devices with realistic geometries. In ad-
dition, the quantum nature of carrier transport at small scales intrinsically
revolves around probability distribution functions, which is well illustrated
by Heisenberg’s uncertainty principle. In that respect, the semi-classical
semiconductor Monte Carlo approach will be used to derive average device
characteristics based on quantum processes, by collection of statistics on
time series and ensemble of carriers.

At this stage, technology computer aided design has an important role to
play in the understanding of the multi-physics processes involved in novel
electronic devices. Nevertheless, the multi-scale approach faces a specific
challenge, as atomistic computations are extremely expensive in terms of
computational time, and are difficult to generalize to large systems. In
this document, we adopt a new simulation framework under which the be-
havior of novel integrated NEMS can be efficiently predicted. The central
idea resides in a hierarchy of stochastic simulation techniques which can
be seamlessly integrated in a systems approach (Fig. 1.1). At the top of
the hierarchy, highly non-linear coupled thermo-electrical behaviors of inte-
grated systems are modeled by means of percolation theory. This approach
hinges on the prior knowledge of the statistical characterization of heat and
electronic transport in nano-channels. To serve this purpose, Monte Carlo
simulation has already shown great performance in achieving an optimal
trade-off between accuracy and computational efficiency. At the bottom
of the hierarchy, highly non-linear boundary effects are treated by means
of molecular dynamics or full quantum simulations, and integrated in the
Monte Carlo simulation. The result of this hierarchy is an efficient simula-
tion tool of large scale systems based on an accurate understanding of the
relevant low dimensional coupled physical phenomena which are exploited
in novel devices.
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Figure 1.1: Multi-scale framework introduced for the stochastic prediction
of large scale integrated novel nano-electromechanical systems.

Following this multiscale approach, this disseration progresses from an
investigation of the effect of surface roughness at the micro-scale to asso-
ciated effects in the sub-10 nm range. At first, we will show utilization of
random geometries with Kirchhoff’s, Joule’s and Euler’s classical laws in
metallic micro-contacts. Subsequently, we will narrow down our scope to
semi-classical effects in electronic and heat transport due to surface rough-
ness scattering mechanisms in the 20-500 nm range. Finally, we will refine
our understanding with an accurate quantum treatment of electronic inter-
ferences due to random geometry fluctuations below 10 nm.

This dissertation is organized as follows. In chapter 2, we present the
statistical base for the study of surface roughness, on which we will further
develop our physical models of mechanical, thermal and electronic processes.
In particular, we will see how a parametric model can be inferred from ex-
perimental observations of device geometries in the 2D and 3D case, and
how one may generate computerized random surfaces and edges based on the
same set of parameters. In chapter 3, we will directly apply the latter surface
models to analyze electro-mechanical coupling in gold-gold micro-contacts,
under an extension of Holm’s theory allowing for collection of averages over
a series of rough contacts. This approach will be validated by a good agree-
ment with experimental observations on such contacts at the micro-scale. In
chapter 4, we complete our study of MEMS micro-contacts with models of
failure mechanisms by electrical discharges in the OFF state of such devices.
In particular, this study will illustrate the ideas behind the higher level of our
multi-scale framework. In that respect, we will present a novel percolation
approach as an efficient way to capture the highly non-linear electro-thermal
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failure of non-contacting MEMS. Through an approximation based on a sta-
tistical description of small 1D conducting channels of gas, we will further
study how the geometry and the roughness of metal electrodes alter the re-
liability of these devices. Because this model revolves around a statistical
understanding of quasi-1D conducting channels, we present, in chapter 5,
the Monte Carlo method to stochastic assessment of electronic performance
in quasi-1D semiconducting nano-channels. In the scope of MEMS sensors
and actuators, ultimate down-scaling will lead, in the near future, to the use
of beams and cantilevers based on nano-whiskers, nanotubes or nanowires.
Hence, it is important to understand the new electronic transport processes
which arise from the interaction of the wave-like nature of electrons and ran-
dom fluctuations of the channel interfaces in devices with intrinsically high
surface-to-volume ratio. The Monte Carlo method will be demonstrated as
an efficient tool to determine an optimal way to achieve electrical perfor-
mance in quasi-1D silicon nano-channels. In addition, we will extend this
investigation to FET devices, and apply our knowledge of statistical surface
roughness to efficient design of devices limiting surface induced resistivity.
The method discussed in this scope allows inclusions of energy dependent
scattering mechanisms, the full electronic band structure in silicon based
nanowires, and quantum correction in order to most accurately approxi-
mate surface and size effects in the latter devices. In chapter 6, we extend
this approach to thermal conduction in such nano-channels. In particular,
we introduce a novel formalism under which one can treat the coupling of
heat waves with the interface roughness of semiconductor nanowires, using
perturbation theory in wires of diameter ranging from 20 - 500 nm. The
resulting predicted behavior shows excellent agreement with experimental
data and sets high hopes for future efficient nano-engineering of nanowire
surfaces for thermoelectric applications. After validating this new theory on
silicon nanowires, we will explore the case of Ge and GaAs nanowires, which
exhibit extremely low thermal conductivity as a result of surface roughness.
In addition, we apply the latter perturbation theory to derive scattering
rates in graphene, which will allow consideration of graphene nano ribbons
(GNR) for nano-engineering of rough edges in the scope of thermal applica-
tions. Finally, in chapter 7, we conclude our discussion with more visionary
approaches to quasi-1D electronic transport for channels ultimately scaled
below 10 nm. At these extreme sizes, the coupling of waves and interfaces
becomes strongly modified by the quantum nature of the problem, and we
present a new approach to computing quantum-enhanced surface roughness
scattering for electronic and heat transport in ultra-scaled nano-channels.
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In particular, we extend the recursive green function (RGF) approach to
non-parabolic bands and 3D geometries, for investigation of transport in
ultra-thin silicon nanowires. In conclusion, we examine the effect of real
boundaries on visionary devices, based on a quantum operation of the tran-
sistor effect, such as quantum modulated transistors (QMT) and asymmet-
rically patterned semiconductor nano-ribbons.
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CHAPTER 2

STATISTICAL CHARACTERIZATION OF

ROUGH SURFACES FOR NANOSCALE

ELECTRICAL AND THERMAL

APPLICATIONS

2.1 Introduction

Describing atomic scale geometry of solid interfaces has drawn much atten-
tion for applications to thermal and electrical conduction in semiconductor
field effect transistors (FET) [14, 15, 16, 17], semiconductor nanowires (NW)
[18, 7, 19, 20], contacting MEMS switches [21, 22, 23, 24], and the mechan-
ical properties of contacting regions in MEMS switches [23]. In all cases, it
was experimentally and theoretically demonstrated that electrical and ther-
mal conduction in rough devices is drastically reduced in comparison to the
theoretical case of perfectly smooth devices [23, 16, 7, 8, 20]. Modeling rough
boundaries presents challenges in the accuracy of the statistical description
of randomly fluctuating device boundaries. In the following discussion, we
present a set of statistical tools which enable both the extraction of relevant
statistical parameters from the experimental observation of rough surfaces,
and a methodology to model artificially rough surfaces for their accounting
in computer simulations of low scale device physics.

In view of this, one of the most compelling cases is the electronic transport
across a contact formed by two rough metallic interfaces (Fig. 2.1.a). In
this case, as an electrical current flows through constrictions formed by
contacting asperities at the surface of each electrode, the resulting interfacial
resistance depends directly on the nano-scale fluctuations of the respective
surface geometries [25, 26]. As those constrictions limit the total flux of
current from one electrode to the other, the throughput resistance rises
across increasingly rough contacts. In addition, mechanical properties of
such contacts depend themselves on the nano-scale geometrical fluctuations
of the surface of the electrodes. Indeed, the effective contact area is a direct
result of the number of asperities that achieve physical contact, their shape,
and their plasticity [25, 26]. The pressure required to put electrodes in
contact is a function of the same effective contact area, and subsequently
depends on the same nano-scale physical properties of the surfaces. Hence,
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Figure 2.1: (a) Model of conduction across a contact formed by rough
metallic electrodes, (b) model of electrical conduction parallel to a rough
semiconductor boundary, (c) model of heat propagation in a rough
nanowire. Blue lines depict flux of electrical current, red lines depict
propagation of the crystal lattice vibrations.

drawing an accurate physical picture of micro-contacts becomes increasingly
complex when considering interface roughness, and strongly relies on an
accurate description of surface geometry.

Similarly, conduction in the vicinity and parallel to boundaries is strongly
limited by interface roughness (Fig. 2.1.b). In silicon FETs for instance,
asperities at the silicon interface perturb the electric field in the electronic
conduction channel [15, 16]. As a consequence, charge carriers scatter from
perturbations in the electrical potential near the boundary, and a surface
roughness induced electrical resistance appears in the device [27]. It was
again theoretically and experimentally demonstrated that strong fluctua-
tions of the interface geometry increase resistivity in comparison to smoother
boundaries [14, 28].

Very recently, rough nanowires attracted the attention of the scientific
community for their promise as efficient thermoelectric devices. In this case,
it was shown [7, 8, 19, 20] that electronic conduction and thermal conduction
could be decoupled in nanowires by careful nano-engineering of arbitrarily
rough surfaces. In this case, heat carriers, which take the form of vibrations
of the crystal lattice, are strongly perturbed by the series of constrictions
along the nanowire (Fig. 2.1.c). As a result, these nanowires have very poor
thermal performances, while keeping a relatively high electronic conductiv-
ity due to careful sizing of the boundary fluctuations. In this case again,
accurate description of boundary geometry is required.

While it is natural to picture a device boundary as a spatially fluctuating
two-dimensional (2D) nappe, advances in nano-technology recently enabled
the appearance of purely 2D semi-metallic or semiconducting devices, such
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as monolayer graphene [29, 30]. In these devices, essentially made of a mono-
atomic crystalline layer, boundaries are effectively a 1D randomly varying
line. In order to describe surface limited conduction in this new class of
devices, we need to further consider the geometrical description of rough 1D
boundaries.

In the subsequent sections, we provide a theoretical statistical frame-
work to analyze and describe rough boundaries for applications in nano-
and micro-scale conduction and mechanics. Beyond the possibility to theo-
rize on hypothetical boundary shapes, it must be noticed that considerable
advances in nano-scale interface physics have been driven by the improve-
ment of experimental observation techniques, such as transmission electronic
microscopy (TEM) [31, 15] and scanning tunneling microscopy (STM) [32],
which now allow resolution of surface geometry down to the atomic scale.
Consequently, the following sections will also respond to the need of ex-
tracting statistical roughness parameters from experimental observations.
In section 2.2, we present our general statistical framework necessary to the
description of randomly varying interfaces. Sections 2.3 and 2.4 respectively
apply this knowledge to the analysis and random generation of 1D and 2D
boundaries.

2.2 Statistical Description of Rough Surfaces

Regardless of the application, real semiconductor or metal interfaces present
asperities linked to the imperfections of the growth or deposition process,
and the intrinsic discrete nature of the organization of atoms in the crystal
structure. While modern observation techniques such as transmission elec-
tron microscopy (TEM) allow the observation of the exact geometry of each
individual samples under consideration, average properties of electronic and
heat conduction at these interfaces may only be deduced using a statistical
approach. Hence, stochastic tools may be used to describe the distribution
of asperities at a surface [14, 16, 33, 34, 35, 36], their height, and the geom-
etry of the surface as a whole. In this section, we provide a set of such tools
which may independently be used on 2D surfaces or 1D edges, and allow
one to either retrieve the statistics of experimentally observed interfaces or
generate digitized random surfaces for applications in computer simulations.

For this purpose, it is natural to define the root mean square (rms) rough-
ness, which in essence measures the average rms height of the geometrical
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fluctuations of a surface defined by a height profile h(r).

∆rms =

√
1
AΩ

∫
Ω

(h(r)− h)2 dr (2.1)

where AΩ is the area of the domain of integration Ω. For computer applica-
tions, the domain of integration is commonly discretized in a set of N points
{ri}i. In this case, the formula above becomes

∆rms =

√√√√ 1
N

N∑
1

(h(ri)− h)2 (2.2)

Here we have used the average height of the profile h:

h =
1
N

N∑
1

h(ri) (2.3)

In addition, several applications, especially in the area of micro-contacts,
hinge on the notion of a height distribution function p(h). The height dis-
tribution function gives the probability of finding a point in the domain Ω
at a given height h. It is a common assumption to use Gaussian statistics
for the height distribution function:

p(h) =
1

∆rms
exp

(
− h2

2∆2
rms

)
(2.4)

Notice here that all previous definitions may be equally used in the case of
a 2D surface or a 1D edge.

It is also necessary to have information about the corellation between
heights at two points r1 and r2. Indeed, two surfaces may have the same
height distribution function and roughness rms, but drastically different fre-
quencies of spatial fluctuations. To account for the frequency properties, we
define the height-height correlation function as the following spatial average:

C̃(r′) =
〈
[h(r)− h][h(r + r′)− h]

〉
r

(2.5)

It is worth noticing the connection of the height-height correlation function
and roughness rms as

C̃(0) = ∆2
rms (2.6)

In the case of an isotropic 2D surface, it is useful to have an expression
of the correlation function which does not depend upon the direction of the

12



space vector r, but only the distance from an arbitrary center. We use for
that the circular average of the height-height corellation function:

C(r) =
1

2π

∫ 2π

0
C ′(r cosφ, r sinφ) dφ (2.7)

In the case of a discrete representation of the surface, the integral be-
comes a sum over the discrete mesh points and the values of the correlation
function may be approximated by its value at the nearest grid point to
r = (r cosφ, r sinφ).

Finally, it is useful to introduce Fourier transforms to manipulate quan-
tities related to the spatial frequency of the geometrical fluctuations. The
Fourier transform of the height profile is

H(k) =
∫

Ω
h(r) exp(+ik · r) dr (2.8)

and the height spectral density (SD) is subsequently

S(k) = |H(k)|2 (2.9)

In this case, by the Wiener-Khinchin theorem [37], the height-height corre-
lation function is conveniently defined as the inverse Fourier transform of
the height spectral density

C̃(r) =
1

(2π)d

∫
Ω′
S(k) exp(−ik · r) dk (2.10)

where d is the order of dimensionality (1 or 2). This expression is numerically
advantageous, as it allows the use of fast divide-and-conquer computational
schemes of Fourier transforms - called fast Fourier transform (FFT) - in
order to compute the height-height correlation function from the height SD.

In this section, we have reviewed all major statistical tools necessary to
analyze the roughness of random surfaces. In the next two sections, we
present schemes to numerically compute those quantities, and generate dis-
cretized random rough 1D edges and 2D surfaces relevant to the statistics
presented above.

2.3 One-Dimensional Case

The case of 1D edges not only presents the advantage of allowing simpler sta-
tistical description, but is also suited to the description of physical processes
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at the boundaries of emerging two-dimensional materials such as single layer
graphene. In this section we will see how Gaussian statistics can be used to
describe and numerically generate random rough graphene edges.

In the scope of the description of such physical behaviors as the scattering
of heat or charge carriers at a rough interface, a quantity of frequent interest
is the height spectral density, as used for instance in the reference work of
Goodnick et al. [14, 15]. In section 2.1, we have seen how the SD could
be obtained from accurate imaging of a surface. In fact, experimental work
often describes 2D surfaces in terms of quantities associated with the SD,
such as the roughness rms and the auto-correlation length [33, 34, 15, 31].
Here we will extend these common two-dimensional concepts to the 1D case.

At the center of the following discussion is the not so trivial idea of gener-
ating a random surface on a numerical mesh which is continuous enough to
represent a real surface and at the same time abides by the analytical form
which is chosen a priori for a spectral density. By “continuous enough”, we
imply here the mathematical meaning of the term, where we expect at least
the lowest order derivatives to be continuous and smooth.

In order to be consistent with the work on carrier scattering by Goodnick
et al. and followers [14, 16, 15, 19, 38, 39], we use a Gaussian model for the
height correlation function. This model has shown particularly good agree-
ment with experimental data in various cases of metallic and semiconducting
crystals [15, 31].

C(r) = ∆2e−r
2/L2

(2.11)

where L is called the correlation length, or autocovariance length. As will
be shown below, L is a measure of the average width of the peaks of the
geometrical fluctuations at the interface.

A Gaussian correlation function presents the additional advantage of yield-
ing a Gaussian spectral density. Indeed, using the FT formalism of equation
2.10, we have in one dimension:

S1D(k) =
∫ ∞
−∞

∆2e−r
2/L2

e−ikr dr (2.12)

S1D(k) =
√
π∆2Le−k

2L2/4 (2.13)

We would like to emphasize here the fact that, for one-dimensional edges,
the SD varies proportionally to the autocovariance length L and has units
of cubic meters.

We will now address the problem of finding a randomly rough height
function h(r) which has the assumed correlation function from equation 2.11,
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with given rougness rms ∆ and autocovariance length L. As an important
reminder for the following discussion, let us note the following property of
a Gaussian function ∫ ∞

−∞
e−

r2

σ2 dr =
√
πσ (2.14)

Let η(r) be a continuous uniform random distribution on
[
−
√

3∆,+
√

3∆
]
.

This means that along the length of the domain, the probability that the
height of η(r) is in the interval [z−dz, z+dz] is the same and equal to dz

2
√

3∆

for any z in the interval above, and zero otherwise. For this random distri-
bution, the average height is theoretically 0 for an infinitely long domain,
and the roughness rms is

∆2
rms(η) = 〈(η(r)− η)2〉r

= ∆2 (2.15)

In addition, let g(r) be a Gaussian function such that

g1D(r) =
1

(
√
πσ)1/2

· e−
r2

2σ2 (2.16)

and take the height function

h1D(r) = g1D ∗ η(r) (2.17)

where * represents the spatial convolution. For speed of computation, it is
possible to use the properties of Fourier transform to express the convolution
in terms of Fourier transform (FFT) and inverse Fourier transform (IFFT)
of the respective functions

h(r) = IFFT(FFT(g) · FFT(η)) (2.18)

The roughness rms of this height function is

∆2
rms(h) =

∫ ∞
−∞

∆2
rms(η) · g2(r) dr

=
∆2

√
πσ

∫ ∞
−∞

e−
r2

σ2 dr

= ∆2 (2.19)
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Figure 2.2: 12 nm rough graphene edges randomly generated using a
Gaussian height correlation function with (a) ∆ = 3 Å, L = 22 Å, (b)
∆ = 3 Å, L = 11 Å, (c) ∆ = 5 Å, L = 22 Å, and (d) ∆ = 10 Å, L = 22 Å.
Blue dots represent the position of carbon atoms in a real armchair
graphene nano-ribbon.

and its height-height correlation function is

C(r) =
∆2
rms(η)√
πσ

∫ ∞
−∞

− (x+r)2+x2

2σ2 dx

=
∆2

√
πσ

e
r2

4σ2

∫ ∞
−∞

− (
√

2x+r/
√

2)2

2σ2 dx

= ∆2e−r
2/4σ2

(2.20)

Using σ = L/2, the autocovariance length associated to the height profile
h(r) takes the desired value L. Hence, we have defined a random rough
1D height profile with roughness rms ∆, autocovariance length L, and the
desired Gaussian correlation function. It is important to notice in this case
that, due to the convolution approach which was used, the roughness peaks
have a Gaussian shape. The width of the peak is given by the autocovariance
L. In Fig. 2.2, 12 nm of randomly generated graphene edge is represented
for such a Gaussian model with varying ∆ and L. As expected, the pa-
rameter L effectively controls the width of the peaks while ∆ adjusts the
average height of the geometrical fluctuations. In addition, for each ribbon
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edge, we give an indication of where the carbon atoms would be located
in armchair ribbons. While the statistical parameters chosen in this exam-
ple do not appear in contradiction with the graphene lattice, this picture
nevertheless raises the question of the actual definition of edge for physical
applications. Indeed, one may simply consider that the physical edge is the
ensemble of lines connecting the nearest neighbor carbon atoms located at
the edge. For electrostatic or mechanical purposes, the definition of edge
would rather be function of a critical distance from each atom linked to
the Lennard-Jones potential. In the case of electronic conduction near the
edge, the actual limit of the ribbon could also be defined from the dimension
of orbitals of carbon atoms at the edge. In the latter cases, the interface
would appear smoother, thus making the continuous Gaussian model more
relevant to physical application than a discrete description by the position
of edge atoms.

The question remains of the amount of statistical knowledge that one can
gain from a ribbon edge of finite size. This point is central to determine
the quality and the confidence in estimation of the roughness statistics from
a real, finite size 1D edge. For this purpose, we compare the correlation
function computed from equation 2.10 for randomly generated edges of 50
nm and 1 µm respectively (Fig. 2.3). The edges are generated in such a
way that for an infinitely long edge, the auto-correlation length is exactly
the Gaussian function as specified by 2.20. It is apparent that an estimation
of the roughness on a 50 nm edge undershoots the value of the height rms
and overshoots the value of the auto-correlation length. In our scope, the
value of the auto-correlation length is obtained from a least square optimiza-
tion scheme which finds the best fitting Gaussian function to the correla-
tion function computed from the real surface. In addition, we compare the
auto-correlation function obtained from the randomly generated edge to one
obtained from the edge resulting exactly from a mapping of carbon atoms
to the surface in an graphene nano-ribbon (GNR) armchair configuration.
In both cases, we can see that both definitions of the edge lead to a similar
value of roughness rms. Nevertheless, due to the natural atomic periodicity,
the correlation function of the atomic edge does not converge to zero and
rather keeps a finite positive value. This results in a larger correlation length
of the atomic edge in comparison to the smoothened randomly generated
edge. Not surprisingly, longer edges yield a more accurate estimation of the
edge roughness statistical parameters.

In summary of this section, we have described stochastic procedures to
both generate 1D rough edges with a given Gaussian auto-correlation length,
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Figure 2.3: Comparison of the correlation of a randomly generated rough
edge and the associated “carbon-atom” discrete edge to the theoretical
Gaussian correlation with ∆ = 3 Å and L = 22 Å for integration over (a)
a 50 nm edge, and (b) a 1 µm edge.

and estimate the height root mean square and auto-correlation length of
a 1D edge. We have applied this methodology to the case of graphene
ribbon edges. In this case, the atomic representation of the edge and a
randomly generated edge of Gaussian auto-correlation function yield com-
parable height rms. In addition, we showed that edges described by the
direct position of atoms yield larger correlation lengths. The next section
will address similar schemes in the case of 2D surfaces.

2.4 Two-Dimensional Case

The theoretical case of 1D surfaces only appears in the limit of single layer
materials, and the majority of real devices, semiconductor or metal, natu-
rally present 2D boundaries. In the current regime of device down-scaling
and nano-engineering, typical dimensions become comparable to those of as-
perities at the interfaces. Hence, the effects of geometrical non-linearities on
mechanical, thermal and electrical processes are of increasing importance in
the overall performance of real nano-engineered devices. In addition, due to
boundary fluctuations, the single device behavior may vary from one device
to another. Consequently, in order to understand the physics of modern de-
vices and model their performance, it is necessary to have theoretical tools
which describe interfacial randomness. In a similar way to what we previ-
ously modeled in the case of 1D edges, we present here a set of statistical
recipes to randomly generate 2D surfaces of a given spectral density.

Here also, the question of generating a digital random 2D surface on a
computer, with a given SD, and enough smoothness and continuity to reflect
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real geometries, is a central and far from trivial issue. We follow here the
approach of the previous section, based on the convolution of two functions
presenting appropriate statistics. Here again, let us assume η(r) a uniform
continuous distribution on [−

√
3∆,+

√
3∆], and r on the surface domain.

In the 2D case, let us define the new function

g2D(r) =
1√
2πσ

e−r
2/2σ2

(2.21)

Similarly to what has been derived in section 2.3, defining h(r) = g2D(r) ∗
η(r), the resulting roughness rms is

∆2
rms(h) =

∫ 2π

0

∫ ∞
0

∆2
rms(η) · g2(r) dr dθ

= ∆2 (2.22)

(2.23)

and the height-height correlation function is similarly

C(r) = ∆2e−r
2/4σ2

(2.24)

which leads to the choice of σ = L/2 in order to guarantee that the auto-
covariance length associated to h is L. Hence, we defined a height function
with a given roughness rms ∆ and a Gaussian correlation function. In 2D,
using the Fourier transform formalism introduced in section 2.2, the result-
ing spectral density from such a Gaussian correlation function is Gaussian
by the Wiener-Khinchin theorem:

S(k) =
∫ ∞
−∞

∫ ∞
−∞

∆2e−(x2+y2)/L2
e−i(kxx+kyy) dx dy

= π∆2L2e−k
2L2/4 (2.25)

Incidentally, the formula above is in accordance with the work of Goodnick
et al. and followers [14, 15, 16, 19, 38].

To give a geometrical idea of surface roughness parameters, Fig. 2.4 de-
picts the roughness height profile h on a 50×50 nm surface for different rms
∆ and autocovariance lengths L. Similarly to the 1D case, with our given
random generation approach, the average height of surface peaks varies in
proportion to ∆, while the average width of these peaks increases with larger
L. Parameters of ∆ = 1.7 Å and L = 2.2 nm correspond to the case of Si-
SiO2 interfaces as reported in [14].

It must be noticed here that the Gaussian correlation function results from
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Figure 2.4: Example of rough 2D profiles for (a) ∆ = 1.7 Å, L = 2.2 nm,
(b) ∆ = 4 Å, L = 2.2 nm, (c) ∆ = 1.7 Å, L = 1.1 nm.

a series of integrations over an infinite surface. Therefore, a purely Gaussian
correlation function is only the physical property of a quasi-infinite surface.
In estimating the roughness parameters of a real rough interface based on the
Gaussian model, the question for the experimentalist remains to know what
the required total area of the interface is in order to achieve a satisfactory
level of confidence in the estimated roughness rms ∆ and autocovariance
length L. Thus, we computed the correlation function of randomly generated
surfaces of different areas on Fig. 2.5. Estimating the correlation function
on a small surface results to larger errors in comparison to the theoretical
Gaussian model. In order to further explore this phenomenon, we represent
in Fig. 2.6 the error made in approximating the correlation function of a
randomly generated finite rough surface by the expected Gaussian function.
For this purpose, we compute the relative error on the first 6 nm of the
radius from the center of the surface, corresponding to the interval on which
the autocorrelation function is represented on Fig. 2.5. It is noticeable that
this error decreases with larger total area, and that the total area required to
achieve a given level of accuracy appear to be independent of the roughness
rms ∆. Thus, an estimation error of 1.5% is achieved by averaging statistics
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Figure 2.5: Estimation of the 2D correlation function on randomly
generated surfaces of varying total area.

on a 400 nm surface, regardless of the roughness height rms. Collecting
roughness parameters by fitting the correlation function on smaller surfaces
will degrade this accuracy.

A methodology to extract ∆ and L naturally appears in the light of the
discussion above. First, one starts with the computation of the radius aver-
aged autocorrelation function, as described in section 2.2. The factor ∆ is
directly given by the values at radius zero of the computed autocorrelation
function C(0) = ∆2. Next, one finds the best Gaussian fit to the estimated
autocorrelation function. This can be achieved by a least square minimizing
scheme where one seeks the parameter λ which minimizes

L = min
λ

{∑
i

[
C(ri)−∆2eri/λ

]2
}

(2.26)

Then, the autocorrelation length L is defined as described in the equation
above. As discussed above, the accuracy of such an estimation depends
on the total area over which the correlation function was averaged. It is
important to remember here that the statistics used above all hinge on
the assumption that the geometry of the surface is essentially isotropic.
Nevertheless, it is conceivable to have different (∆, L) pairs in orthogonal
directions along the surface. In this case, each pair would be estimated
similarly to the method described above, but the autocorrelation function
would only be averaged in the direction of interest.

