
A REWRITING APPROACH TO CONCURRENT
PROGRAMMING LANGUAGE DESIGN AND SEMANTICS

BY

TRAIAN FLORIN SERBANUTA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Associate Professor Grigore Ros,u, Chair and Director of Research
Principal Researcher Thomas Ball, Microsoft Research
Assistant Professor Darko Marinov
Professor José Meseguer
Assistant Professor Madhusudan Parthasarathy



Abstract

A plethora of programming languages have been and continue to be developed

to keep pace with hardware advancements and the ever more demanding require-

ments of software development. As these increasingly sophisticated languages

need to be well understood by both programmers and implementors, precise

specifications are increasingly required. Moreover, the safety and adequacy with

respect to requirements of programs written in these languages needs to be

tested, analyzed, and, if possible, proved. This dissertation proposes a rigorous

approach to define programming languages based on rewriting, which allows to

easily design and test language extensions, and to specify and analyze safety

and adequacy of program executions.

To this aim, this dissertation describes the K framework, an executable

semantic framework inspired from rewriting logic but specialized and optimized

for programming languages. The K framework consists of three components: (1)

a language definitional technique; (2) a specialized notation; and (3) a resource-

sharing concurrent rewriting semantics. The language definitional technique

is a rewriting technique built upon the lessons learned from capturing and

studying existing operational semantics frameworks within rewriting logic, and

upon attempts to combine their strengths while avoiding their limitations. The

specialized notation makes the technical details of the technique transparent to

the language designer, and enhances modularity, by allowing the designer to

specify the minimal context needed for a semantic rule. Finally, the resource-

sharing concurrent semantics relies on the particular form of the semantic rules

to enhance concurrency, by allowing overlapping rule instances (e.g., two threads

writing in different locations in the store, which overlap on the store entity) to

apply concurrently as long as they only overlap on the parts they do not change.

The main contributions of the dissertation are: (1) a uniform recasting of the

major existing operational semantics techniques within rewriting logic; (2) an

overview description of the K framework and how it can be used to define, extend

and analyze programming languages; (3) a semantics for K concurrent rewriting

obtained through an embedding in graph rewriting; and (4) a description of the

K-Maude tool, a tool for defining programming languages using the K technique

on top of the Maude rewriting language.

ii



προς δόξαν Θεού

iii



Acknowledgments

Concerning my pre-PhD formation, I would like to thank my grandfather Gheor-

ghe and my mid- and high-school mathematics professor Cornel Noană for

instilling and sustaining my love for mathematics, to my mother Olivia and

my brother Virgil for instilling and sustaining my love for programming, and

finally to my College and Masters professors Virgil Emil Căzănescu, Alexandru

Mateescu, and Răzvan Diaconescu, for showing me that computer science is

more than programming, and for guiding my first research steps.

My entire PhD research, including the results presented in this dissertation

would not have been possible without my advisor Grigore Ros,u. I would like

to especially thank him for providing countless research ideas, as well as help

and guidance through the darkness of “nothing works”; his inspiration and his

readiness in working together for overcoming any research obstacle have proved

instrumental in my formation. In particular, his introduction of K in 2003 as a

rewriting technique for defining programming languages, and the fact that he

continuously used K in teaching programming language design at UIUC ever

since, played a very important role in the development of the K framework, the

K-Maude tool, and of this dissertation itself.

I would also like to thank the rest of my research committee, made up of

Darko Marinov, José Meseguer, Madhusudan Parthasarathy, and Tom Ball,

for providing valuable feedback which helped in presenting my research in a

better light and strengthen the value of this dissertation, and for their insight-

ful suggestions for potential future work related to the presented research; in

particular, I would like to thank José Meseguer for his vision over the rewrit-

ing logic semantics project and for his direct collaboration in developing the

initial stages of this dissertation.

My research life at UIUC would have been a lot more stern without all my

previous and current colleagues within the Formal Systems and Formal Methods

and Declarative Languages groups, among which Marcelo d’Amorim, Feng Chen,

Chucky Ellison, Michael Ilseman, Mark Hills, Dongyun Jin, Mike Katelman,

Choonghwan Lee, Patrick Meredith, Andrei Popescu, Ralf Sasse, and Andrei

S, tefănescu were always ready to offer a good advice, to argue about everything,

or simply to help procrastinating before deadlines. Thank you guys!

iv



A special thanks is due to my family from both sides of the ocean, including,

but not limited to my parents Mircea and Olivia, my brother Virgil and his

wife Gabriela, and to my parents-in-law Ioan and Aurelia, for always loving

me and trusting in my potential; in particular, to my wife Claudia, for going

through all this process together, for growing together, celebrating together, and

also suffering together at times, and to my girls, Cezara Maria and Teodora,

for bringing light on dark days and constantly reminding me that there are far

more important things in life than research.

