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ABSTRACT

I have used low-temperature scanning tunneling microscopy to investigate cluster
diffusion phenomena in both the early stages of nucleation and growth and the late stages
for a highly mismatched system, Cu on Ag(111). In particular, activation energies and
prefactors for cluster diffusion are measured directly by tracking cluster motion with
atomic precision at multiple temperatures to determine the temperature dependence of
hop rates. In contrast with larger homoepitaxial islands on Ag(111) and Cu(111), small-
to-medium sized clusters (3-30 atoms) of Cu on Ag(111) display a non-monotonic size
dependence of the diffusion barrier, with surprisingly low diffusion barriers for clusters
containing up to ~26 atoms. Molecular dynamics simulations reveal a novel dislocation-
mediated island diffusion mechanism and predict barriers that are in very good agreement
with experiment. In this mechanism, the barrier to nucleate a dislocation, and hence
diffuse, is sensitive to island size and shape. Experimental studies of the early stages of
nucleation and growth of Cu on Ag(111) reveal that trimers, once formed, have
significantly higher mobilities than either atoms or dimers. While transient, this mobility
makes trimers the dominant contributor to mass transport at temperatures allowing trimer
formation (T > 24 K). Using the STM tip, we constructed linear and compact trimers at 5
K and investigated their stabilities and diffusion parameters as a function of temperature.
Analysis shows that the diffusion barrier for linear trimers is very low, 13.6 meV,
compared to 65 meV for atoms, while the compact trimer is stable and immobile. The
details of trimer diffusion and rotation provide insights into the intermediate diffusion
steps and indicate that the large lattice mismatch plays an important role. The properties
of Cu trimers on Ag(111) contrast with those reported for homoepitaxial trimers on
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fce(111) surfaces. Because the diffusion phenomena for Cu trimers and other clusters on
Ag(111) are largely a result of lattice mismatch, similar phenomena may exist in the early

stages of nucleation and growth of other heteroepitaxial systems.
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CHAPTER 1

SYNOPSIS

1.1 Background and Motivation

Surface diffusion of atoms and clusters has been studied for decades, driven in
large part by their important role in the technologically important thin film and crystal
growth processes. The advent of field ion microscopy and, later, scanning tunneling
microscopy (STM), allowed the imaging of individual atoms on surfaces, enabling
diffusion of atoms and clusters to be observed directly. Direct observation of atom and
cluster diffusion has revealed a diversity of surface diffusion phenomena and has lead to
the discovery of many interesting and unexpected mechanisms [1-3]. This is especially
true for cluster diffusion, because of the numerous ways a collection of atoms can move
on a surface. Despite predictions of interesting diffusion phenomena resulting from
lattice mismatch [4, 5], relatively little work has been done in heteroepitaxial systems
with a large lattice mismatch.

The aim of my research is to investigate cluster diffusion processes in a system
with a large lattice mismatch. I chose Cu on Ag(111) as a model system because of the
large mismatch (~12%, axg=4.09 A, ac,=3.61 A ) and because it is an immiscible system
where complications due to reaction and intermixing can be avoided. Furthermore,
homoepitaxial island diffusion on Ag(111) and Cu(111) [6] and Cu atom and dimer
diffusion on Ag(111) [7] have been extensively studied, providing a well-developed
backdrop against which to contrast my findings. The existence of reliable embedded

atom potentials for Cu and Ag also allows for molecular dynamics simulations to



compliment the experimental measurements and provide details regarding atomic scale
mechanisms that are inaccessible to experiment.

My research was motivated by initial observations with STM that showed rapid,
low-temperature diffusion of medium sized clusters of Cu on Ag(111), while smaller and
larger clusters had limited or no mobility. These preliminary results are represented by
the STM images of Fig. 1.1, which were selected from a data set containing >300 images
collected at 130 K. The highlighted ~15-20 atom cluster underwent significant diffusion,
while the smaller and larger islands shown had limited or no mobility. Also, diffusion
occurred with no apparent change in shape or size. These observations were interesting,
because homoepitaxial islands on the (111) and other facets of Ag and Cu migrate
through edge diffusion or adatom evaporation/condensation at the edges—mechanisms
which are precluded by the lack of change in size or shape for Cu islands on Ag(111).
Furthermore, these mechanisms result in a diffusivity that is a smoothly decreasing
function of island size. Instead of a diffusivity that smoothly varies with island size, Fig.
1.1 suggests a “magic size” effect similar to that predicted by Hamilton for highly
mismatched heteroepitaxial island diffusion. Hamilton proposed that island diffusion can
occur through the nucleation and glide of misfit dislocations, and islands of a special size
favoring dislocation nucleation had a reduced barrier for motion. My experimental
research, coupled with molecular dynamics simulations performed by Henry Wu and
Dallas Trinkle, show that a dislocation mechanism similar to that proposed by Hamilton

can explain the unique diffusion phenomena for Cu clusters on Ag(111).



1.2 Overview

Chapter 2 outlines the experimental setup used and modifications that were made
to enable improvements and better controlled experiments than those that provided the
preliminary results. The improved experimental setup allowed Cu atoms to be deposited
onto the Ag(111) substrate which was held at 5 K on the STM stage. This allowed
precise knowledge of the adatom density, and it enabled the early stages of nucleation
and growth to be observed in situ.

Chapter 3 presents experimental measurements, combined with molecular
dynamics simulations of the diffusion of Cu islands on Ag(111) spanning a size range of
4-26 atoms. The experimental findings show that, just as in the preliminary results of
Fig. 1.1, diffusion occurs without changes in shape or size. Trajectories reveal that, for
all mobile clusters, hopping occurs among a discrete set of adsorption sites separated by
the Ag(111) nearest-neighbor fcc sites. These qualitative observations preclude
individual atom diffusion events, such as edge diffusion or evaporation/condensation at
cluster edges, because these processes would cause fluctuations in size and/or shape and
would not explain the observed displacements. The same ensemble of clusters was
tracked at multiple temperatures between 80-90 K and the temperature dependence of the
hop rates allow the diffusion barriers and prefactors to be determined directly from
experiment. Surprisingly, clusters as large as ~26 atoms have diffusion barriers as low as
~250 meV, compared to a diffusion barrier of ~500 meV for homoepitaxial island
diffusion on either Cu(111) or Ag(111). In contrast to Hamilton’s prediction of a
singular “magic size” with a low diffusion barrier, my experimental measurements reveal

multiple sizes with low diffusion barriers.



The molecular dynamics simulations reveal, in atomic-level detail, a dislocation
mechanism allowing low diffusion barriers for islands of the proper size and shape. In
this mechanism, a metastable stacking fault is formed, with a portion of the atoms in fcc
sites, and the rest in hcp sites. Because the lattice constant of Cu is smaller than that of
Ag, the Burger’s vector of the dislocation is such that Cu-Cu bond lengths are shortened,
relieving strain. This mechanism provides a low-barrier pathway for diffusion for islands
with shapes that allow dislocation formation without breaking Cu-Cu bonds, but does not
occur for islands with closed-shell structures that would require bond breaking. This
means that, besides island size, shape is extremely important in determining the diffusion
barrier. In agreement with the experiments, the MD simulations predict multiple “magic
sizes”, and the predicted diffusion barriers are in excellent agreement with experiment.
The diffusion barriers for island sizes and shapes favoring this mechanism are lower than
that for edge diffusion or Ostwald ripening, and cluster coalescence is the kinetically
preferred coarsening pathway. This work shows that dislocations in highly-mismatched
heteroepitaxial islands reduce barriers for islands of special sizes and shapes in the same
way that they reduce the yield stress of bulk materials: by enabling slip to occur in a
piecewise fashion.

The work presented in Chapter 3 shows that lattice mismatch plays an important
role in heteroepitaxial island diffusion, promoting a low-barrier misfit-dislocation
mechanism and that island shape plays a significant role. While this work establishes
that an island with a non-equilibrium shape may have significantly lower diffusion barrier
than the ground-state configuration, it does not show whether non-equilibrium shapes

would persist long enough for significant diffusion to occur.



The work presented in Chapter 4 investigates the stability and diffusion of a non-
equilibrium structure, a linear trimer chain, and compares them to those of the ground-
state compact configuration. In an STM study of the early stages of nucleation and
growth of Cu on Ag(111), it is observed that trimer nucleation results in a cluster with
significantly higher mobility than either individual atoms or dimers upon their formation.
The high trimer mobility is transient, existing only for a short time after trimer formation
at 24 K, yet the significant displacements attained make the trimer an important
contributor to mass transport. Subsequent the transient mobility events, the trimers are
compact and immobile, consistent with MD simulations that predict a high diffusion
barrier for the ground-state compact trimer. The trimer nucleation and migration
measurements conducted at 24 K suggest that atom-dimer combination results in a very
mobile precursor to the immobile, compact trimers; however, from these data alone, one
cannot conclude much regarding the nature of the precursor—only the initial and final
locations are known, and motion is too fast and too short lived to be studied directly at
temperatures where they form naturally on experimental time scales. It is proposed that a
non-equilibrium-shaped trimer may have a very low diffusion barrier and act as a highly
mobile precursor to the immobile compact trimer. Using the STM tip to manipulate
atoms, linear chain and compact trimers are constructed at 5 K, and their stability and
diffusion properties are investigated. It is shown that the linear trimer chain has an
extremely low diffusion barrier, 13.6 meV, compared to 65 meV for atoms, while the
compact trimer is very stable and immobile. Based on these results, it is proposed that
the linear chain acts as a very mobile precursor to the relatively immobile compact trimer

and is responsible for the large displacements observed upon nucleation at elevated



temperatures. The trimer chain undergoes length-wise hopping along the close-packed
<110>, as well as rotation about an end atom. The details of trimer chain diffusion and
rotation provide insight into the intermediate diffusion steps and indicate that the large
lattice mismatch plays an important role in the diffusion properties of the trimer chain in
the same way it does for larger Cu clusters on Ag(111). Because the diffusion
phenomena for Cu trimers and other clusters on Ag(111) are largely a result of lattice
mismatch, similar phenomena may exist in the early stages of nucleation and growth of

other heteroepitaxial systems.
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1.4 Figures

a)

t=0 b) t=173 min c) t=466 min

~15-20 atoms
\ .