Finally, we would like to bring to the reader’s attention that additional
significant geometrical features may be estimated from higher order prop-
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Figure 2.6: Error in estimating the correlation of a finite size rough 2D
surface by a Gaussian function. Results are compared between surfaces of
varying roughness rms.

erties of the autocorrelation function. While the correlation function of a
strictly Gaussian noise is Gaussian, periodicity in the surface geometry in-
troduces damped oscillations in the correlation function. In Fig. 2.7.a and
Fig. 2.7.d, the correlation function was computed for a periodical lattice of
Gaussian peaks with a nearest neighbor distance of 40 nm. The position
of the order 1 maximum gives directly the nearest neighbor distance in a
perfectly periodic surface pattern.

In the physical case of conduction across a contact between electrodes,
it is frequent to use a cylinder based model to represent the constrictions
through which electrical current flows (Fig. 2.1). For this case of interest,
we compute in Fig. 2.7.b and Fig. 2.7.e the correlation function for elevated
circles of similar radius a = 25 nm, and center-to-center distance of dcc = 100
nm. In the case of asperities of regular size and spacing, the first minimum of
the correlation function gives the diameter of asperities, and the first order
maximum gives again the separation between asperities. Finally, we test
the case of randomly distributed asperities of regular, but randomly varying
diameter (Fig. 2.7.c and Fig. 2.7.f). In this case we generated a distribution
of cylinders of maximum diameter amax = 55 nm and average separation
〈dcc〉 = 200 nm. As such, the first minimum reveals the maximum diameter,
and the first order maximum approximates the average distance between
asperities.
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Figure 2.7: Profile of deterministic 2D surfaces in the configuration of (a)
equally distributed Gaussian functions, (b) equal size and constant
separation circles, (c) randomly distributed circles of bounded random
radius, and (d),(e),(f) associated correlation functions.

2.5 Conclusions

At the conclusion of this analysis, we have scoped methods to both extract
statistical roughness parameters from a randomly fluctuating solid inter-
face, and numerically generate such surfaces for applications in computer
simulations. Our primary here concern was conduction across and parallel
to solid metallic or semiconductor device boundaries. In this case, we pre-
sented a zero order and first order statistical framework based on a Gaussian
model in order to describe the random geometrical variations of the solid
surface due to the presence of imperfections, or asperities, on the surface.
This Gaussian model allows for a computerized reproduction of such random
surfaces in both 2D and 1D cases. The 1D case is of particular relevance
in the current scientific context where mono-atomic layer materials, such as
graphene, are integrated in electronic devices. From a study of the corre-
lation function of interfaces, we were able to extract important information
on the sizing of surface asperities in terms of the statistical roughness height
root-mean-square ∆ and autocorrelation length L. These two parameters
are central to further discussion on nano-scale interface processes during
heat and eleconic transport. We presented here a method to extract these
parameters directly from experimental observations. This pair of parame-
ters may be used to draw a direct connection between theoretical results
and experimental imaging of similar surfaces. This may be done through a
direct generation of random device geometries in computer simulations, or
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more evolved physical tools using directly the roughness parameters.
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CHAPTER 3

STATISTICAL SIMULATION OF ROUGHNESS

INDUCED ELECTRO-MECHANICAL

COUPLING IN M/NEMS METAL CONTACTS

3.1 On the Need for Algorithmic Innovation in
M/NEMS Modeling

Micro- and nano- fabricated sensors, actuators, and other passive or active
electro-mechanical coupled devices are now successfully developed through-
out the world [40, 41, 21, 42, 23]. Examples of fabrication processes for
such devices, called micro- or nano-electromechanical systems or M/NEMS,
include surface micro-machining, laser etching, microelectrodischarge, 3D
printing, micromolding and high aspect ratio metal plating. Through this
high variety of available fabrication processes, M/NEMS devices have been
used toward a broad range of applications, in mechanical sensing, atomic
scale sensing, micromotors, scanning probe tips for scanning tunneling mi-
croscopes, chemical microanalysis, and radio frequency devices. These de-
vices involve several physical behaviors, classical or quantum in nature, such
as mechanical motion, nano-scale heat and electronic transport, fluid dynam-
ics, mechanical stress, surface chemistry, and capacitive electrical effects.
Thus, effective and efficient design of M/NEMS requires detailed knowledge
of a broad range of physical mechanisms. As a result, most new M/NEMS
products are the result of repeated iterations of experimental prototypes, in-
stead of emerging from effective computer aided design (CAD) tools. In this
scope, a key step in reducing M/NEMS design time is the development of ef-
ficient simulation tools that will allow experimentalists to test their thought
experiments in a few hours rather than months [1]. In view of this, due to
the inadequacy of current simulation tools, it is fair to say that algorithmic
innovation is necessary in several areas.

In this chapter, we introduce a new multi-scale coupled electro-mechanical
simulation algorithm to study the effect of atomic scale interface roughness
on the electro-mechanical coupling of micro-engineered metal contacts. Such
devices are frequently used in RF systems as variable capacitors and con-
trollable electrical switches [2, 3], with particular advantages over solid state
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technologies for tunable filter applications. Indeed, micro-fabricated metal
switches offer high off-state and low on-state impedance, and a wide band-
width of operation, which makes them good candidates for high-end targeted
communication systems. The function of the micro-fabricated metal switch
essentially lies in two metal plates, whose positions with respect to each
other repeatedly vary, bringing the plates in contact at times (Fig. 3.1.a).
The contacting state constitutes what is called the ON state. Key charac-
teristics of these devices are their reliability, lifetime and current handling
ability, which are tightly bound to the properties of the metal-metal con-
tact. In particular, poor ability to handle high current at the contact is the
main source of device failure [23, 43, 44, 31, 45]. In that respect, atomic
scale topology of the contacting metal-metal interface, and the associated
contacting pressures, are determining factors in the device lifetime.

Due to the complex shape of the device at small scale, the finite element
method (FEM) is commonly used for analysis of electromechanical coupling
with randomly varying boundaries [46]. However, the use of FEM discretiza-
tion often leads to systems of equations that are large, sparse, ill-conditioned
and semi-definite or indefinite. The multi-scale aspect of the problem can
be leveraged by alternative algorithmic schemes, such as multi-grid [47, 48]
or meshless approaches [49]. Nevertheless, those calculations require a fixed
shape, are computationally expensive, and can only leverage the general
randomness of the atomic scale boundaries when included in Monte Carlo
simulations.

In the following section, we introduce a novel statistical computational
scheme based on the detailed knowledge, at the atomic scale, of the elec-
trode surface roughness, that will allow time efficient simulations of coupled
electro-mechanical properties of the micro-fabricated metal contacts. In par-
ticular, this new approach is derived from parameters directly observable
from the electrode surface, using the model described in chapter 2. Based
on Holm’s theory, we are able to determine an average resistivity vs. applied
pressure curve for gold-gold micro-contacts. Close agreement is found with
previously reported experimental observations [23], as we report a resistance
varying from 300 mΩ to 75 mΩ for applied contact pressure varying from
25 µN to 500 µN for sputtered gold electrodes.
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Figure 3.1: (a) Model of random surface fluctuations in a nanoscale metal
contact. (b) Model of plastic deformation under applied pressure at the
contact. (c) Model of elastic deformation under applied pressure at the
contact.

3.2 Nanoscale Mechanical and Electrical Properties of
Metal Contacts

Surface roughness is represented by randomly shaped and distributed as-
perities at the metal interfaces. Models of these random fluctuations were
presented in chapter 2. In the contacting state, asperities at each electrode
form constrictions through which the flow of electrical current is constrained
(Fig. 3.1.a). As a result, asperities and their shape are responsible for the
effective mechanical and electrical contact resistance (Fig. 3.1.b and c).
In this section, we will present the necessary theory in order to derive our
statistical model.

We center our derivation on Holm’s theory of the topology of electrical
contacts [25]. Under applied pressure at the contact, asperities will deform
under two physical regimes: elastic at low pressure, and plastic at high pres-
sure. The contact resistance is directly a function of the effective surface of
contact between each electrode. As such, for two single contacting asperi-
ties, assuming each asperity is spherical in the vicinity of the contact point
and that the asperities are aligned, the contact area is either

• a circle of area exactly equal to the intersection of two asperities. This
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is the case of plastic deformation at high contact pressure. One should
notice in this case that the total contacting area, and subsequently the
total contacting resistance, grows as the square root of the distance
between each electrode.

Or

• a circle of radius less than or equal to the intersection between the two
asperities, with the radius of contact a1 given by equation 3.1. This
is the case of elastic deformation at low contact pressure, where the
contacting area, hence the electrical resistivity, is minimal.

a1 =
(

3FCR
4E∗

)1/3

(3.1)

where R is the radius of curvature of the asperities (assuming the same
radius of curvature), FC is the applied force at the contact, and E∗ is the
composite Young’s modulus, defined as

(E∗)−1 = 2(1− ν2)E−1 (3.2)

where E is the material Young’s modulus and ν the Poisson ration. For
gold, we use EAu = 78 GPa, and νAu = 0.44. The equations above assume
that the same material is used for both electrodes. Given the mechanical
properties of the contact material and applied pressure, it is consequently
possible to derive the contact area and the resulting electrical resistivity of
the contact. Such models have been used successfully in the past [21, 25],
though it is arguable whether modeling a contact surface by a distribution
of spheres of varying radius yields sufficient accuracy.

Here, we propose an investigation of the next order of accuracy based
on a similar model, and a statistical description of surface roughness that
matches experimental observations with greater precision. In chapter 2, we
introduced a statistical model to generate a geometrical rough surface whose
autocorrelation curve is within a given interval of confidence from observable
measurements on a real surface. In view of this, Fig. 3.2.a is obtained from
scanning tunneling microscopy (STM) of a real surface of sputtered gold
(after Jensen et al. [31]). Measurements give a roughness rms ∆ = 13 nm
and autocorrelation length L = 60 nm. The following model is similar to
Holm’s approach described above. Nevertheless, it is now possible to use:

• two simulated rough surfaces to estimate the real geometrical contact
map between electrodes
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Figure 3.2: (a) STM picture of a gold contact, with measured surface rms
∆ = 13 nm. Picture after Jensen et al. [31]. (b) Computer generated gold
surfaces while contacting under applied pressure. ∆ = 13 nm and L = 60
nm.

• the simulated shape of observed asperities to estimate the asperity
radius of curvature at contact

• a series of surfaces generated in a Monte Carlo run in order to obtain
the statistical distribution of the contact parameters

As an example, Fig. 3.2.b depicts a computer generated surface with the
same roughness as sputtered gold (Au). The asperities were truncated from
intersection with another rough surface separated by a distance related to a
given applied pressure at the contact. The model described below will help
understand how to relate the latter contact force to the electrode separation,
using the material specific mechanical and electrical properties.

Using the Gaussian model of surface roughness, we derive below the rela-
tionship between contact radius and applied force (Fig. 3.3). Each asperity
has essentially a Gaussian shape, with radius of curvature

R =
L2

∆
(3.3)

Injecting this result into equation 3.1, one obtains the relationship between
effective contact radius and applied force for one single Gaussian shaped
asperity:

FC =
4E∗a3

1∆
3L2

(3.4)

Finally, assuming that two objects of similar radius of curvature are brought
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Figure 3.3: (a) Model of a single Gaussian asperity. (b) Contact radius
and penetration distance for asperities for small and large radius of
curvature, and under high and low contact force.

in contact, the radius of intersection between asperities follows:

a2 =
∣∣∣∣δ(R− δ

4
)
∣∣∣∣1/2 ∼ (RFC)1/3 (3.5)

where δ is the distance of penetration (Fig. 3.3.b). We should emphasize
the difference between a1, the radius of effective contact area, and a2 the
radius of asperities intersection area, which corresponds to the imaginary
case where asperities penetrate one another (represented as dashed lines in
Fig. 3.3). As such, the quantity a2 is easily measurable from two computer
generated surfaces, while a1 is necessary in order to compute the relationship
between contact force and resistance. Under small applied pressure and with
the assumption that the radius of curvature is large in comparison to the
distance of penetration (R >> ∆), we can hypothesize a linear dependency
between a1 and a2

a1 ≈ αa2 (3.6)

with α a constant of proportionality.
Finally, the dependency of the contact resistance on the radius of effective

area follows directly from Holm’s derivation [25]:

rasperity =
ρ

2a1
(3.7)

where ρ is the resistivity of the material used for contact. This apparent
resistance essentially follows from the constriction of the electric field lines
in the vicinity of the region of contact [25, 24]. In particular, as lines of
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current are forced through a longer path to flow through the asperity, an
increased contribution is perceived from the electrode resistivity, yielding a
perceived contact resistance. Note that this effect is independent of resis-
tivity perceived from the oxidation of electrodes.

We described above the fundamental equations for contact of Gaussian
asperities. For two intersecting rough surfaces, it is now possible to approx-
imate the effective contact area between each asperity, the applied force
necessary to achieve such a contacting pattern, and the resulting contact re-
sistance. In the next section, we will present the details of the computational
Monte Carlo scheme used to compute electromechanical properties of metal
contacts, and results obtained from this scheme on gold-gold micro-contacts.

3.3 Computational Approach and Results

Computation of the applied pressure and electrical resistance at a micro-
contact is performed with the following scheme. Firstly, two rough surfaces
are generated using the method described in chapter 2, based on a Gaussian
autocorrelation function, and a separation zc between the two surfaces. A
binary map of the intersection between the two surfaces is then generated
such that MAP (r) = 1 if the surfaces intersect, and MAP (r) = 0 otherwise
(Fig. 3.4.a). The autocorrelation function of the map is then computed
following the approach of section 2.4. As derived from the latter section,
the auto-correlation of a map of distributed patterns has its first minimum at
the equivalent radius of the largest pattern amax (Fig. 3.4.c). The following
approach effectively consists in converting the random map produced by
the simulated intersection into an equivalent circle model, from which the
contact force and contact resistance can easily be derived. Consequently, a
new map is generated from a series (a2,k)k of circles of normally distributed
radius such that

a2,k = max
(
amax,N (amax, amax/

√
2)
)

(3.8)

and for which the total contact area remains the same. As per equation 2.2,
this approach consists in generating a surface map of exact same roughness
rms ∆ (Fig. 3.4.b). It is possible to interpolate the second order roughness
statistics from each map from the best fit Gaussian parameters, as described
in section 2.4. As such, we observe that the autocorellation length L of the
equivalent circle model overshoots that of the original map by an average
of 9.8% (under the contact of two surfaces with ∆ = 13 nm and L = 60
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Figure 3.4: Computer model of a 1 µm × 1 µm gold-gold micro-contact.
(a) Simulated map of the intersection of two surfaces generated from a
Gaussian model with separation zc = 20 nm. (b) Derived equivalent circle
model of the intersection map. (c) Auto-correlation functions of models
(a), (b) and the theoretical Gaussian model of the intersecting surfaces.
∆ = 13 nm and L = 67 nm throughout.

nm, with separation zc = 20 nm). The second maximum of the autocorre-
lation function gives the average distance between contacting patterns dcc
(see chapter 2), and is generally in good agreement between the original
map and the equivalent circle model. We only noticed minimal influence of
these two quantities on the contact resistance and neccesary applied pres-
sure computed from this model. Finally, for each asperity, the resistance rk
of the circular contact is computed from equation 3.7 , and the contacting
force from equation 3.4. Subsequently, the total resistance is derived as the
ensemble of asperity contact resistances in parallel, and the total contacting
force as the sum of all asperity contacting forces.

In order to illustrate the method above, Fig. 3.5 shows the equivalence
between the circular model and the effective contact map for different elec-
trode separations using sputtered gold-gold contacts. It is noticeable that,
in every case, we have by definition an exact equality between roughness
rms ∆. In addition, it is remarkable that the fit for the autocorrelation
length, that is in essence the average size of contact patterns, converges to
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Figure 3.5: Effective contact map between two simulated sputtered gold
surfaces (∆ = 13 nm, L = 60 nm), equivalent circle model and associated
auto-correlation functions. (a), (b), and (c) electrode separation zc = 20
nm. (d), (e), and (f) zc = 25 nm. (g), (h), and (i) zc = 30 nm.

a stronger agreement at low contact pressures.
We use the following statistical Monte Carlo approach to investigate the

optimal contact properties from the geometry and roughness of the elec-
trodes. A statistical series of random surfaces are generated at a given
separation zc and fixed roughness parameters ∆ and L. For each specimen,
the equivalent circle model is computed, from which we derive the associated
contact force and total electrical resistance (Fig. 3.6).

The simulation process consists, for each pair of contacting surfaces, in
bringing the latter progressively in closer contact to each other, and de-
termining the contact map and equivalent circle model, from which the
contact force and electrical resistance are inferred. Importantly, at larger
electrode separation, not all sets of electrodes are contacting (Fig. 3.6.d and
3.7.d). Therefore, the average electromechanical properties are collected on
the ensemble of contacting surfaces, and must be put in perspective of the
percentage of non-contacting surfaces. It is noticed that the percent of non-
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Figure 3.6: Electromechanical properties of rough gold-gold micro-contacts
with varying roughness rms ∆, with L = 40 nm. (a) Contact resistance vs.
applied mechanical pressure for sputtered gold-gold micro-contacts. (b)
Necessary applied force to achieve a particular electrode separation for the
same contacts. (c) Average radius of the equivalent circle model for the
same surfaces. (d) Percentage of non-contacting samples during the Monte
Carlo runs.

contacting surfaces is a unique function of zc/∆ for the ensemble of ∆ at
a fixed autocorrelation length L. In particular, this rate increases at wide
separation zc and at lower ∆. There is a critical separation under which all
electrodes are contacting. We report this critical separation for gold-gold
surfaces as zc,0 = 13 nm, 26 nm, and 49 nm for ∆ = 3.5 nm, 7 nm and 13
nm respectively, and L fixed at 40 nm. These conditions represent differ-
ent qualities of reported sputtered gold surfaces [23]. In addition, we show
here that the proportion of non-contacting surfaces is higher at large auto-
correlation length L. Indeed, L is in essence the periodicity of the asperity
patterns. Rough electrodes with higher L will consequently contain lesser
asperities at a fixed area, consequently increasing the probability of having
none of these in contact at a given separation.

Next, we compute the average radius of the equivalent circles for varying
combinations of (L,∆). As the applied contact force increases, the equiv-
alent radius increases, showing the expected growth of contact area (Fig.
3.6.c and 3.7.c). In particular, the latter increase of contact area is steeper
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Figure 3.7: Electromechanical properties of rough gold-gold micro-contacts
with varying roughness auto-correlation L, with ∆ = 7 nm. (a) Contact
resistance vs applied mechanical pressure for sputtered gold-gold
micro-contacts. (b) Necessary applied force to achieve a particular
electrode separation for the same contacts. (c) Average radius of the
equivalent circle model for the same surfaces. (d) Percentage of
non-contacting samples during the Monte Carlo runs.

for smoother surfaces, at low ∆ and large L. For an applied force of 0.5 mN
over a 1 µm × 1 µm surface, the average radius of contact patterns strongly
varies with L, from 22 nm at L = 20 nm to 98 nm at L = 60 nm. Higher
contact radius directly translates into a reduced electrical resistance. In ad-
dition, we derive the applied pressure resulting from the simulated electrode
separation (Fig. 3.6.b and 3.7.b). The necessary pressure to apply in order
to bring rough electrodes to a given distance from one another is higher at
low L and large ∆. Indeed, a greater energy is required to compress as-
perities of large magnitude (large roughness rms ∆). Similarly, roughness
patterns of long wavelength result in less geometrical asperities brought in
contact on a given surface. As a result, the necessary applied force to bring
surfaces to a given separation zc is lower at high autocorrelation length L.
It is remarkable that the parameter ∆ affects the contact force by one order
of magnitude higher than L, making ∆ the primary parameter to optimize
when designing rough sputtered gold electrodes. For a given applied pres-
sure of Fc = 0.2 mN, we report here a resulting separation of 3.5 nm, 11.9,
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and 26.8 nm for sputtered gold-gold micro-contacts of L = 40 nm and ∆ =
3.5, 7 and 13 nm respectively.

Tested values of roughness rms ∆ were selected after the reported values of
Kwon et al. [23] on similar contacts, and we noticed a better experimental fit
with L = 40 nm for the reported electromechanical properties on the latter
contacts (Fig. 3.7.a). In particular, we compute the electrical resistance vs.
applied pressure curve for experimental conditions analogous to observations
of Kwon et al. with reported ∆ = 6.9 nm [23]. (Fig. 3.6.a and 3.7.a).
Simulated results show good agreement with the experimental observation,
with a strong fit for a simulated ∆ = 7 nm and L = 40 nm, resulting in a
relative error of only 3.6%. The simulation shows that the contact resistance
of gold-gold micro-contacts decreases at high contact pressures to uniformly
level out around 80 mΩ for pressures above 0.3 mN. The parameter L lightly
impacts the minimum achievable contact resistance. As such, rough contacts
should be optimized for low L in order to achieve minimal contact resistance.
The highest discrepancy is observed at low applied pressure below 20 µN. We
expect this mismatch to be caused by a higher contribution of electrostatic
force for barely contacting electrodes, which was not included in the present
model.

3.4 Conclusions

In this chapter, we presented a novel, computationally efficient statistical
simulation scheme in the scope of deriving essential eletromechanical be-
havior of MEMS micro-contacts based on the nano-scale rough geometry of
metal electrodes. The scheme allows collection of statistical averages using
a Monte Carlo approach based on a model derived from Holm’s theory of
metal contacts. In particular, the simulations are based on a geometrical
description of the electrode surface using roughness parameters directly ob-
servable on experimental electrodes. As a result of a detailed analysis of
geometrical roughness, our predictions of contact resistance curves show ex-
cellent agreement with experimental observations. In particular, inferring an
equivalent circle model from the statistical roughness of the surface allows
one to account with sufficient detail for the electrode mechanical and electri-
cal properties at the contact while enabling fast computational schemes. As
a result, the derived model can be used for fast computerized prototyping
of N/MEMS micro-contacts, for optimized applications in the field of high
frequency tunable filters and controllable switches. From the derived model,

36



we matched experimental observations on gold-gold micro-contacts, report-
ing minimal achievable contact resistance of 80 mΩ for applied pressures
above 0.3 mN on 1 µm × 1 µm surfaces of sputtered gold with roughness
rms ∆ = 7 nm and autocorrelation length L = 60 nm. As a result of fast
computerized simulations, we were able to quickly analyze the effect of sev-
eral contact design parameters. In particular, we noticed that the minimal
achievable contact resistance will be mostly minimized by reduction of L at
the surface. On the other hand, in order to decrease the necessary applied
pressure to reach the minimal resistance, the main parameter to optimize for
is ∆. Here, we reported values for gold-gold microcontacts. Nevertheless,
the simulation framework derived here can be extended to other metals by
injecting the material parameters in the framework. Hence, it is possible
to simulate contacts between electrodes of platinum, silver, or composites
to optimize for best usability in high frequency applications. We noticed
most discrepency with experimental results at low applied pressure. In this
regime, it is likely that the contribution of the electrostatic force between
electrodes is the highest, which should be further included in the model. In
addition, we did not account for the resitance due to the oxidation of the
surface, which is expected to linearly add to the contact resistance with re-
spect to the effective area of contact. Finally, contact ressitance is a critical
factor in failure of N/MEMS micro-contacts through excessive heating in
the ON state. However, it is equally important to understand other failure
mechanisms, especially in the OFF state. In that respect, we propose, in the
following chapter, to establish an additional computationally efficient sim-
ulation framework to study failure of the latter devices through electrical
discharges.
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CHAPTER 4

THE PERCOLATION APPROACH TO

ELECTRO-THERMAL FAILURE IN M/NEMS

CONTACTS

4.1 Breakdown of RF MEMS Switches by Electrical
Discharge

Radio frequency micro-electromechanical systems (RF MEMS) have recently
shown excellent performances that have led to their consideration as an al-
ternative to solid-state switches. They indeed offer low on-state and high
off-state impedance and a broad bandwidth for operation, which makes them
good candidates for tunable filters with applications in wireless communi-
cation systems [2, 3]. However, their reliability is limited by various failure
mechanisms, whose study is challenging due to the complex interaction be-
tween the processes of mechanical deformation, electrical transport, material
exchange and heat transfer. As a result, the current state of the art of RF
MEMS design is widely based on heuristics and has not yet seen the emer-
gence of consistent fabrication patterns. In the previous chapter, we used
our statistical knowledge of electrode roughness to understand the effective
contacting resistance of such devices leading to their failure through over-
heating. In this chapter, we offer a novel approach to understanding elec-
trical failure in the OFF state of micro-fabricated metal switches based on
a percolation theory to account for the randomness of the medium between
electrodes.

It was reported that during mechanical cycling, RF MEMS show an in-
crease in contact resistance due to the formation of an insulating film at
the metal surface [31]. Thus, several failure processes have been consid-
ered leading to film formation, including adhesion between the metal elec-
trodes, melting, material transport, charge extraction from the interface,
and arc formation [31, 45, 50]. Most recent models emphasize the consider-
able roughness of the metal surface given the microsopic scale of the devices.
However, while conduction in the metal bulk or in the metal-metal contact
is well determined by both ballistic and Monte Carlo approaches that show
good agreement with experimental data [51, 52], electro-thermal phenomena
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leading to arc formation have received little interest despite their importance
in the mechanisms of RF MEMS failure.

Earlier research has shed light on similar metal-insulator-metal (MIM)
structures, reporting brightly illuminated arcs in the oxide, whose radius
increased with the bias voltage [53]. Similarly to recent approaches in the
MEMS community, models of conduction in the insulator have been pro-
posed based on the consideration of conducting filaments of normally dis-
tributed resistivity and radii [54, 55, 56]. More recently, thermodynamic
descriptions of electrical arcs have been under scrutiny for microscopic MIM
structures using air or vacuum as an insulator [57, 58]. Additionally, the
increasing computational power available to researchers enabled the emer-
gence of molecular dynamic models of charge and material exchange during
electrical discharges [59]. While these models offer an accurate description
of the various processes involved in the formation of electrical arcs, they can-
not yet support a broad and dynamic picture of charge transfer in a metal
switch device as a whole.

Hence, electrical discharges in metal-metal structures constitute a favor-
able ground for testing our multi-scale framework described in chapter 1.
Indeed, such failure mechanisms arise from the successive thermally depen-
dent ionization of adjacent small elements of gas. We introduce the high
level model of our hierarchy by considering the gas medium between two
electrodes as a network of uni-directional conducting elements. It is re-
markable that, in the case of a gas, the 1D transport properties can be
reasonably approximated by linear laws and do not need the inclusion of
boundary effects for each small conducting channel. In this sense, the prob-
lem of gas discharge constitutes a simple ground to experiment with the
high level model, in which small 1D systems of gas are stochastically inte-
grated. From this approach, we will subsequently derive highly non-linear
coupled electro-thermal behaviors of micro-systems based on the statistical
knowledge of atomistic conduction phenomena. The simulated results will
also provide the necessary basis to start exploring the effects of electrode
geometry and roughness on the performances of RF MEMS when they are
scaled down.

In this respect, percolation theory has already been used to describe elec-
trical failure of conducting metal films [60, 61]. Percolation is a general
probabilistic model to represent a random medium. A simple example of
the use of percolation could involve, for instance, the calculation of the
probability for a liquid to diffuse through a porous stone. In the scope of
electrical engineering, percolation generally consists in modeling a dielectric
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medium as a network of conducting elements (resistances, etc.) which can
fail with a given probability. More advanced models included heat propaga-
tion and temperature dependence of the electrical properties of each element
of the network, and have suggested that such schemes could be applied to
electrical failure of insulating media [62]. Given the nature of arc failure
in RF MEMS while keeping in mind the gaseous nature of the typical in-
sulator under our scope, it is envisaged that percolation theory can lead to
a successful description of electro-thermal failure of such devices. In the
following sections, we report on how the stochastic modeling of electrical
arcs in a metal-air-metal structure based on percolation theory may repro-
duce, even under simplistic assumptions, physically consistent breakdown
phenomena in metal switches.