Thanks is also due to my non-research related friends from this “new world”,

among which Bogdan, Cristi, Francisco, Matei, Nick, and Thyago, for helping

me face the “cultural shock”, and for being good friends, whether in need or

in celebrating the happy moments of our lives.

Finally, I would like to thank the entire Three Hierarchs Greek Orthodox

Church community, for being a home away from home for us, and in particular to

Fr. George Pyle, and Fr. Michael Condos, for their continuous spiritual support

and counsel during all this time.

The research in this dissertation has been supported in part by NSF grants

CCF-0916893, CNS-0720512, CNS-0509321, CCF-0448501, by NASA contract

NNL08AA23C, by a Samsung SAIT grant, and by several Microsoft gifts.

v



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 A Rewriting Logic Approach
to Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 4 An Overview of the K Semantic Framework . . . . . 87

Chapter 5 From Language Definitions to (Runtime) Analysis
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 6 A Concurrent Semantics for K Rewriting . . . . . . 150

Chapter 7 K-Maude—A Rewriting Logic Implementation of
the K Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Chapter 8 Related Work . . . . . . . . . . . . . . . . . . . . . . 214

Chapter 9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 221

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

vi



Chapter 1

Introduction

This dissertation shows that rewriting is a natural environment to formally define

the semantics of real-life concurrent programming languages and to test and

analyze programs written in those languages.

1.1 Motivation

Computers are becoming an integral part of our life. Besides the increase

in personal computer usage, there are now programable devices embedded in

all aspects of modern life, from consumer electronics to life critical systems

such as transportation and medical devices. Moreover, the internet and the

information age has brought a whole world of previously remote services at

only a click distance.

All these services, be they provided by embedded systems or by personal or

remote computers, share a common characteristic: they result from programming

their host using specialized languages. These languages can vary to a high degree

in their level of abstraction from machine description languages such as Verilog

and VHDL, whose instructions are very close to the hardware circuits they

describe, to high level imperative, object oriented and/or functional languages,

such as Java, C#, or OCaml. To address the continuous increase in difficulty of

software specifications, these language have to evolve and new domain specific

languages and methodologies must be designed and deployed.

At the same time, paradigm changes in hardware design must be accompanied

by similar changes in language design. Moore’s law [119] states that the number of

transistors on an integrated circuit chip doubles about every two years. However,

while this trend is expected to continue for the next 10-20 years (until its physical

limits are attained), the implication that doubling the number of transistors

doubles serial computing power no longer holds true. The move to multi-core

architectures is therefore a must: doubling the number of cores on a chip may

actually still double performance, as long as there is enough parallelism available.

To be able to take advantage of multi-core hardware, a paradigm shift is

needed in programming language design, requiring that concurrency with sharing

of resources becomes the norm rather than the exception. As an evidence of this

trend, the design of popular programming languages is currently being revised

1



to enhance their support for concurrency. In the case of Java, for example, the

standard libraries were enhanced with advanced support for synchronization and

a new Java memory model [97] was proposed to allow more realistic implemen-

tations of the JVM under current hardware architectures. At the same time, the

new (in-progress) C1X standard [86] for the C language explicitly includes multi-

threading and advanced synchronization primitives in its library specification.

However, the need to make languages flexible enough to take advantage of

concurrency, while at the same time allowing for compiler optimizations, requires

allowing under-specification and non-determinism in the language. This poses

significant challenges for testing and proving that specifications or implementa-

tions of languages conform with their intended semantics. Indeed, the complexity

and the lack of adequate tools and techniques for throughly analyzing newly

proposed definitions often leads to subtle errors which take time to be discovered.

For example, the proposed specification for the x86-CC memory model [151]

was shown unsound w.r.t. the actual hardware behavior [128], and the new Java

memory model was shown unsound for some of the compiler optimizations it

was supposed to allow [163].

Whatever an (existing or future) programming language might be, it requires

a specification defining the language so that users and implementors can agree

on the meaning of programs written in that language. This usually amounts to

describing the language syntax, i.e., the constructs allowed by the language, and

its semantics, i.e., the intended behavior of the language constructs. However,

while there seems to be a consensus that syntax needs to be formally specified,

there is more than one way in which semantics of languages are specified, ranging

from using natural language (usually in the form of a reference manual), to

specifying an interpreter (i.e., a standard implementation) or a compiler for

the language into another language, to formally describing the language in a

mathematical language.