Figure 1.1

Anomalous diffusion of Cu cluster on Ag(111) at 130 K. The 15-20 atom
cluster indicated underwent significant diffusion while smaller and larger
clusters were completely immobile. Cluster diffusion occurred in the
absence of shape changes or atom exchange between clusters, in contrast to
homoepitaxial island diffusion on Ag(111) or Cu(111).



CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 Microscope

My experimental measurements of cluster formation and diffusion were
conducted in an Omicron low-temperature scanning tunneling microscope with the
capability of imaging between 5 K and 300 K. In this microscope design, the stage is
cooled by bringing it into contact with a cryostat that is filled with either liquid He or
liquid N, depending on the desired experimental temperature. Once the sample is cooled
to the base temperature (either 5 K or 78 K), the stage is then disconnected from the
cryostat to mechanically isolate the stage and engage the vibration damping system. A
metal shroud, which was permanently attached to the cryostat, surrounded the entire stage
assembly to prevent heating of the stage and sample from ambient radiation. Besides
maintaining the low temperatures, this metal shroud also acted as a cryopump, allowing
the sample surface to remain clean for the long time periods over which the
measurements were performed.

The sample temperature was measured with a silicon diode in direct contact with
the back of the sample holder. A Lakeshore temperature controller regulated the power
to a resistor within the stage, allowing a sample temperature range between 5 K and 300
K. The cryogen reservoir, when full, allowed continuous cooling for 10-24 hours,
depending on the sample temperature. If an experiment required cooling for longer
periods, the measurement was paused, the tip was retracted a small amount, and the

cryostat was refilled. Retracting the tip only a small amount during the refill process



allowed for the same experimental surface region, to be imaged subsequent the refill.
This enabled experimental measurements of the same clusters to be performed
indefinitely (sometimes several weeks), allowing a sufficient number of diffusion events

to be observed for good statistics.

2.2 Sample Preparation and Experimental Setup

The Ag(111) substrates were thick films (100’s of monolayers) grown in a
preparation chamber (base pressure ~4x10"" Torr) by evaporating Ag onto Si(111)-7x7
cooled to ~20 K with a helium refrigerator, followed by an anneal at ~600 K for a few
seconds. These films have large (~10* nm?), flat regions free of defects or steps [1],
making them ideal for diffusion studies. The excellent agreement between our
measurements of Cu atom and dimer diffusion barriers with those measured on Ag(111)
single crystals [2] indicate a high quality surface. This also provides a confirmation of
temperature accuracy.

In preliminary experiments, Cu was also deposited in the preparation chamber.
This was done in a similar manner to the Ag film deposition, with the freshly prepared
Ag substrate was cooled to ~20 K with a helium refrigerator, and Cu was deposited. The
Cu flux was monitored with a quartz crystal microbalance, and once the desired amount
was deposited, the sample was then transferred, as quickly as possible, to the cooled STM
stage. Figure 2.1 is a schematic of the setup used in this process. While this setup
allowed for the preliminary results motivating further work, it was not ideal. It required
transferring the cold sample with room-temperature manipulators to the STM stage.

During this process, which took 2-4 minutes, the sample warmed to an unknown



temperature ~ 100-200 K at which a significant and uncontrollable amount of atom and
cluster diffusion occurred before the surface could be imaged. Besides preventing any
observation of the early stages of nucleation and growth, this also made determination of
island sizes difficult, as the Cu adatom density was not precisely known.

This experimental setup was significantly improved upon by installing a
homebuilt evaporator onto the measurement chamber. This setup, illustrated in Fig. 2.2,
enabled deposition of dilute amounts of Cu while the sample was on the STM stage at 5
K, a temperature where atom and cluster diffusion does not occur. The Cu source was

heated in a W basket, and water cooling minimized outgasing from the evaporator walls.

During evaporation, the pressure remained ~ 5x10™"" Torr. A small aperture created a
narrow beam, protecting the critical components of the microscope and limiting exposure
to the sample surface. A quartz crystal microbalance mounted in the evaporator was used
to monitor the flux, and it was calibrated by counting individual atoms in STM images
collected at 5 K immediately after exposure. This, combined with a shutter, allowed for
precise control of the amount of Cu, allowed precise knowledge of the adatom density,
and it enabled the early stages of nucleation and growth to be observed in sifu as the
sample was warmed from 5 K. This is illustrated in Fig. 2.3, showing the evolution from
individual Cu atoms at 5 K (a) to clusters at elevated temperature (b). With this setup,
both cluster formation at T ~20 K and cluster diffusion at elevated temperatures can be
followed. Figure 2.3 (c) shows a temperature-time plot for an experiment where
individual atoms were deposited and imaged at 5 K, followed by cluster formation at
elevated temperature, and cluster diffusion measurements in the 80-90 K temperature

range.
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2.3 Particle Tracking

For quantitative diffusion measurements, the trajectories of particles must be
extracted from sets of, in some cases, thousands of images. In order to do this, a set of
particle-tracking programs for Matlab, initially developed for tracking colloidal particles
in solution with optical microscopy [3], were adapted for STM. These programs identifiy
all particles (bright features on a dark background) in an image and determine their
centers of mass (see program “Mattrack” in the Appendix), correlate their X,y coordinates
between successive image frames so that the trajectory of each individual particle can be
extracted, and use the trajectories of “immobile” particles as a reference to correct for
thermal drift of the microscope and to convert pixel values to calibrated distances (see
program “Traj” in the Appendix). Besides making data analysis more efficient and
systematic, these programs enabled trajectories with atomic precision to be determined,

even without atomic-level contrast in the STM images.

2.4 References
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2.5 Figures
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Ag/Cu
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Figure 2.1 Initial experimental setup. Both substrate preparation and Cu deposition

occur in the prep. chamber, with the sample cooled to ~20 K with a He
refrigerator. This setup required the sample to then be transferred via a
room-temperature manipulator to the cooled STM stage. During this
transfer, the sample warmed to ~100-200 K, allowing significant and
uncontrollable amounts of atom and cluster diffusion prior to imaging.
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Figure 2.2

T=5-300K
LN2/LHe
cryostat

STM

UHV ~10-" Torr
Evaporator

Improved experimental setup, incorporating a homebuilt Cu evaporator
onto the STM chamber. Cu flux was monitored with a quartz crystal
microbalance (QCM), and exposure was limited to the sample stage by a
small aperture which prevented contamination of microscope components.
This setup allowed Cu deposition with the sample on the STM stage,
where the temperature could be very well controlled, and the early stages
of nucleation and growth could be observed.
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Figure 2.3

[ Cluster diffusion
a

@ <+—Cu deposition

Time

Experimental procedure. Cu was deposited at 5 K, where individual
atoms could be subsequently imaged and their density precisely
determined (a). Warming the STM stage above ~20 K allowed cluster
formation and diffusion (b). (c) shows a temperature-time plot for a
typical experiment involving Cu deposition and imaging at 5 K, and
cluster diffusion measurements at multiple elevated temperatures. The
improved setup allowed nucleation and diffusion events to be directly
observed at any temperature between 5-300 K.
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CHAPTER 3

MISFIT-DISLOCATION-MEDIATED
HETEROEPITAXIAL ISLAND DIFFUSION

3.1 Introduction

Dislocations are key in the mechanical properties of solids by enabling crystalline
materials to deform plastically when subjected to stress orders of magnitude lower than
their theoretical critical shear stress [1]. They have also been shown to relieve stress in
strained films, greatly affecting the growth mode [2-4], and have been predicted [5,6] but
never experimentally implicated in adatom island diffusion. The majority of experimental
studies of island diffusion have been limited to homoepitaxial systems where motion is
usually a result of diffusion at steps, particularly for large islands (10*-10° atoms) [7-12].
In these cases, the barrier is insensitive to size, but diffusivity scales with size depending
on the rate-limiting process [13-15]. In contrast, there have been numerous theoretical
predictions [16-22] and a few experimental demonstrations [23-27] of non-trivial size
dependencies of the diffusion barrier and/or prefactor for smaller homoepitaxial clusters
(2-20 atoms). This work shows that dislocations in highly-mismatched heteroepitaxial
islands reduce barriers for islands of special sizes and shapes in the same way that they
reduce the yield stress of bulk materials: by enabling slip to occur in a piecewise fashion.

Using scanning tunneling microscopy (STM) and molecular dynamics (MD)
simulations, we reveal a dislocation-mediated island diffusion mechanism for Cu on
Ag(111). Simulations show that the lattice mismatch of ~12% favors dislocation

nucleation in islands larger than tetramers, resulting in a non-trivial size dependence that
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is manifest in experiments where clusters containing up to 26 diffuse much faster than
smaller clusters. The barriers for island sizes and shapes favoring this mechanism are
lower than that for edge diffusion or Ostwald ripening, and cluster coalescence is the

kinetically preferred coarsening pathway.