Finally, we would like to emphasize the general nature of our approach.
While the problem within our scope in this chapter is the precise case of
RF contacting metal switches, the same approach can be virtually applied
to any type of non-linear conduction problem. Hence, discharges between
silicon cantilevers or nanowhiskers can be studied in a similar fashion. The
medium in between the electrodes need not be an inert gas, but may as well
be made of a statistical solid state medium, such as carbon nanotube or
nanowire networks. The range of possibilities is simply bound by creativity.

4.2 Physical Background on Gas Discharge

Figure 4.1 schematically represents the modes of operation of a MEMS
switch. The roughness of the metal surface increases the contact resistance,
and with it, the power losses in the contact. We are mostly interested, for
now, in the breakdown of the device in the OFF state due to observed arc
discharges.

Although air is, under normal atmospheric conditions, almost a perfect
insulator, it is known that under certain applied electric fields and temper-
atures, it may carry high electrical and heat currents. The phenomenon of
gas discharge has already been extensively studied (see for instance [63, 64])
for its various implications in capacitances reliability, vacuum tubes, plasma
physics, and surface treatment. We wish here to provide the inexpert reader
with the necessary elements of discharge physics in order to understand the
model used in the following sections.

A gas can simplistically be seen as an ensemble of hard spheres represent-
ing neutral molecules, ions and electrons traveling in space under the influ-
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Figure 4.1: (a) Schematic representation of a MEMS switch. (b)
Importance of surface roughness in the metal contact region.

ence of thermal agitation, applied forces, and internal interactions. Each
particle may similarly scatter from different mechanisms, which accounts
for the electrical and thermal resistance of an element of gas. Incidentally,
each of these scattering mechanisms corresponds to an exchange of energy
between the constituents of the gas.

One important process in a gas discharge arises from the collision of elec-
trons and neutral atoms or molecules. If the electron transfers enough energy
to the heavy particle to overcome its ionization energy Vi, the latter may
free an additional electron from its outer shell. Hence, under sufficiently
high electric fields or thermal agitation, one electron may create, through
an avalanche-like process, an exponentially increasing number of electrons.
Townsend [65] gives a statistical description of this process by assuming that
n electrons traveling through an element of gas dx generate a differential in
the number of electrons

dn = αndx (4.1)

where α is called the first Townsend coefficient. The term α, the proportion
of avalanche carriers generated by one electron per unit length, is dependent
on the electric field and the particle mean free path which is, to the first
order, inversely proportional to the pressure. Once a successful avalanche
has started, electrons travel toward the anode while the ions travel toward
the cathode. Energy exchange between those first charge carriers and the
metal will feed the starting process and build up the arc of high current
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between the electrodes. Hence, the time to breakdown is stochastically given
by the statistical time for an electron to start a successful avalanche and the
statistical time for a starting avalanche to start a successful feedback.

One may argue that, in order to start a successful avalanche, a certain
number of electrons must initially be in the gas. At the scale of the de-
vice, those electrons are most likely to be injected from the metal contacts.
Indeed, carriers in the metal contact see, at the surface, a potential bar-
rier of approximately Φ, the work function of the metal. A certain portion
of these carriers may nevertheless overcome this potential barrier and be
dragged in the gas. This process may happen under high normal electric
fields (field emission and tunneling) or high temperatures at the metal sur-
face (thermionic emission).

Incidentally, the temperature of the gas has a strong impact on the pro-
portion of electrons which can be found in the gas. Generally, a good approx-
imation to the proportion of electrons X with respect to the total number
of particles in the gas is given by the Saha equation [66]:

PX2

1−X2
= CT 5/2e

− qVi
kBT (4.2)

where P is the pressure of the gas in atm, Vi is ionization energy of the gas
molecules and C = 3.16 · 10−7 atm/K5/2 is constant. Figure 4.2 represents
the proportion of electrons for a pure gas of gold particles, air and a mixture
of both.

Finally, for the short time involved in the arcing process, the effect of
space charge cannot be neglected. Since electrons are considerably lighter
than their positive counterparts, they indeed leave a positive column behind
them while traveling to the anode. This column accounts for high fields in
its vicinity, where additional avalanches will be favored.

4.3 Percolation Approach to Coupled Non-Linear
Electro-Thermal Failure

Given the atomistic picture discussed in the previous section, running Monte
Carlo type simulations, similarly to the case of semiconductors, is conceiv-
able. However, due to the lack of periodicity of the gas structure and the high
number of particles that must be accounted for, the problem becomes rapidly
unsolvable. On the other hand, percolation theory [67] offers a computa-
tionally efficient platform to account for the stochastic failure of a random
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Figure 4.2: Proportion of electrons in a gas given by the Saha equation at
atmospheric pressure. The mixture of gas corresponds to a proportion of
5% of Au particles.

medium at a microscopic level. It is important to note here that, because
the arcing process involves strong interactions between the gas and metal
properties, we seek a model to describe heat and electrical transport in both
metal contacts and gas.

Following previous attempts from percolation theory [62], we adopt a
random electrical network representation to describe the contact region, in-
cluding the electrodes and the gas (see Fig. 4.3). Under this assumption
the region is modeled by an R × S rectangle-lattice network of resistive
elements, whose properties vary between gas and metal. Each element n
is represented by a specific intensity-voltage (I-V) curve which, for a given
point of operation in voltage and temperature, will determine its output cur-
rent in and dynamic resistance rn. Each element consequently represents
an infinitesimal piece of metal or gas connected to its six closest neighbors.
Although a detailed representation would require that the typical I-V curve
for an element of air be computed, a linear approximation is used for the
sake of simplicity. If one element connects two nodes of potential V1 and V2,
our model classically predicts an output current of

in =
V2 − V1

rn(T̄ )
(4.3)

The dependence of the dynamic resistance in T̄ indicates that the electrical
properties of an element are dependent on its own local temperature and
the temperature of its closest neighbors which will diffuse in the lattice.
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Figure 4.3: Network of 60 × 60 nodes approaching electrical breakdown.
Different gray levels from light to dark correspond to increasing values of
resistance from 1 to 2 MΩ. Blue elements represent conducting defects.
The electrodes are limited to simple planar contacts.

The temperature dependence of the resistance on the local temperature is
assumed linear and varies according to

rn(Tn) = r0 [1 + α(Tn − T0)] (4.4)

where T0 is the temperature of the medium and is assumed to be constant.
We further assume that the system is initially in thermal equilibrium at a
temperature T0. The linear approximation of equation 4.4, with a thermal
resistance coefficient α > 0, is a natural first order assumption in a metal.
In a gas, it accounts for the fact that electrons will exchange energy with the
excited molecules of air and therefore see an increased resistivity at higher
temperatures.

The instability in the gas is starting from the spontaneous creation of
conducting defects. Subsequent ionization is reflected by the random ap-
pearance of conducting defects in the lattice, with a probability Wn(Tn).
This probability is a direct consequence of Saha’s equation; therefore we
consider an element of gas as conducting when its proportion of electrons
reaches Xcond = 0.2.

Additionally, a screening factor is introduced to reflect the effect of space
charge, which favors the creation of defects in the vicinity of already existing
defects. Under this assumption elements surrounded by conducting defects
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have a higher ionization probability.

W corr.
n =

p1 + (1− p1)
N

(n)
def

N
(n)
neigh

WSaha
n (4.5)

where p1 is a fixed probability which accounts for the probability of ion-
ization given the number of surrounding defects N (n)

def . N
(n)
neigh is the fixed

number of neighboring elements of the resistance n.
Finally, the temperature dependence of the system appears from Joule

heating and assumes a partial thermalization of the element with its closest
neighbors.

Tn = T0 +A

rni2n +
B

N
(n)
neigh

N
(n)
neigh∑
k=1

(
rki

2
k − rni2n

) (4.6)

The constants A and 0 ≤ B ≤ 1 are important determinants of the evolu-
tion of the system. A value of B = 1 assumes that the temperature of an
element is only the result of Joule dissipation around it. B = 0.75 corre-
sponds to a uniform heating of horizontal and vertical elements. It is also
worth noticing that for the special case A = 0, under the condition p1 = 1,
the probability Wn is the same for all resistances and corresponds to the
situation where the degradation is governed by standard percolation. The
strictly positive value of p1 reflects the possible spontaneous appearance of
conducting defects under sufficient temperature and in the absence of sur-
rounding elements of ionized plasma. Although the value of p1 must remain
small since a spontaneous ionization is unlikely to happen in the practical
range of temperatures, it is necessary that it be non-null in order to ignite
the process of electrical breakdown if a uniform and unperturbed starting
lattice is assumed.

Further attention must be paid to initial and boundary conditions. A
reasonable assumption is that the system starts at thermal and electrical
equilibrium, all elements consequently having the same initial temperature
T0 and resistance r0. The initial resistivity of an element is evidently de-
pendent on the size of an elementary resistance. At a temperature of 300
K, we have the resistivity of air given by ρair = 4 · 1015Ω· m−1.
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Figure 4.4: System at percolation. An electrical arc of high currents (levels
of blue) connects the electrodes.

4.4 Results

Values of A = 105 K·W−1, B = 0.6, αair = 1.5·104K−1, αAu = 3.5·10−3K−1,
and T0 = 300 K are used. As expected, the conductive defects appear by an
avalanche phenomena (Figs. 4.3, 4.4, and 4.5).

The resistive growth shows filamentary patterns (Fig. 4.3). As reported
in [62], filaments of increased resistivity tend to appear perpendicular to the
direction of the current flow. In contrast, conductive defects appear in the
direction of the potential gradient. An electrical arc of high electrical current
is observed between the electrodes at the time of electrical breakdown (Fig.
4.4).

Additionally, very high temperatures appear near the breakdown time,
especially at the anode surface, accounting for the melting of the metal that
has been experimentally observed.

The percolation threshold is precisely defined by observing the total cur-
rent flowing in the grounded electrode. The breakdown is characterized by a
drastic rise in the total current transmitted between electrodes. It has been
noticed that, while the device average temperature remains close to 300 K
before breakdown, it is drastically increased once the arc has appeared. High
local temperature gradients, ranging from 300 K – 10,000 K, are observed
as a result of the appearance of defects.

A full statistical description of the system is obtained from a statisti-
cal Monte Carlo run of the percolation model (Fig. 4.6). The statistical
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Figure 4.5: Evolution of the number of defects in the domain over time.

Figure 4.6: (a) Distribution and Gaussian fit of the breakdown times under
a bias of 0.1 V. (b) Statistical breakdown times under increasing bias
voltage and 1 µm gap.

breakdown time is, under small voltages, well interpolated by a Gaussian
fit. Higher voltages favor the emergence of a second maximum, which is
expected to reflect the difference between the two statistical times (first
avalanche and feedback) mentioned previously. In addition, the results ap-
pear physically consistent, as the breakdown time is higher for small voltages
while the variance of the system is reduced.

Ultimately, it was remarked that the same statistical time slightly de-
creases when the electrodes are separated from one another. This result is
consistent with our model which does not account for field emission. Hence,
wider gaps present a higher resistance, which leads to higher Joule dissipa-
tion and a faster heating of the gas. At the atomistic level, this is accounted
for by the fact that, statistically, more electrons are initially in the gas to
ignite the avalanche process.
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4.5 Perspectives

In this chapter, we proposed a novel approach to the simulation of electro-
thermal breakdown in micro-fabricated metal switches. Percolation theory
was used to account for effects observed in elementary unidirectional el-
ements of gas. The model shows promising results according to the ap-
pearance of electrical arcs in the cavity and the good approximation of the
statistical distribution of breakdown times. Consequently, we recommend
future investigation of electrical breakdown of RF MEMS based on perco-
lation theory. In view of this, the results are expected to be confronted
against experiments on real switches. Several refinements may additionally
be provided to the model, in terms of diffusion of the ionized defects, non
linearity of the current-voltage laws, and inclusion of surface emission from
the metal interfaces.

In addition, this model revolves around the integration of a network of
unidirectional conduction channels. The device engineer is surely not limited
to the choice of an inert gas between electrodes. To exploit the properties of
novel meta-materials, it was suggested among other options to use networks
of carbon nanotubes to establish a percolative thermal and electrical contact
between two electrodes [68, 69]. Our model remains general and we would
like to envisage the case where structures of low dimensionality are used
in a conductive network system. This requires the prior knowledge of the
electrical and thermal behavior of such structures.

Lastly, we have not dealt yet with the conduction problem in beams and
cantilevers themselves. Such structures, when scaled down, will be equiva-
lent to nanowires. In this respect, we will focus in the next chapters on the
thermal and electrical conduction processes in quasi-1D structures such as
nanowires.
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CHAPTER 5

ELECTRONIC TRANSPORT IN ROUGH

SEMICONDUCTOR NANO-CHANNELS

5.1 Simulation of Electronic Transport in Nanostructures

In the multi-scale framework presented in the introduction (Fig. 1.1), it is
required, in the second step, to develop a solid understanding of heat and
electronic conduction at the nanometer scale. Our interest in developing
efficient models of nanoscale transport is twofold. Firstly, as we are con-
cerned with the large scale integration of conduction channels in percolative
networks (see chapter 4) for novel NEMS designs, we must be able to predict
the behavior of single elements at the quasi-atomistic scale. Secondly, in the
scope of large scale integration the size of more conventional NEMS such as
RF switches or cantilever devices needs to be constantly reduced. In this
respect, we believe that models of nanoscale transport in silicon beams and
cantilevers will be required to allow further technological advances in the
near future.

Nevertheless, the problem of nanoscale electronic and thermal transport is
not new, and has been addressed very extensively, for instance, in the area of
semiconductor field effect transistors (FETs). In this field, the newest tech-
nological trends incorporate nanowire channels on the CMOS platform, such
as FinFET, trigate or nanowire MOSFET [70, 71, 72, 73]. These structures,
although pushing the scale of the devices to a quasi-1D limit, nevertheless
suffer from the presence of a considerable surface-to-volume ratio which in-
evitably tends to degrade carrier mobility at small cross-sections.

The problem of transport in quasi-1D channels is indeed two-fold. On the
one hand, the conductivity of devices near the 1D limit benefits from the
high intrinsic directionality of such geometries. Consequently, it is profitable
to exploit the physical properties of such systems in the mere hope of achiev-
ing better performance in terms of thermal and electrical conductivity. On
the other hand, conducting nano-channels suffer from the increasing contri-
bution of their interfaces. Indeed, at these scales, the natural geometrical
fluctuations of the material surface are expected to strongly interact with

49



Figure 5.1: Physical models used to study electronic transport in quasi-1D
silicon channels. Top: geometry confined 1D electron gas. Bottom:
electrostatically confined electron gas.

the wave-like nature of the carriers of heat and electrical currents, in a way
which is not unlike the diffraction of optical waves by a real surface.

In order to study these effects, we have chosen example devices operated
in a FET way. Indeed, the generally better understanding of the under-
lying transport processes in FET structures will help grasp the electronic
processes involved in quasi-1D transport. In addition, we will be able to
easily compare the results of our approach to an extensive amount of avail-
able experimental data. Thus, in the approach presented in this chapter, we
intend to theoretically predict the concurrent effects of directionality and
surface roughness in electrically semiconducting nano-channels. In order to
develop a thorough understanding of these processes, we have thought of
two sensibly different devices, which both operate near the 1D limit (Fig.
5.1). The first model device represents the classical picture of the nanowire,
where a 1D electron gas is confined by the geometry of the device. In order
to study the relative effect of surface roughness, our second model device
utilizes an applied gate bias to electrostatically confine the electron gas for
1D transport, hence reducing the contribution of interfacial processes.

In this scope, modeling a realistic nanoscale semiconductor device requires
choosing which physical picture is most suitable to tackle the problem of
interest. At the top of the available simulation hierarchy, one finds quan-
tum models which accurately account for such effects as size quantization,
quantum interference, and tunneling. At this level of abstraction, the many-
body Schrödinger equation is the governing equation which fully describes
the electronic structure of atoms, molecules, and solids. Solving the time-
dependent Schrödinger equation for the many-particle system, however, is
not an option for a realistic device, due to the large computational effort
required to solve an order of 1023 coupled equations [74, 75, 76]. Alter-
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native approaches to describing non-equilibrium correlated many-particle
systems, such as non-equilibrium Green functions (NEGF), are furthermore
limited by their inherent difficulty to accurately include scattering mech-
anisms. When size allows, we will present in chapter 8 a method to in-
clude boundary scattering rates in a Geeen function scheme for ultra-thin
nanowires.

At a semi-classical level, the Boltzmann transport equation (BTE) is the
governing equation which describes electron transport in semiconductors.
Although solving the BTE is not a simple task, it is common, under certain
conditions of quasi-equilibrium and long channel devices, to use approximate
models derived from the moments of the BTE. These models include the
hydrodynamic (HD) [77, 78] and the drift diffusion (DD) [79] approach.
However, both DD and HD approaches prove inefficient in capturing such
short channel effects as velocity overshoot.

As a good trade-off between the full quantum and the DD approaches,
the semiconductor Monte Carlo simulation has been intensively used in the
past decades to provide a fairly complete semi-classical picture of device
physics [80, 81, 82] and successfully describe nonequilibrium effects such as
hot carriers, which are common at short channel lengths [83, 84].

In this scope, a quantum corrected three-dimensional (3D) Monte Carlo
simulation is a good TCAD candidate for the exploration of hybrid devices
based on the semiconductor nano-channel platform. In the following sub-
sections, such an approach is used to investigate the benefits of quasi-1D
electronic transport in geometrical silicon nanowires and electrostatically
confined silicon channels. The performance of the devices was assessed in
the FET structure, and we observed enhanced performance of the confined
silicon nano-channels. In this respect, the simulator was subsequently used
to optimally size a novel MOS structure at the limit of lateral scalability.
A quantum correction approach is adopted to account for size quantization
in the narrow channels, which is accurate as long as the cross-section is not
too small. For even narrower channels, explicit inclusion of the sub-band
structure may be needed.

5.2 Monte Carlo Approach to Device Simulation

In the precise context of semiconductor device simulation, the Monte Carlo
technique [85] is used to derive the properties of the device by tracking the
movements of the carriers in space and time while they move in the crystal
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Figure 5.2: Schematic view of the trajectory of an electron during a Monte
Carlo simulation of a n-MOSFET.

lattice according to a set of semi-classical rules. Then, a statistical model
of the device is built by sampling information about the system. As the
number of particles and duration of the simulation increase, the solution for
the energy distribution in the device approaches the exact solution of the
Boltzmann transport equation (BTE) [86]

∂f

∂t
+
∂r
∂t
· ∇rf +

dk
dt
· ∇kf =

∂f

∂t

∣∣∣∣
coll

(5.1)

where r is the position in the device, k is the wave vector and f(r,k, t) is
the distribution function which, in essence, is related to the probability of
finding carriers in the state k and at the position r at time t. The right-
hand side accounts for the variation of the distribution in the infinitesimal
region due to scattering and is generally derived quantum mechanically from
Fermi’s golden rule. Hence, the Monte Carlo approach yields a semiclassical
picture which follows two assumptions:

1. The particles in the device are represented as point-like objects.

2. The motion of the particles is described as a series of free flights in-
terrupted by scattering events (Fig. 5.2). During the free flights, the
trajectories in real and k-space are calculated from classical mechan-
ics. The scattering mechanism and angle are stochastically determined
from quantum mechanics.

The present work is based on the 3D Monte Carlo simulator of the Uni-
versity of Illinois, MOCA. The current version of the simulator originates
from the two-dimensional work of A. Pacelli [87] in 1998, modified by B.
Winstead [85] for quantum correction and brought to the 3D version by G.
Khatawala.
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Figure 5.3: Example of band structure for Si used in MOCA. Figure
courtesy of [88].

Here, the semiclassical equations describing the motion of electrons are

dr
dt

=
1
~
∇kE(k) (5.2)

dk
dt

=
qF(r)

~
(5.3)

where F is the electric field and E(k) is the energy dispersion relation.
Although a parabolic dispersion relation can often be assumed near equi-
librium, the existence of hot carriers requires, in current applications, ac-
counting for the anisotropy of the crystal lattice and using a full dispersion
relation in the high energy tails. A full-band E(k) relation can be obtained
using the semi-empirical pseudopotential method [82]. An example of such
full band structure for silicon is given in Fig. 5.3.

Finally, the electric field F(r) in the device depends on the electrostatic
potential u(r)

F(r) = −∇u(r) (5.4)

The internal redistribution of charge carriers traveling in the device is han-
dled by a self-consistent simulation. This approach couples the Monte Carlo
procedure to Poisson’s equation (eq. 5.5 below) in order to update the
internal electrostatic potential.

∇(ε∇u(r)) = −ρ(r) (5.5)

where ε is the anisotropic permittivity of the material and ρ is the charge
density due to minority and majority carriers as well as ionized dopants.
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Since solving Poisson’s equation in a 3D self-consistent Monte Carlo requires
about 90% of the total computational time [89], efficient numerical schemes
must be employed. MOCA, in this scope, solves Poisson’s equation with
a Newton iteration based on finite differences, using a conjugate gradient
technique and a line search to determine the descent direction and the step
size [90].

Hence, two of the benefits of a semiclassical Monte Carlo approach in
comparison to its DD, HD or quantum counterparts, are its capability to
provide accurate quantum mechanical treatment of various distinct scatter-
ing mechanisms, and the absence of assumption about the form of carrier
distribution in energy or k-space.

5.3 Scattering Mechanisms and Mobility

In the Monte Carlo approach, the duration of the free flight of a particle
is stochastically determined from a set of scattering rates given for a va-
riety of mechanisms. The present work accounts for acoustic and optical
phonon scattering, impact ionization scattering, impurity scattering, sur-
face roughness scattering and the carrier-carrier interaction by using the
particle-particle–particle-mesh (P3M) approach of Hockney and Eastwood
[91]. Given the different scattering rates for a precise particle state, one may
then randomly select the scattering process at the end of the free flight, as
well as the scattering angle, through the use of a random number generator.

These scattering rates are very often derived using the Born approxima-
tion, in which a scattering event is merely a transition between two mo-
mentum states of the carrier involved. The quantum many-body problem
arising from the interaction of a carrier with its surrounding environment
(phonons, electrons, holes, plasmons, impurities, etc.) may indeed be re-
duced to a two-body problem using the quasiparticle approximation, which
separates the carrier of interest from the rest of the crystal [80]. Within these
approximations, Fermi’s golden rule gives, to the first order, the transition
probability per unit time from a state |k〉 to a state |k′〉

S(k,k′) =
2π
~
|〈k|H ′|k′〉|2 · δ(E − E′) (5.6)

where H ′ is the perturbation Hamiltonian representing the collision and E

and E′ are, respectively, the initial and final energies of the system consti-
tuted of the carrier, the lattice and the electron gas. The Dirac δ-function
stands for the conservation of energy. Under these circumstances, the scat-
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tering rate τ−1
i (k) for the scattering process i is simply the sum of the

Si(k,k′) over all possible terminal states k′.
The mobility µ of particles in a crystal lattice is a statistical description

of how fast a charged particle will travel in response to an applied electrical
field. It is well defined in a direction of propagation x

µx =
〈vx〉
〈Fx〉

(5.7)

where vx and Fx are the average speed and field in the direction of propaga-
tion and the averages are, for instance, on the whole conduction channel of a
device. Without entering into cumbersome mathematical derivation, let us
note here that it is physically meaningful to assume that a high scattering
rate, or in other words a greater number of collisional events encountered by
a particle traveling from source to drain, will decrease the mobility in the
channel of a device.

We would like to emphasize the special case of surface roughness scatter-
ing. The asperities of a rough semiconductor-oxide interface may indeed be
treated as a perturbation of the potential near the boundary [14, 16]. Car-
riers may then, instead of specularly bouncing on the surface, scatter diffu-
sively near the boundary, which accounts for momentum —and mobility—
loss in the direction of propagation. Therefore, mobility enhancement can
be achieved by reducing the surface of contact between the electron gas and
the oxide.

5.4 Quantum Correction

As MOSFET devices are scaled down to the order of a couple tens of nanome-
ters, large electric fields are created which reduce the inversion layer thick-
ness to the order of a de Broglie wavelength. At this scale, the allowed energy
levels for a carrier become discrete due to the wave nature of the carriers.
Hence, in order to successfully describe recent devices, Monte Carlo simu-
lations must account for the quantization in the direction of confinement,
which is typically normal to the oxide surface. Consequently, a quantum
corrected Monte Carlo algorithm must periodically solve the Schrödinger
equation in planes perpendicular to the direction of propagation in order to
account for quantization in the electron gas.

At the quantum mechanical level, the sudden change in potential at the
Si-SiO2 interface in essence leads to a repulsion of charge density from the
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Figure 5.4: Comparison of the carrier distribution (cm−3) in the 2DEG of
a MOSFET: (a) without quantum correction, (b) with quantum correction,
(c) perpendicular to the electron gas.

interface (Fig. 5.4). MOCA takes this into account by using a quantum
correction potential which is linked to the quantum density as

Vqc(y, z) = −kBT log[nq(y, z)− Vp(y, z) + V0] (5.8)

where Vqc(y, z) is the quantum correction potential, nq(y, z) is the carrier
density obtained from solution of the Schrodinger equation, Vp(y, z) is the
potential from solving the Poisson equation self-consistently, and V0 is a
reference potential point in the device where the quantum correction is fixed
to zero.

5.5 Confined Silicon Nano-Channels

In order to incorporate nanowire structures on the CMOS technological plat-
form while limiting the effects of surface roughness scattering, it has been
suggested to scale down the width of the gate [92]. Such devices are ap-
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Figure 5.5: Cross section of a T-gate MOSFET perpendicular to the
direction of propagation.

pealing in the sense that they achieve electrostatically a lateral confinement
of the electron gas in a quasi-1D channel while limiting the Si-SiO2 inter-
face and remaining structurally close to a standard MOSFET. The promises
of integrated nanowire-like transistors are manifold. Firstly, lateral down-
scaling of transistors allows an increase in the density of devices on a chip.
More importantly, limiting the charge transport along one direction inher-
ently offers the possibility to reach higher mobilities and subsequent higher
on-current to off-current ratios for the next generation devices.

The quantum corrected 3D Monte Carlo simulator described in the pre-
vious sections was used to efficiently design quasi 1D nanowires, in which
the confined conduction channel is created by etching an oxide trench, thus
realizing a T-gate structure (Fig. 5.5). The simulated T-gate structure con-
sists of a 5 nm metal-filled oxide trench (d2) capped with a 20 nm metal
gate (d1). The silicon oxide thickness was fixed at 2 nm. The source and
drain are n+-doped with a concentration of 1020 cm−3 with the S/D junc-
tions ending abruptly at the gate edge. The silicon substrate was lightly
doped to 1016 cm−3. Additionally, it has been considered to use an undoped
epitaxial layer grown on the silicon substrate, in order to reduce impurity
scattering in the conduction channel. It can be seen that, consistently with
the coupled Schrödinger-Poisson solver of [92], the Monte Carlo simulation
accounts for the confinement of carriers due to the potential created by the
gate (Fig. 5.6).