Each of the approaches above has its own advantages. For example, natural

language descriptions are more accessible, allowing virtually anyone to read

the specification and to believe they understood its meaning. Interpreters and

compilers allow one to gain knowledge about the language by testing it and

developing usage patterns. Finally, a formal description of languages allows one

to state and prove precise statements about the language and its programs.

However, each of the described approaches has non-negligible limitations.

The natural language descriptions are often incomplete and sometimes even

contradictory; to obtain consensus on their actual meaning requires lawyer

skills in addition to computer scientist skills. Interpreters and compilers require

familiarity with the target language and pose coverage problems, as corner cases

are usually harder to capture in testing; moreover, any extensions to the language,

or the development of analysis tools usually requires a major, if not complete

rewrite of the interpreter/compiler. Formal descriptions are confined to the

power of expression of their specification language. As specification languages

2



often focus on making common programming language features simpler to

express, they often make it hard, or even impossible, to satisfactorily capture

advanced programming language features such as control change and multi-

threaded synchronization. Moreover, each formal specification language seems

to be appropriate to a single analysis area: SOS for dynamic semantics, natural

semantics for type systems, reduction semantics with evaluation contexts for

proving type soundness, axiomatic semantics for program verification, and so on.

The aim of our research is to show that one can keep the balance between

simplicity and the power of expressivity and analysis without compromising

the formal aspect. This dissertation shows how executable formal definitions

can help with addressing the issues formulated above, first by providing a

mathematical environment to design programming languages, then by allowing

one to easily experiment with changes to those definitions by effectively testing

them, and finally, by allowing to explore and abstract nondeterministic executions

for analysis purposes.

1.2 Summary of Contributions

The research described in this dissertation makes the following key contributions:

1. Corroborates existing evidence, and brings further evidence that rewriting

in general, and rewriting logic in particular, is a suitable environment for se-

mantically defining programing languages and for executing, exploring, and

analyzing the executions of programs written in those languages. Specifi-

cally, rewriting logic is re-affirmed as a powerful meta-logical framework

for programming languages, able to capture existing language definitional

frameworks with minimal representational distance, and offering them

executability and powerful tool support.

2. Advances the rewriting-based K framework as a candidate for an ideal

language definitional framework by exemplifying its power of abstraction

and expression in conjunction with its natural support for concurrency, its

modularity, flexibility, and simplicity.

3. Shows that K definitions can be easily turned into runtime verification tools

which can be used to check properties such as memory safety and datarace

freeness, or to test and explore behaviors of relaxed memory models such

as the x86-TSO [128].

4. Endows K with a true concurrency with resource sharing semantics which

allows to capture within the framework the intended granularity for multi-

threaded concurrency, in addition to the parallelism already available

through the deduction rules of rewriting logic.

5. Describes the theory and implementation of K-Maude, a tool mechanizing

a representation of K in rewriting logic, which brings K definitions to life,

3



and which has been used to give semantics to real programming languages

and to derive analysis tools out of programming language definitions.

1.3 Rewriting Logic Semantics

The research presented in this dissertation is part of the more general rewriting

logic semantics project [109, 110, 111], an international collaborative project

whose goal is to advance the use of rewriting logic for defining programming

languages and for analyzing programs written in them.

Rewriting is an intuitive and simple mathematical paradigm which specifies

the evolution of a system by matching and replacing parts of the system state

according to rewrite rules. Besides being formal, it is also executable, by simply

repeating the process of rewriting the state. Additionally, an initial state together

with a set of rules defines both an execution of the system (if remembering only

one state at a time), or a transition system which can be explored and model

checked for safety properties. A formal and executable definition of a language

brings an additional potential benefit: it can be used to (semi-)automate the

verification of programs written in that language by using direct or symbolic

execution or simulation of the program’s execution through the definition of the

language to discharge (some of) the proof obligations.

Rewriting logic [103] defines a formal logic for rewriting which, in addition to

rules, allows equations to define equivalences between the states of the system.

The benefits of using rewriting logic in defining the behavior of systems are

multiple. First, because rewriting logic is rooted in rewriting, one directly gains

executability, and thus the ability of directly using definitions as interpreters.