3.2 Experimental

Measurements were carried out in an Omicron LT-STM that can image at 5-300
K. The Ag(111) substrate was prepared in an adjoining chamber by evaporating Ag onto
Si(111)-7x7 at ~20 K and annealing at ~500 K for 1-2 hours, producing large, defect-free
terraces [28]. To test surface quality, diffusion barriers for atoms and dimers on these
substrates were measured and are in good agreement with the published values of 65 and
73 meV, respectively [29]. The sample, held at 5 K on the STM stage, was exposed to
Cu atoms. The Cu areal density,d, was determined by counting atoms from images
collected at 5 K. The STM stage was warmed to allow atom and dimer diffusion and
cluster growth. From high-resolution images of a large (600) ensemble of clusters, sizes
were estimated by measuring their area at X% of the cluster height. The precisely known

Cu adatom density, €, was used to adjust the parameter X until 4,,,..0 = 4, ,,..Pc.q1) >

image i

where A __  is the area of the image, 4,

image islan

. 1s the total area of the island ensemble, and
Peunyy 18 the areal density of a bulk Cu(111) plane. It is estimated that the uncertainty in

1sland size is £1 atom.
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3.3 Experimental Results

The region of interest was imaged every 4.26 min for ~80 hours at each
temperature, 80, 83, 85, and 87 K. This enabled diffusion barriers and prefactors to be
measured directly for individual clusters. Fig. 3.1 shows a sequence of STM images
collected at 80 K. What is interesting is that the 13-atom cluster underwent significant
diffusion, while the 7- and 15-atom clusters were immobile, suggesting a “magic” size
with a low diffusion barrier. There was no change in size or shape, ruling out edge
diffusion or atom exchange between islands—the apparent change in shape in Fig. 3.1 is
a result of an increase in scan speed after the first image. The dotted line guides the eye
along the diffusion path of the 13-atom cluster. That motion occurs along the close-

packed [011] direction is significant because fcc metals slip on {111} planes in [110]

directions, suggesting a relation between the diffusion mechanism and dislocation glide.
Using a particle tracking program [30], we determine trajectories with atomic
precision, as shown in Fig. 3.2 for a 10-atom cluster at 85 K. The positions occupied by
the cluster centroid are plotted vertically on the left, revealing a discrete set of adsorption
sites separated by the Ag nearest-neighbor distance. This shows that the cluster hops
collectively between equivalent sites. If diffusion occurred through individual atomic
events, hop lengths for the centroid would be a fraction of this distance and inversely
proportional to island size. Diffusion measurements for the cluster in Fig. 3.2 at 83, 85,
and 87 K showed that it visited 9, 12, and 20 sites after 50, 120, and 230 hops,
respectively. This demonstrates that the diffusion is close to an unrestricted 1-D random
12

walk since the number of sites visited in a walk of n hops is expected to be (8xn/m) ',

which yields 11, 17, and 24 sites for the cases above [31].
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The plot of position vs. time in Fig. 3.2 shows that the mean time between hops is
long compared to the frame rate, ensuring that all hops are counted and mean hop rates
can be measured directly. The mean hop rate for this cluster at 83, 85, and 87 K is
plotted against 1/kT in the inset, giving an activation energy of 260 + 20 meV and a

prefactor of 7x10'*! ¢!,

The reported barrier, prefactor and related uncertainties were
determined using a weighted least-squares fit, where the weighting factors and
uncertainties were derived from the standard deviation of the measured time between
hops and the number of hops observed [32]. Several 10-atom clusters were followed at
multiple temperatures and all had barriers and prefactors within a standard error of 260
meV and 10'% 5™

The experiments show that low diffusion barriers are not limited to clusters larger
than heptamers. Fig. 3.3 is a series of STM images showing the diffusion of a pentamer
at 80 K. In this case, motion was too fast for direct hop rate measurement, but the
number of distinct sites visited was determined to be 55. By assuming an unrestricted
random walk with a prefactor of 10'* s™', the barrier was estimated to be ~210 meV.
Similar measurements for 13-, 14- and 26-atom clusters at 83 K give barriers of 225, 240
and 250 meV, respectively, showing that this mechanism is viable beyond the decamer.
In comparison, these diffusion barriers are much lower than the barriers for
homoepitaxial island migration through edge diffusion on either Cu(111) or Ag(111),
~500 meV [12] and in the size range studied, coarsening through cluster-cluster
coalescence is kinetically favored over Ostwald ripening [33-38]. The non-monotonic

size dependence of the diffusion barrier is clearly more complex than the simple single

magic size effect predicted by Hamilton [6] for a mismatched system.
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Our diffusion model is further supported by the atomic resolution image in Fig.
3.4 collected at 100 K after a 90-second anneal to ~200 K which allowed for significant
coarsening. Islands with significant mobility would have been consumed through
coalescence, resulting in a size distribution dominated by low-mobility islands.
Heptamers, in epitaxial orientation with the substrate, were present after the anneal and
were immobile at 100 K while all other islands, many bi-layer, contained 20 or more
atoms. The presence of the heptamers after the anneal indicates their low mobility
relative to other clusters with sizes up to ~20 atoms, consistent with simulations that
predict the heptamer to have the highest diffusion barrier among clusters containing up to

14 atoms.

3.4 Simulation Results

MD simulations were conducted to investigate the atomic processes at work. An
embedded-atom method potential parameterized for Cu/Ag(111) [39] determines the
diffusion barriers and mechanisms for selected islands. This potential slightly
overestimates the monomer and dimer diffusion barriers, giving 93 and 88 meV,
respectively. The potential is optimized to produce accurate island geometries, energies,
and kinetics. High-temperature annealing allows the equilibrium island shapes to be
determined. Molecular dynamics simulations and dimer method [40] search the phase-
space for possible diffusion transitions, and the nudged-elastic band method [41]
determines the energy barriers and the atomic-scale mechanisms.

Fig. 3.5 summarizes the MD results for 3-, 7-, 5-, and 10-atom clusters, which

show that islands of certain sizes and shapes allow metastable dislocations, leading to
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reduced diffusion barriers. The trimer in Fig. 3.5 (a) moves through simultaneous glide
with a barrier of 287 meV, roughly three times the simulated monomer diffusion barrier.
The heptamer (b) also moves in a collective fashion, though the atoms do not cross bridge
sites simultaneously. In the transition state, the top right portion of the island moves
towards hep stacking prior to the lower left, reducing the barrier to 490 meV, about five
times the monomer barrier.

Fig. 3.5 (¢) and (d) show that a different, low-barrier mechanism involving a
metastable dislocation (dotted lines) is accessible to the pentamer and decamer. The
diffusion barrier for the decamer, 283 meV, is little more than half that of the heptamer
and even slightly lower than the trimer barrier. The pentamer and decamer diffusion
barriers, 214 and 283 meV, respectively, are in excellent agreement with the
experimental values of ~210 and 2604+20 meV. The overestimation of barriers in the
simulations is expected, based on the monomer and dimer simulation barriers. The
diffusion process for the decamer in Fig. 3.5 (d) proceeds as follows. Starting from F10,
all Cu atoms in fcc sites, a metastable state with 5 atoms in hcp sites, FSHS, is accessed.

The dashed line indicates a dislocation with Burgers vector 5 =1/6[211] separating the fcc
and hcp regions. If the remaining fcc atoms follow to H10, the center of mass is
displaced by one Burgers vector. Symmetry allows F10 to accommodate dislocations
with 5 =1/6[211] or 5 =1/6[121] while H10 can accommodate b =1/6[121] or 5 =1/6[211].
Thus, successive dislocation events allow for forward, backward, or zero net
displacement along [110] with equal probability and a barrier of 283 meV for a complete

fcc-fee step. This type of motion is similar to what has been called “reptation” [42,43].

The short lifetimes of H10 (~10™ s) and H5F5 (~10® s) compared to F10 (on the order of
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seconds) would prevent them from being observed with STM and any image of the
cluster would show it in the F10 configuration. The pentamer (c) moves in an analogous
manner. Despite the 3-fold symmetry of fcc {111}, the experimental trajectories
presented in this paper show one-dimensional motion; however, many islands throughout
the size range diffused in two dimensions with varying degrees of anisotropy from
completely isotropic to highly anisotropic. This is possibly due to differing local
environments resulting from surface-mediated cluster interactions.

More extensive simulations show that the low-barrier mechanism, as shown for
the decamer and pentamer in Fig. 3.5, is inaccessible to closed-shell structures like the
trimer and heptamer. To preserve Cu-Cu bonds, the dislocations in this process must
nucleate between close-packed rows of the same length and with Burger’s vectors that
bring the atoms closer together [44]. This is illustrated in Fig. 3.6, which shows the
differences between the low-barrier “reptation” dislocation mechanism (a) and the high-
barrier “glide” dislocation mechanism (b). The “glide” mechanism is the preferred one
for closed-shell structures that would require bond-breaking for “reptation” (c). This
feature is also why the only dislocations allowed in the F10 or HIO configurations

arel/6[211],1/6[121] or their directional opposites. This rule means that besides island

size, shape is important. There is anecdotal evidence in the experimental measurements
that shape can be as important as size: some initially-immobile clusters are spontaneously
mobilized subsequent to a shape change while maintaining their size.

The combined effects of size and shape are illustrated in Figure 3.7, which
organizes islands into families containing the same number of sheared <110> rows; one

row in blue, two rows in green, three rows in black, and four rows in red. When plotted
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against the island misfit strain, the energy barriers for diffusion within each family
display a “magic size” for diffusion analogous to that for Hamilton’s one-dimensional
model. The islands with the highest barriers within each family, indicated by the solid
squares, are those with shapes that prevent the low-barrier reptation dislocation
mechanism for the reasons explained above. Islands that allow reptation are indicated
with the open squares. The significant effect of island shape can be illustrated by
comparing the different barriers for the compact heptamer (black) to the extended
heptamer (green); the barrier for diffusion of the extended structure is only ~20% that of

the compact structure of the same size.

3.5 Conclusion

We have shown that a dislocation mechanism provides a pathway to coarsening
through cluster diffusion for clusters as large as 26 atoms with barriers significantly
lower than those for edge diffusion or Ostwald ripening. This mechanism leads to
significantly reduced diffusion barriers for islands with sizes and shapes that favor
metastable dislocations with the result that large islands can move more easily than
smaller ones. Thus, in much the same way that dislocations reduce the yield stress of
bulk metals from their theoretical values, they also reduce island diffusion barriers. It is
clear that this mechanism is promoted by lattice mismatch, which reduces the energy cost
of bringing the Cu atoms closer together, and it is likely a general phenomenon

applicable to similarly mismatched systems.
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3.7 Figures

Figure 3.1

8.3 nm >

Anomalous diffusion of Cu cluster on Ag(111) at 130 K. The 15-20 atom
cluster indicated underwent significant diffusion while smaller and larger
clusters were completely immobile. Cluster diffusion occurred in the
absence of shape changes or atom exchange between clusters, in contrast to
homoepitaxial island diffusion on Ag(111) or Cu(111).
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Diffusion trajectory for a 10 atom cluster doing a 1-D walk along [110] at
85 K. Each point on the left represents the cluster’s centroid from a data
set containing ~1100 frames. The plot as a function of time makes it
possible to determine the mean hop rate. In the inset, the temperature

dependence of the hop rate yields an activation energy of 260 + 20 meV,
and an attempt frequency of 7x10'*'? 57!
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Figure 3.3