The width of the confining potential is, as expected, strongly dependent
on the width d1 and, to the second order, on the width d2. While better
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Figure 5.6: (a) Band structure and carrier concentration 2 nm below the
oxide with Vg = 1.5 V and Vd = 1 V. (b) Effect of the carrier concentration
under the same conditions, at 0.5 nm below the oxide and no epitaxial
layer.

devices could be realized by extreme scaling of the gate width, we have kept
these dimensions in the range of what is technically achievable. The choice of
substrate doping results from a careful trade-off. On the one hand, as shown
in Fig. 5.6, higher dopings reduce the effective width of the confinement.
On the other hand, high impurity levels simultaneously increase the band
bending ΦF near the oxide as well as the charge in the depletion region, thus
leading to higher threshold voltages. In this scope, better performances are
achieved with a 20 nm epitaxial layer of undoped silicon on top of a 1016

cm−3 doped substrate. Figure 5.7 shows the output I-V characteristic for a
T-gate in comparison to a standard planar MOSFET. The latter has a 10
nm thick oxide and 100 nm gate width, which corresponds to removing the
etched tip of the former T-gate structure and fully metallizing the oxide.
For consistency, the channel length, in both devices, is fixed at 100 nm and
both devices are operated under a gate voltage of VG = 1.5 V. The T-gate
reaches saturation faster and achieves, at the device level, an increase of ∼
10% in drain current at Vd = 1 V. Since all the carriers are concentrated
in a channel of width ∼20 nm, the current density in the electron gas is
increased by a factor of approximately 5. This effect, however, is mostly
due to the reduction of the oxide depth to 2 nm at the tip of the T-gate,
accounting for a local change in gate capacitance and a subsequent increase
of saturation current.

We have assumed so far that the directionality and the lower surface scat-
tering rate account for the higher carrier mobility in a T-gate MOSFET. In
order to test this assumption, channel mobility and scattering rates are com-
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Figure 5.7: Comparison of drain current of a standard MOSFET and a
T-gate MOSFET under Vg = 1.5 V. The standard MOSFET has a 10 nm
thick oxide.

pared between a standard MOSFET, a wrap-around gate nanowire MOS-
FET, and a T-gate. The wrap-around gate MOSFET [93, 4] is, in essence, a
beam of doped silicon connecting source to drain, wrapped in an oxide and
four metallic gates. In this way, the latter device reproduces the confine-
ment of the T-gate MOSFET while keeping a high surface to volume ratio.
For coherence with the previous device, we chose a nanowire length of 100
nm, an oxide thickness of 2 nm and a doping of 1016 cm−3. In a T-gate,
since the carriers are confined in a channel of effective width of ∼20 nm,
a nanowire cross-section of 20×20 nm has been chosen. In order to study
the effect of surface scattering, a scattering ratio is defined for a process i
as a direct measure of the proportion of scattering events of type i among
all the scattering events. Figure 5.8 shows that the contribution of surface
scattering rises with the normal electric field, in accordance with the re-
sults of Yamakawa et al. [94]. The slight drop in surface scattering ratio at
higher gate voltages of the wrap-around nanowire is expected to be a result
of volume inversion. The T-gate is subject to a lesser contribution of sur-
face scattering in comparison to the wrap-around gate, which improves the
mobility in the electrostatically confined channel at higher drain voltages
(Fig. 5.8). Additionally, it is seen that the channel mobility in both of the
quasi-1D structures is increased, mostly because the carriers are forced to
flow in the direction of propagation, thus reducing the number of available
states after a scattering event takes place.

Figure 5.9 represents a local snapshot of the scattering rates in a cross
section of a gate all around (GAA) nanowire device. It can be seen that
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Figure 5.8: (a) Comparison of mobility for different type of MOSFETs
under Vg = 1.5 V. (b) Comparison of the surface scattering ratio of a
T-gate and a wrap-around gate nanowire MOSFETs under Vd = 1 V.

our model accounts well for the fact that surface roughness scattering is
localized near the Si-SiO2 interfaces. Given the larger surfaces of the GAA in
comparison to a T-gate, it is not surprising that surface scattering processes
have a stronger effect on conduction in GAA. More importantly, a series of
cross sections along the conduction direction reveals that surface scattering
rates are higher near the drain where the electron velocities are typically the
highest in the channel. This reveals the energy dependence of the surface
roughness scattering rate. Indeed, similarly to the optical theory, electrons
with high wavelength have a smaller probability of interacting with the small
asperities at the silicon interface.

Finally, we wish to determine how the surface scattering rate contributes
to the conduction when the nanowire diameter is scaled down (Fig. 5.10).
For this purpose, we have tested two GAA of diameter 20 nm and 8 nm under
an applied drain voltage of 1 V and varying gate voltages. It is remarkable
that at low gate biases, the relative influence of surface roughness scattering
rate is 3 to 5 times more pronounced in the 8 nm nanowire. At higher
applied gate biases, this difference tends to be reduced, as other scattering
processes such as electron-phonon will be more influential in the conduction
process. Hence this experiment raises two new challenges. Firstly, it is
equally important to have understanding of the transmission of phonons in
small nanowires. Secondly, the strong effects of sub-bands below 10 nm
must be taken into consideration, which is not the case in the example cited
above.
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Figure 5.9: Cross section of the surface scattering rate in a geometrically
confined nanochannel. The cross section is 20 × 20 nm, under an applied
gate bias of VG = 1.5 V and Vd = 1 V. Bottom: surface scattering rate
along the conduction channel from source (right) to drain (left).

5.6 Conclusions

In this section, we explored the electronic transport in quasi-1D silicon
nanochannels using a quantum corrected full-band 3D semiconductor Monte
Carlo approach. Based on a study of scattering mechanisms in FET opera-
tion of quasi-1D nano-channels, we introduced an innovative way to achieve
unidirectional electronic transport through electrostatic confinement while
avoiding the spurious contribution of surface roughness scattering. This
model device allowed a better understanding of electrical conduction in
nanowires, and especially the impact of the geometry of these devices on
their electrical performances. In this respect, by limiting the surface rough-
ness scattering rate, the T-gate structure shows an increase in current den-
sity by a factor of five in comparison to an equivalent planar MOSFET. In
addition, electrostatically confined devices show an increase in mobility in
comparison to a planar MOSFET or a geometrically confined nanowire by
a factor up to 2.5 at a drain voltage of Vd = 2 V across a 100 nm channel.
In addition, we examine the physical processes involved in designing beams
and wires with increased electrical performances, the latter being achieved
through a careful balancing of all scattering mechanisms through confine-

61



Figure 5.10: Ratio of the surface scattering rate among the other scattering
mechanisms for geometrical nanowires of 8 nm and 20 nm diameter.

ment width, doping, and applied electric fields. Importantly, this exploration
of design paramters was conducted purely through calibrated simulations,
ensuring consistency of the physical approach without incurring the cost of
experimental prototyping.

Nevertheless, studying nanowires below 10 nm will undoubtedly involve
the inclusion of finer quantum mechanical effects. This will be the object
of chapter 7. Equally important is the understanding of heat conduction in
these nanowires, which will be the object of chapter 6. As a result, we will
aim at establishing a comprehensive model of coupled electro-thermal con-
duction in quasi-1D nano-channels, which will eventually be integrated in
the higher level of our multi-scale simulation hierarchy for the design of in-
novative integrated NEMS based on the enhanced performance of nanoscale
devices.
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CHAPTER 6

HEAT TRANSPORT IN ROUGH

SEMICONDUCTOR NANO-CHANNELS

6.1 Thermal Properties of Semiconductor Nanowires

In chapter 5, we emphasized electronic transport in quasi-1D silicon nano-
channels. In this respect, it was shown that the electrical performance of
such conducting channels was mainly limited by the concurrent effects of
electron-phonon and surface roughness scattering. In this scope, we dis-
cussed the particular case of silicon nanowires, which, over the past 10
years, have drawn much attention for their potential applications in field
effect transistors [4], interconnects [5], heterostructures [6], and most re-
cently, thermoelectric applications [7, 8, 9, 10, 11]. Within this area of
research, electron-surface interaction was studied early on due to its major
impact on conduction in MOSFET channels. Incidentally, the necessity to
engineer thermally efficient devices only appeared in the early 2000s, and
naturally drew attention to the phonon-surface interaction.

Thermal transport indeed plays a critical role in thermal management of
electronic devices as their performance and reliability is a strong function
of temperature [95]. More importantly, in the current economic context,
scientific and technological innovations are undoubtedly needed in order to
address the challenges of energy management. Efficiently controlling energy
losses in devices principally involves careful engineering of thermal trans-
port, whether it is in the form of heating, cooling, or waste heat. Such
technological breakthrough remains hypothetical, though, with the scien-
tific momentum involved in the field, the answer may be found in integrated
nano-systems. In particular, being able to independently control electri-
cal and thermal conductivity of nanostructures through geometry, strain,
or doping is extremely appealing for novel applications of thermoelectrics
and energy transport. For instance, earlier data showed that reducing the
nanowire diameter below 100 nm leads to a drastic reduction in their elec-
tronic and thermal conductivity [5, 9, 11]. More puzzling are the recent
experimental results of Hochbaum and Boukai [7, 8] which show that inten-
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tionally etched rough edges reduce the thermal conductivity of crystalline
silicon nanowires by a factor of about 100, to nearly the value of amorphous
silicon. Several efforts have previously been made toward an accurate under-
standing of phonon-surface scattering [10, 11, 6]; however, no study accounts
for such experimental observations in very rough wires with diameter below
50 nm. Similarly, no model provides guidance on how thermal conductivity
of such nanowires scales with surface roughness.

There are two dominant means of heat conduction in solids: electrons
and lattice vibrations (acoustic and optical waves). In good electrical con-
ductors, usually metals such as Cu and Al, electrons are the dominant heat
carriers. However, in the case of semiconductors and insulators, lattice vi-
brations are generally the main vehicle of thermal transport. Similarly to
electrons, quanta of lattice vibration may be represented by quasi-particles,
called phonons. Therefore, following the ideas developed in chapter 5 on
electron-surface scattering, we introduce in this chapter a comprehensive
approach to phonon-surface scattering in thin nanowires based on a pertur-
bative treatment of interface roughness. In this respect, we will derive a
new matrix element for phonon-surface scattering which is directly related
to a parametric description of the roughness of the surface. Based on this
perturbative approach, the repercussions of temperature change and surface
quality on the phonon-surface scattering rate will be evaluated in silicon
nanowires of diameters below 100 nm. Resulting theoretical predictions of
nanowire thermal conductivity show unprecedented agreement with exper-
imental values below 50 nm, where the effect of surface roughness is the
strongest.

When the characteristic dimensions of asperities at a rough surface come
to the order of the phonon or electron wavelength (5-30 Å), it is indeed ex-
pected that the surface scattering rate will be altered to reflect the effect of
the interface roughness. Such mechanisms are crucial to the understanding
of electron transport in transistor inversion layers, where accurate models
have been developed based on perturbation theory [12, 13] (see chapter 5).
While such formalism exists in the case of bulk phonon transport [96], cur-
rent models of phonon-surface scattering in nanowires are based on simplified
assumptions, most of them using the probability of diffuse scattering as a
fitting parameter [5, 10] (see chapter 1 for the method to extract roughness
parameters consistent with the following model). Yet, the latter probability
can be directly related to physical properties of the interface, which, among
other options, may be experimentally observed by means of transmission
electron microscopy (TEM). Besides, it seems relevant that the effect of
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rough surfaces should be stronger in thin nanowires and should vary with
the frequency of incident phonons. We will describe this effect in detail for
semiconductor wires and sheets in the following sections.

6.2 Thermoelectric Properties of Nanowires

In the following sections, we model for the first time the remarkably strong
effect of surface roughness on the thermal conductivity of Si, Ge, and GaAs
nanowires, and graphene nano-ribbons in 20-400 K temperature range, and
with transverse dimension scaling from 22 nm to a few microns. In or-
der to support our models below, we derive a novel theoretical expression
for phonon - surface roughness scattering rate. This model accurately re-
produces experimental observations on rough Si nanowires, which we first
reported in [19]. Within this scope, both Chowdury et al. (2009) [97] and
Majumdar et al. (2009) [98] foresaw thermoelectric nanowires as a feasible
and efficient engineering solution for site-specific on-demand cooling solu-
tions. However, previous experimental devices [99, 100, 97, 98, 101, 102]
based on classical high efficiency thermoelectric materials such as Bi2Te3

and Sb2Te3 faced potential challenges in their integration onto conventional
microscale semiconductor platforms. Though not competing with the high
thermoelectric performance ZT > 2 of these devices, showing that nano-
engineered Si, Ge or GaAs nanowires achieve thermoelectric figures of merit
close to ZT = 1 is nevertheless of considerable importance, given their
natural and convenient compatibility with such technologies such as SOI in-
tegrated circuits, Ge based high current FETs and strained Si FETs, or the
commonly available GaAs based optical applications. In particular, earlier
work published in 2008 [7] experimentally proved that efficient thermoelec-
tric figures of merit in rough nanowires were obtained mostly by reduction
of thermal conductivity.

Thermoelectricity results from the concurrent transport of heat and elec-
tricity in a device that particularly allows heat to be conducted in parallel,
while restricting electricity to be conducted in series. Figure 6.1 depicts a
general thermoelectric device, where junctions between materials A and B

are maintained at temperatures T1 and T2. Under an applied temperature
gradient between contacts, diffusion of charge carriers occurs, and, in the
presence of an electrical short in one of the materials, an electrical potential
∆V builds up such that

∆V = SSeebeck∆T (6.1)
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Figure 6.1: (a) Model of the thermoelectric junction, Seebeck, Peltier, and
Thomson effects. (b) Model of a thermoelectric converter. (c) Model of a
thermoelectric cooler.

This thermoelectric energy conversion is generally known as the Seebeck
effect, with S the Seebeck coefficient. Similarly, an applied electrical input
will cause the charge carriers to drift and carry heat along their drift path.
As a result, heat transfer happens at the contacts, with a transfer rate +φq
and −φq at each contact, such that

I = ΠPeltierφq (6.2)

This thermoelectric cooling phenomenon is generally known as the Peltier
effect, with Π the Peltier coefficient. The third thermoelectric effect is often
of lesser order in most thermoelectrics and occurs when a small temperature
differential is applied at the ends of a thermoelectric rod, along with an
applied electrical current I. In this case, the rate of heat transfer φq is given
by Thomson’s formula

φq = βI∆T (6.3)

where β is Thomson’s constant. Such thermoelectric behaviors have been
used in the typical configurations illustrated by Fig. 6.1.(b) and 6.1.(c) for
thermoelectric conversion of waste heat, or on-site cooling. In this case, the
maximum coefficient of performance of the energy conversion is given by
[103]

ηmax =
T2

T1 − T2

√
1 + ZT − T1/T2√

1 + ZT + 1
(6.4)

where the product ZT is the figure of merit, and T is the absolute tempera-
ture of the thermoelectric device. Hence, optimal performance of the energy
conversion is reached by physically increasing the coefficient ZT . The phys-
ical expression of ZT results from the thermodynamical laws of drift and
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diffusion of heat and charge carriers. Most thermoeletrics textbooks include
an ab initio derivation of the expression of the coefficient of merit (see for in-
stance Rowe [103]), which physically depends on the ratio between electrical
conductivity σ and heat conductivity κ such that

ZT = S2σ

κ
T (6.5)

Recent efforts in synthesizing thermoelectric materials focused on reducing
thermal conductivity. Mainly, this design approach consists in fabricating
a phonon glass – electron crystal, that is, a material which heats like a
glass (low κ), while keeping the excellent electronic transport properties
of a crystal (σ). In that respect, nanostructured semiconductor materials
present two principal features of interest: they allow decoupling of heat
and electrical conduction through phonon decays at their surfaces, and they
would find immediate application in micro- and nano-electronics. Thus,
nanowires are a privileged candidate, as their shape is the most suited to
conventional device geometries represented in Fig. 6.1. With this in mind,
we propose in this chapter a study of means of achieving extremely low
thermal conductivity in nano-engineered rough Si, Ge and GaAs nanowires,
which we thought would draw optimal benefits from the features mentioned
above.

While experimental values of Seebeck coefficients of rough Ge and GaAs
nanowires are not available to our knowledge, we found from commonly cited
sources [104, 105, 106] the bulk values of S = 680 V/K, 200 V/K, and 600
V/K for GaAs, Ge, and Si respectively. In the case of Silicon, the experi-
mental observations of Hochbaum et al. [7] clearly show that enhancement
of the thermoelectric figure of merit ZT is due to a strong reduction by a
factor 10 of the thermal conductivity, while the factor S2 remains constant
under the effect of surface roughness at 300 K in comparison to bulk values.
We expect GaAs and Ge to behave quantitatively the same, and predict
in the following sections that surface roughness will reduce GaAs and Ge
thermal conductivity by factors of 7 and 60 respectively, with an expected
increase of thermoelectric figure of merit in the same proportions. In addi-
tion, earlier modeling by N. Mingo [107] of the variation of the power factor
S2 and thermal conductivity with the width of smooth nanowires, based
on solutions to the Boltzmann transport equation, revealed that improve-
ment of figure of merit in thermoelectric nanowires is due to a reduction of
thermal conductivity rather than the power factor. Indeed, improvement of
the power factor is theoretically limited since the acoustic phonon-electron
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scattering drastically increases when the width of the nanowire is reduced
[107, 108]. In particular, models of GaAs nanowires predict a power factor
of the order of 0.015 W/m/K2 for diameters D in the 30-50 nm range [107].
The thermal conductivity of 4.5 W/m/K predicted in the case of rough 56
nm GaAs nanowires in section 6.4 leads to expectations of the figure of merit
of approximately ZT ≈ 1. We would like to point out that the main advan-
tage of using surface roughness as a heat resistive process originates from
the fact that charge carriers are naturally pushed away from interfaces and
see less contribution from surface roughness than heat carriers, which al-
lows decoupling of thermal conductivity from electrical conductivity. As we
consider here intrinsic materials, the effect of dopants is not accounted for,
though we include the effect of isotopes on the power factor, which similarly
reduce thermal conductivity while leaving electrical mobility unchanged.

6.3 Model of Phonon-Surface Roughness Scattering in
Thin Si Nanowires

In this section, we will develop our new model for a frequency dependendent
treatment of phonon-surface roughness scattering. Based on this model, we
will reflect extraordinarily low thermal conductivity of silicon nanowires, in
accordance with recent experimental observations [7]. To our knowledge,
Si is the only material for which experimental data on rough nanowires is
available thus far. Consequently, in this section, we will validate our model
on Si nanowires. In a thin nanowire, variations of the confinement width
perpendicular to the propagation direction influence phonon transport by
perturbing the Hamiltonian of the system (Fig. 6.2 (a) inset). Here, it is as-
sumed that boundary scattering is mainly an elastic process and no phonon
is emitted into the surrounding environment. This condition reflects the
case where the nanowire is wrapped in a medium of considerably different
thermal conductivity, as it is for Si nanowires in SiO2 or vacuum. We focus
on modeling phonon transport in such Si nanowires, and of diameter below
115 nm comparable to experimentally available data. We introduce a new
type of phonon scattering originating from the roughness of the nanowire
surface. In essence, this scattering mechanism accounts for the fact that
phonons “see” a rough nanowire as a series of constrictions along their prop-
agation direction. In order to accurately model this effect at the nanometer
scale, perturbation theory is used to derive the transition probability per
unit time of an incident phonon of momentum k and energy ~ω to a new
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Figure 6.2: (a) Phonon density of states for silicon computed from a full
phonon dispersion relation. (b) Phonon relaxation time due to interface
roughness for rms ∆ = 1 nm, 2 nm, and 3 nm, T = 300 K, and a cross
section equivalent to a circle of 115 nm diameter. L is fixed to 6 nm.

state of momentum k′ and energy ~ω′ due to the perturbed Hamiltonian H ′

[109]:

P (k,k′) = 2|〈k|H ′|k′〉|2 d
dt

{
1− cos[(ω′ − ω)t/~]

(ω′ − ω)2

}
=

2π
~
|〈k|H ′|k′〉|2θ(ω′ − ω) (6.6)

Under a sufficiently long time t in comparison to the energy relaxation
time, θ(ω) reduces to the Dirac delta function. The roughness of the inter-
face is considered as a space varying dilation ∆(r) of the wire. This alters
frequencies in a plane perpendicular to the propagation direction in such a
way that ω(k) = ω0(k)[1−γ∆] where γ is a fitting constant determined from
the thermal expansion of the material, and ω0(k) is the phonon dispersion
of the unperturbed Hamiltonian. Following the derivation of Klemens [96],
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the matrix element for a perturbation due to a space varying dilation is

|〈k|H ′|k′〉|2 =
4γ2

3Vol
ω′2(〈n′〉+ 1)∆(k− k′) (6.7)

where Vol is the volume of the device, and ∆(q) is the Fourier transform of
the spatial perturbation

∆(q) =
∫

∆(r)eiq.r dr (6.8)

Additionally, the occupation number is given by the Bose-Einstein distri-
bution and includes the temperature dependence of the scattering process
〈n〉 =

(
e~ω/kBT − 1

)−1
.

Following the statistical models derived in chapter 2, and as shown by
Goodnick et al. [15], the autocovariance function of Si surface roughness is
“roughly” fit by either a Gaussian function or a Lorentzian function, which,
by the Wiener-Khinchin theorem, respectively yield a power spectrum of

∆G(q) = π∆2L2e−q
2L2/4 (6.9)

∆L(q) =
π∆2L2

(1 + q2L2/2)3/2
(6.10)

where ∆ is the root-mean-square (rms) value of the roughness fluctuations
and L is the autocovariance length, which, in essence, is related to the mean
distance between roughness peaks at the Si-SiO2 interface (see Fig. 6.2 (a)
inset). In practice, these process-dependent parameters are experimentally
set by the quality of the surface. It is worth noting here the frequency
dependence of the matrix element. Due to the ω′2 term in equation 6.7,
low frequency phonons see little contribution from the surface perturbation.
On the other hand, the power spectrum of equation 6.10 favors scattering
processes in a certain frequency range. Indeed, as illustrated by Fig. 6.3,
increasing correlation length L (e.g. smoother surface), favors scattering
processes of the specular type. It is also worth noticing that the Lorentzian
approximation, which is believed to be more accurate for the Si-Si02 inter-
face, similarly favors specular scattering over the Gaussian model. As a
result, for comparable scattering rates, we can expect the Lorentzian model
to exhibit higher roughness rms ∆ than the Gaussian model.

Incidentally, the phonon scattering rate from a branch i to a branch j is
given by

τ−1
i,j (E) =

∫
Pi,j(k,k′) dk′ (6.11)
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Figure 6.3: Power spectrum of the silicon surface roughness as a function
of the surface scattering momentum exchange q. The surface rms ∆ is of 3
Å. Values of the correlation length are, from bottom to top at the origin,
L = 1.5 nm, L = 2.2 nm, L = 4.4 nm.

The complexity of the volume integration over k′-space can be relieved by
reducing the expression to a surface integral as shown in [110]:

τ−1
i,j (E) =

2π
~Ni(E)

∫
E′=Ei

|〈k|H ′|k′〉|2

∇k′E′(k′)
dS (6.12)

where Ni(E) is the phonon density of states in the ith branch, and E′(k′)
goes along the jth branch. The total scattering rate τi(E) starting in branch
i is the sum over all branches j of the τi,j(E).

A Gilat-Raubenheimer scheme [111] is used to compute surface integrals,
which constitutes the optimal trade-off between accuracy and computational
efficiency. In order to carefully account for frequency dependence, a full
phonon dispersion is used, which is obtained from an adiabatic bond charge
model and tabulated for look-up [112, 113]. The Gilat-Raubenheimer (GR)
method is similarly applied to compute the phonon density of states based
on the dispersion relation mentioned above. In essence, the GR scheme
computes surface integrals such as the one encountered in equation 6.12 by
dividing the first Brillouin zone (FBZ) in small cubes. In each cube, the en-
ergy gradient ∇k′E

′(k′) is precomputed, and the surface element dS = S(E)
is approximated to the first order by a plane representing the intersection
of the energy isosurface (see Fig. 6.4) with the elementary cubes. The
contribution to the integral expression of each cube is subsequently added.
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Figure 6.4: Energy isosurface at 29 meV computed in the first Brillouin
zone for the longitudinal acoustic phonon modes of Si used in the
Gilat-Raubenheimer scheme. The isosurface is directly obtained from the
full-phonon dispersion relation. Picture courtesy of [113].

The energy isosurface is directly obtained from the full phonon dispersion
relation.

In this scope, modeled silicon nanowires have a square cross section whose
area is equivalent to a circular cross section of diameter D < 115 nm, while
the nanowire length is arbitrarily fixed to 2 µm. In this respect, the Gilat-
Raubenheimer scheme divides the first Brillouin zone in a lattice of 40 ×
40 × 40 cubes. Transitions among all acoustic and optical branches are
considered.

The scattering rates are first computed for nanowires of equivalent diam-
eter D = 115 nm at T = 300 K. For a fixed correlation length L0 = 60 Å,
phonon lifetime is calculated for increasing ∆ in Fig. 6.2(b). At this point,
let us emphasize again that no reliable data on the roughness of small wires
is available yet. Indeed, three main reasons lead to a difficult experimental
observation of nanowire surface roughness. First, small nanowire growth
and etching techniques cause the nanowire width and roughness to vary
along the length of the device. Second, experimental observation techniques
at the scale of the thinnest nanowires lead to imprecise measurements and
statistical averages on the small nanowire surfaces. Finally, the definition
itself of surface roughness becomes unclear when the nanowire edges tend to
be curved. Various theoretical and experimental studies have nevertheless
reported roughness rms ranging from 3 Å to 5 nm in the case of extremely
rough nanowires [7, 114]. In this study we consider effective values for ∆ in
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this range, and use the 3 Å value for “smooth” nanowires, while using an av-
erage of 3 nm for “rough” nanowires. Under the conditions cited above, the
average phonon lifetime due to surface roughness alone is approximately 15
ps, and decreases with higher roughness rms values as ∆−2. As deduced from
equation 6.10, a long correlation length L favors scattering processes close
to the specular type. While in the strong roughness limit where ∆/L > 1
the Gaussian approximation may be put at fault, the effect of the L2 term
tends to average out the contribution of L. We noticed only little deviation
of the predicted thermal conductivity in the strong roughness limit, and
consistently used a value of L = 6 nm, which is estimated from the TEM
images of Hochbaum et al. [7] and provides a best fit in our case.

In our perturbative approach, an additional thermal variation of the
phonon-surface scattering rate appears, in essence, from the frequency de-
pendent model which was adopted. Thus, the temperature delimits the
occupation of each frequency range as predicted from equation 6.7. Hence,
the effect of the occupation of lower energy branches at low temperature
is retrieved in our model of surface roughness scattering. Subsequently, it
is possible to determine the thermal conductivity for nanowires of different
cross sections [115]. The contribution to the thermal conductivity of phonon
branch i is

κi(T ) =
1
3

∫
i
EN(E)

d〈n〉
dT

vi(E)τ toti (E) dE (6.13)

where vi is the velocity of sound which is dependent on the direction of
propagation, here assumed to be in the < 001 > direction. In order to
reproduce the measured physical behavior of the nanowire in the 10-350
K temperature range, Umklapp, normal, impurity, boundary, and surface
roughness scattering mechanisms have been considered in the derivation of
the branch-specific scattering time, as summarized in Table 6.1. Umklapp
scattering in transverse acoustic branches is efficiently described with the
law derived in [116], which has shown good agreement with Si nanowire
experiments. Additionally, in the temperature range considered, normal
scattering in longitudinal acoustic branches is accounted for according to
the derivation of Holland [117]. A Cω4 law is often used in the literature
for impurity scattering, and we found that a constant C = 8×10−45 s/K4

fits experimental data more accurately than the value of 1.05×10−44 s/K4

resulting from the derivation of [117]. In the case of nanowires etched from a
10 Ω-cm wafer [7], the low doping concentration has almost no impact on the
value of C. It is also worth noting that the boundary scattering rate, which
depends on the sound velocity in a given branch, is effectively frequency
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Table 6.1: Summary of the scattering processes considered in the
derivation of the thermal conductivity.