Second, the concurrency in rewriting is the norm rather than the exception,

which allows capturing the intended granularity of concurrency directly in

the definition, rather than relying on subsequent abstractions. Furthermore,

by encoding the deterministic rules of a rewrite system as equations through

equational abstractions [112], the state-space of transition systems is drastically

collapsed, thus making its exploration approachable, and even effective, and

opening the door for system analysis tools derived directly from definitions. The

Maude rewrite system [34] offers a suite of powerful tools for rewrite theories,

comprising, among others, an execution debugger, and the possibility of tracing

executions, state-space exploration, an explicit-state LTL model checker, and

an inductive theorem prover. For example, model checking Java programs in

Maude using a definition of Java, following the K technique presented in this

dissertation, was shown to compare favorably [57] with Java PathFinder, the

state-of-art explicit-state model checker for Java [72].

Here are some generic guidelines to be followed when defining the semantics

of a programming language within rewriting logic. First, one needs to represent

the state of a running program as a configuration term. Next, the execution

is described using rewrite rules and equations: equations are used to express

4



structural changes and irrelevant execution steps, while rewrite rules are used to

express relevant computational steps, which become transitions between states.

With this, the execution becomes a sequence of transitions between equivalence

classes of states, and the state-space of executions becomes a transition system

which can be explored and model checked.

While these guidelines are good and were shown to be applicable in practice

for defining a number of paradigmatic languages like Petri-nets, Actors, CCS, and

the π-calculus [103, 104, 174], when approaching complex programming languages

one needs more specific methodologies to organize and direct this process.

Chapter 3 re-affirms rewriting logic as an “ecumenical” logic for representing

operational programming language definitional styles, by showing in a uniform

way that most relevant existing techniques and styles, namely big-step (or natural)

semantics [89], SOS [136], Modular SOS [123], reduction semantics (with evalua-

tion contexts) [180], continuation-based semantics [60], and the Cham [15], can

all be captured in rewriting logic with relatively zero-representational distance.

An important consequence of this embedding is that it allows programming

language designers to get the best of both worlds: they can use their favorite pro-

gramming language definitional framework notation and technique in designing

a language, and then, through the corresponding representation of the definition

as a rewrite theory, these definitions can be executed, explored and analyzed.

Being able to execute and analyze programs using their formal definitions,

and thus adding a quite practical dimension to the relevance of a language

definition, it is natural to ask the question

Can we use existing techniques to define and analyze real program-

ming languages?

By expressing all the above specified frameworks together in rewriting logic

this question can be asked in a unified way. Unfortunately, each of the definitional

frameworks mentioned above yields a negative answer to the question, although

their combined strength would seem able to answer it positively. Varying

from total lack of support to full support, on average, existing frameworks

have problems with: defining control-intensive features (except for evaluation

contexts), being modular when new features are introduced (except for Modular

SOS), and in giving a semantics where concurrency can be captured directly

by the transition system, that is, true concurrency (except for the Cham), in

opposition with obtaining an interleaving semantics and then obtaining the

real concurrency as something external (through equivalences), or even almost

complete lack of support for concurrency as in big-step semantics which can only

capture the set of all possible results of computation. There are also some less

important concerns, such as the need to write rules in the framework to specify

the order of evaluation (except for the evaluation context approach) instead of

focusing on the actual semantics of the construct, or regarding the efficiency of

5



Rewriting LogicBig-Step 
SOS

Modular 
SOS

The Chemical 
Abstract Machine 

(CHAM)

Reduction 
Semantics with 

Evaluation Contexts

Small-Step
SOS

Ideal PL 
definitional 
framework?

Figure 1.1: Rewriting logic as a meta-logical semantic framework for defining
programming languages

using the definition as interpreters in RWL, for which only big-step interpreters

and continuation-based interpreters seem to give positive answers.

Nevertheless, the power of rewriting logic to capture all these definitional

styles suggests that it might also be amenable for combining all their strengths.

The remainder of the dissertation was motivated by the goal of finding “the

ideal” programming language definitional framework based on rewriting logic

which, based on the findings mentioned above, should be:

• At least as expressive as reduction semantics with evaluation contexts;

• At least as modular as modular SOS; and

• At least as concurrent as the Cham.

This dissertation shows that the K framework is a strong candidate for such

an ideal programming language definitional framework.