STM images (-200 mV, 0.5 nA) showing diffusion of a 5-atom cluster at
80 K. The relative times of the images are given in h:min. While
pentamer diffusion at 80 K was too fast for direct hop rate determination,
the barrier was estimated to be ~210 meV, assuming an unrestricted

random walk.
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Figure 3.4

Atomic resolution image at 100 K after a ~90 sec anneal at ~200 K.
Heptamers survived the anneal and were immobile at 100 K. The other
clusters on the surface contained 20 or more atoms, having formed from
cluster-cluster coalescence. Many bi-layer islands were present, like the
68-atom island shown.
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Figure 3.5
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Molecular dynamics simulations of 3-, 7-, 5-, and 10-atom Cu clusters on
Ag(111). The trimer (a) migrates via simultaneous glide, with all atoms
moving across bridge sites at the same time. The heptamer (b) moves in a
dislocation-like mechanism, where the transition state contains atoms in
both fcc and hep sites. The pentamer (¢) and decamer (d) diffuse via a
different misfit dislocation mechanism, where the states containing the
dislocation are metastable and the dislocation lines are oriented along
[110]. All energy values are given in meV.
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Figure 3.6

(a ) Reptatlon |( b) Gllde |( c) Reptat:lon

i
Q@
o
&
@

(=]

Geometric requirements for the low-barrier “reptation” mechanism.
Aindicates the fcc sites and \/ indicates hcp sites. An allowed
“reptation” dislocation transition is shown in (a) as the left half of the
island shifts into hcp stacking without breaking Cu-Cu bonds. (b)
illustrates the high-barrier “glide” dislocation diffusion mechanism for
closed-shell structures. The high-barrier “glide” mechanism is preferred
for these structures because a “reptation” dislocation would require the
breaking of Cu-Cu bonds, increasing the barrier as shown in (¢). The
energy barriers, normalized with respect to the EAM monomer diffusion
barrier, are illustrated at the bottom. Note, the “reptation” dislocation is
metastable, while the “glide” dislocation is not.

31



diff

/E
monomer-

Eier

Figure 3.7

0 I | I

| | |
0 0.1 02 03 04 0.5
island misfit g, [A7"_|

Island diffusion barriers plotted against island misfit strain showing a
shape-modulated magic-size effect. Diffusion barriers are normalized
with respect to the EAM monomer diffusion barrier of 93 meV. The open
squares represent islands with shapes that allow reptation, while the filled
squares represent islands with shapes that do not. Islands, when organized
into families with the same number of sheared <110> rows (1, blue; 2,
green; 3, black; 4, red) follow a “magic size” trend in the diffusion barrier.
Grouping the islands into families according to the number of rows
highlights the key role of shape. Note the significantly different barriers
for, e.g. the compact heptamer (black) vs. the extended heptamer (green).
The 7- and 8- atom 2-row configurations are not the ground-state ones, but
are shown to illustrate the continuation of the magic size trend.
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CHAPTER 4

PREFERENTIAL NUCLEATION AND HIGH
MOBILITY OF LINEAR Cu TRIMERS ON Ag(111)

4.1 Introduction

Surface diffusion of atoms and clusters has been studied for decades, driven in
large part by the importance of the processes leading to mass transport on surfaces. This
work has revealed a diversity of surface diffusion phenomena, especially for cluster
diffusion because of the numerous ways a collection of atoms can move on a surface [1-
4]. The mobility of small clusters can have significant implications on the nucleation
density and island size distribution in the early stages of growth [5-9], and the diffusion
of large islands leads to coarsening in the late stages [10-18].

Despite their importance, relatively little direct, quantitative experimental work
has been done regarding the stability and diffusion of small clusters. Because the
majority of cluster diffusion studies have focused on homoepitaxial systems, even less is
known about the role of lattice mismatch in determining the properties of heteroepitaxial
clusters despite predictions of interesting phenomena [19, 20]. While the mobility of
larger islands generally decreases with size, several cases of non-monotonic size
dependencies [21-32] and, remarkably, cases where clusters have even higher mobility
than individual atoms, have been reported [27-32].

In this paper, we focus on Cu trimers on Ag(111) and demonstrate that, depending
on their structure, they can have significantly more mobility than either atoms or dimers.

Using low-temperature scanning tunneling microscopy (STM), we have previously
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shown that larger clusters have surprisingly low diffusion barriers and a novel dislocation
mechanism that is related to the ~12% lattice mismatch for Cu on Ag(111) [25, 26].
Here, we show that Cu trimers diffuse large distances following their formation. Studies
at 24 K show that this trimer mobility is transient, and the mobile trimers are equilibrated
in a compact, immobile state or coalesce with other particles. To determine the structure
of the mobile precursor, we used the STM tip to construct both compact and linear chain
trimers at 5 K. The linear chain trimers underwent lengthwise hopping along the close-
packed <110> directions and rotated about an end atom at T > 8 K while maintaining a
linear shape. The hop and rotation rates were measured between 8-12 K, yielding a
diffusion barrier of 13.6 meV, only ~1/5 the diffusion barrier of individual atoms, 65
meV. In contrast, the compact trimer constructed at 5 K was immobile. We conclude
that the large displacements upon trimer formation are due to a precursor, namely the
linear trimer. The linear trimer has a very low diffusion barrier, making it an important
contributor to mass transport for Cu on Ag(111). The broader and more surprising
implication of this work is that significant diffusion of a non-equilibrium cluster can
occur before the equilibrium structure is reached. Furthermore, while previous reports of
transient mobility have been related to the enthalpy released upon condensation, our
results point to a case of transient mobility results from a non-equilibrium structure that is

favored upon cluster nucleation.

4.2 Experimental
Experimental measurements were carried out in an Omicron low-temperature

scanning tunneling microscope that operates at 5-300 K. The Ag(111) substrates were
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thick films (100’s of monolayers) grown in a preparation chamber (base pressure ~4x10°
"' Torr) by evaporating Ag onto Si(111)-7x7 at ~20 K, followed by an anneal at ~600 K
for a few seconds. These films have large, flat regions free of defects or steps [33],
making them ideal for diffusion studies. The excellent agreement between our
measurements of Cu atom and dimer diffusion barriers with those measured on Ag(111)
single crystals [34] indicate a high quality surface. This also provides a confirmation of
temperature accuracy.

Once the substrate was prepared, the sample was moved to the STM stage and
cooled to ~5 K. A homebuilt evaporator attached to the measurement chamber enabled
deposition of dilute amounts of Cu while the sample was on the STM stage at 5 K. The
Cu source was heated in a W basket, and the exterior of the evaporator was water-cooled
to minimize outgasing. During evaporation, the pressure remained below 107" Torr. A
small aperture created a narrow beam, protecting the critical components of the
microscope and limiting exposure to the sample surface. A quartz crystal microbalance
mounted in the evaporator was used to monitor the flux, and it was calibrated by counting
individual atoms in STM images collected at 5 K immediately after exposure. This,
combined with a shutter, allowed for precise control of the amount of Cu, and it enabled
the early stages of nucleation and growth to be observed in situ as the sample was
warmed from 5 K.

To construct compact and linear trimers at 5 K, the tip was positioned above the
atom to be moved and the tunneling parameters were changed to bring it close enough to
allow an attractive interaction. The tip was then moved at ~1 nm s to the desired

location, pulling the atom along with it. To release the atom, the tunneling parameters

35



were reset to those used for imaging (0.5 V, 0.3 nA). To establish the optimal tunneling
conditions, manipulation attempts were repeated while the tunneling current was
gradually increased, bringing the tip incrementally closer to the surface, until a successful
manipulation was achieved. The optimal parameters for manipulation were 0.5 V and 6.0
+1 nA, though the parameters and success rate varied depending on the condition of the
tip. This procedure was adapted from those used in other studies of fcc(111) metals

surfaces [35, 36].

4.3 Trimer Nucleation and Rapid Diffusion

Figure 4.1 presents a series of images collected at 24 K that show trimer
nucleation and subsequent rapid displacement. The labels indicate the number of atoms
in each particle, a number that is known precisely because cluster formation events were
observed directly, starting from individual atoms. For the atoms and dimers, diffusion
barriers match previously published values [34]. The images in Fig. 4.1 were selected
from a set of ~150 with ~215 s between frames (~9 hours of imaging). In (a), the ellipses
highlight atom-dimer pairs in close proximity, prior to their combination. During the
time between frames, the resulting trimers moved 2 nm or 15 nm to the positions
indicated and coalesced with a dimer or atom to form the pentamer and tetramer shown in
(b). Note that image (b) of “32 min” was selected to show the small and slower
displacements of the atoms and dimers in the viewing area. The highlighted atom-dimer
pair in (b) had combined in the next image (c) and had moved 6 nm before being

immobilized without coalescence. This trimer and all others that were immobilized had
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compact shapes, and they were stable during the measurement time of several days at 20-
24 K.

Figure 4.1(d) summarizes the displacements for 39 trimer formation events. The
points represent the coordinates of the final location referenced to those of the atom-
dimer pairs immediately prior to coalescence. The (red) triangles represent four trimers
that were immobilized on the pristine surface, as in (c), and the black circles represent
those that ultimately coalesced with other ad-particles, as in (b). The displacements
ranged from 2-20 nm and all occurred within the time between images (80-215 s). Since
the atom and dimer positions were continuously monitored, we can conclude that all
trimer formation events resulted in rapid diffusion.

From Fig. 4.1, it is clear that trimer nucleation results in a cluster that has
significantly more mobility than atoms or dimers. The fact that several trimers were
immobilized on the surface without encountering other ad-species demonstrates that their
intrinsic mobility is short-lived. = While it is possible that they were trapped at
undetectable defects on the surface, one would expect atoms and dimers to be trapped as
well, yet they all maintained the expected diffusivity. Furthermore, in one instance, a
diffusing atom probed the future resting site of a trimer without any change in its
diffusion properties, strengthening the case that the trimers are immobilized on a pristine
surface, that the mobility is naturally transient, and that there is something special about
the trimer formation event that leads to a very mobile species that ultimately converts to
the immobile trimer.

Based on the data of Fig. 4.1(d), the mean-squared displacement is 44.6 nm.