Mechanism Analytical Model Constants
Phonon-Phonon:
Longitudinal [117] BLT

3ω2 BL=2×10−24 s/K3

Transverse [116] BTTe
−θ1/Tω2 BT=1.73×10−19 s/K

θ1 = 137.3 K
Impurity [117] Cω4 C=8×10−45 s/K4

Boundary viD
−1
√

1 + 4ωci/vi vL=9.01×103 m/s
[115, 118] vT=5.23×103 m/s

cL=-2×10−7 m/s2

cT=-2.26×10−7 m/s2

Surf. Roughness cf. Eq. 6.12 ∆= 3 - 50 Å
L = 60 Å

dependent. As a result, the present work uses an analytical expression for
the sound velocity in acoustic branches, which is derived from [118] for its
strong fit with bulk Si data in the < 001 > direction.

Figure 6.5 (a) and 6.5 (b) compare thermal conductivity computed from
the model presented above vs. experimental data from [9] and [7], for
nanowire ranging from 115 nm to 22 nm diameter. As nothing guaran-
tees that all nanowires have similar roughness parameters, we considered
smooth nanowires with 1 Å < ∆ < 3 Å, and rough nanowires with 3 nm
< ∆ < 3.25 nm. A good fit is found for smooth nanowires grown by vapor-
liquid-solid (VLS) mechanism with diameter above 37 nm. Similarly, the
model reproduces the drastic decrease in thermal conductivity for rough
electroless-etching (EE) nanowire presented in [7]. Higher discrepancy is
found for the 22 nm smooth VLS nanowire, for which the sensitivity to sur-
face roughness is expected to be higher. Besides, the perturbative approach
remains valid as long as perturbations remain small in comparison to the
total phonon energy. For low temperature phonons and nanowires of di-
ameter below 20 nm, explicit quantum treatment may be required. Since
surface roughness scattering has little impact on low energy phonons, addi-
tional low temperature discrepancy is attributed to impurity and classical
boundary scattering.

It is important to point out that our approach based on perturbation the-
ory introduces a dependence (D/∆)2 of the nanowire thermal conductivity,
in contrast to the typical linear scaling with D used in previous descriptions.
In this scope, Fig. 6.6 (a) and 6.6 (b) show how the thermal conductivity is
lowered by concurrent effects of small diameter and rough surfaces. In par-
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Figure 6.5: (a) Thermal conductivity of smooth VLS Si nanowire. Shaded
areas are theoretical predictions with roughness rms. ∆ = 1 - 3 Å, blue
squares are taken from [9]. (b) Thermal conductivity of rough EE Si
nanowire (∆ = 3 - 3.25 nm). Squares are taken from [7]. Simulation and
experimental data are compared at similar cross sections. L = 6 nm.

ticular, there exists a critical diameter below which the roughness-limited
thermal conductivity of the nanowire noticeably deviates from the classi-
cal linear approximation. The fact that this critical diameter increases with
higher roughness rms ∆ supports, in turn, the expectation that heat conduc-
tion at small nanowire scales is strongly limited by their surface roughness.
This assumption is further justified in Fig. 6.7, where it is observed that the
total contribution of surface roughness to limiting the thermal conductivity
is increased about 7 times from the 115 nm to the 22 nm case. Finally, the
temperature dependence that arises from the roughness scattering rate is
also retrieved. Thus, at low temperatures, low frequency phonons see little
effect from the perturbations at the silicon interface.

In addition, it is worth pointing out that the previous model was based on
a Gaussian approximation to the surface roughness power spectrum ∆(q),
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Figure 6.6: (a) Predicted effect of roughness rms on the thermal
conductivity of 115 nm and 56 nm nanowire at T = 300 K, L = 6 nm.
Simulation and experimental data are compared at similar cross sections.
(b) Effect of nanowire equivalent circular diameter on thermal conductivity
(L = 6 nm).

and phonon-phonon and phonon-impurity scattering parameters borrowed
from the literature. While this model accounts for the physics of the problem
with sufficient accuracy to reproduce very well the results observed experi-
mentally, some of the parameters used may falsely represent the behavior of
our precise case. Indeed, variation of the confinement width will also have
an impact, albeit to a higher order, on phonon-phonon and phonon-impurity
interactions. More importantly, the small scales involved also impose bound-
ary conditions on the transverse energy modes which do introduce, to a mi-
nor extent, band-folding and the appearance of sub-bands in the phonon
dispersion relation. All these effects, which arise from the quasi-1D nature
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Figure 6.7: Proportional contribution of the surface roughness scattering
term to the thermal conductivity of VLS nanowires (∆ = 3 Å, L = 6 nm).
The reference value K∗ is the thermal conductivity of a perfectly smooth
wire (∆ = 0 nm).

of the devices in our scope, will slightly alter the parameters used in the
previous model, which, in the literature, were fitted on different cases.

Hence, considering that the nanowires which we examined remain in-
trinsically 3D in nature, and that the effect of sub-banding remains mi-
nor, it is meaningful to address such adjustments in our model by finding
a best fit to the parameters used instead of including directly the sub-
bands. Based on the experimental data κexp(T,Di), and the model data
κM (T,Di, C,BT , θ1,∆), the parameters of the model are adjusted by a least
square method to find what set of parameters achieves the optimal accuracy
by minimizing the objective function

f(C,BT , θ1,∆) =
∑
T,Di

∣∣∣∣κexp(T,Di)− κM (T,Di, C,BT , θ1,∆)
κexp(T,Di)

∣∣∣∣2 (6.14)

The minimum of the least square objective function is found by a simplex
method [119]. Since the experimental data on EE rough nanowires is be-
lieved to be more sensitive, the protocol used first explores the 4 parameter
space for only smooth VLS nanowires to find the optimal C, BT , and θ1

and “smooth” ∆. Only then do we determine the optimal “rough” ∆ by
exploring the 1 parameter space for EE nanowires and assuming that C,
BT and theta1 remain unchanged. Finally, it must be observed that the
simplex method will only find a local minimum to the objective function.
However, by providing the algorithm with a starting point based on the ob-
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Figure 6.8: Best fit of the model on the experimental data found by a least
square approach. (a) Smooth VLS nanowire, (b) rough EE nanowire. The
respective parameters are given in Table 6.2. Solid line: Lorentz
approximation, dashed line: Gauss approximation.

servations made in table 6.1, and given the form of equation 6.14, we can
legitimatelly assume that the point of convergence is effectively the best fit.
Figure 6.8 shows the result of such a best fit for both smooth and rough
nanowires. A discrepancy still remains on the 22 nm case, where the effect
of sub-bands is expected to be the strongest. Better agreement is found for
the EE wires. The Lorentzian approximation provides slightly better accu-
racy in this case. Table 6.2 summarizes the fitted parameters. As a final
remark, we would like to mention that we introduced a new method for the
surface engineer to extract the shape factors (L,∆) of silicon nanowires by
means of a non-destructive and thermal test.

6.4 Thermal Conductivity of Rough Ge and GaAs
Nanowires

In the previous section, we derived a new model of phonon - surface rough-
ness interaction which accurately accounts for experimental observations of
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Table 6.2: Summary of the fitted parameters for estimation of scattering
rates in nanowires.

Model Parameter Best Fit (Lorentz) Best Fit (Gauss)

C (s/K4) 1.748×10−45 1.68×10−45

BT (s/K) 5.58×10−19 5.70×10−19

θ1 (K) 156.51 157.72
∆V LS (m) 4.11×10−10 3.45×10−10

∆EE (m) 3.60×10−9 3.422×10−9

particularly low thermal conductivity in silicon nanowires. As discussed
in section 6.2, designing a phonon glass electron crystal is of tremendous
importance for the emergence of efficient thermoelectric devices. In this
scope, silicon nanowires naturally find applications in on-site cooling or en-
ergy conversion for silicon based integrated circuits and micro-processors.
Nevertheless, the theory developed above is general to any semiconductor
crystal, as long as one is able to measure or compute the material specific
physical constants of the model.

In this section, we model the thermal conductivity of rough Ge and GaAs
semiconductor nanowires and compare it to the results on Si that we de-
rived above. Here also, we base our derivation on the material specific full
phonon dispersion relations. Under this assumption, the effect of nanowire
surface roughness on thermal conductivity is derived from perturbation the-
ory, and a phonon-surface roughness scattering rate is derived for Ge and
GaAs nanowires with diameter D < 200 nm. We show that for those mate-
rials, in thin wires with large root-mean-square (RMS) roughness ∆, ther-
mal conductivity is limited by surface asperities and varies quadratically as
(D/∆)2. At room temperature, this model previously agreed with exper-
imental observations of thermal conductivity down to 2 W/m/K in rough
56 nm Si nanowires with ∆ = 3 nm. Based on the latter assumptions, the
identical physical model predicts remarkably low thermal conductivity in Ge
and GaAs nanowires of respectively 0.1 W/m/K and 0.4 W/m/K at similar
roughness and diameter.

In semiconductor nanowires, scattering of carriers at the surface lim-
its transport in devices used for FET, heterostructures, and interconnects
[4, 5, 6, 108, 9, 7, 120, 107], owing to their high surface-to-volume ratio. In
the section above, we discussed recent experimental and theoretical work
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[7, 19, 20] which suggested that potentially high thermoelectric figures of
merit ZT could be achieved by scattering phonons more effectively than
electrons at the interfaces of rough nanowires. In particular, thermal conduc-
tivity in Si nanowires with etched rough edges was experimentally reduced
by a factor of about 100 in comparison to bulk crystalline Si to nearly the
value of amorphous Si, yielding a subsequent ZT ≈ 0.6 at room temperature
[7]. Such nanostructured semiconductor materials present the advantage
to enable energy efficient site-specific and on-demand energy cooling solu-
tions [99, 100], and overcome the difficulties of integration into traditional
microscale electronic devices [98, 97]. In this respect, Ge or GaAs rough
nanowires could provide convenient on-site energy conversion solutions for
high current FET and optical applications based on Ge, GaAS or strained
Si on Ge technologies. In comparison to Si, Ge and GaAs have a naturally
lower bulk thermal conductivity of ∼59 W/m/K and ∼42 W/m/K respec-
tively, and higher bulk electrical conductivity [121, 122, 123], and similar
Seebeck coefficients, hence suggesting that rough Ge and GaAs nanowires
should have thermoelectric efficiency comparable to that of Si nanowires.
In previous Bi2Te3/Sb2Te3 superlattice solutions, increases in ZT mainly
originated from a reduction of the lattice thermal conductivity [101, 102].
In semiconductor nanowires, charge carriers are naturally pushed away from
the surface. Consequently, specular surface scattering is expected to reduce
thermal conductivity in greater proportion than electrical conductivity and
Seebeck coefficient. Hence, in rough Si nanowires, it was experimentally
shown that the thermoelectric power factor remains high despite reduction
of thermal conductivity [7]. In Ge and GaAs rough nanowires, under the
assumption that the power factor remains similarly unchanged by surface
asperities, low thermal conductivity could have interesting repercussions for
enhanced thermoelectric efficiency. In order to explore possible designs of
efficient embedded on-site thermoelectric nanowire cooler or generators, this
section computationally addresses options in nanowire surface nanostructur-
ing in order to optimize trade-offs between different scattering mechanisms
in Si, Ge, and GaAs, and subsequently achieve low thermal conductivity.

As confirmed in experiments on Si nanowires, it is expected that vibrations
of the crystal lattice interfere with the spatial fluctuations of the nanowire
boundaries. Nevertheless, most of the work in phonon transport only ac-
counts for surface roughness scattering by a constant fitting parameter which
reflects an average probability of diffuse scattering at the nanowire surface.
We recently proposed [19] a perturbative approach to phonon – surface
roughness scattering, where a matrix element is derived for such interac-
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tions. This model has shown excellent agreement to experimental observa-
tions on rough Si nanowires with diameter below 50 nm where the effect of
surface roughness is the strongest. Here, we use our modeling platform to
investigate the case of GaAs and Ge nanowires. The roughness of a surface
is generally quantified by its RMS height ∆ and auto-correlation length L.
The present model accounts for the variation of nanowire thermal conduc-
tivity with the experimentally observable ∆, L, and the phonon angular
frequency ω; this approach accurately predicts phonon-surface roughness
scattering to contribute to the reduction of thermal conductivity by a fac-
tor (D/∆)2ω−2 where D is the nanowire diameter. In addition, the quality
of thermoelectric devices is measured by the dimensionless figure of merit
ZT = (S2σ/κ)T , where S is the Seebeck coefficient, T the temperature, σ
the electrical conductivity and κ the thermal conductivity. In this respect,
a standard approach to achieve performance is to design a “phonon glass -
electron crystal,” with high electron mobility and poor thermal conductivity.
Among thermally resistive mechanisms in a semiconductor crystal, scatter-
ing of phonons by isotopes [121] or in three-phonon anharmonic decays [96]
is also of considerable importance.

Our model assumes that no phonon is emitted to the surrounding en-
vironment. This condition reflects the case where nanowires are wrapped
in a medium of considerably different κ, as is the case for semiconductor
nanowires wrapped in oxide or suspended in vacuum. Despite neglecting
effects of natural oxide layers present in the case of a suspended nanowire,
the assumption above yielded accurate predictions in previous Si models
[19]. In addition, considering higher order phonon decays in such periph-
eral oxide layers of poor κ [124] will only serve to reduce the exceptionally
low Ge and GaAs nanowire thermal conductivities reported here. While
propagating along wires of diameter D < 500 nm, phonons scatter from a
series of constrictions along the transport direction which result from the
surface asperities and are reflected by a perturbed Hamiltonian H ′ of the
system. The interface roughness is treated as a space varying dilatation δ(r)
of the wire, whose auto-correlation function is assumed to be exponential
∆(r) = ∆ exp(−r/L). Following the derivation of Klemens [96], the ma-
trix element for a perturbation due to a space varying dilation reflects the
transitions of phonons from a state of momentum k to k′ such as

|〈k|H ′|k〉|2 =
4γ2

3Vol
ω2(〈n′〉+ 1)∆(k− k′) (6.15)

where Vol is the volume of the device, γ is Grüneisen’s parameter, ω is the
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Figure 6.9: (a) Phonon – surface roughness scattering rates computed at
room temperature in Si, Ge, GaAs. (b),(c),(d) Computed full phonon
branches in the FBZ of Si, Ge, and GaAs respectively. Dots are extracted
from experimental observations [125, 126] for comparison.

angular frequency of the incident phonon, and ∆(q) = π∆2L2 exp(−L2q2/4)
is the roughness power spectrum associated to ∆(r). Close to equilibrium,
the occupation of the destination phonon branch 〈n′〉 is given by the Bose-
Einstein distribution and reflects the temperature dependence of the model
〈n′〉 = (exp(~ω/kBT ) − 1)−1. The probability of transitions from k to k′

due to surface roughness is directly proportional to the matrix element de-
rived above. As a consequence of the ω2 factor, low frequency phonons
experience little thermal resistance from surface asperities. In addition, the
dependence on the autocorrelation length L, which represents the average
width of roughness peaks, shows that smoothly varying surfaces favor scat-
tering events of the specular type.

Similarly to Si, we use a Gilat-Raubenheimer (GR) [111, 112] scheme to
compute the surface roughness scattering rate integrals in Ge and GaAs (see
Fig. 6.9.a)

τ−1
i,j (E) =

2π
~Ni(E)

∫
E′=Ei

|〈k|H ′|k′〉|2

∇k′E′(k′)
dS (6.16)

where τ−1
i,j is the transition rate from phonon branch i to j due to surface
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roughness and E′(k) is the phonon dispersion relation on the destination
branch j. In order to account for the frequency dependence of phonon-
surface roughness interference process, full dispersion relations are used,
which are obtained from an adiabatic bond charge model, and approximate
the dispersion relations observed in Si, Ge and GaAs [125, 126] with a 1-
2.5% error ( Fig. 6.9.b, c, d). The GR scheme approximates surface integrals
on the first Brillouin zone (FBZ) discretized over 40× 40× 40 cubes, which
achieves sufficient accuracy in the 10-350 K range [113]. While the Gaussian
approximation may be put at fault in the strong roughness limit where
∆/L > 1, the effect of the L2 term tends to average out the contribution of
L. We noticed only little deviation of the predicted thermal conductivity in
the strong roughness limit, and consistently used a value of L = 22 Å which
provides a good fit in all cases.

The latter surface roughness scattering rate is added to the total scattering
rate by Mathiessen’s rule. Subsequently, we compute thermal conductivity
in Holland’s formalism [127]

κ =
~2

6π2kBT 2

∑
i

∫
ω4
i (q)τ

tot
i (q)

exp(~ωi/kBT )
(exp(~ωi/kBT )− 1)2

dq (6.17)

where i goes over all incident transverse and longitudinal branches, and
the wave vector q models conduction in the nanowire along the Γ-(∆)-X
direction. For additional computational speed, an analytic expression is
used for the phonon branches in the propagation direction where

ω(q) = ω0 + vλq + cλq
2 (6.18)

The parabolic parameters are obtained in Ge and Si from a best fit on
experimental observation [125, 126] as summarized in Table 6.1 and Fig.
6.10.

In addition to surface roughness scattering, computations of κ include
boundary, isotope, 3 phonon Umklapp, and normal decay processes. Para-
metric laws are used for the latter rates, which are fitted to best reflect
experimental bulk κ values [127, 121] as described in Table 6.3 and repre-
sented in Fig. 6.11 in the 10-400 K temperature range. In the case of Si, the
parameters of Martin et al. [19] are used for their good fit with experimental
observations on Si nanowire. Bulk boundary scattering is fixed to the value
reported from experimental observations [127, 121]. The impurity scattering
rate varies as Aω4 where A reflects isotope concentrations. A is not fitted,
as we chose isotope concentrations of group IV semiconductors to match
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Figure 6.10: Approximation of the < 100 > phonon branch in Ge and
GaAs using the parameters of Table 6.3. The error is 1% in the case of Ge
and 2.5% in the case of GeAs. Both analytic bands are obtained from a
least square minimizing algorithm.

their natural occurrence, with 92.2 % of 28Si, and noticeably only 36.5 % of
74Ge [121]. As a result of its heavier atomic mass and high natural isotope
concentration, Ge shows lower κ throughout all simulations (Fig. 6.12 and
6.13).

Subsequently, κ is computed for Ge and GaAs nanowires of various diame-
ters and ∆ (6.11). Although no reliable data on the roughness of small wires
is available yet, recent studies have reported roughness RMS ranging from
3 Å for smooth vapor-liquid solid (VLS) grown nanowire, to 5 nm in the
case of extremely rough etched nanowires [7]. It is noticeable that the effect
of reduced dimensions is stronger in rough nanowires in comparison to the
ideally smooth case. In Fig. 6.12 and Fig. 6.13, nanowire thermal conduc-
tivity is predicted to decrease in rough wires (high RMS ∆). The (D/∆)2

behavior is apparent in thin nanowires of diameter D < 115 nm, showing
that phonon–surface roughness scattering is the dominant resistive process
in this case. For intermediate diameters (D/∆ ≈ 100 for Ge and GaAs, 50
for Si), the linear dependence in the diameter suggests that phonons domi-
nantly decay from classical boundary scattering τ−1

B (q) = vs/D, with vs the
average speed of sound in each branch. For wider D, κ converges to its bulk
value.

Low nanowire thermal conductivity results from the combination of all
concurrent interference processes mentioned above: isotope, impurity, Umk-
lapp, and surface. While impurities tend to also reduce mobility, isotope
scattering limits thermal conductivity and keeps electrical conductivity un-
changed. At temperatures of 300 K and above, where the conduction is
primarily limited by Umklapp scattering, the most sensitivity to isotope
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Figure 6.11: Parametric fit of the scattering rates on experimental bulk
thermal conductivity (squares) of (a) GaAs [127] and (d) Ge [121].
Diameter dependence of nanowire thermal conductivity in (b) ideally
smooth and (c) rough (∆ = 30 Å, L = 22 Å) GaAs nanowire, and (e)
ideally smooth and (f) rough (∆ = 30 Å, L = 22 Å) Ge nanowire.

Figure 6.12: Effect of nanowire diameter on thermal conductivity for
varying roughness RMS in (a) Si (after Martin et al. [19]), (b) Ge, and (c)
GaAs. L = 22 Å throughout.

and surface scattering is obtained in nanowires fabricated from materials
that have naturally low bulk Umklapp scattering rates. In particular, the
effect of artificially high ∆ and low D decreases thermal conductivity below
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Figure 6.13: Effect of roughness RMS on thermal conductivity of Si, Ge
and GaAs nanowire with diameters of 115 nm (upper curve) and 56 nm
(lower curve). L = 22 Å throughout.

1 W/m/K in Ge and GaAs nanowires of diameter D = 56 nm. At this
scale, fabrication of rough etched nanowires is feasible [7], and the pertur-
bative approach holds validity as the ratio ∆/D is only of a few percent,
showing good agreement with experimental results ( Fig. 6.13). Notice-
ably, the best fit for the natural Ge sample shows strong isotope and weak
Umklapp scattering. As a result, Ge experiences the starkest influence from
surface roughness scattering at high temperatures, with an extraordinarily
low κ ≈ 0.1 W/m/K at D = 56 nm and ∆ = 4 nm. GaAs, with respect to all
phonon decay processes, experiences the strongest Umklapp scattering rate,
and the effect of surface roughness remains moderate in comparison to Si
and Ge (Fig. 6.13). In the case of silicon, the experimental observations of
Hochbaum et al. [7] clearly show that enhancement of the thermoelectric fig-
ure of merit ZT = S2σ/κT is due to a strong reduction by a factor 100 of the
thermal conductivity, while the factor S2 remains constant under the effect
of surface roughness at 300 K in comparison to bulk values. We expect GaAs
and Ge to behave quantitatively the same, and predict in this manuscript
that surface roughness will reduce GaAs and Ge thermal conductivity by
factors of 7 and 60 respectively (FIg. 6.13), with an expected increase of
thermoelectric figure of merit in the same proportions. In addition, earlier
modeling [107] of the variation of the power factor S2σ and thermal con-
ductivity with the diameter of smooth nanowires, based on solutions to the
Boltzmann transport equation, revealed that improvement of ZT in thermo-
electric nanowires is due to a reduction of thermal conductivity rather than
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the power factor. Indeed, improvement of the power factor is theoretically
limited since the acoustic phonon-electron scattering drastically increases
when the diameter of the nanowire is reduced [107, 108]. Nevertheless,
in order to obtain accurate expectations for the figure of merit, the effect
of surface roughness needs to be included into estimates of the power fac-
tor σS2. The authors are currently unaware of such models and therefore
recommend further investigation in this direction. Our model eventually
predicts weak interference between low energy phonons and surface asper-
ities. Consequently, we notice very little variation of thermal conductivity
with respect to the roughness RMS at temperatures below 100 K.

6.5 Thermal Conductivity of Rough Graphene
Nano-Ribbons

In previous sections, we demonstrated a remarkably strong effect of surface
roughness on the thermal conductivity of thin semiconductor nanowires.
Based on a full phonon dispersion relation we introduced a novel frequency-
dependent model of boundary scattering for phonons. The resulting sim-
ulated thermal conductivity of nanowires of diameter D < 200 nm shows
excellent agreement with recent experimental work. In particular, at low
nanowire diameters, we predicted a strong deviation of the roughness-limited
thermal conductivity from the linear diameter dependence (∼ D) to a scal-
ing as (D/∆)2, where ∆ is the rms surface roughness.

The extension to nanowires of new materials solely implies a prior knowl-
edge of the materials phonon dispersion relation. Consistently with our
exploration of nano-engineered 2D ribbon structures, we are interested,
in this section, in extending the simulation framework described above to
rough graphene nano-ribbons. Recently, thermal transport in graphene cap-
tured tremendous attention from the scientific community for its extraor-
dinarily high electrical conductivity [128, 129] and thermal conductivity
[130, 131, 132, 30]. For this very reason, graphene ribbons have been kept
from being considered for thermoelectric applications despite good electri-
cal performance and possibility of gating. In this respect, we propose in
this section a study of the effect of edge roughness on graphene thermal
conductivity.

In addition, graphene presents the theoretical advantage of being based
on a two-dimensional crystal lattice. In the models of 3D crystals, deriving
scattering rates resulting from three phonon processes is in general com-
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putationally intensive. In particular, calculations of anharmonic decays in
zinc-blende lattices from the dispersion relation is a tedious task that eventu-
ally requires ab-initio calculations. This represents a consequent investment
for little gain in comparison to the fitted analytic expressions we used above.
Nevertheless, most of this complexity is alleviated in the case of a 2D lat-
tice, and we will take advantage of this particularity here in order to derive a
general framework to compute all phonon scattering rates from the phonon
dispersion curves.

In this scope, computing graphene thermal conductivity requires key mod-
ifications to the nanowire model presented earlier. First, the roughness
model must be adjusted to account for rough 1D edges instead of 2D sur-
faces. The statistical model for rough edges has been derived in chapter 2.
Secondly, thermal conductivity computations must be similarly adjusted to
account for the 2D nature of the phonon gas. Finally, we will provide details
on the computation of phonon scattering rates from dispersion relation in
the 2D graphene hexagonal crystal lattice.

In the direction of propagation, assuming a discrete distribution of phonon
momentum states q along branches s, thermal conductivity is, by definition

κ(T ) =
1
V

∑
s,q

~ω(q)v2(q)τtot(q)
∂n

∂T
(6.19)

First, it must be noted that thermal conductivity, for unit consistency, calls
for a volume V of the propagative sample in m3. In the case of graphene, the
volume is artificially reproduced by assuming a finite effective height of the
mono-layered graphene sheet. Physically, this must be understood by the
intrinsically three-dimensional nature of phonon vibrations, which effectively
makes the phonon gas in graphene disperse in 3 dimensions. This effective
height has been approximated by Nika et al. [30] to H = 0.65 nm which
gave satisfactory approximation of experimental observations on graphene
flake thermal conductivity. This value will be used in the remainder of
this section. Secondly, in a sufficiently large sample (width W > 200 nm),
the distribution of phonon momentum can be considered as continuous,
with distribution 1

V g1D(q) = q/(4πH). Using this assumption, and with
n = 1/(exp(~ω/kT )−1), the thermal conductivity in a propagation direction
χ can be computed from the integral

κχ(T ) =
1

4πHkT 2

∑
s=1..6

∫ qχ,max

0
~ωsqv2

s(q)τs,tot(q)
exp(x)

(exp(x)− 1)2
dq (6.20)
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where s goes over all branches in the propagation direction, x = ~ω/kT ,
and τs,tot(q) is the total scattering rate for incident phonons on branch s of
the propagation direction χ.

To support the following calculations, a full phonon dispersion relation
can be computed in the entire graphene Brillouin zone, using a valence force
field (VFF) method, as described in Saito et al. [29]. For this purpose, force
constants are approximated until the 4th nearest neighbors, with constants
found in [29]. The full phonon dispersion relation and representation of the
graphene Brillouin zone are represented in Figs. 6.14 and 6.15.