1.4 The K Framework

Introduced by Ros,u [142] in 2003 for teaching a programming languages class, and

continuously refined and developed ever since, the K framework is a programming

language definitional framework based on rewriting logic which brings together

the strengths of existing frameworks (expressivity, modularity, concurrency,

and simplicity) while avoiding their weaknesses. The K framework consists of

the K technique, which can be, and has already been used to define real-life

programming languages, such as Java, C, and Scheme, and program analysis

tools (see Section 1.7 and the references there), and K rewriting, a rewriting

semantics which allows more concurrency for K definitions than their direct

representations as rewrite theories would allow. Nevertheless, the K framework is

itself representable in rewriting logic, and this representation has been automated

in the K-Maude tool for execution, testing and analysis purposes.

6



Module KERNELC-SYNTAX
imports PL-ID+PL-INT
PointerId ::= Id

| * PointerId [strict]
Exp ::= Int | PointerId | DeclId

| * Exp [ditto]
| Exp + Exp [strict]
| Exp - Exp [strict]
| Exp == Exp [strict]
| Exp != Exp [strict]
| Exp <= Exp [strict]
| ! Exp
| Exp && Exp
| Exp || Exp
| Exp ? Exp : Exp
| Exp = Exp [strict(2)]
| printf("%d;", Exp ) [strict]
| scanf("%d", Exp ) [strict]
| & Id
| Id ( List{Exp} ) [strict(2)]
| Id ()

| Exp ++

| NULL
| free( Exp ) [strict]
| (int*)malloc( Exp *sizeof(int)) [strict]
| Exp [ Exp ]

| spawn Exp
| acquire( Exp ) [strict]
| release( Exp ) [strict]
| join( Exp ) [strict]

StmtList ::= Stmt
| StmtList StmtList

List{Bottom} ::= Bottom
| ()
| List{Bottom} , List{Bottom} [id: () strict hybrid assoc]

List{PointerId} ::= PointerId | List{Bottom}
| List{PointerId} , List{PointerId} [id: () ditto assoc]

List{DeclId} ::= DeclId | List{Bottom}
| List{DeclId} , List{DeclId} [id: () ditto assoc]

List{Exp} ::= Exp | List{PointerId} | List{DeclId}
| List{Exp} , List{Exp} [id: () ditto assoc]

DeclId ::= int Exp
| void PointerId

Stmt ::= Exp ; [strict]
| {}
| { StmtList }
| if( Exp ) Stmt
| if( Exp ) Stmt else Stmt [strict(1)]
| while( Exp ) Stmt
| DeclId List{DeclId} { StmtList }
| DeclId List{DeclId} { StmtList return Exp ;}
| #include< StmtList >

Id ::= main

Pgm ::= #include<stdio.h>#include<stdlib.h> StmtList
end module
Module KERNELC-DESUGARED-SYNTAX

imports KERNELC-SYNTAX
macro: ! E = E ? 0 : 1
macro: E1 && E2 = E1 ? E2 : 0
macro: E1 || E2 = E1 ? 1 : E2

macro: if( E ) St = if( E ) St else {}
macro: NULL = 0
macro: I () = I ( () )

macro: DI L { Sts } = DI L { Sts return 0 ;}
macro: void PI = int PI
macro: int * PI = int PI
macro: #include< Sts > = Sts
macro: E1 [ E2 ] = * E1 + E2

macro: int * PI = E = int PI = E
macro: E ++ = E = E + 1

end module
Module KERNELC-SEMANTICS

imports PL-CONVERSION+K+KERNELC-DESUGARED-SYNTAX
KResult ::= List{Val}
K ::= List{Exp} | List{PointerId} | List{DeclId} | StmtList | Pgm | String

| restore( Map )

Exp ::= Val
List{Exp} ::= List{Val}
Val ::= Int

| & Id
| void

List{Val} ::= Val
| List{Val} , List{Val} [id: () ditto assoc]

List{K} ::= Nat .. Nat
initial configuration:

•K

k

•Map

env

0

id

thread*

threads

•Map

locks

•Set

cthreads

•Map

funs

•List

in

“”

out

•Map

mem

•Map

ptr

1

next

T

“”

result

K rules:
context: * ! = —
rule: I1 == I2 ⇀ Bool2Int ( I1 ==Int I2 )

rule: I1 != I2 ⇀ Bool2Int ( I1 !=Int I2 )

rule: I1 + I2 ⇀ I1 +Int I2

rule: I1 - I2 ⇀ I1 -Int I2

rule: I1 <= I2 ⇀ Bool2Int ( I1 ≤Int I2 )