Assuming two-dimensional diffusion, we can deduce a lower limit on the diffusivity of
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the mobile precursor using the Einstein relation, D = <Ar2> / 47 , where <Ar2 > is the mean

squared displacement and 7 is the time between images. It is important to note that this
estimation provides only a lower limit on the diffusivity since, with the experimental time

resolution, we only observe initial and final locations. Based on this analysis, the lower

2.-1

limit on the diffusivity is ~5x107"° cm’s™, compared to ~4x10"* cm’s” for atoms.
Assuming the normal prefactor of 10 cm’s™, this establishes an upper limit on the
diffusion barrier of ~58 meV compared to 65 meV for individual atoms, though it is
possibly much lower than that. This low barrier is surprising in light of molecular
dynamics simulations that predict a barrier of ~290 meV—prohibitively large to allow
diffusion at 24 K [25, 26, 37]. In these simulations, the ground state of a Cu trimer on
Ag(111) was a compact triangle with all atoms in fcc sites, and diffusion occurred in a
concerted fashion. In agreement with the simulations, compact trimers were immobile at
24 K.

While the above has considered thermal diffusion, there is the possibility that a
contribution to displacement might arise from the energy associated with bond formation
upon dimer and atom binding. This is unlikely since nucleation of dimers and larger
particles never resulted in movement. From Fig. 4.1 (d), the mean trimer displacement is
5.9, with some displacements as large as ~20 nm. An estimate of the bond formation
energy based on the bulk Cu cohesive energy (3.49 eV/atom) is 0.29 eV for forming a
single bond (atom attaching to end of dimer) and 0.58 eV for two bonds (forming a
triangular trimer). In contrast, the dissociative chemisorption of O, on Al(111) results in

a ~7 eV energy gain (3.5 eV/atom), but the average O atom displacement was only 4 nm

[38-40]. Furthermore, later experiments ruled out any significant transient mobility of O
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atoms during the dissociative chemisorption of O, on AI(111) [41]. We conclude that the
contribution from the formation enthalpy is small and cannot account for the large

displacements observed for Cus, a much heavier particle than Oxygen.

4.4 Mobile Linear and Immobile Compact Trimers

From the data of Fig. 4.1, one cannot conclude much regarding the nature of the
precursor; only the initial and final locations are known. Given the predicted and
experimentally-observed stability of compact trimers, we reasoned that the mobile
precursor has a different structure. To learn more about the structure of the mobile trimer
presented considerable experimental challenges. At temperatures where trimers form on
the experimental time scale, their mobility is too high and too short-lived to allow
structural investigations. Accordingly, we reduced the temperature and used the STM tip
to manipulate individual atoms, as outlined above, to construct linear and compact
trimers. Figure 4.2 shows the construction of a linear trimer at 5 K. Three Cu monomers
are indicated in (a). The atom on the left was brought into contact with the middle atom

in (b). The orientation of the dimer was established, and the third atom was moved to the
end of the dimer in (c), forming a linear trimer oriented along the close-packed [011]

direction. The linear trimer was stable and immobile at 5 K.

To investigate the properties of linear trimers, we increased the temperature while
continuously imaging. Significantly, the temperature at which trimer motion was first
observed was 8 K, extremely low compared to the 19 K onset for adatom motion. Two
types of motion occurred with equal probability in the 8-9 K range, namely lengthwise

hopping along close-packed <110> directions and rotation about an end-atom. Although
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rotations about each end had equal probability, rotation about the middle atom was never

observed. The images in Fig. 4.3 obtained at 8.5 K show the changes in orientation

associated with rotation. The chain is oriented along [110] in (a), [011] in (b), and

[101] in (c). The ellipses help distinguish the different orientations. A particle tracking

program [42] was used to extract the trimer trajectory and nearby immobile atoms were
used as a reference to correct for drift of the microscope. Figure 4.3 (d) is a
representative trajectory of one of the linear trimers, comprised of a discrete set of
adsorption sites separated by the Ag(111) nearest-neighbor distance, 0.289 nm. Because
rotation only occurred about an end-atom, both rotation and lengthwise hopping displace
the center of mass by one nearest-neighbor spacing.

The low time resolution of the STM prevents direct knowledge of the
intermediate steps in trimer chain diffusion, but important details of the intermediate
steps can be inferred from the experimentally-observed characteristics of lengthwise
translation and end-atom rotation. The fact that rotation and lengthwise hopping occur at
the same rate suggests that they share the same rate-limiting step. Moreover, the rotation
direction depends on both the chain orientation and on which end of the chain moves.
This dependence is illustrated in the models below the images in Fig. 4.3. Below (a), for
example, two rotations are allowed. The other two rotations in the upward directions
were not allowed. The key to such motion must be in the intermediate steps, because the
disallowed rotations would result in final states that are equivalent to those resulting from
the allowed rotations. The solid circles indicate the initial atom locations, the open

circles the final locations, and the arrows indicate the directions of rotation.
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For larger islands of Cu on Ag(111), diffusion occurred through the nucleation of
misfit dislocations that shifted a portion of the atoms into hcp sites and shortened Cu-Cu
bonds, reducing strain. Applying this rule to trimer chains results in exactly the rotation
directions observed experimentally, as rationalized in Fig. 4.4 which illustrates possible
pathways for lengthwise hopping (a-d) and end-rotation (a,e,f) that share a step involving
hep sites that shorten Cu-Cu bonds. In this model, both hopping and rotation commence
when two atoms shift into hcp sites, shown in the equivalent transitions of a-b and a-e.
For lengthwise hopping, this state is followed by one in which the third atom moves into
an hcp site (b), and the hop of one nearest-neighbor distance is completed by a similar
piecewise motion of the trimer from hcp to fcc sites (c,d). For rotation to occur, instead
of the third atom moving into hcp stacking, the two atoms in hcp sites move further as
shown in (e). In this model, rotation only occurs in certain directions because rotation in
the other directions would require the use of hcp sites that stretch the already strained Cu-
Cu bondes, as illustrated in Fig. 4.4 (g). The sequences shown in Fig. 4 cannot be verified
experimentally, but they satisfy the requirement that an intermediate step involves hcp
sites to shorten Cu-Cu bonds, and this is the only explanation for the observed rotation
directions. Furthermore, motion occurs in a piecewise fashion, as concerted hopping and
rotation would show no preference for certain hopping and rotation directions.

An individual linear trimer was tracked between 8.34 K and 9.34 K, and Fig. 4.5
summarizes the temperature dependence of its lengthwise hop and rotation rates. The
error bars represent the standard errors of the mean hop rates, and the numbers beside
each point indicate the number of events observed. Both hopping (blue squares) and

rotation (red triangles) occurred with nearly equal probability at each temperature
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investigated and thus, when treated separately, the measured barriers and prefactors are

within a standard error of each other: v’ =2.1x10""s", E'=12.7+1meV;

v =3.0x10°"* s, E’ =14.8+1.5meV. Because both rotation and lengthwise hopping
resulted in displacement of the trimer center of mass by 0.289 nm, the overall diffusion

rate (black circles) includes both hopping and rotation events with v =1.3x10* s

and Ead =13.6£0.7meV. The barriers, prefactors, and related uncertainties were

determined using a weighted least-squares fit, where the weighting factors and
uncertainties were derived from the standard deviation of the measured time between
hops and the number of hops observed [43]. Surprisingly, the diffusion barrier for linear
trimers is only ~1/5 of that for a Cu adatom on Ag(111), 65 meV. Though the prefactors
are significantly lower than the ~10'* s commonly observed for diffusion, experimental
measurements of atom and cluster diffusion have reported prefactors spanning a range of
~6 orders of magnitude [1, 2, 23, 44, 45].

The finite scan rate of the STM limits the temperature window where hop rates
can be measured directly. To minimize the errors in barriers and prefactors, large
numbers of events were observed at each temperature. To test how well the fit could
predict diffusion rates at higher temperatures, we measured the mean square displacement
at 12 K, a temperature where multiple hops occurred between images, and the diffusion
rate fell within a standard error of the extrapolated fit. Besides verifying that the
parameters measured at 8-9 K made reasonable predictions, the measurements of mean
square displacements at elevated temperatures indicate that the tip had no significant
influence on the measurements. Finally, to check the reproducibility of our results, we
constructed a second linear trimer. It displayed the same rotation and lengthwise hopping
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and the same temperature dependence of the diffusion rate, as shown by the stars in Fig.
4.4.

A compact triangular trimer was also constructed at 5 K, as shown in Fig. 4.6.
Three monomers are visible in (a), a dimer is formed in (b), and a compact trimer in (c).
The inset in (c) is an image of a linear trimer for a comparison. Temperature-dependent
measurements to 15 K showed that the compact trimer was immobile, as expected from
the measurements at 24 K. No transition to the linear form was observed. Measurements
with the linear trimers likewise showed no transitions to the compact structure. We
conclude that hopping and rotation at 8-9 K do not involve interconversion between
linear and compact forms, in agreement with our model.

We have shown that the diffusion barrier of a linear trimer is low enough to
account for the displacements observed upon trimer nucleation at 24 K. Because every
trimer nucleation event resulted in rapid relocation, this implies that the kinetically
preferred pathway to the compact trimer involves the linear trimer. Besides translating,
Cu dimers on Ag(111) undergo rotation among the three equivalent fcc sites surrounding
a surface atom, resulting in three different orientations along the close-packed <110>
directions. While the barrier for dimer diffusion is higher than that for atom diffusion,
the barrier for dimer rotation is lower than that for atom diffusion. Morgenstern et al.
[34, 46] showed that surface-mediated adatom-dimer interactions perturb dimer rotation.
With adatom-dimer separations of ~1-2 nm (4-8 lattice spacings), one dimer orientation
was favored over the other two. From the data presented in [34], and especially the
supporting STM movies of [46], the preferred orientation is one that presents the end of a

dimer, rather than the side, toward the third atom. The relatively low barrier for dimer
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rotation compared to atom diffusion would allow the dimer to rotate to the favored
orientation upon the approach of a third atom. Thus, these surface-mediated atom-dimer
interactions are likely the cause for the very strong bias in favor of linear trimer

formation as a precursor to the thermodynamically favored compact trimer.

4.5 Conclusion

The types of motion reported here for trimers are very different from those
reported in either experimental or theoretical studies of homoepitaxial fcc(111) trimers.
For Ir; on Ir(111), both linear and triangular forms were observed, rotation required
interconversion between the two forms, and translation was roughly four times more
probable than rotation. Further, the mechanisms for Ir; do not limit center of mass
displacements to one nearest neighbor distance, as we observe for Cus, but allow shorter
displacements as well [22]. Molecular dynamics simulations of Al; on Al(111) show that
trimer diffusion is similar to Ir3, with interconversion between triangular and linear forms
having barriers similar to those for translation [47]. Molecular dynamics simulations of
Cuz on Cu(111) show that diffusion occurs through concerted gliding and rotation of the
triangular form because this has a much smaller barrier than interconversion to the linear
form [48].