In the following derivation and simulations, we assume that the graphene
ribbons are suspended in vacuum, and no heat is exchanged between the
ribbon and its environment. In this case, the total phonon scattering rate
is a combination of impurities, boundaries, 3 phonon decays, and surface
roughness such that, using Mathiessen’s rule

τ−1
tot (q) = τ−1

I (q) + τ−1
B (q) + τ−1

U (q) + τ−1
R (q) (6.21)

The semi-classical impurity and boundary scattering rates are given by
τB = v(q)/W and τI = S0Γqω2(q)/4v(q) from Srivastava [133], with Γ
Gruneissen’s constant and S0 the area of a cell of the FBZ. Those rates are
fairly easy to include in numerical computations, and we will focus on the
3 phonon and impurity scattering rates, for which the analytic expressions
are not given.

In the case of three phonon Umklapp processes, we shall distinguish be-
tween two classes of behavior. The first case corresponds to the decay of a
phonon into two phonons (emission, type I), while the second case consists
in the recombination of two phonons into one phonon (absorption, class II).
Umklapp processes are by definition elastic; consequently, decay rules must
satisfy conservation of momentum and energy. Incidentally, using {bi}i the
set of destination nearest neighbor reciprocal cells (Fig. 6.15.c), the decay
of a phonon q0 into q1,q2 happens such that

q0 + bi = q1 + q2

ω0(q) = ω1(q) + ω2(q) (6.22)

Similarly, for type II Umklapp processes, phonon absorption happens in

90



Figure 6.14: Computed dispersion relation in graphene based on a DFT
algorithm where force constants are approximated until the 4th nearest
neighbors. Six branches are observed: out of plane acoustic, in plane
tangential acoustic, in plane radial acoustic, out of plane optical, in plane
radial optical and in plane tangential optical.

Figure 6.15: Example of a 2D dispersion relation computed in the
graphene reciprocal lattice from a valence force field (VFF) method. (a)
Out of plan acoustic. (b) In plane bond-bending optical mode. (c)
Representation of the graphene reciprocal lattice with the basis of
reciprocal vectors to the first nearest reciprocal cells.

accordance with conservation of energy and momentum

q0 + q1 = bi + q2

ω0(q) + ω1(q) = ω2(q) (6.23)

Equations 6.22 and 6.23 above, with conditions on allowed combinations
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of phonon momentum vectors, define sections of the plane. For instance,
given an initial phonon momentum q0 and branch λ0, the set of decay
momentum q1 from branch λ1 that allows decay with a branch λ2 is a line
in the 2D first Brillouin zone. Subsequently, it is possible to approximate
the delta function in order to materialize energy conservation in the energy
space. Computationally, handling the delta function requires particular care
for its diverging nature. For instance, we may use one of the analytical
representations of the delta function

δ(ω) = limδ=0

(
δ

ω2 + δ2

)
(6.24)

In computations, keeping the value of δ small but non-zero, gives an approx-
imation to the Dirac function which respects the properties of symmetry and
unicity of the functions, and avoids introducing biases in computation of in-
tegrals. As a result, approximating δ(ω0(q0) − ω1(q1) − ω2(q2)) can be
achieved by the following steps:

• For a given q0 in the propagation direction, compute all allowed com-
binations of q1, q2 satisfying momentum conservation.

• For the allowed transitions, compute the phonon frequencies from the
dispersion relation tables pre-computed using the VFF method.

• Using the phonon frequencies above, compute delta functions for al-
lowed transitions between bands

Figure 6.16 shows an example of how allowed 3-phonon transitions be-
tween branches can be represented using an approximation to the Dirac
delta function. Given the law of energy and momentum conservation, the
3-phonon scattering rate is computed from the following sumation [30] for
absorption

τ−1
U (λ0,q0) =

~Γ2

3πρv2
λ0(q0)

∑
λ1,2

∫ ∫
ω0(q0)ω1(q1)ω2(q2)

× [N(ω1)−N(ω2)] δ(ω0(q0) + ω1(q1)− ω2(q2))dq1 (6.25)

and similarly for emission:

τ−1
U (λ0,q0) =

~Γ2

3πρv2
λ0

(q0)

∑
λ1,2

∫ ∫
ω0(q0)ω1(q1)ω2(q2)

× [N(ω1) +N(ω2) + 1] δ(ω0(q0)− ω1(q1)− ω2(q2))dq1 (6.26)
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Figure 6.16: Lines of allowed transitions satisfying energy and momentum
conservation for phonon recombination. 1. ZA+ ZA− > ZA with
q0 = 0.4× (ΓM). 2. ZA+ ZA− > ZA with q0 = 0.75× (ΓM). 3.
ZA+ TA− > TA with q0 = 0.4× (ΓM).

Hence, it is possible to compute 3 phonon decay rates in graphene at a
given temperature, as represented in Fig. 6.17 for T = 300 K. Umklapp
scattering rates are computed for initial phonons q0 propagating in the Γ-
direction. For both acoustic and optical branches, absorption is dominant
at low phonon momentum. Incidentally, in ZA, TA, RA, TO, and RO
branches, phonon emission only happens when a critical value of q0(ω) is
reached, which allows decay of a phonon in two states. Given the results
above at room temperature, and neglecting for now other types of decay,
we can deduce that heat propagation in graphene mostly occurs on acoustic
branches. On these branches, dispersion is limited at low q by absorption,
with a decay time in the order of 10 ps. Similarly, at high q, heat conduction
in graphene is mostly driven by phonon emission, with a decay time in the
order of 0.1 ps. In Fig. 6.17, the dependency of the Umklapp rate in vλ(ω)2

clearly appears.
Figure 6.18 represents the total scattering rate of type I and type II Umk-

lapp processes combined, at T = 300 K and T = 200 K. Using initial prop-
agation along the Γ-K direction, we notice the effect of temperature on the
rates. Importantly, the Umklapp rate for low energy phonons is reduced by
a factor ≈ 15 from room temperature to 200 K. On the other hand, optical
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Figure 6.17: Computed Umklpapp scattering rates at T = 300 K. Top
figures represent phonon emission, bottom figures represent phonon
absorption.

Umklapp rates remain unchanged, except for the out of plane optical peak
which is decreased by ≈ 50 % at T = 200 K. Additionally, temperature
strongly predetermines the occupation of the branches of initial propagat-
ing phonons q0. This is not reflected on the rates above, but through the
computation of the thermal conductivity integral in equation 6.20.

Computations of elastic 2 phonons decay processes spawn from a similar
model. In a model of heat conduction in graphene ribbons, we consider
the following phonon scattering mechanisms: 3 phonons Umklapp, point
defect, classical boundary, and surface roughness. Point defect scattering is
calculated from the following rate [30]:

τ−1
I (q) =

S0Γ
4

q

v(q)
ω2(q) (6.27)

where S0 is the area occupied by one atom of carbon in the lattice, and Γ = 1
is a screening factor. The value of 1 used by Nika et al. [30] provides the best
agreement with experimental results. Similarly to scattering in nanowires,
the classical boundary scattering rate in graphene ribbons is derived from
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Figure 6.18: Total Umklapp scattering rate for optical and acoustic
branches in bulk graphene. Top figures: T = 300 K. Bottom figures: T =
200 K.

the analytic expression

τ−1
B =

v(q)
W

(6.28)

where W is the width of the ribbon. Figure 6.19 depicts point defect and
classical boundary scattering rates in graphene as computed from the rates
above. Given equations 6.27 and 6.28, it is remarkable in Fig. 6.19 that
the rates diverge or converge at the roots of null velocity of sound. This
consequently limits branch occupation at high phonon momentum.

So far, we derived an expression of thermal conductivity in a graphene
ribbon. Based on full branch computation, we calculated 3 phonon decay
rates, as well as classical boundary and point defect scattering rates. In
order to account for edge roughness, we develop below a similar framework
to compute a surface roughness phonon transition matrix element for 1D
edges. Here also, we adopt the model of a quasi particle phonon that scatters
from a series of constrictions along the propagation direction (Fig. 6.20.a).

From equation 2.13, the roughness spectral density of a rough 1D edge is
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Figure 6.19: (a) Phonon - point defect scattering rate for all incident
branches in the Γ-K direction. The screening factor is Γ = 1. (b) Classical
boundary scattering in graphene ribbons, for ribbon width W = 500 nm.

Figure 6.20: (a) Model of semi-classical phonon scattering in a rough
graphene ribbon, ∆ = 1 nm. (b) Model of a rough graphene ribbon, ∆ = 3
nm. L = 6 nm and W =100 nm throughout.

(notice the dimension of m3)

∆(q) =
√
π∆2Leq

2L2/4 (6.29)

where ∆ is the roughness RMS and L the auto-covariance length. Using
similar definition of the phonon-surface roughness matrix element, we derive
the following expression:

|〈k|H ′|k〉|2 =
4γ2

3A
ω2(〈n′〉+ 1)∆2(k− k′) (6.30)

where A is the area of the ribbon. The probability of transitions from k to
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k′ due to surface roughness is directly proportional to the matrix element
derived above. As a consequence of the ω2 factor, low frequency phonons
experience little thermal resistance from surface asperities. In addition, the
dependence on the autocorrelation length L, which represents the average
width of roughness peaks, shows that smoothly varying surfaces favor scat-
tering events of the specular type.

Similarly to semiconductor nanowires, we use a Gilat-Raubenheimer (GR)
[111, 112] scheme to compute the surface roughness scattering rate integrals
in graphene (see Fig. 6.21)

τ−1
i,j (E) =

2π
~Ni(E)

∫
E′=Ei

|〈k|H ′|k′〉|2

∇k′E′(k′)
dS (6.31)

where τ−1
i,j is the transition rate from phonon branch i to j due to surface

roughness and E′(k) is the phonon dispersion relation on the destination
branch j. In order to account for the frequency dependence of phonon-
surface roughness interference process, full dispersion relations are used,
which are obtained from Dresselhauss’ valence force field model. The GR
scheme approximates surface integrals on the first Brillouin zone (FBZ) dis-
cretized over 200× 200 cells, which achieves sufficient accuracy in the 20 K
-350 K temperature range [113]. While the Gaussian approximation may be
put at fault in the strong roughness limit where ∆/L > 1 , the effect of the
L term tends to average out the contribution of L. We noticed only little de-
viation of the predicted thermal conductivity in the strong roughness limit,
and consistently used a value of L = 22 Å which provides an experimental
fit with Balandin’s observations [30].

Subsequently, κ is computed for GNRs of various width and roughness
RMS ∆. We assume heat propagation in a graphene sheet along the Γ−K

direction, and a temperature range of 20 K - 350 K (Figs. 6.22 and 6.23). Al-
though no reliable data on the roughness of small wires is available yet, our
study from chapter 2 shows feasibility of rough edges with a model rough-
ness RMS ranging from 3 Å to 5 nm in the case of extremely rough edges.
Experimentally, such rough edges have not been manufactured yet with suf-
ficient reproducibility, though, similarly to electroless etching of nanowires,
one could imagine a technique of edge etching in severely randomizing exper-
imental conditions (extremely low/high pressure, etc.). It is noticeable that
the effect of reduced dimensions is stronger in rough ribbons in comparison
to the ideally smooth case. In 6.22 and 6.23, GNR thermal conductivity is
predicted to decrease in rough ribbons (high RMS ∆). The (W/∆2)2 behav-
ior is apparent in the variations of κ with ∆, showing that phonon–surface
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Figure 6.21: Graphene phonon - surface roughness scattering rate
computed for each incident branch from a Gilat Raubenheimer scheme.
Ribbon width W = 500 nm, roughness rms ∆ = 1 nm, L = 2.2 nm.

Figure 6.22: Graphene thermal conductivity computed from Holland’s
formalism in ribbons of varying width. Phonon-surface roughness is
included with RMS ∆ = 3 Å, and L = 22 Å. Square is included from
experimental observation of Nika et al. [30]

roughness scattering is the dominant resistive process for ∆ > 2 nm. We
noticed that for greater width W , κ converges to its bulk values, with a peak
in thermal conductivity around 90 K.

Low GNR thermal conductivity results from the combination of all con-
current interference processes mentioned above: isotope, impurity, Umk-
lapp, classical surface, and phonon-surface roughness. While impurities tend
to also reduce mobility, isotope scattering limits thermal conductivity and
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Figure 6.23: Graphene thermal conductivity computed from Holland’s
formalism in ribbons of varying roughness RMS. Phonon-surface roughness
is included with ribbon width W = 5 µm, and L = 22 Å. Square is
included from experimental observation of Nika et al. [30]

keeps electrical conductivity unchanged. In particular, the effect of artifi-
cially high ∆ decreases thermal conductivity below 1000 W/m/K in sus-
pended GNRs of width 5µ m, and ∆ = 3 nm. Importantly, in the case
of smooth GNRs, agreement is found with the experimental data point of
Nika et al. [30]. The ability to reduce thermal conductivity in graphene
while keeping the excellent electronic conduction of the material shows again
promise for thermoelectric applications. Nevertheless, in order to obtain
accurate expectations for the figure of merit, the effect of surface roughness
needs to be included into estimates of the power factor σS2. The authors
are currently unaware of such models and therefore recommend further in-
vestigation in this direction.

6.6 Perspectives on Roughness Limited Thermal
Conductivity

In summary, we first modeled thermal properties of artificially rough Si, Ge
and GaAs nanowires based on a perturbative treatment of the interaction
between lattice vibrations and surface asperities. This approach, based on
a full 3D phonon dispersion in each material, accurately accounts for the
frequency dependence of phonon scattering processes resulting from surface
roughness, isotope, boundary, and anharmonic decays. Our model predicts
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κ ∝ (D/∆)2 for thin nanowires, yielding remarkably low thermal conduc-
tivity below 1 W/m/K in rough etched Ge and GaAs nanowires of diameter
D < 115 nm. This model was subsequently extended to new mono-layered
material. In this case, physical laws have to be reworked to essentially ac-
count for the 2D nature of these materials. In this respect, graphene presents
considerable theoretical advantages to work in details of the computation of
all heat resistive processes in semiconductor devices. Thus, using a com-
puted full phonon dispersion relation, it is possible to derive the branch
to branch decay processes for 3 phonons Umklapp scattering, and classical
boundary scattering. In view of this, we extend the results on nanowires
to graphene nano-ribbons. In this case, low thermal conductivity below
1000 W/m/K is also reported for ribbon width W < 5 µm and ∆ = 3
nm. Additionally, decreasing width and increasing roughness are expected
to further decrease thermal conductivity. As a result, for both semiconduc-
tor nanowires and nano-ribbons, the ability to reduce thermal conductivity
while keeping good electronic conduction would reveal those materials as
potential candidates for efficient site-specific, on-demand, integrated ther-
moelectric energy conversion solutions.

In particular, for the same diameter and roughness rms and at room
temperature, GaAs and Ge nanowires are expected to have approximately 5
times and 10 times lower thermal conductivity respectively than Si nanowires.
Similar scattering mechanisms nevertheless limit electron mobility, making
it necessary to model charge transport in order to find optimal thermoelec-
tric figures of merit ZT . In this scope, it is noticeable that isotopes have
no influence on electronic conduction, and surface roughness may only have
limited impact at low D where electrons tend to be pushed away from the
interface. Hence, those two factors are expected to be significant design
parameters in the engineering of efficient semiconductor nanowire thermo-
electric devices.

In addition, we demonstrated in this chapter a remarkably strong ef-
fect of surface roughness on the thermal conductivity of thin semiconduc-
tor nanowires and nano-ribbons. The approach presented here may gen-
erally be extended to semiconductor nanowires and nano-ribbons of var-
ious materials, sizes, and direction of thermal propagation using a full-
phonon dispersion relation with the inclusion a phonon – surface roughness
scattering matrix element. Beyond the class of unidirectional semiconduc-
tor based thermoelectric energy converters, previous experimental devices
[99, 100, 97, 98, 101, 102] based on classical high efficiency thermoelectric
materials such as Bi2Te3 and Sb2Te3 faced potential challenges in their inte-
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gration onto conventional microscale semiconductor platforms. Though not
competing with the high thermoelectric performance ZT > 2 of these de-
vices, showing that nano-engineered semiconductor nanowires achieve ther-
moelectric figures of merit close to ZT = 1 is nevertheless of considerable
importance, given their natural and convenient compatibility with highly
available electronic system on a chip technologies. In that respect, in semi-
conductor nanowires, charge carriers are naturally pushed away from the
surface. As a result, surface roughness is expected to minimize thermal con-
ductivity in greater proportion than electrical conductivity and Seebeck co-
efficient. With that perspective, the present work theoretically addressed the
trade-offs between different scattering mechanisms in unidirectional semi-
conductor devices necessary to achieve low thermal conductivities through
surface nanostructuring. Nevertheless, a refined understanding of the im-
pact of surface roughness on the power factor is required in order to fur-
ther explore possible designs of efficient embedded on-site thermoelectric
nanowire coolers or generators. It is generally assumed that semiconductors
with small bandgap and high effective mass present higher thermopower.
As a result, applying a similar modeling framework to InSb could reveal
interesting nanowire properties for thermoelectric applications.

Finally, we chose in this section to use an integral solution to heat con-
duction in semiconductors. This semi-classical assumption is in general a
sufficiently accurate solution to the Boltzman transport equation when the
dimensions of the device are several orders greater than the quasi particle
mean free path. For greater accuracy, inclusion of the derived scattering
rates could be included in a phonon Monte Carlo simulation. Proceeding
with the latter model presents the clear advantage of allowing coupled elec-
tronic and phonon transport simulation, through a common set of Monte
Carlo simulation parameters [134]. Nevertheless, assumptions beyond the
Boltzmann transport equation are limiting in the scope of capturing the
quantum nature of charge and heat carrier. The wave nature of energy
carriers is expected to be of tremendous importance in interference effects
happening at device scales below the carrier mean free path. Consequently,
in the following chapter, we propose an alternative approach to modeling
surface limited transport in semiconductors which revolves around a Green
function treatment of the energy carriers. Specifically, we will investigate
the case of electronic conduction in 3D rough semiconductor nanowires and
2D patterned sheets.
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CHAPTER 7

QUANTUM ENHANCED SURFACE

SCATTERING IN CONDUCTING CHANNELS

BELOW 10 NM

7.1 On the Approach to Electronic Conduction in
Channels Below 10 nm

We discussed in previous chapters the effect of surface roughness on the
heat and electrical conduction in semiconducting channels. In both chap-
ters 5 and 6, we considered a semi-classical model in which quasi-particles
moved according to classical physics, in free flights interrupted by scatter-
ing events. Those scattering events were derived from perturbation theory,
as a perturbation to the Hamiltonian of the system. In the case of elec-
tronic transport, Schrödinger’s equation was solved self-consistently to take
into account charge relocation due to quantum confinement. However, the
effects of quantum confinement on the electronic band structure and the
phonon dispersion relation have not been considered in the previous sec-
tions. The latter is a good approximation as long as the devices considered
were intrinsically three-dimensional, and the contribution of sub-bands to
the conduction processes remained negligible [135].

In this chapter, our objective is to get a finer understanding of the effect
of surface roughness on the process of conduction in channels where the
transport properties mostly result from the quantum nature of carriers. Us-
ing statistical series of real 2D and 3D geometries of electronic conduction
channels, we derive a detailed description of the resistance incurred by wave-
like charge carriers from the constrictions along the propagation direction
in channels below 10 nm. In particular, we introduce a 3D non-parabolic
recursive Green function (RGF) approach to study conduction in ultra-thin
conduction channels, quantum modulated transistors, and patterned semi-
conductor nano-ribbons. The latter approach is consistent with previous
results obtained from a similar approach [136], and shows, in the absence
of other scattering mechanisms, that surface roughness contributes to an
increased resistivity for high energy carriers in Si NW of diameter D < 10
nm, while having little effect on the lower energy levels. Based on the same
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approach, we exhibit increased electronic resistivity and negative resistance
in asymmetrically patterned semiconductors ribbons.

The implications of the latter study based on an RGF approach are two-
fold. First, as we are researching an optimal design for rough nanowires
and nano-ribbons used as thermoelectric devices, it is possible that best
performance occurs from quantum processes. Indeed, while considering the
wave-like nature of electronic and heat carriers and their inherently differ-
ent wavelengths, it is conceivable that the size of geometrical fluctuations
of the wire will strongly interfere with only heat waves, and little with elec-
tronic waves. With this approach, one could design an electronic crystal -
phonon glass, similarly to our design goals in chapter 6 using semi-classical
concepts. It must be kept in mind that even at scales around and below 10
nm, it is still appealing to design interfering geometrical patterns through
a randomizing etching process or chemical growth. In this case, roughness
results from random conditions in the fabrication environment [7] and, as
such, our statistical approach to surface roughness keeps its validity. Sec-
ond, electronic devices based on the quantum nature of carriers have already
been proposed [137], and in order to study the feasibility of such devices,
it is necessary to understand what the impact of real geometries will be on
their performance. Here, we find particular interest in the quantum modu-
lated transistor [136]. In this configuration, full use is made of the wave-like
nature of electrons, as a gate voltage is applied to control the interference
of carriers with a geometrical pattern along the transport direction. Thus,
we would like to understand the implication of the real shape of these ge-
ometrical patterns on the operation of the quantum modulated transistor.
Finally, we would like to bring to the reader’s attention that, in a recent
work from H. Hahm [135], it was concluded from coupled semi-classical and
full-quantum approach that the critical dimension of nano-channels at which
strong quantum confinement effects become relevant is on the order of 10
nm.

The lateral size of the conduction channel at which the wave-like nature
of carriers must be taken into account is critical in understanding when
the following approach must be used. In this respect, a simple back-of-the-
envelope calculation instinctively confirms this assumption and introduces
the problematic behind the model which we will introduce in this chapter.
For now, let us consider a 2D model in which the confinement width varies
along the conduction direction (Fig. 7.1). For a nanowire width D and an
average deviation ∆ of the confinement width, the first transverse eigen-
energies of the Schrödinger equation vary along the conduction direction
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Figure 7.1: Model of the variation of the quantum confinement width
along the propagation direction on a nano-channel.

between, on average:

Emin1 =
~2

2m∗(D + ∆)2
(7.1)

Emax1 =
~2

2m∗(D −∆)2
(7.2)

For any material with ∆ = 0.5 nm, the variation in the first energy level
(Emax1 − Emin1 )/Eav1 is of 20% at D = 10 nm, 10% at 20 nm, and 4% at 50
nm.

With this in mind, modeling transport in structures with confinement
lengths on the order of 10 nm and below requires additional attention to the
quantum interferences which appear from the variation of the width of the
waveguide. In particular, it can be expected that the roughness scattering
rates will be strongly modified by the varying confinement width and the
appearance of allowed discrete eigen-modes which can be transmitted in the
perturbed waveguide. Besides, in the absence of impurities, transport in
such quasi-1D channels as nanowires is limited by phonon scattering at high
temperatures whereas, at low temperatures, heat and electronic conduction
are mostly limited by scattering of quasi-particles with the device bound-
aries. Similarly to the scattering rates derived in chapters 5 and 6, we can
assume that the full-quantum surface roughness scattering rate is, with a
good approximation, temperature invariant. Therefore, we propose in this
chapter to derive this new scattering rate in the low temperature regime,
with the idea to extend this rate to the high temperature regime with only
minimal change.

The low temperature regime presents the advantage of behaving closely
to the predictions resulting from Landauer’s formalism [138, 139]. In the
case of a device performing 1D transport between two reservoirs of Fermi
energies EF,1 and EF,2 and an energy dependent transmission probability
T (E) accounting for various scattering mechanisms, Landauer’s prediction
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Figure 7.2: Model of 1D conduction between two reservoirs with different
Fermi levels. The transmission probability T (E) reflects the effect of
scattering in the channel.

gives, for instance, the electrical current from reservoir 1 to reservoir 2 7.2:

I =
e

π

[∫ ∞
0

v(k)f1(k)T (E) dk −
∫ ∞

0
v(k)f2(k)T (E) dk

]
(7.3)

where f1 and f2 are the reservoir distribution functions characterized by
their respective Fermi energies. In 1D and at low temperatures, the energy
dependent velocity and the density of states cancel to a simple constant,
yielding the simple expression

I =
2e
h

∫ EF,2

EF,1

T (E) dE (7.4)

For an energy invariant transmission probability T , the channel presents a
conductance which is directly proportional to the fundamental conductance
G = 2e2/h. It is also noticeable that the Fermi energies depend directly
on the voltage applied on the reservoirs. Nevertheless, in the case of real
contacts, a non-negligible part of the resistance measured effectively occurs
at the contacts. Thus, in order to properly derive the transmission coefficient
of the channel—which will truthfully, and only, account for our boundary
scattering model—one must keep in consideration a potential drop at the
contacts. In practice, this potential drop can be explained by a charge
reordering at the interfaces between the channel and the reservoirs. Such
effects have already found an analytical derivation in the literature [12]. At
this point, we will simply keep in mind that, from the knowledge of the
current flowing in the channel and the effective potential drop at its left and
right boundaries, it is possible to estimate the conductance of the channel,
which, in turn, can be directly translated into a scattering rate according to
Drude’s theory.

In the following sections, we focus on the problem of the scattering of an
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electron quantum wave-packet with the boundaries of a structure similar
to the one shown in Fig. 7.1. In this respect, many option are available to
deal with the transmission of different energy modes on a quantum structure.
The mode matching formalism [12] is a viable solution; however, it seems less
adapted to a system with rough boundaries and has been often considered
unstable [136]. A very popular alternative is the non-equilibrium Green
function [140, 141] (NEGF), in which the retarded green function is derived
from inverting the Hamiltonian of the system. This approach still remains
computationally expensive. Finally, the recursive Green function approach
[136, 137, 142] offers a valuable alternative since it reduces the computational
cost by exploiting the structure of the Hamiltonian, and offers the possibility
to be generalized to arbitrary geometries. It is important to note that such
a method has been applied indifferently to both electronic transport [137]
and heat transport [143].

7.2 The recursive Green function Approach

While the full-quantum behavior of a given conduction channel would be
given by the solution of the Schrödinger equation, the numerical approxi-
mation to such solutions still constitutes a computational burden for general
geometries and 3D systems. However, as discussed in chapter 5, obtaining
solutions to the Schrödinger equation on 1D or 2D cross sections is achiev-
able within a reasonable time-frame [90, 85, 92]. It is also remarkable that,
in the case of rectangular cross sections or finite 1D cross sections with
hard wall boundary conditions, an analytic expression exists for the eigen-
functions and eigen-vectors of the Schrödinger equation. Besides, as we are
mainly interested in silicon nanowires with the prospect to extend our results
to general nanostructures, including graphene nano-ribbons, it is necessary
that the following computational scheme be seamlessly applicable to either
1D or 2D cross-sections.

The Green function is commonly used in physics to find the solution to
general partial differential equations. In the case of the Schrödinger equation

(H(r)− E)ψ(r) = 0 (7.5)

where H is the Hamiltonian of the system and E its energy, the Green
function G(r, r′) is the solution to the equation

(H(r)− E)G(r, r′) = δ(r− r′) (7.6)
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where δ(r− r′) is the Dirac function. Without entering in a detailed discus-
sion on Green functions, let us merely mention the following result, which
will be central for the remaining of the discussion. In the event of an applied
perturbation potential V (r), the Green function becomes the solution to the
perturbed problem

(H(r) + V (r)− E)G(r, r′) = δ(r− r′) (7.7)

If the system is discretized over N points in space {r1, r2, ..., rN}, solving
Schrödinger equation will yield the N first eigen-energies En. Additionally,
in a vector representation V = {V (r1), V (r2), ..., V (rN )}, where G becomes
a N×N matrix, the Green function of the perturbed system may be derived
from the unperturbed Green function G0 according to Dyson’s equation

G = G0 + G0VG (7.8)

Since we are primarily concerned with the transport properties of our con-
duction channels, it is also remarkable that the transmission and reflection
coefficients for the nano-channel may be directly obtained from the trans-
verse energy eigen-values and the Green function of the system. Thus, we
shall inspect in the next paragraphs the RGF approach to computing the
transmission probability T (E) and introduce its novel application to the
derivation of quantum enhanced surface roughness scattering rates in sub -
10 nm nano-channels.