rule: ? : ⇀ if( ) else

rule: if( I ) — else St ⇀ St when I ==Int 0

rule: if( I ) St else — ⇀ St when notBool I ==Int 0

rule: V ; ⇀ •

rule: X
V

k

X "→ V

env

rule: X = V
V

k

X "→—
V

env

rule: while( E ) St
if( E ) { St while( E ) St } else {}

k

rule: printf("%d;", I )
void

k

S
S +String Int2String ( I ) +String “;”

out

rule: scanf("%d", N )

void

k

N "→—
I

mem

I
•

in

rule: scanf("%d", & X )

void

k

X "→—
I

env

I
•

in

rule: #include<stdio.h>#include<stdlib.h> Sts ⇀ Sts

rule: { Sts } ⇀ Sts

rule: {} ⇀ •

rule: St Sts ⇀ St ! Sts

rule: * N
V

k

N "→ V

mem

rule: * N = V
V

k

N "→—
V

mem

rule: int X Xl { Sts return E ;}
•

k

•

X "→ int X Xl { Sts return E ;}

funs

rule:




X ( Vl )
Sts ! E ! restore( Env )

k

Env
eraseKLabel ( int , Xl ) "→ Vl

env

X "→ int X Xl { Sts return E ;}
funs




context: int — = !

rule: int X
0

k

•

X "→ 0

env

rule: int X = V
V

k

•

X "→ V

env

rule: V ! restore( Env )
•

k

—
Env

env

rule:




(int*)malloc( N *sizeof(int))

N ′

k

•

N ′ "→ N

ptr

•

N ′ .. N +Nat N ′ "→ 0

mem

N ′

N +Nat N ′

next




rule: free( N )

void

k

N "→ N ′

•

ptr

Mem
Mem [⊥ / N .. N +Nat N ′ ]

mem

context: spawn — ( ! )

rule: spawn X ( Vl )
N

k

N
N +Nat 1

next

•

X ( Vl )

k

N

id

thread

rule:
V

k

N

id

thread

•

•

N

cthreads

rule: join( N )

0

k

N

cthreads

rule: acquire( N )

void

k

N ′
id

N "→ -Int 1
N ′

locks

rule: release( N )

void

k

N ′
id

N "→ N ′

-Int 1

locks

rule: acquire( N )

void

k

N ′
id

Locks •

N "→ N ′

locks

when notBool N in keys Locks

rule: N1 .. N1 ⇀ •List{K}

rule: N1 .. sNat N ⇀ N ,, N1 .. N

end module
Module KERNELC-RACE-DETECTION

imports KERNELC-SEMANTICS
initial configuration:

•K

k?

•K

race?

•Map

env

0

id

thread*

threads

•Set

cthreads

•Map

funs

•List

in

“”

out

•Map

mem

•Map

ptr

•Map

locks

1

next

T

“”

result

K rules:
rule: < k

race
> * N = E ...</ k

race
> < k

race
> * N = E′ ...</ k

race
>

rule: < k
race

> * N = E ...</ k
race

> < k
race

> * N ...</ k
race

>

rule: < T
raceDetected

>... K

race
...</ T

raceDetected

>

end module

Module KERNELC-SYNTAX
imports PL-ID+PL-INT
PointerId ::= Id

| * PointerId [strict]
Exp ::= Int | PointerId | DeclId

| * Exp [ditto]
| Exp + Exp [strict]
| Exp - Exp [strict]
| Exp == Exp [strict]
| Exp != Exp [strict]
| Exp <= Exp [strict]
| ! Exp
| Exp && Exp
| Exp || Exp
| Exp ? Exp : Exp
| Exp = Exp [strict(2)]
| printf("%d;", Exp ) [strict]
| scanf("%d", Exp ) [strict]
| & Id
| Id ( List{Exp} ) [strict(2)]
| Id ()

| Exp ++

| NULL
| free( Exp ) [strict]
| (int*)malloc( Exp *sizeof(int)) [strict]
| Exp [ Exp ]

| spawn Exp
| acquire( Exp ) [strict]
| release( Exp ) [strict]
| join( Exp ) [strict]

StmtList ::= Stmt
| StmtList StmtList

List{Bottom} ::= Bottom
| ()
| List{Bottom} , List{Bottom} [id: () strict hybrid assoc]

List{PointerId} ::= PointerId | List{Bottom}
| List{PointerId} , List{PointerId} [id: () ditto assoc]

List{DeclId} ::= DeclId | List{Bottom}
| List{DeclId} , List{DeclId} [id: () ditto assoc]