In contrast, our results show that linear trimer chains on Ag(111) diffuse through
lengthwise translation and end-atom rotation, which occur with equal probability, with no
conversion to the compact form. Compact trimers are stable and immobile up to at least
24 K, indicating high barriers for translation and conversion to the linear form. The

extremely low diffusion barrier for the linear trimer, combined with the preference for
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this structure during nucleation, make the trimer an extremely important contributor to
mass transport for Cu on Ag(111). The effects of lattice mismatch are manifest in the
observed directions of hopping and rotation that require intermediate steps involving
trimers of mixed fcc-hcp character that shorten Cu-Cu bonds to relieve strain, in a one-
dimensional analog of the misfit-dislocation mechanism responsible for the low diffusion
barriers of larger Cu clusters on Ag(111) [25, 26]. Because the novel diffusion
phenomena for both small and large clusters of Cu on Ag(111) result from lattice

mismatch, it is likely that similar behavior will occur in other heteroepitaxial systems.
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4.7 Figures

Figure 4.1

Diffusion of Cu atoms, dimers, and trimers on Ag(111) at 24 K. The
labels indicate particle size, the ellipses indicate particles prior to
coalescence, and arrows show the relocation of trimers upon their
formation. Between (a) and (b), the highlighted pairs combined and
moved to coalesce with other particles. The trimer formed between (b)
and (c¢) was immobilized on the pristine surface. Every trimer formation
event resulted in rapid displacement on a scale shorter than the time
between images. The displacement vectors for all trimer formation events
are plotted in (d), where the symbols represent the coordinates of the final
location, referenced to the location of the atom-dimer pair prior to
coalescence. The black circles represent trimers that coalesced with other
particles, the red triangles represent trimers that were spontaneously
immobilized. As discussed in the text, trimer formation produced mobile
linear chains and conversion of those chains to compact structures
immobilized them.
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Figure 4.2
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Assembly of a linear-chain trimer using the STM tip at 5 K. Starting with
three Cu atoms, (a), the atom on the left was brought into contact with the
middle atom, forming a dimer, (b). In (c), the third atom was moved to
form a linear trimer chain oriented along [011]. The trimer chain was
stable and immobile at 5 K. Imaging parameters 0.5 V, 0.3 nA.
Manipulation parameters 0.5 V, 6.0 nA.
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Rotation and diffusion of linear trimers at 8.5 K. The trimer orientation is
[110] in (a), [011] in (b), and [101] in (c). Hopping along the long axis
and rotation about an end atom occur with equal probability. Rotation
reorients the trimer among the three equivalent <110> directions.
Rotation around the center atom never occurs. Both lengthwise hopping
and rotation result in a displacement of the center of mass by one Ag(111)
nearest-neighbor distance, 0.289 nm, shown in the representative
trajectory in (d). The rotation direction depends on chain orientation and
pivot atom, with the only observed rotations depicted in the models below
the images. The solid circles indicate the initial atom locations, the open
circles the final locations, and the arrows indicate the directions of
rotation.

50



Figure 4.4

Models showing displacements that could lead to the hopping (a-d) and
rotation (a,e-f) observed experimentally. With this model, rotation and
hopping share a step (b, e) involving hcp sites. We argue that the lattice
mismatch favors transitions from fcc-hep that shorten Cu-Cu bonds,
leading to the observed correlation between rotation direction and
orientation. Rotation in the opposite direction is not allowed because this
would involve fcc-hcep transitions that stretch Cu-Cu bonds (g).
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Arrhenius plot of the temperature dependence of the rates of lengthwise
hopping (blue squares), rotation (red triangles), and the combined
diffusion rate (black circles). Hopping and rotation occurred with

statistically indistinguishable rates (v =2.1x10*"* s, E" =12.7+1meV;
v =3.0x10" §' E’ =148+1.5meV), leading to the same net

displacement of one nearest-neighbor distance and the net diffusion rates
indicated by the black circles (v¢ =1.3x10"*"*s", E? =13.6+0.7meV).

The stars indicate diffusion rates measured for a second trimer chain that
was constructed, indicating the reproducibility of the results.
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Figure 4.6
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Images showing the construction of a compact trimer at 5 K. Between
frames (a) and (b), a dimer was formed by moving the left-most atom into
the center atom. Between frames (b) and (c), a compact trimer was
formed by moving the final atom into the dimer. The inset shows a linear
trimer, allowing for comparison
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APPENDIX A: MATLAB PROGRAM “MATTRACK?”

The following Matlab program was used to locate the coordinates of islands in
each image of a data set. The original version was created by J. C. Crocker and D. G.

Grier, J. Colloid Interface Sci. 179, 298 (1996) and I modified it for my STM application.

Program MATTRACK:
function out=mattrack 12 512(directory,dataset,outfldr,resolution,th,n1,n2)

warning off all
for k=n1:n2

path=strcat(directory,'\',dataset);
filein=sprintf('%s_%04d%s',path.k,".bmp");
outpath=strcat(directory,'\',outfldr,"\',dataset);

bpout=sprintf('%s %04d%s',strcat(outpath,' bp"),k);
pkoutname=strcat(outpath,' pk');
cntoutname=strcat(outpath,' cnt');

% size in pixels of a 2 nm island in a 100 nm image
sz1=((resolution/40));

sz2=((resolution/40));

a=double(imread(filein));

b=bpass(a,1,10);

pk=pkfnd(b,th,sz1);

cnt=cntrd(b,pk,sz2);

pkout=double([pk (k*ones(size(pk),1))]);

cntout=double([cnt (k*ones(size(cnt),1))]);
pkpretrack=double([pkout(:,1) resolution-pkout(:,2) pkout(:,end)]);
cntpretrack=double([cntout(:,1) resolution-cntout(:,2) cntout(:,end)]);
pkpretrackname=strcat(outpath,' pkpretrack');
cntpretrackname=strcat(outpath,' cntpretrack');
imwrite(uint8(b),strcat(bpout,'.bmp'));

if (k==n1)

save(pkoutname,'pkout','-ASCII")
save(cntoutname,'cntout','-ASCII")
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save(strcat(pkpretrackname,' ascii'),'pkpretrack’,'-ASCII")
save(pkpretrackname,'pkpretrack’)
save(strcat(cntpretrackname,' ascit'),'cntpretrack’,'-ASCII")
save(cntpretrackname,'cntpretrack')

else
save(pkoutname,'pkout','-ASCII',"-append')
save(cntoutname,'cntout','-ASCII',"-append')
save(strcat(pkpretrackname,' ascit'),'pkpretrack’,'-ASCII','-append")
save(pkpretrackname,'pkpretrack’,'-append')
save(strcat(cntpretrackname,' ascit'),'cntpretrack’,'-ASCII',-append')
save(cntpretrackname,'cntpretrack’,'-append')

end
number=n2-nl;
progress=sprintf('%04d%s%04d',k-n1+1,"/ ,number+1)

end

function res = bpass(arr,lnoise,lobject)

%

% ; NAME:

% bpass

% ; PURPOSE:

% ; Implements a real-space bandpass filter which suppress
% ; pixel noise and long-wavelength image variations while
% ; retaining information of a characteristic size.

% ;

% ; CATEGORY:

% ; Image Processing

% ; CALLING SEQUENCE:

% ; res = bpass( image, Inoise, lobject )

% ; INPUTS:

% ; image: The two-dimensional array to be filtered.

% ; Inoise: Characteristic lengthscale of noise in pixels.

% ; Additive noise averaged over this length should

% ; vanish. MAy assume any positive floating value.
% ; lobject: A length in pixels somewhat larger than a typical
% ; object. Must be an odd valued integer.

% ; OUTPUTS:

% ; res: filtered image.

% ; PROCEDURE:

% ; simple 'wavelet' convolution yields spatial bandpass filtering.
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% ; NOTES:
% ; MODIFICATION HISTORY:

% ; Written by David G. Grier, The University of Chicago, 2/93.
% ; Greatly revised version DGG 5/95.

% ; Added /field keyword JCC 12/95.

% ; Memory optimizations and fixed normalization, DGG 8/99.
% Converted to Matlab by D.Blair 4/2004-ish

% Fixed some bugs with conv2 to make sure the edges are

% removed D.B. 6/05

% Removed inadvertent image shift ERD 6/05

% Added threshold to output. Now sets all pixels with

% negative values equal to zero. Gets rid of ringing which

% was destroying sub-pixel accuracy, unless window size in
% cntrd was picked perfectly. Now centrd gets sub-pixel

% accuracy much more robustly ERD 8/24/05

% ;

% ;  This code 'bpass.pro' is copyright 1997, John C. Crocker and

% ;  David G. Grier. It should be considered 'freeware'- and may be

% ;  distributed freely in its original form when properly attributed.
%
%

b = double(Inoise);
w = round(lobject);
N=2*w+ 1;

% Gaussian Convolution kernel

sm = 0:N-1;

r=(sm-w)/(2 *b),

gx =exp( -1.°2) /(2 * b * sqrt(pi));
gy = gx};

%Boxcar average kernel: background

bx = zeros(1,N) + 1/N;
by = bx';
% Do some convolutions with the matrix and our kernels

res = arr;
g = conv2(res,gx,'valid');
tmpg = g;

g = conv2(tmpg,gy,'valid');
tmpres = res;

res = conv2(tmpres,bx,'valid");
tmpres = res;
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res = conv2(tmpres,by,'valid");
tmpg=0;

tmpres=0;
arr_res=zeros(size(arr));

arr_g = zeros(size(arr));

arr_res((lobject+1):end-lobject,(lobject+1):end-lobject) = res;
arr_g((lobject+1):end-lobject,(lobject+1):end-lobject) = g;
%res = arr_g-arr_res;

res=max(arr_g-arr_res,0);

function out=pkfnd(im,th,sz)

%pkfnd: finds local maxima in an image to pixel level accuracy.