We present here the 2D version of our approach which is the first to have
shown physically consistent results and sets a rather understandable ground
for a more general discussion. The essence of the problem is represented in
Fig. 7.3. In order to calculate the transmission and reflection coefficients for
an electron moving along a conduction channel and impinging on geometrical
variations, we exploit the fact that the plane wave motion can be described
by the tight-binding (TB) Hamiltonian on a lattice with periodicity δx,
where δx is much lesser than the electron wavelength λ (δx� λ).

In order to compute the scattering amplitude, we choose a scheme similar
to the one introduced by Sols et al. [137], in which the 2D or 3D transmission
channel is modeled by a 1D tight binding chain, where each site represents a
cross section of the whole tight binding channel. For a cross-section contain-
ing N lattice sites, the TB Hamiltonian yields N eigen-modes. We consider
that our portion of rough nano-channel is in contact with two semi-infinite
and perfectly smooth nano-channels of the same diameter. To understand
how a mode m entering the channel at the left is transmitted into a mode n
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Figure 7.3: 2D Model of the recursive Green function approach in a rough
nanowire. Each transverse chain is represented by a single site in the 1D
system, and the propagators G are computed to connect the energy modes
between neighbor sites along the chain.

on the right, the Green function matrix Glr needs to be computed. If one
quasi-particle enters the channel with a momentum k, its total energy E, in
a cross-sectional mode m of energy Em, is given by

E =
~2k2

2m∗
+ Em (7.9)

where m∗ is the electron effective mass in the semiconducting material con-
sidered. In the absence of applied potential, the TB scheme requires that a
hopping potential V should be added in order to retrieve the continuum case
when δx is decreased to 0. To enforce this condition, the hopping potential
should be

V =
~2

2m∗(δx)2
(7.10)

With these considerations, the transmission probability tmn from an eigen-
state |m > at the leftmost site l to an eigenstate |n > at the rightmost site
r is

tmn = −2iV (sin θm sin θn)1/2ei(θml−θnr) < n|Grl|m > (7.11)

with θn ≡ knδx and kn is the wave vector available for longitudinal motion,
as indicated in (7.9).

For 1D cross-sections with hard walls, a closed analytic form of the eigen-
states can be derived. For a rough 2D cross section, it is possible to compute
the first eigen-states within a reasonable time frame. Once the first relevant
cross-sectional eigen-states are computed for each site of the 1D longitudi-
nal TB chain, the whole problem sums up to the computation of the Green
function matrix Grl. To serve this purpose, we make use of Dyson’s equa-
tion in a fashion similar to that of Sols et al. [137], although with minor
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modification to account for the fact that each site is treated independently
and no ensemble of neighbor sites exhibit in general a closed form for their
propagator G.

Since the propagator G is known for a perfectly smooth semi-infinite lead,
the algorithm functions in a recursive way. Once the right lead is attached,
at the step q of the recursion, the propagator GR

r,q+1 between site r and q+1
on the right portion of the channel is known. The site q is then attached in
order to determine the new propagators GL+R

r,q and GL+R
q,q such that

GL+R
r,q = GR

r,q+1Vq+1,q

(
I−GL

q,qVq,q+1GR
q+1,q+1Vq+1,q

)−1
GL
q,q

GL+R
q,q =

(
I−GL

q,qVq,q+1GR
q+1,q+1Vq+1,q

)−1
GL
q,q (7.12)

where the subscript L describes the propagator of a single site, which has a
closed form as specified in [137]. The matrices Vq,q+1 effectively make the
connection between the neighbor sites by providing the correlation between
transverse modes in neighbor TB cross-sections such that

(Vq,q+1)nm = V
∑
j

ψ∗n(j)ψm(j) (7.13)

where ψn(j) and ψm(j) are the transverse wave functions computed on the
jth cross-sectional mesh point at the sites q and q+1 respectively. The index
j spans the ensemble of possible cross sectional mesh points which connect
the sites q and q + 1. At the end of the recursive algorithm, the leftmost
semi-infinite lead is finally attached.

7.3 Non-Parabolic Bands

In the model presented above, equation 7.9 implicitly assumed parabolic
bands. While this assumption is accurate a low energies, it is known that
drastic deviations from parabolic bands appear at higher energies. The
critical energy at which transition away from parabolic bands occurs may
in some cases be relatively low, in particular in silicon L-valleys, where
deviation is observed at only 0.1 eV above the bottom of the conduction
band [86]. However, as we develop a frequency dependent approach to the
study of interferences between electron waves and geometrical features, we
would like to capture the higher order energy variation resulting from band
non-parabolicity. In addition, in narrow channels, in the case of high carrier
densities, or under high fields, the carrier energy will often be well above
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the bottom of the conduction band. In this case, the validity of equation
7.9 may be questionable, and non-parabolicity must be considered.

In order to account for non-parabolicity in the E−k relationship, several
options naturally appear. On the one hand, one could expand the carrier
energy as a Newton series in the wave-vectors

E(k) =
N∑
n=1

a2nk2n + o(k2N+2) (7.14)

One could subsequently use this expansion to the order N directly in the
Schrödinger equation to include non-parabolicity [144, 145]. It is also possi-
ble to use this relationship to estimate an energy dependent effective mass
to include in Schrödinger’s equation; however, this approach has led to er-
roneous results [145].

Another method consists in expanding the wave-vector as a Newton series
in the carrier energy

~2k2

2m∗
= E(1 + αE + βE2 + ...) (7.15)

This is the most common approach, and has been widely applied to a va-
riety of materials and device structures [146, 147, 126]. The second order
expansion is often referred to as the Kane approximation.

Based on Kane’s truncation, we can rewrite Schrödinger’s equation using
the total energy

E =
1

2α

[√
1 + 4α

~2k2

2m∗
− 1

]
(7.16)

In the case of quasi-1D transport along the x-axis, induced by a 2D con-
finement along the transverse direction by a potential V (y, z), and in the
absence of confinement in the longitudinal direction, it is possible to intro-
duce the ansatz for the electron wave function

ψ(x, y, z) = eikxxζ(y)ξ(z) (7.17)

This form allows one to distinguish between transverse and longitudinal
energy levels such that E = Ex + E//. In particular, using the effective
mass tensor m∗ = {m∗x,m∗y,m∗z}, we retrieve [18, 148]

Ex(1 + αEx) =
~2k2

x

2m∗x
(7.18)

It is interesting to note the approach of Godoy et al. [18] who retrieve,
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through a series expansion over the energy dependence of equation 7.16, the
expression of the coupling between transverse and longitudinal energy levels
such that, if the potential inside the boundaries of the wire is uniformly zero

E//(1 + 2αEx + αE) =
~2k2

y

2m∗y
+

~2k2
z

2m∗z
(7.19)

Here, the energy level En0 = (~2k2
y/2m

∗
y + ~2k2

z/2m
∗
z) is the energy level

which would be retrieved by solving the tight binding Schrödinger equation
in the transverse cross section under the parabolic expression. As a result,
it is possible to include non-parabolicity in the recursive Green function
scheme as follows. The particle enters a section of nanowire with a known
total energy E. In each cross-section, the value of En0 is computed through
a TB Schrödinger solver. Subsequently, it results from equation 7.19 that
the energy available for propagation at energy level n is shifted down to the
value

Enx =
1

2α
[
√

1 + 4α(E − En0 + αE2)− 1] (7.20)

This value of energy is finally used in the expression of θn in computa-
tions of Gq,q and transmission coefficients in equation 7.11, such that Enx =
2V (cos θn − 1).

From the equations above, it appears that the principal effect of band non-
parabolicity is a shift down of the energy levels in the transport direction.
Evidence of this phenomenon is revealed from the computations carried out
in the next sections (Fig. 7.13 on page 124)

Finally, we would like to emphasize the fact that, despite our choice of
3D geometry, the same technique is similarly applicable to the case of 2D
transport with no modification, provided the use of the Ex and E// no-
tations. Our approach will subsequently be used to simulate transport of
charge carriers longitudinally confined in 2D ribbons and 3D wires.

7.4 Preliminary Results on 2D Transport

Based on the scheme described above, we wish to compute the transmis-
sion coefficient of conducting channels in the scope of the novel derivation
of surface roughness scattering rates derived from quantum mechanical con-
siderations. In order to get a better understanding of the problem and to
calibrate our version of the RGF algorithm, several cases will be consid-
ered, at first, in a 2D topology. The extension to 3D geometries solely
involves solving the Schrödinger equation on 2D cross-sections instead of
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1D cross-sections, and is the object of next section. The 2D model presents
two natural advantages. First, we will be able to explore key properties of
transport along a rough channel without going through the additional com-
putational burden of dealing with real geometries. Second, the 2D picture of
rough conducting ribbons recently attracted a renewed interest in the scope
of the extraordinary heat and electrical conduction properties of graphene
ribbons. In this context, understanding what processes lead to scattering of
electron and heat waves with surface asperities is key to the design of novel
graphene based devices.

Here, the quantities of interest are the transmission probabilities Tm(E) of
the input modes m and the total transmission probability T (E). The latter
quantity is directly related to the number of quanta of conductance which
will be excited on the channel at low temperature in the Landauer formalism
of (7.4). Indeed, each mode m constitutes a conduction channel which, at
best, carries in parallel with the other channels an electrical current with
the elementary conductance 2e2/h. Thus, the total transmission probability
for an input mode m is

Tm(E) =
∑
j

|tmj |2 (7.21)

where j goes over all allowed energy modes in the output lead. Incidentally,
the total transmission probability for all allowed transmission lines in the
conduction channel is

T (E) =
∑
m

Tm(E) (7.22)

The first test case consists in a perfectly smooth nano-channel. Here,
the channel is connected to two semi-infinite leads of the same diameter
D = 10 nm. The electron effective mass is m∗ = 0.05m0 in order to keep
consistency with the results from Sols et al. [137]. This test case presents
little interest other than guaranteeing that our RGF accurately predicts a
constant transmission probability of 1 for each allowed energy level in the
channel given an input energy E (Fig. 7.4). In order to understand the
following discussion, it is important to emphasize that an electronic wave
entering the nanochannel has either:

• an energy E superior to a given energy level n, and inferior to level
n+1. Consequently, the n first channels may transmit the wave, which
is reflected by a transmission probability of 1 for T1, T2, ..., Tn. The
total transmission T (E) = n.

Or
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Figure 7.4: Transmission probability for the first two modes in a perfectly
smooth wire. Solid line: T1, dashed line: T2, inset: geometry.

• an energy inferior to the first energy level. The transmission probabil-
ity is zero on every channel, and the wave cannot be transmitted.

Here, the total transmission coefficient takes discrete integer values since the
geometry is constant along the direction of propagation and all cross-sections
are identical. Geometrical fluctuations will introduce mixing between differ-
ent modes, leading to non integer values of the transmission coefficient.

The trivial case of the smooth ribbon, however, does not provide infor-
mation about mode leaking. In order to test this situation, we will compare
our results to the special case of the quantum modulated transistor (QMT)
which was proposed by Sols et al. [136] and subsequently studied using a
RGF scheme. Here, the geometry consists in a T-stub structure, with in-
put and output diameters of 10 nm, and a central extension of 10 nm. In
essence, the QMT employs a gate voltage to modulate the effective length
of the extension and allow resonance of different modes in the channel. Sim-
ilarly to the results of Sols et al. [136], our model predicts several zeros in
the transmission of the first two modes, as well as regions of unity ampli-
tude (Fig. 7.5). It is remarkable that the transmission of the first mode is
unequivocally degraded after the appearance of the second eigen-mode, due
to mixing between different modes. While the agreement is acceptable, the
discrepancy found with the data of [136] is explained by the rather coarse
grid which was employed. As a result, the effective extension width was
slightly lower than 10 nm, accounting for different resonance peaks. As a
concluding remark on the QMT, let us put the emphasis, again, on the fact
that the low temperature conductance is directly related to T (E). Hence,
the current in the QMT should correspondingly go to zero for certain Fermi
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Figure 7.5: Transmission probability for a quantum modulated transistor
as a function of the input energy E. Solid line: T1, dashed line: T2,
squares: Sols et al. [136].

energies. Such behavior was experimentally demonstrated [149], although
the stark deviations predicted by the theory were not observed.

Figure 7.6: Transmission through a constriction as a function of input
energy E. Solid: T1, dashed: T2.

Next, in the scope of understanding the mechanisms of transport in a
rough channel, let us first inspect the case of a single constriction. In this
geometry, the width of the 10 nm channel is reduced to 8 nm at the center of
the channel, reproducing in this way the average effect of one single rough-
ness constriction of rms ∆ = 0.5 nm. Figure 7.6 shows the transmission
coefficient in this case. Here, the second mode appears exponentially, at
an energy much higher than the 0.2 eV of the perfectly smooth case. The
reason for this effect lies in the increase of the second energy level in the
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Figure 7.7: Transmission through a rough semi-conducting nano-channel
as a function of input energy E. Solid: T1, dashed: T2.

constriction. Hence, the traveling wave effectively impinges on a potential
barrier, and only the modes carrying an energy higher than the second con-
striction energy may travel through the constriction. In addition, since the
constriction length is finite, it is possible to observe tunneling through the
barrier. This phenomenon is correctly depicted by the exponential build-up,
and later oscillations, of the transmission coefficients of the first two har-
monics. Thus, the leaking of the first mode into subsequent modes appears
at higher energies than the cross-sectional eigen-energies of the input lead.

Incidentally, we inspect the case of a rough nano-ribbon, which can be
thought of as a series of constrictions of limited length (Fig. 7.7). We used
for this geometry a channel of average diameter D = 10 nm, roughness rms
∆ = 0.5 nm, and correlation length L = 2 nm. It is noticeable that the
effect of tunneling into the first mode is almost washed out in comparison
to the single constriction. In general, the transmission of the first mode
remains good even at high energies, while the transmission of the second
mode is drastically degraded. It is also remarkable that the transmission of
each mode is sharply damped at energies corresponding to the eigen-modes
of the smooth channel of average diameter D. As of now, no explanation
has been proposed which accounts for this phenomenon.

Finally, the total transmission T (E) is computed according to equation
7.22 (Fig. 7.8). The attentive reader should know at this point that the total
conductance of the channel, including all transmission lines from different
input modes, is directly related to T (E) in Landauer formalism. In essence,
T (E) is a measure of the number of quanta of elementary conductance which
are involved in the conduction process along the scatterer. As discussed
earlier, the QMT shows maxima of conductance close to the ideal case,
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Figure 7.8: Total transmission coefficient T (E) for the perfectly smooth
nano-channel (dashed plateaus), QMT, constriction, and rough
nano-channel with similar input and output lead diameter D = 10 nm.

with the ability to shut off the conduction on certain modes depending on
the length of the extension. The nano-channel with only one constriction
shows a behavior close to the perfect transmission channel with a smaller
diameter equivalent to the cross-section width at the constriction. Spurious
oscillations are introduced, in this case, by tunneling of waves through the
constriction barrier. The rough nanowire shows a conduction close to ideal
at low energies whereas its behavior is starkly altered at higher energies.
Since the higher energy harmonics are barely transmitted, the conductance
seems to exhibit a convergence toward a finite average value. This is in
accordance with our discussion on phonon transmission in rough nanowires,
where we have considered that quasi-particles of wavelength λ that is big in
comparison to the roughness critical dimensions will see little contribution
from the perturbation at the edges.

7.5 3D Non-Parabolic Simulation of Transport in Si NW

In the previous section, considering the case of rough 2D ribbons gave valu-
able insight into the processes of scattering of electronic waves from geomet-
rical fluctuations. In order to go through a series of constrictions along the
propagation direction, the wave needs sufficient energy. In addition, the pro-
tuberances lead to the appearance of local QMT configurations which shut
off transmission at given frequencies, depending on the height of these as-
perities. Here, we want to apply our knowledge to the case of real nanowires,
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including band non-parabolicity and 3D geometries. Hence, we explore the
effect of geometrical fluctuations on the electronic transport in rough Si
nanowire (NW) thermoelectric devices of diameter D < 10 nm. At this
scale, the quantum nature of transport is accounted for in the computation
of energy dependent transmission coefficients through the recursive Green
function algorithm. In the following section, the rough 3D NW geometry is
used as a direct input to simulations through the roughness height ∆ and
autocovariance length L. Using this approach, we will demonstrate that the
channel conductance above 0.1 eV is drastically reduced in rough Si NW
with high D/∆ ratio. In addition, we will see that the roughness induced
resistivity is only increased by 6% on the first energy level of 10 nm Si chan-
nels with ∆ = 7.7 Å, showing possible application for high thermoelectric
figures of merit ZT .

Indeed, we are consistently working under the natural assumption that
scattering of charge carriers with the surface limits transport in nanowires,
owing to their high surface-to-volume aspect ratio. Recent experimental and
theoretical work on such NWs [7, 19] showed that, through careful nano-
engineering of intentionally rough edges, it is possible to decouple thermal
and electrical transport, making such devices extremely appealing for novel
applications in thermoelectric energy conversion. In particular, in thin NW
of diameter D <15 nm, where electrons are pushed away from the surface,
phonons may be scattered more efficiently than electrons by asperities at
the NW surface [120], leading to high thermoelectric figures of merit ZT .
As discussed in chapters 5 and 6, conventional formalism which accounts
for electron – surface roughness scattering is based on the derivation of a
perturbed Hamiltonian of the system due to geometrical fluctuations [15, 16]
and is adapted to a 2D electron gas (2DEG) conducting near an interface.
However, at low NW scales, this approach does not account for the quantum
nature of electron transport, where charge carriers theoretically impinge on
a series of potential barriers resulting from geometrical constrictions in the
transport direction [150]. Thus, in this section we compute an energy depen-
dent electrical quantum conductance in thin Si NW from a recursive Green
function (RGF) approach [137], including evanescent modes, non-parabolic
bands, a 3D description of NW, and a model for arbitrary rough surfaces
through the root mean square (RMS) roughness height ∆ and autocorrela-
tion length L. Rough interfaces are directly taken into account through the
definition of randomly variable NW geometries, using the method described
in section 7.4. Based on this approach, and in the absence of other scat-
tering mechanisms, we will show that surface roughness contributes to an
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increased resistivity for high energy carriers in Si NW of diameter D < 10
nm, while having little effect on the lower energy levels, thus building good
hopes for application of rough thin NW in thermoelectrics.

As a reminder, the quality of thermoelectric devices is measured by the
dimensionless figure of merit ZT = (S2σ/κ)T , where S is the Seebeck coef-
ficient, T the temperature, σ the electrical conductivity and κ the thermal
conductivity. In this respect, the standard approach which we have pursued
in chapter 6 in order to achieve performance is to design a “phonon glass -
electron crystal” with high electron mobility and poor thermal conductiv-
ity. Recently, thermal conductivity in Si NW with etched rough edges was
experimentally reduced by a factor of about 100 in comparison to bulk crys-
talline Si [7, 19], to nearly the value of amorphous Si. In order to provide
supplementary information for the design of efficient thermoelectric devices,
the present model relates the transmission of charge carriers in a rough Si
NW conduction channel to the NW diameter, the experimental roughness
parameters ∆ and L, and the electron energy E. While considering geomet-
rical fluctuations as the sole source of resistivity in NW, the transmission
probability T (E) of carriers with energy E is directly linked to the electri-
cal current I flowing between two Büttiker probes held at Fermi energies
EF,1, EF,2 through Landauer’s formula I = 2e/h

∫ EF,2
EF,1

T (E) dE. Similarly
to what was discussed in the case of ribbons in the section above, the chan-
nel conductance, in the ideally smooth case, will vary in steps of integer
multiples of the fundamental quantum conductance e2/h.

The 3D conduction channel is modeled by a 1D tight binding (TB) chain
where each site q represents a cross section of the whole 3D TB domain (Fig.
7.3). The NW is assumed in contact with two semi-infinite leads of perfectly
smooth NW of the same diameter. The quantum nature of NW transport
is accounted by solving the tight binding Schrödinger equation (TBSE) in
a series of 2D cross sections along the transport direction, and recursively
computing the transmission between adjacent sections through the overlap
of the wave functions [137] (Vq,q+1)nm = V

∑
j ψ
∗
n(j)ψm(j), where ψn(j)

and ψm(j) are the transverse wave functions at the jth cross-sectional mesh
point at sites q and q+ 1 respectively, and V = ~2/(2m∗xdx

2) is the hopping
potential between adjacent sites. The domain is discretized on a 3D mesh
of spacing dx = dy = dz where x is the transport direction. The NW
boundaries are defined by a potential step equal to the Si work function
ΦSi = 4.8 eV, while the interior of the wire is kept at 0 eV, hence modeling
a Si NW suspended in vacuum. In addition, the simulation domain is larger
than the actual NW, thus allowing eigenfunctions to diffuse out of the NW
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Figure 7.9: (a), (b) Examples of cross-section wave functions in a perfectly
smooth NW. (c), (d) Examples of cross-section wave functions of
equivalent order in a rough NW with ∆ = 0.5 nm.

boundaries (Fig. 7.9).
It is remarkable that this approach allows one to directly size the effect of

the nanowire surface roughness on the cross-sectional eigen-functions. From
Fig. 7.9, it is seen how surface roughness alleviates degeneracy in the cross
section, and introduces a large number of wave-functions in a given range of
energies. Indeed, classical quantum theory gives an analytic expression for
the eigen-energies in the case of the perfectly smooth square cross-section
nanowire

EnY ,nZ =
π2h2n2

Y

2m∗yD
+
π2h2n2

Z

2m∗zD
(7.23)

each resulting from a particular combination of modes along the y and z di-
rections. As such, the eigen-functions corresponding to the pair (nY , nZ) =
(1, 3) and (3,1) have the same transverse energy: the transverse states are
degenerate. Nevertheless, in rough wires, it appears that such degeneracy
is relieved due to the lack of symmetry. Furthermore, it is remarkable to
see, as in the case of Fig 7.9.c and Fig 7.9.d, that roughness triggers the
appearance of sub-patterns. In these cases, the constriction fosters wave-
function configurations which appear like combinations of cross-sectional
states in smaller, smoother cross sections, each delimited by the principal
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Figure 7.10: Computation of the first energy levels in the nanowire
crossection corresponding to Fig. 7.9. (a) Smooth square cross section. (b)
Rough cross section.

constriction. Hence, in Fig. 7.9, a close analogy is found with combina-
tion of sub-states (1, 3) + (1, 2) and (3, 1) + (1, 2). Yet, those sub-states
are not completely independent from each other, and no simple linear rule
may be applied to derive the corresponding states of energy. Figure 7.10
represents the first energy levels for the respective cross-sections mentioned
above. In the case of the smooth cross-section, the computed energies match
exactly with the analytical, hence validating our Schrödinger solver. Simi-
larly, computations on the rough cross-sections demonstrate how roughness
alleviates degeneracy, and shows the increased number of eigen-values in a
given energy range.

The number of eigen-values which can be computed in a cross-section de-
pends on the discretization scheme used to model the nanowire. Indeed,
if the cross-sections are discretized on Ny × Nz mesh points, the resulting
Hamiltonian will be numerically represented by a NyNz ×NyNz square ma-
trix. Consequently, a maximum of NyNz eigen-functions may be computed.
Sizing the computational scheme is then a trade-off between competing ef-
fects:

• One needs enough eigen-modes to compute the transmission on the de-
sired energy range, including the effect of evanescence of higher energy
modes.

• One needs a grid fine enough to capture the geometrical variations of
the nanowire surface due to roughness. Thus, large roughness rms ∆
and autocorrelation length L usually allow for coarser grids.

• The required computational time to obtain the eigen-functions and
energies on each cross-section scales up with the number of computed
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Figure 7.11: Computational time needed to solve the eigen-value problem
in smooth and tough cross-sections with (a) 576 mesh points and (b) 2304
mesh points. D = 10 nm and ∆ = 0.5 nm.

eigen-modes and the number of mesh points.

In our simulation, Schrödinger’s equation is solved using Arnoldi’s iter-
ation and a Choleski factorization on the sparse symmetrical Hamiltonian
matrix, as provided by the ARPACK package used in MATLAB [151]. Here,
the Hamiltonian remains symmetrical because the nanowire boundaries are
only treated as a step in the electrical potential and effective mass. Based
on this approach, we provide in Fig. 7.11 an estimation of the computa-
tional time required to solve the eigen-value problem in one cross-section.
At a given number of approximated eigen-values, the computational effort
increases in the case of a finer mesh. It is also interesting to notice that
the computational time to resolve the eigen-values of rough cross section
is smaller. This is a direct consequence of the disappearance of degenerate
states. Finally, we would like to estimate the number of eigen-values that
need to be estimated in order to solve the transmission problem in the given
energy-range. In this respect, Fig. 7.12 depicts the eigen-values in cross sec-
tions of silicon nanowires (m∗ ≈ 0.19m0) with smooth and rough boundaries
over a wide energy range. For greater accuracy in the 0 eV - 1 eV energy
range, non-parabolic bands are used. Since surface roughness introduces a
higher density of energy modes in a given range, it must be noticed that,
in the case of rough wires, the gain in computational effort resulting from
the non-degeneracy is balanced by the necessity to approximate a larger
number of modes. Hence, in rough silicon wires of 10 nm diameter, it will
be necessary to compute about 75 modes in order to capture the effect of
higher mode tails on the 0 ev - 1 eV range. In this scope, we estimate that
approximating the 75 first modes of Schrödinger’s equation in each cross
section will require about 20 s of time on a single core 1.66 GHz CPU using
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Figure 7.12: 2D cross-section energy levels in rough (∆ = 5 Å) and smooth
silicon nanowires, with D = 10 nm and m∗ = 0.19m0.

the method described above.
Once the eigen-values and eigen-energies are computed, the transmission

probability from eigen-state m at the leftmost site l to state n at the right-
most site r is

tmn = −2iV (sin θmθn)1/2ei(θml−θnr)〈n|Grl|m〉 (7.24)

where θn ≡ kx,ndx, kx,n is the wave vector available for longitudinal motion,
and Grl is the Green Function (GF) propagator matrix between r and l.
The total transmission at energy E is T (E) =

∑
m,n |tmn(E)|2. The NW

resistivity due to geometrical constrictions is then obtained from Grl. Since
the propagator G is known for a perfectly smooth semi-infinite lead, the
algorithm functions in the recursive way described in section 7.2, and pivots
on equation 7.12. Non-parabolicity is included in the computation of the
longitudinal wave vectors [18, 148]

Ey,z [1 + 2α(Ex + Ey,z)] = E − Ex (7.25)

where α is the coefficient of non-parabolicity, Ey,z is the TBSE cross section
energy, and Ex = ~2k2

x/(2m
∗
x) is the effective energy available for longitu-

dinal transport. As a result of non-parabolicity, transverse energy levels
appear shifted down (Fig. 7.13). Conduction is assumed along the Γ −X

direction with m∗x = 0.19m0 and α = 0.5. Non-parabolic bands allow better
accuracy in the computation of roughness limited T (E) at E > 0.1 eV.

We model transport in 100 nm long NW of average width D < 10 nm.
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Figure 7.13: Effect of ∆ on the quantum transmission in rough Si NW of
diameter 6 nm (a), (b), and 10 nm (c), (d). L = 22 Å throughout.