List{Exp} ::= Exp | List{PointerId} | List{DeclId}
| List{Exp} , List{Exp} [id: () ditto assoc]

DeclId ::= int Exp
| void PointerId

Stmt ::= Exp ; [strict]
| {}
| { StmtList }
| if( Exp ) Stmt
| if( Exp ) Stmt else Stmt [strict(1)]
| while( Exp ) Stmt
| DeclId List{DeclId} { StmtList }
| DeclId List{DeclId} { StmtList return Exp ;}
| #include< StmtList >

Id ::= main

Pgm ::= #include<stdio.h>#include<stdlib.h> StmtList
end module
Module KERNELC-DESUGARED-SYNTAX

imports KERNELC-SYNTAX
macro: ! E = E ? 0 : 1
macro: E1 && E2 = E1 ? E2 : 0
macro: E1 || E2 = E1 ? 1 : E2

macro: if( E ) St = if( E ) St else {}
macro: NULL = 0
macro: I () = I ( () )

macro: DI L { Sts } = DI L { Sts return 0 ;}
macro: void PI = int PI
macro: int * PI = int PI
macro: #include< Sts > = Sts
macro: E1 [ E2 ] = * E1 + E2

macro: int * PI = E = int PI = E
macro: E ++ = E = E + 1

end module
Module KERNELC-SEMANTICS

imports PL-CONVERSION+K+KERNELC-DESUGARED-SYNTAX
KResult ::= List{Val}
K ::= List{Exp} | List{PointerId} | List{DeclId} | StmtList | Pgm | String

| restore( Map )

Exp ::= Val
List{Exp} ::= List{Val}
Val ::= Int

| & Id
| void

List{Val} ::= Val
| List{Val} , List{Val} [id: () ditto assoc]

List{K} ::= Nat .. Nat
initial configuration:

•K

k

•Map

env

0

id

thread*

threads

•Map

locks

•Set

cthreads

•Map

funs

•List

in

“”

out

•Map

mem

•Map

ptr

1

next

T

“”

result

K rules:
context: * ! = —
rule: I1 == I2 ⇀ Bool2Int ( I1 ==Int I2 )

rule: I1 != I2 ⇀ Bool2Int ( I1 !=Int I2 )

rule: I1 + I2 ⇀ I1 +Int I2

rule: I1 - I2 ⇀ I1 -Int I2

rule: I1 <= I2 ⇀ Bool2Int ( I1 ≤Int I2 )

rule: ? : ⇀ if( ) else

rule: if( I ) — else St ⇀ St when I ==Int 0

rule: if( I ) St else — ⇀ St when notBool I ==Int 0

rule: V ; ⇀ •

rule: X
V

k

X "→ V

env

rule: X = V
V

k

X "→—
V

env

rule: while( E ) St
if( E ) { St while( E ) St } else {}

k

rule: printf("%d;", I )
void

k

S
S +String Int2String ( I ) +String “;”

out

rule: scanf("%d", N )

void

k

N "→—
I

mem

I
•

in

rule: scanf("%d", & X )

void

k

X "→—
I

env

I
•

in

rule: #include<stdio.h>#include<stdlib.h> Sts ⇀ Sts

rule: { Sts } ⇀ Sts

rule: {} ⇀ •

rule: St Sts ⇀ St ! Sts

rule: * N
V

k

N "→ V

mem

rule: * N = V
V

k

N "→—
V

mem

rule: int X Xl { Sts return E ;}
•

k

•

X "→ int X Xl { Sts return E ;}

funs

rule:




X ( Vl )
Sts ! E ! restore( Env )

k

Env
eraseKLabel ( int , Xl ) "→ Vl

env

X "→ int X Xl { Sts return E ;}
funs




context: int — = !

rule: int X
0

k

•

X "→ 0

env

rule: int X = V
V

k

•

X "→ V

env

rule: V ! restore( Env )
•

k

—
Env

env

rule:




(int*)malloc( N *sizeof(int))

N ′

k

•

N ′ "→ N

ptr

•

N ′ .. N +Nat N ′ "→ 0

mem

N ′

N +Nat N ′

next




rule: free( N )

void

k

N "→ N ′

•

ptr

Mem
Mem [⊥ / N .. N +Nat N ′ ]

mem

context: spawn — ( ! )

rule: spawn X ( Vl )
N

k

N
N +Nat 1

next

•

X ( Vl )

k

N

id

thread

rule:
V

k

N

id

thread

•

•

N

cthreads

rule: join( N )

0

k

N

cthreads

rule: acquire( N )

void

k

N ′
id

N "→ -Int 1
N ′

locks

rule: release( N )

void

k

N ′
id

N "→ N ′

-Int 1

locks

rule: acquire( N )

void

k

N ′
id

Locks •

N "→ N ′

locks

when notBool N in keys Locks

rule: N1 .. N1 ⇀ •List{K}

rule: N1 .. sNat N ⇀ N ,, N1 .. N

end module
Module KERNELC-RACE-DETECTION

imports KERNELC-SEMANTICS
initial configuration:

•K

k?