% this provides a rough guess of particle

% centers to be used by cntrd.m. Inspired by the Imx subroutine of Grier

% and Crocker's feature.pro

% INPUTS:

% im: image to process, particle should be bright spots on dark background with little
noise

% ofen an bandpass filtered brightfield image (fbps.m, fflt.m or bpass.m) or a nice
% fluorescent image

% th: the minimum brightness of a pixel that might be local maxima.

% (NOTE: Make it big and the code runs faster

% but you might miss some particles. Make it small and you'll get

% everything and it'll be slow.)

% sz: OPTIONAL if your data's noisy, (e.g. a single particle has multiple local

% maxima), then set this optional keyword to a value slightly larger than the diameter of
your blob. if

% multiple peaks are found withing a radius of sz/2 then the code will keep

% only the brightest. Also gets rid of all peaks within sz of boundary
%OUTPUT: a N x 2 array containing, [row,column] coordinates of local maxima
% out(:,1) are the x-coordinates of the maxima

% out(:,2) are the y-coordinates of the maxima

%CREATED: Eric R. Dufresne, Yale University, Feb 4 2005

%MODIFIED: ERD, 5/2005, got rid of ind2rc.m to reduce overhead on tip by
%Dan Blair; added sz keyword

% ERD, 6/2005: modified to work with one and zero peaks, removed automatic
% normalization of image

% ERD, 6/2005: due to popular demand, altered output to give x and y

% instead of row and column

% ERD, 8/24/2005: pkfnd now exits politely if there's nothing above

% threshold instead of crashing rudely
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%find all the pixels above threshold
%im=1im./max(max(im));
ind=find(im > th);
[nr,nc]=size(im);
tst=zeros(nr,nc);
n=length(ind);
if n==0
out=[];
display('nothing above threshold');
return;
end
mx=[];
%convert index from find to row and column
rc=[mod(ind,nr),floor(ind/nr)+1];
for i=1:n
r=rc(i,1);c=rc(i,2);
%check each pixel above threshold to see if it's brighter than it's neighbors
% THERE'S GOT TO BE A FASTER WAY OF DOING THIS. I'M CHECKING
SOME MULTIPLE TIMES,
% BUT THIS DOESN'T SEEM THAT SLOW COMPARED TO THE OTHER
ROUTINES, ANYWAY.
ifr>1 & r<nr & ¢>1 & c<nc
if im(r,c)>im(r-1,c-1) & im(r,c)>im(r,c-1) & im(r,c)>im(r+1,c-1) & ...
im(r,c)>im(r-1,c) & im(r,c)>im(r+1l,c) & ...
im(r,c)>im(r-1,c+1) & im(r,c)>im(r,c+1) & im(r,c)>im(r+1,c+1)
mx=[mx,[r,c]'];
%tst(ind(i))=im(ind(i));
end
end
end
%out=tst;
mx=mx";

[npks,crap]=size(mx);

%if size is specified, then get ride of pks within size of boundary

if nargin==3 & npks>0
%throw out all pks within sz of boundary;
ind=find(mx(:,1)>sz & mx(:,1)<(nr-sz) & mx(:,2)>sz & mx(:,2)<(nc-sz));
mx=mx(ind,:);

end

%prevent from finding peaks within size of each other

[npks,crap]=size(mx);
if npks > 1
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%CREATE AN IMAGE WITH ONLY PEAKS
nmx=npks;
tmp=0.*im;
for i=1:nmx
tmp(mx(i,1),mx(i,2))=im(mx(i, 1 ),mx(i,2));
end
%LOOK IN NEIGHBORHOOD AROUND EACH PEAK, PICK THE BRIGHTEST
for i=1:nmx
roi=tmp( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),(mx(i,2)-
floor(sz/2)):(mx(1,2)+(floor(sz/2)+1))) ;
[mv,indi]=max(roi);
[mv,indj]=max(mv);
tmp( (mx(i,1)-floor(sz/2)):(mx(i,1)+(floor(sz/2)+1)),(mx(i,2)-
floor(sz/2)):(mx(1,2)+(floor(sz/2)+1)))=0;
tmp(mx(i,1)-floor(sz/2)+indi(indj)-1,mx(i,2)-floor(sz/2)+indj- 1 )=mv;
end
ind=find(tmp>0);
mx=[mod(ind,nr),floor(ind/nr)+1];
end

out(:,2)=mx(:,1);
out(:,1)=mx(:,2);

function out=cntrd(im,mx,sz,interactive)

%cntrd: calculates the centroid of bright spots to sub-pixel accuracy.

% Inspired by Grier & Crocker's feature for IDL, but greatly simplified and optimized
% for matlab

% INPUTS:

% im: image to process, particle should be bright spots on dark background with little
noise

% ofen an bandpass filtered brightfield image or a nice fluorescent image

%

% mx: locations of local maxima to pixel-level accuracy from pkfnd.m

%

% sz: diamter of the window over which to average to calculate the centroid.

%  should be big enough

%  to capture the whole particle but not so big that it captures others.

% if initial guess of center (from pkfnd) is far from the centroid, the

%  window will need to be larger than the particle sizez. RECCOMMENDED

% size is the long lengthscale used in bpass plus 2.

%

%

% interactive: OPTIONAL INPUT set this variable to one and it will show you the
image used to calculate

% each centroid, the pixel-level peak and the centroid

59



%

% NOTE:

% - if pkfnd, and cntrd return more then one location per particle then

% you should try to filter your input more carefully. If you still get

% more than one peak for particle, use the optional sz parameter in pkfnd

% - If you want sub-pixel accuracy, you need to have a lot of pixels in your window
(sz>>1).

% To check for pixel bias, plot a histogram of the fractional parts of the resulting
locations

% - It is HIGHLY recommended to run in interactive mode to adjust the parameters

before you
% analyze a bunch of images.
%

%OUTPUT: a N x 3 array containing, X, y and brightness for each feature
% out(:,1) is the x-coordinates

% out(:,2) is the y-coordinates

% out(:,3) is the brightnesses

% out(:,4) is the sqare of the radius of gyration
%

%CREATED: Eric R. Dufresne, Yale University, Feb 4 2005

% 5/2005 inputs diamter instead of radius

% Modifications:

% D.B. (6/05) Added code from imdist/dist to make this stand alone.

% ERD (6/05) Increased frame of reject locations around edge to 1.5%sz
% ERD 6/2005 By popular demand, 1. altered input to be formatted in x,y
% space instead of row, column space 2. added forth column of output,

% 1g"2

% ERD 8/05 Outputs had been shifted by [0.5,0.5] pixels. No more!

% ERD 8/24/05 Woops! That last one was a red herring. The real problem
% 1s the "ringing" from the output of bpass. I fixed bpass (see note),

% and no longer need this kludge. Also, made it quite nice if mx=[];

if nargin==3
interactive=0;
end

if sz/2 == floor(sz/2)
warning('sz must be odd, like bpass');
end

if isempty(mx)
warning('there were no positions inputted into cntrd. check your pkfnd theshold')
out=[];
return;

end
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r=(sz+1)/2;
%create mask - window around trial location over which to calculate the centroid
m = 2%r;
x=0:(m-1);
cent = (m-1)/2;
x2 = (x-cent)."2;
dst=zeros(m,m);
for i=1:m
dst(i,:)=sqrt((i-1-cent)"2+x2);
end

ind=find(dst <r);

msk=zeros([2*r,2*r]);
msk(ind)=1.0;
Y%msk=circshift(msk,[-1,-1]);

dst2=msk.*(dst.”2);
ndst2=sum(sum(dst2));

[nr,nc]=size(im);

%remove all potential locations within distance sz from edges of image
ind=find(mx(:,2) > 1.5*sz & mx(:,2) < nr-1.5%*sz);

mx=mx(ind,:);

ind=find(mx(:,1) > 1.5*sz & mx(:,1) <nc-1.5*sz);

mx=mx(ind,:);

[nmx,crap] = size(mx);

%inside of the window, assign an x and y coordinate for each pixel
xl=zeros(2*r,2*r);
for i=1:2%r
x1(1,:)=(1:2%r);
end
yl=xI';

pts=[];
%Iloop through all of the candidate positions
for i=1:nmx
%create a small working array around each candidate location, and apply the window
function
tmp=msk.*im((mx(i,2)-r+1:mx(i,2)+r),(mx(i, 1 )-r+1:mx(i,1)+r));
%calculate the total brightness
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norm=sum(sum(tmp));

%calculate the weigthed average x location
xavg=sum(sum(tmp.*x1))./norm;
%calculate the weighted average y location
yavg=sum(sum(tmp.*yl))./norm;
%calculate the radius of gyration”2
rg=(sum(sum(tmp.*dst2))/ndst2);

%concatenate it up
pts=[pts,[mx(i, 1 )+xavg-r,mx(i,2)+yavg-r,norm,rg]'];

%OPTIONAL plot things up if you're in interactive mode
if interactive==
imagesc(tmp)

axis image

hold on;
plot(xavg,yavg,'x")
plot(xavg,yavg,'o')
plot(r,r,".")

hold off

pause

end

end
out=pts';
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APPENDIX B: MATLAB PROGRAM “TRAJ”

The program “Mattrack”, presented in Appendix A, creates a list of coordinates
for islands in each image of a data set. In order to build particle trajectories, those
coordinates must be correlated over time. The Matlab code used for that procedure was
created by Professor Eric Weeks’ research group and can be found and freely

downloaded at http://www.physics.emory.edu/~weeks/idl/. Because the code is very

lengthy and was used in its unmodified form, it will not be presented here. The output of
that tracking program is four columns of data: x, y, image frame, particle number. The
trajectories created by this program are not calibrated and contain experimental artifacts,
such as thermal drift of the microscope. In order to correct for drift and calibrate the
units of measurement, I wrote the following program. To correct for drift, trajectories of
immobile features on the surface were subtracted from the ones to be tracked, creating

accurate and atomically-precise trajectories for each particle.