Surface roughness alleviates the degeneracy of the cross section eigen-modes
(Fig. 7.9). Subsequently, the computation of T (E) is averaged over 500 ran-
domly generated NW. The effect of RMS height ∆ is compared at different
diameters and varying energy (Fig. 7.13). Increasing ∆ results in a series
of higher potential steps encountered along the x-direction, thus reducing
the average transmission on rough NW. The quantum features of conduc-
tion disappear at high ∆ where the step-like behavior is smoothened as a
consequence of carrier back-scattering from surface asperities. In addition,
the resistivity incurred at similar RMS height is stronger in NWs of smaller
diameter.

Noticeably, surface roughness has limited impact on the transmission of
the first energy level, particularly at D = 10 nm, in accordance with Wang
et al. [150]. Thus, geometrical fluctuations are expected to have only a
minimal influence on the low field NW mobility. In this regime of operation,
where thermal conductivity varies as (D/∆)2 [19], it is expected to achieve
high ZT > 1. The RMS height ∆ measures the average height of roughness
peaks or constrictions. This statistical picture is consistent with the case of
chemically grown NW, where one may control the amplitude of geometrical
variations rather than the actual shape of the edge. In 10 nm NW with
∆ = 7.7 Å, we observed constrictions of effective diameter down to 6 nm.
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Hence, for high ∆/D ratio, transmission does not occur until sufficiently
high energy is reached to tunnel through constriction barriers. Nevertheless,
the surface is generally comparable to a random noise around the average
diameter. As a result, higher variance of NW behavior is observed when E

is near the transition between energy levels. The standard deviation of NW
transmission is also increased at high ∆/D ratio, but remains small at the
center of energy steps.

As a conclusion, we explored the effect of surface roughness on electronic
transport in thin Si NW of diameter D < 10 nm based on a recursive Green
function algorithm. This approach allows a 3D representation of the NW ge-
ometry through the statistical parameters ∆ and L, and further includes the
effect of non-parabolicity of the Si band structure. As the quantum nature
of charge carriers is accounted for, an energy dependent transmission is com-
puted for such devices. With geometrical fluctuations as the sole electronic
decay process, conductance at energies E > 0.1 eV is drastically decreased
in such NW with high ∆/D ratio. Nevertheless, surface asperities have little
effect on low energy transport, leading to possibly high thermoelectric figure
of merit ZT in this regime of operation. To test such assumption, it is nec-
essary to additionally model thermal transport in channels with dimensions
below the average phonon mean free path.

7.6 Effect of Geometrical Fluctuations on a quantum
modulated transistor

In section 7.4, we used the quantum modulated transistor (QMT) as an ex-
ample to validate the RGF approach on results by Sols et al. [136] using a
similar scheme. Nevertheless, the device presents interesting characteristics
based on quantum modulation of the electronic transmission along its direc-
tion of transport. As Sols et al. foresaw valuable application for the device
in new generations of transistors operating at very low energies, few factors
precluded further study of the latter configuration. Noticeably, the required
size of the device, with features below 10 nm, was too costly for fabrica-
tion until 3-4 years ago. In addition, the QMT, whose behavior essentially
revolves around the waveguide nature of the device, was expected to suf-
fer from the effect of real surfaces, effectively randomizing resonance of the
waves in a cavity of varying width. In this section, we use our non-parabolic
RGF scheme to extend the results of Sols et al. [136] to the case of GaAs
based rough QMTs, taking into account the effect of band non-parabolicity.
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Figure 7.14: Model of a quantum modulated transistor (QMT). Electronic
waves are modulated by a stub whose effective length L∗ is adjustable by
an applied gate voltage, similarly to a T-shaped electromagnetic
waveguide.

As a result, we show that, despite a degradation of the damping at cut-off
energies, the characteristics of GaAs QMTs remain acceptable for applica-
tions in low energy transistors in spite of surface roughness with rms ranging
up to 1.5 nm for a 10 nm wide conduction channel.

In essence, the QMT is a T-shaped electronic waveguide (Fig. 7.14).
Similarly to an electromagnetic waveguide, the frequencies of resonance in
the propagation cavity are controlled by the length of a stub. As a result,
depending on the length of the stub, with propagation from left to right, it
was shown that transmission is cut off at a series of electronic wavelengths.
The main difference in the electronic case consists in the penetration length
of electronic waves in the stub, which is effectively adjustable by an applied
gate voltage. Incidentally, the energy of transmitted carriers is controlled
by an applied voltage Vd. In that respect, the device provides a transistor
effect that operates purely on the ground of a modulation of the quantum
electronic waves. In addition, a major benefit of the QMT lies in the fact that
quantum modulation may in essence be achieved for single carrier transport,
bringing effective application of QMTs to low energy transistors.

We model in Fig. 7.15 the total transmission coefficient in a QMT with
respect to the carrier energy and the effective length of the stub. Within
this scope, we used a stub width and a channel width of 10 nm, and coeffi-
cients of non-parabolicity m∗ = 0.05m0 and α = 0.8 which best reflect the
properties of GaAs. Noticeably, the length of the conduction channel is fixed
to 30 nm total. While the length of a smooth channel is irrelevant to the
problem in absence of other scattering mechanisms (the modal transmission
is invariantly equal to 1), the introduction of surface roughness scattering
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Figure 7.15: Total transmission in a rough quantum modulated transistor
as a function of the stub length L∗ and carrier energy. (a) Perfectly
smooth device with a parabolic band approximation, and m∗ = 0.05m0.
(b)-(f) Non-parabolic band approximation, with m∗ = 0.05m0 and
αnp = 0.8, corresponding to a GaAs approximation [136]. Roughness varies
in the device, with (b) ∆ = 0 Å, (c) ∆ = 1.7 Å, (d) ∆ = 5 Å, (e) ∆ = 10
Å, and (f) ∆ = 15 Å.

makes transport dependent on the length of the waveguide. Similarly to
the case of silicon NWs, the effect of band non-parabolicity results in a de-
crease of the characteristic energy levels available in the transport direction
(Fig. 7.15.a and 7.15.b). Subsequently, the roughness rms of the edges is
increased (Fig. 7.15.c to Fig. 7.15.d). In the case of the QMT, the effect
of surface roughness smoothens the singularities of the transmission coeffi-
cient. In particular, the maximum transmission achievable is attenuated at
higher surface roughness. This effect is observed in greater proportions at
higher carrier energy levels. In addition, the minimal transmission coeffi-
cient at the cut-off energies is increased for higher surface roughness rms.
Effectively, high surface roughness reduces the pass to cut-off conduction
ratio, thus diminishing the efficiency of the device for transistor applica-
tions (Fig 7.16). Nevertheless, the cut-off features remain present at high
rms ∆ > 1 nm, and the cut-off energies remain unchanged. It is remark-
able that computations show a shift in energies for ∆ = 1 nm, though we
believe that the latter effect is an artifact of the coarseness of the grid on
the simulation domain. We conclude by observing that the effect of band
non-parabolicity effectively reduces the expected cut-off energy levels, and
the surface roughness leaves the device usable for transistor applications on
the first energy level. In particular, we have shown that a GaAs based QMT
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Figure 7.16: Total transmission in a rough quantum modulated transistor
at energy E = 0.08 eV. (a) Effect of non-parabolic bands. (b) Effect of
surface roughness rms.

shows practical cut-off features in the 0-0.18 eV energy range, with a max
cut-off / pass transmission ratio of 0.16 at a carrier energy of 0.08 eV, for
the effective stub length varying from L∗ = 0− 20 nm. Finally, we empha-
size that the roughness rms effectively makes the overall channel resistivity
dependent on the channel length. Overall, the non-parabolic rough RGF
scheme appeared as a powerful tool to quickly assess the value of QMT
for low energy application given rough geometries. In the last section, we
will use the latter approach to examine further prototypical ideas based on
benefits from quantum interference of the charge carriers based on channel
geometry.

7.7 Perspectives on Mono-Layered Materials

In the previous sections, we derived the impact of geometrical fluctuations
on the electronic properties of 2D and 3D conduction channels, taking into
account the wave nature of the charge carriers at the nanometer scale. In
particular, we introduced a framework based on a Green function formal-
ism which accounts for band non-parabolicity in semiconductor materials.
Simulation of transport in 2D sheets is intrinsically advantageous on a theo-
retical level for its easier inclusion of geometrical effects. More importantly,
an absolute confinement in a direction to achieve the state of a 2D electron
sheet has strong consequences for the electronic density functions. Recently,
experimental advances in nanoscale fabrication processes put graphene at
the forefront of promising materials for 2D electronic and heat transport,
with electrical mobility and thermal conductivity over an order of magnitude
greater than silicon [152, 153]. As such, graphene is a two-dimensional crys-
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Figure 7.17: Model of transport along a semiconductor ribbon with
periodic patterns of asymmetric constrictions along the direction of
propagation.

tal of sp2-bonded carbon atoms, whose electronic properties can be tuned by
an applied electric field, thus triggering growing interest for its application
in field effect transistors (FET) [154, 155].

The advantage of deriving a general computational scheme lies in the
ability to quickly conduct and test thought experiments, and avoid costly
prototypical iterations. As we derived in the past sections a general scheme
for nano-scale simulation of transport in non-parabolic semiconductors, we
will extend in this section the domain of simulations to new types of devices.
In the previous chapters, we mainly focused on the statistical fluctuations
of surfaces and edges. While it is experimentally impossible to factor out
the effect of surface roughness - perfectly smooth surfaces do not exist in
reality - one can further imagine a repeatable, periodic device geometry that
catalyzes the physical mechanisms in play with surface roughness scatter-
ing. In this scope, we propose here an additional study on transport in 2D
semiconductor sheets periodically patterned with asymmetric constrictions
along the direction of propagation (Fig. 7.17).

The latter geometry raises a priori a series of theoretical questions. First,
the periodicity of the patterns could be expected to interfere with the elec-
tronic waves along the direction of propagation. Hence, one could imagine
that this geometrical configuration be used to amplify the transmitted signal
through resonance of particular energy modes. Alternatively, the inverse ef-
fect could be observed, in the sense that the repeated patterns could simply
shut off transmission at certain wavelengths. Energies at which constructive
or destructive quantum interferences are achieved will likely be a function
of the periodicity and size of the patterns on the ribbon. Secondly, the in-
trinsic asymmetry of the patterns along the direction of propagation is of
interest. As such, it will be interesting to assess whether electronic transmis-
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Figure 7.18: (a) Energy levels in three different cross-sections of the
patterned structure. (b) Associated geometrical representation of the cross
sections for a semiconductor ribbon. Energy levels are derived from
solutions to the Schrödinger equation in the cross section adjusted to the
energy along the propagation direction. A non parabolic band model is
used with m∗ = 0.05m∗0, α = 0, and and Vb = 0.4 V throughout.

sion shows different properties in left-to-right and right-to-left conduction.
In this case, asymmetrically patterned nano-ribbons could find interesting
applications in polarized devices.

Figure 7.18 depicts the computed energy levels in different cross sections
along the propagation direction. Here the patterns are modeled by a poten-
tial barrier, with an effective applied bias of Vb = 0.4 V. As a result, different
energy modes resonate in the periodic potential wells in the cross sections.
We use here a square mesh of 1 nm × 1 nm in order to solve the TBSE in the
cross sections. Noticeably, carriers of energy above 0.4 eV in the transverse
direction see a quasi-continuum of energy levels above the energy barrier,
where most of the quantization occurs from the confinement in the 230 nm
ribbon only. When moving from left to right, (moving from cross sections 1
to 3 in Fig. 7.18), carriers see a reduction in the number of allowed energy
levels, as the energy steps become wider in narrower potential wells. As a
result of the constrictions narrowing along the propagation direction, an in-
creasing number of carriers of energy below 0.4 eV are either back scattered
or decay along the propagation direction until an allowed energy level is
reached. Similarly, in the reverse transport direction (left to right), carriers
first reach narrow constrictions, after which the energy levels adjust to an
increasing number of energy levels available in the widening constrictions.

We included the latter computations of cross section wave functions in the
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Figure 7.19: (a) Total transmission in the asymmetric ribbon depicted in
Fig. 7.17. 1: Total transmission in the channel without patterns. 2:
Coupled parallel stripes of width 30 nm, with identical cross-sections
throughout the propagation direction. 3: Triangle patterns. (b) Close-up
view on the 0-0.11 eV energy range. m∗ = 0.05m∗0 and Vb = 0.4 V
throughout.

Green function model in order to simulate transmission across the asymmet-
ric channel (Fig. 7.19). For comparison, curve 1 in Fig. 7.19.a depicts trans-
port in a similar channel without patterns, as a result of the same Green
function simulation model, where confinement is only due to the overall rib-
bon width (230 nm). In addition, transport is simulated in a ribbon with
symmetric patterns (curve 2), constituted of 30 nm wide stripes spaced
by 30 nm, and an applied bias of 0.4 V. This scenario represents the case
where waves are equally confined in potential wells of invariant width along
the propagation direction, with the minimal well width encountered in the
asymmetric case and the possibility for waves to tunnel through the poten-
tial barriers in the cross section. Curve 3 illustrates the total transmission in
the asymmetric channel represented in Fig. 7.17. In general, we notice that
the total transmission in the asymmetric ribbon is less than in the case of
striped ribbon, thus yielding a greater electrical resistivity in the asymmetric
ribbon. This should be attributed to the misalignment of patterns along the
propagation direction, which prevents clear overlap of the cross section wave
functions. Incidentally, it must be noticed that patterned ribbons exhibit
transmission curves similar to the non-patterned ribbons above a critical
energy level. For the striped ribbons used above, this energy level lies in
the 0.4 eV - 0.5 eV energy range. For ribbons with asymmetric patterns,
the critical energy lies around 5.3 eV. The latter higher level is due to the
non-overlapping wave-functions along the propagation direction, increasing
the energy at which an incident wave would experience quantized propaga-
tion through successive decays in the direction of transport. It is noticeable
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that resistivity is increased in the striped ribbons and asymmetric ribbons
respectively. This phenomenon is a result of the smaller number of energy
levels available for transmission along the direction of transport. Looking at
the asymmetric patterns, an exponential build-up of the transport plateaus
reveals tunneling through the potential barriers along the propagation direc-
tion, similarly to the rough nano-ribbon case. A series of energy levels allows
fewer transitions, accounting for repetitive drops in the total transmission.

Incidentally, we notice that the total transmission curves are identical in
the forward and backward directions. We believe this effect is a consequence
of the combination of several factors. First, it is expected that most of the
quantization results from the size of the smallest constriction. As such, for-
ward and backward traveling waves will experience the same effect from the
constrictions of smallest width along the propagation direction. Secondly,
we expect the misalignment of the asymmetric patterns to contribute greatly
to this effect. Indeed, the misalignment of patterns yields, in two consecutive
cross sections of the TB Green function model, misaligning wave functions.
Transmission coefficients between the misaligning wave functions of lowest
order are expected to be the same in the backward and forward direction,
hence greatly contributing to the observation of identical total tranmssion.

In this section, we used the recursive Green function algorithm to study
electronic conduction in a regularly patterned semiconductor ribbon. The
wave-like nature of the charge carriers was accurately captured and showed
the effects of size quantization and interferences, yielding to step-wise con-
duction and areas of negative resistance in the electronic transport along
the ribbon. In addition, the model allows one to drill down and study wave-
functions and eigen-energies in particular cross-sections. As a result, we were
able to explain the observed behavior of the configuration of periodic asym-
metric patterns. In particular, the latter ribbon configuration presented, a
priori, the expectation of different electronic conductivity in the forward and
backward direction. We demonstrated the contrary with RGF methodology
without having recourse to experimental prototyping of the device. Failure
to exhibit asymmetric transport properties was determined to result from
the misalignment and size of the patterns. Nevertheless, unidirectional con-
duction is an interesting property, and we recommend further investigation
of different pattern configurations based on a similar approach.

131



7.8 Conclusion

In this chapter, we introduced a novel approach to estimating the quantum
enhanced surface roughness scattering rate for nano-channels of width below
10 nm. As the channel size is decreased to the order of the electron wave-
length, it is necessary to take into account the waveguide nature of the prob-
lem. The variation of confinement width with the roughness of the channel
interfaces will strongly interfere with the energy modes allowed in the cav-
ity. Indeed, in the extreme case, the quantum modulated transistor proves
that it is possible to completely shut off a transmission mode with careful
engineering of the confinement width. Our model is based on a recursive
Green function approach, which, as demonstrated in this chapter, provides a
reasonable trade-off between the accuracy with which the problem is treated
and its computational cost. Thus, we were able to compute the total trans-
mission probability for a single electron in the low temperature regime for
nano-channels with a single constriction, and rough nano-channels made of
a series of statistically distributed constrictions. Similarly to our discussion
in chapter 6, we exhibited the energy dependence of the roughness scatter-
ing term, as high energy particles will experience a stark reduction in their
transmission probability when impinging on rough nano-channels. In par-
ticular, we explored the effect of surface roughness on electronic transport
in thin Si NW of diameter D < 10 nm. We introduced in that respect a new
RGF method, which allows for a 3D representation of the NW geometry
through the statistical parameters ∆ and L, and further includes the effect
of non-parabolicity of the Si band structure. Based on the latter approach,
we accounted for the quantum nature of carriers in ultra-thin conduction
channels, as we computed an energy dependent transmission in rough 3D
Si NW. With geometrical fluctuations as the only electronic decay process,
conductance at energies E > 0.1 eV is drastically decreased in NWs with
high ∆/D ratio. Nevertheless, surface asperities have little effect on low
energy transport, leading to possibly high thermoelectric figure of merit ZT
in this regime of operation. In order to test such assumption, it is neces-
sary to transpose the RGF method to thermal transport in thin conduction
channels, in order to take into account quantum effects on the heat carriers
as a result of geometrical fluctuations.

Subsequently, the same non-parabolic approach was employed to study the
effect of real geometries on quantum modulated transistors. The principal
effect of band non-parabolicity is a shift down of the energy levels in the
transport direction. The QMT function lies in a shut-down of transmission
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at a series of energies controlled by an applied gate voltage. While band non-
parabolicity lowers the values of the series of non-transmitted energy levels,
and while surface roughness allows for some conduction along the shut-
down modes, their joint effect yet remains minimal, fueling strong hopes
for real applications of quantum modulated transistors. As we modeled
2D QMTs for consistency with results of Sols et al. [136], we recommend
further investigation of the device with prototyping and 3D RGF simulation
to validate the concept on GaAs structures.

Finally, we benefited from the computational efficiency of the RGF scheme
in order to assess the behavior of prototypical devices based on regular pat-
terning of semiconductor nano-ribbons. In this case, we have shown lim-
itations in the expected asymmetric conduction due to the intrinsic mis-
alignment of patterns. Mainly, it was possible to determine key effects of
the regularity of the patterns on the quantum conductance without going
through costly prototyping of the devices in the laboratory. In general the
model could be seamlessly applied to transport in graphene, where the ma-
jor difference lies in the approximation of the particle effective mass. Most
importantly, the main difficulty in graphene resides in the Dirac point at the
center of the FBZ, where the effective mass approximation does not hold.
This difficulty disappears in graphene nano-ribbons, where the boundary
conditions enforce band splitting at the Γ point.

We conclude this discussion by stating that such an approach remains
equally applicable to phonon transport, as it was recently demonstrated by
Yang et al. [143]. In this case, each phonon branch must be considered
independently. In research on optimal design, this advance could form, with
the model introduced here, a complete framework to assess the viability
of sub-10-nm devices based on geometrical patterning of edges as efficient
thermoelectric devices.
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CHAPTER 8

CONCLUSION AND PERSPECTIVES

In this dissertation, we introduced a series of novel computational schemes
that allowed efficient statistical simulations of surface limited electronic,
mechanical, and thermal processes in devices at the micro- and nano-scale.
As the size of devices is reduced, coupling of different physical processes and
the effect of atomistic irregularities at the device surface greatly contribute
to the observed performance of micro-contacts, semiconductor wires, and
sheets. In addition, such phenomena introduce a high statistical variation
in the characteristics of sample devices built on the same design model,
and the behavior of integrated systems may result in non-linear phenomena
due to the statistical distribution of the performances of similar devices. In
this scope, we position this work in a novel multi-scale framework that we
introduced in this work. Hence, we base the highest level of the multi-scale
hierarchy on statistical Monte Carlo and percolation principles in order to
average the time dependent non-linear evolution of integrated systems based
on devices with statistically varying characteristics. At the lower scale, the
physical characteristics of devices are derived from semi-classical properties
of heat and electronic transport in nano-scale devices, the quantum nature
of carriers in devices whose dimension go below 10 nm, and the atomistic
knowledge of the surface properties.

Throughout this work, we focused our attention on the effect of surface
roughness at different scales. In the area of M/NEMS micro-contacts, we
modeled the effect of surface roughness on the mechanical, electrical and
thermal properties of metallic contacts leading to thermal failure of such de-
vices. Given the scale of the device, statistical inclusion of surface roughness
in Kirchhoff’s and Euler’s classical laws was sufficient to accurately model
this class of devices. M/NEMS contacts were subsequently modeled in the
non-contacting state, where our percolation framework was used to approx-
imate the time evolution of electro-thermal failure of such devices due to
non-linear gas discharge between metallic electrodes. At the nano-scale, we
further included the effect of surface roughness on the semi-classical solu-
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tion of Boltzmann’s transport equation (BTE) in semiconductor channels
and mono-layered sheets, where electronic and heat transport is mostly lim-
ited by a series of constrictions along the propagation direction. Finally, at
scales below 10 nm, surface roughness was directly included in the quan-
tum solution of the system, where the effect of interface randomness on the
transmission of quantum wave packets was observed.

In scope of this work, computational efficiency of the simulations is desir-
able in order to favor cost-efficient exploration of new areas of design without
using expensive iterations on experimental prototypes. In order to support
this work, we introduced a number of novel statistical schemes. First, we de-
scribed a statistical model that allows estimation of the roughness rms ∆ and
autocorrelation length L from the experimental observation of surfaces and
edges. In addition, these observable parameters can be used to computation-
ally generate a series of random surfaces. In this scope, we introduced a new
model to approximate the contact resistance in MEMS micro-contacts with
respect to the applied pressure. The algorithm revolves around a Gaussian
approximation of surface roughness, and a model of the intersection between
a series of randomly generated rough contacts. This approximation provides
a good fit with experimental observations on gold-gold contacts. Based on
this model, we report minimal achievable contact resistance of 80 mΩ for
applied pressures above 0.3 mN on 1 µm × 1 µm surfaces of sputtered gold
with observed roughness rms ∆ = 7 nm and autocorrelation length L =
60 nm. In the non-contacting regime, we use a percolation method in or-
der to simulate electro-thermal breakdown in micro-contacts through gas
discharge. The model is based on a statistical distribution of conductive
defects in the insulating gas due to the presence of sputtered metal created
through the repetitive contacting cycles of the device. Through a statistical
Monte Carlo method on a series of different random gas configurations, we
were able to model the time to breakdown in such devices under electrode
separations in the 500 nm - 1µ m range, and applied bias voltage of 1 V - 90
V. The same observable roughness parameters L and ∆ were further used
in semi-classical models of electronic and heat transport in rough semicon-
ductor nanowires and nano-ribbons. In particular, we studied the effect of
surface roughness on electronic and heat resistivity of wires through novel
scattering rates based on L and ∆ which we derived from Fermi’s golden rule
and perturbation theory. In the particular case of heat transport, we mod-
eled for the first time the extreme reduction of thermal conductivity in rough
silicon nanowires of width below 100 nm, down below 5 W/m/K for ∆ = 4
nm and width W = 20 nm, close to the limit of amorphous silicon. Using
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perturbation theory to average the effect of random surface scattering of
phonons over an ensemble of carriers, the model shows excellent agreement
with experimental observations. In the case of semiconductor channels of
width W < 20 nm, we further introduce a 3D non-parabolic recursive Green
function scheme to approximate the effect of surface roughness on the prop-
agation of quantum electronic waves along a semiconductor wire of varying
rough cross-sections. The model shows physically consistent results and
agreement with previously published simulation of quantum devices, and
shows for the first time the effect of non-parabolicity and surface roughness
on electronic transmission in wires below 10 nm.

Based on the validation of the simulation frameworks presented in this
dissertation against experimental results, we further used these models to
explore novel design patterns based on careful engineering of surface rough-
ness to utilize coupled properties of electronic and heat transport. In the
area of micro-contacts, we report in particular that the minimal achiev-
able contact resistance will be mostly minimized by reduction of L. On
the other hand, in order to decrease the necessary applied pressure to reach
the minimal resistance, the main parameter to optimize for is ∆. In the
area of nanowires, our knowledge of surface limited transport led to the
design, in this dissertation, of a an electronic device based on electrostatic
confinement of charge carriers in a quasi-1D channel. As a result, such
devices show reduced channel resistivity and increased mobility in compar-
ison to standard nanowire field effect transistors. Our further extension of
the semi-classical framework to heat conduction led to the consideration
of engineered surface roughness as a way to decouple electronic and heat
transport in nanowires. Extending the results on silicon channels led to the
prediction of extremely low thermal conductivity in germanium and gallium
arsenide based nanowires below 1 W/m/K. Such results on electro-thermal
decoupling hold promise for the further consideration of Ge and GaAs nano-
engineered rough wires as efficient, on demand, site specific, thermoelectric
coolers or generators for integrated circuits. In addition, the same model
was extended to such novel materials as graphene, where the effect of edge
roughness was included in semi-classical models of heat transport in rough
suspended graphene nano-ribbons. As a result, we show low thermal con-
ductivity below 1000 W/m/K in such devices, in agreement with recent
experimental observation. Finally, extending our recursive Green function
model of quantum transport in ultra-thin channels, we explored new types of
devices, based on a quantum operation of the transistor effect. In this scope,
we showed minimal influence of surface roughness on semiconductor quan-
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Figure 8.1: (a) and (b): predicted effect of width and edge roughness on
the thermal conductivity of suspended graphene nano-ribbons of width
W < 250 nm. (c) and (d): Additional effect of oxide phonon leaking and
oxide roughness in graphene ribbons deposited on SiO2.

tum modulated transistors (QMT). In addition, we were able to predict the
effect of asymmetric engineered patterns embedded in semiconductor sheets.

The existence of the statistical simulation approaches that we introduced
in this dissertation and their good performance in accordance with experi-
mental observations leads to a vast field of opportunities for further research.
As new materials appear in the laboratory, graphene presents a promising
ground for extraordinary electronic and heat transport in 2D mono-atomic
layers. In that respect, we explored edge roughness as a design parameter to
decouple heat conduction from electronic conduction in suspended graphene
for thermoelectric applications. Incidentally, on deposited graphene, the
fluctuations of the substrate on which the semiconductor sheet is deposited
present a second degree at which surface roughness can be engineered. In
particular, sheets will conform to the oxide asperities, and out of plane lat-
tice vibrations may subsequently be shut off with careful engineering of oxide
roughness, as we modeled in Figs. 8.1 and 8.2. In view of this, we recom-
mend experimental observations on the effect of edge and surface roughness
on deposited rough graphene ribbons of width W < 200 nm, for their possi-
ble thermoelectric applications. In addition, as we showed the feasibility of
real quantum modulated transistors, we further recommend experiments on
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Figure 8.2: (a) Phonon – edge roughness scattering rate in graphene
nano-ribbons. (b) Phonon-oxide scattering rate in graphene nano-ribbons
due to phonon leaking in the oxide and oxide roughness scattering.

such devices, as they show interesting properties for low energy field effect
transistor applications. On theoretical grounds, the multi-physics aspects of
thermoelectric phenomena are still full of challenges. In particular, explo-
ration of the effect of device geometry on the coupled thermopower is yet
an area of uncertainty. In that respect, we would imagine a further study of
these characteristics through inclusion of our semi-classical scattering rates
in coupled electron-phonon semiconductor Monte Carlo simulations.
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