Program TRAJ:

function Traj12(directory,dataset,outfldr,first,last)

tic

warning off all
track=load(strcat(directory,'\',dataset,’ track'));
immobile=load(strcat(directory,'\',dataset,’ immobile.txt'));
cal=load(strcat(directory,"\',dataset,' cal.txt"));
extractsize=max(track(:,4));
extract=zeros(max(track(:,4)),2);

for k=first:last %omin(track(:,4)):max(track(:,4))
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=1;

s=1;
[r,c,v]=find(track(:,4)==k);
Tra=track(r,:);
Trasize=size(Tra,1);
Trasize;

ydiff=5000;
yimm=0;

for m=1:size(immobile,1)
immobile(m);
[r,c,v]=find(track(:,4)==immobile(m));
1;
ref=track(r,:);
[r,c,v]=find(ref(:,3)==Tra(1,3));
if (min(ref(:,3))>min(Tra(:,3))|jmax(ref(:,3))<max(Tra(:,3))|[immobile(m)==k)
continue
end
yimm=ref{(r,2);

if ydiff>=abs(Tra(1,2)-ref(r,2))%&&(size(ref,1)>=size(Tra,1))
Ref=ref;
ydiff=abs(Tra(1,2)-Ref(1,2));
extract(k,1)=Tra(1,4);
extract(k,2)=immobile(m);
extract;

end

yimm;
ydiff;
abs(Tra(1,2));
%size(Ref,1)
%size(Tra,1)
%Ref;
%Tra;

end

%|r,c,v]=find(track(:,4)==extract(k,2));

%Ref=track(r,:);

%need the following 2 lines, in case Tra and Ref begin on different
%frames

[r,c,v]=find(Tra(1,3)<=Ref{(:,3) & Ref(:,3)<=Tra(Trasize,3));

L
Ref=Ref(r,:);
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Tra;

%need to insert dummy line if particle lost for a frame
%|r,c,v]=find(Tra(:,3)~=

%Refsize=size(Ref,1)

%size(Tra)

%size(Ref)

%(1)Frame (2)Time (3)zeros (4)zeros (5)zeros (6)x-pix (7)y-pix (8)x-nm,
%DC (9)y-nm, DC (10)zeros (11)zeros

a=Tra(:,1:2);

Tra=[Tra(:,3) (Tra(:,3)-Tra(1,3))*cal(5)*cal(4)*2/cal(6)...
zeros(size(Tra,1),1) zeros(size(Tra,1),1) zeros(size(Tra,1),1)...

Tra(:,1) Tra(:,2) (Tra(:,1)-Tra(1,1)-Ref(:,1)+Ref(1,1))*cal(1)*cal(5)/cal(3)...
(Tra(:,2)-Tra(1,2)-Ref(:,2)+Ref(1,2))*cal(2)*cal(5)/cal(3)...
zeros(size(Tra,1),1) zeros(size(Tra,1),1)];

%Tra(:,8:9)

%Ref(:,1:2)

%b=[a Ref(:,1:2) Tra(:,8:9)]

Y%itcal time, taking into account (X,y) position and scan rate

Tra(:,4)=Tra(:,2)+((cal(5)/(cal(6)*cal(3))*(Tra(:,6)+2*cal(4)*Tra(:,7))));

%delta t time between images

Tra(:,3)=Tra(:,2)-circshift(Tra(:,2),1);

%delta tcal, change in tcal between images

Tra(:,5)=Tra(:,4)-circshift(Tra(:,4),1);

%Tra(:,10)=((Tra(:,8)-circshift(Tra(:,8),1))"2+(Tra(:,9)-
circshift(Tra(:,9),1))"2)/(Tra(:,3)*2);

for j=2:Trasize
%squared displacement nm”2
Tra(j,10)=((Tra(j,8)-Tra(j-1,8))"2+(Tra(j,9)-Tra(j-1,9))"2);
%mean squared displacement (running average of squared
%displacement) nm”2
Tra(j,11)=sum(Tra(1:j,10))/(G-1);
%SD/4deltat nm”"2/sec
Tra(j,12)=((Tra(j,8)-Tra(j-1,8))"2+(Tra(j,9)-Tra(j-1,9))"2)/(4*Tra(j,3));
%MSD/4t nm”2/sec
Tra(j,13)=sum(Tra(1:},12))/(-1);
%SD/4deltatcal nm”2/sec
Tra(j,14)=((Tra(j,8)-Tra(j-1,8))*2+(Tra(j,9)-Tra(j-1,9))"2)/(4*Tra(j,5));
%MSD/4deltatcal nm”2/sec
Tra(j,15)=sum(Tra(1:j,14))/(-1);
%r distance from (0,0) in nm
Tra(j,16)=sqrt(Tra(j,8)"2+Tra(j,9)"2);
%deltar hop length between images
Tra(j,17)=sqrt(Tra(j,10));
Tra(1,18)=0;
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Tra(1,19)=0;

%Tra(:,18)=flight IDs Tra(:,19)=stick IDs
if Tra(j,17)>=0.1
if (Tra(j-1,19)>0)&&(Tra(j-1,19)~=1)
f=f+1;
end
Tra(j,18)=f;
else
if Tra(j-1,18)>0
s=s+1;
end
Tra(j,19)=s;
end

%Save "extract", the list of mobile and reference island pairs
x=[extract(find(extract(:,1)),1) extract(find(extract(:,2)),2)];
save(strcat(directory,'\',outfldr,"\',dataset,’ extract'),'x','-ASCII")
end

%Save the matrix of processed data
save(strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05g',extract(k,1)),' traj1"),'Tra',"-
ASCII)

%Plot the drift-corrected, calibrated x-y trajectory and save it as a

%0]pg.

plot(Tra(:,8),Tra(:,9),"- ok','MarkerFaceColor', 'k','MarkerSize',2)

axis([-int8(max([max(abs(Tra(:,8))) max(abs(Tra(:,9)))])+1)
int8(max([max(abs(Tra(:,8))) max(abs(Tra(:,9)))])+1) -int8(max([max(abs(Tra(:,8)))
max(abs(Tra(:,9)))])+1) int8(max([max(abs(Tra(:,8))) max(abs(Tra(:,9)))])+1)])

axis square

grid on

title(sprintf('%s%05¢g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))

xlabel('x (nm)")

ylabel('y (nm)")

saveas(1,strcat(directory,'\',outfldr,'\',dataset,' ',sprintf('%05¢g',extract(k,1))," xy'),jpg")

%save(strcat(directory,'\',outfldr,"\',dataset,’ plot',extract(k,1)),'1','~ASCII")

%PIlot the mean-square-displacement of the island as a function of movie
%frame and save it as a jpg.

plot(Tra(:,1),Tra(:,11),"-k")
title(sprintf('%s%05g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))
xlabel('Frame')

ylabel('<\Deltax"2> (nm”2)")
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saveas(1,strcat(directory,\',outfldr,'\',dataset,' ',sprintf('%05¢g',extract(k,1)),’” MSD"),"jpg")

%saveas(1,sprintf('%s%05g',strcat(directory,\',outfldr,"\',dataset,’, MSD '),extract(k,1)),"j
pg)

%plot x vs frame # and save a jpg

plot(Tra(:,1),Tra(:,8),"-k")
title(sprintf('%s%05¢g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))
xlabel('Frame')

ylabel('x (nm)")

saveas(1,strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05g',extract(k,1))," xtime'),'jpg")

%plot y vs frame # and save a jpg

plot(Tra(:,1),Tra(:,9),"-k")
title(sprintf('%s%05¢g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))
xlabel('Frame')

ylabel('y (nm)")

saveas(1,strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05¢g",extract(k,1))," ytime'),'jpg")

%saveas(1,sprintf('%s%05¢g',strcat(directory,'\',outfldr,'\',dataset,’ MSD '),extract(k,1)),'j
pg)
%plot the island distance from the origin, "r", vs frame # and save a jpg
plot(Tra(:,1),Tra(:,16),'-k")
title(sprintf('%s%05g',strcat(dataset(1:6),"--',dataset(8:10),'--"),extract(k,1)))
xlabel('Frame')
ylabel('r (nm)")

saveas(1,strcat(directory,\',outfldr,'\',dataset,' ',sprintf('%05¢g',extract(k,1)),' rtime'),'jpg")

%histogram of hop displacements, saved as a separate matrix "lhist",

%and plotted as a jpg

x=0:.0289:2.89;

[n,xout]=hist(Tra(:,17),x);

save(strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05g',extract(k,1))," lhist'),'n’,"-
ASCII")

plot(xout,n,'- ok','MarkerFaceColor', 'k','MarkerSize',2)

title(sprintf('%s%05¢g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))

xlabel('Displacement (nm)')

ylabel('# Hops')
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saveas(1,strcat(directory,\',outfldr,"\',dataset,' ',sprintf('%05¢g',extract(k,1))," lhist'),'jpg")

%histogram of squared hop lengths, saved as a separate matrix,
%"12hist", and plotted as a jpg

x=0:0.0083521:8.3521/10;

[n,xout]=hist(Tra(:,10),x);

save(strcat(directory,\',outfldr,"\',dataset,’ ',sprintf('%05g',extract(k,1)),' 12hist'),n','-
ASCII")

plot(xout,n,'- ok','MarkerFaceColor', 'k','MarkerSize',2)

title(sprintf('%s%05¢g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))

xlabel('Squared Displacement (nm)")

ylabel('# Hops')

saveas(1,strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05¢g",extract(k,1))," 12hist'),'jpg")

progress=sprintf('%03d%s%03d' k-first+1,"/' last-first+1)
toc

%subroutine to extract flight and stick times and distances
flight=zeros(max(Tra(:,18)),3);

for I=1:max(Tra(:,18))

[r,c,v]=find(Tra(:,18)==l);

flight(1,1)=1;

flight(1,2)=size(r,1)*Tra(r(1),5);

flight(1,3)=sum(Tra(r(1):r(size(r,1)),17));

end

%Save the matrix of flight and stick data
save(strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05g',extract(k,1)),' flight'),'flight','-
ASCII")

%plot the flight distance vs flight time
plot(flight(:,2),flight(:,3),'ok','MarkerFaceColor', 'k','MarkerSize',2)
title(sprintf('%s%05g',strcat(dataset(1:6),'--',dataset(8:10),'--"),extract(k,1)))
xlabel('Flight Time (sec)')

ylabel('Flight Distance (nm)')

%save the plot as a jpeg
%NOTE: if there are no flights (the island didn't move by more than

68



%the "Flight" cutoff distance, then the above plot command will do nothing,

%but the title and axes labels will simply change the labels.
saveas(1,strcat(directory,'\',outfldr,"\',dataset,’ ',sprintf('%05¢g",extract(k,1))," flight'),'jpg")

end

end
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