•K

race?

•Map

env

0

id

thread*

threads

•Set

cthreads

•Map

funs

•List

in

“”

out

•Map

mem

•Map

ptr

•Map

locks

1

next

T

“”

result

K rules:
rule: < k

race
> * N = E ...</ k

race
> < k

race
> * N = E′ ...</ k

race
>

rule: < k
race

> * N = E ...</ k
race

> < k
race

> * N ...</ k
race

>

rule: < T
raceDetected

>... K

race
...</ T

raceDetected

>

end module

Module KERNELC-SYNTAX
imports PL-ID+PL-INT
PointerId ::= Id

| * PointerId [strict]
Exp ::= Int | PointerId | DeclId

| * Exp [ditto]
| Exp + Exp [strict]
| Exp - Exp [strict]
| Exp == Exp [strict]
| Exp != Exp [strict]
| Exp <= Exp [strict]
| ! Exp
| Exp && Exp
| Exp || Exp
| Exp ? Exp : Exp
| Exp = Exp [strict(2)]
| printf("%d;", Exp ) [strict]
| scanf("%d", Exp ) [strict]
| & Id
| Id ( List{Exp} ) [strict(2)]
| Id ()

| Exp ++

| NULL
| free( Exp ) [strict]
| (int*)malloc( Exp *sizeof(int)) [strict]
| Exp [ Exp ]

| spawn Exp
| acquire( Exp ) [strict]
| release( Exp ) [strict]
| join( Exp ) [strict]

StmtList ::= Stmt
| StmtList StmtList

List{Bottom} ::= Bottom
| ()
| List{Bottom} , List{Bottom} [id: () strict hybrid assoc]

List{PointerId} ::= PointerId | List{Bottom}
| List{PointerId} , List{PointerId} [id: () ditto assoc]

List{DeclId} ::= DeclId | List{Bottom}
| List{DeclId} , List{DeclId} [id: () ditto assoc]

List{Exp} ::= Exp | List{PointerId} | List{DeclId}
| List{Exp} , List{Exp} [id: () ditto assoc]

DeclId ::= int Exp
| void PointerId

Stmt ::= Exp ; [strict]
| {}
| { StmtList }
| if( Exp ) Stmt
| if( Exp ) Stmt else Stmt [strict(1)]
| while( Exp ) Stmt
| DeclId List{DeclId} { StmtList }
| DeclId List{DeclId} { StmtList return Exp ;}
| #include< StmtList >

Id ::= main

Pgm ::= #include<stdio.h>#include<stdlib.h> StmtList
end module
Module KERNELC-DESUGARED-SYNTAX

imports KERNELC-SYNTAX
macro: ! E = E ? 0 : 1
macro: E1 && E2 = E1 ? E2 : 0
macro: E1 || E2 = E1 ? 1 : E2

macro: if( E ) St = if( E ) St else {}
macro: NULL = 0
macro: I () = I ( () )

macro: DI L { Sts } = DI L { Sts return 0 ;}
macro: void PI = int PI
macro: int * PI = int PI
macro: #include< Sts > = Sts
macro: E1 [ E2 ] = * E1 + E2

macro: int * PI = E = int PI = E
macro: E ++ = E = E + 1

end module
Module KERNELC-SEMANTICS

imports PL-CONVERSION+K+KERNELC-DESUGARED-SYNTAX
KResult ::= List{Val}
K ::= List{Exp} | List{PointerId} | List{DeclId} | StmtList | Pgm | String

| restore( Map )

Exp ::= Val
List{Exp} ::= List{Val}
Val ::= Int

| & Id
| void

List{Val} ::= Val
| List{Val} , List{Val} [id: () ditto assoc]

List{K} ::= Nat .. Nat
initial configuration:

•K

k

•Map

env

0

id

thread*

threads

•Map

locks

•Set

cthreads

•Map

funs

•List

in

“”

out

•Map

mem

•Map

ptr

1

next

T

“”

result

K rules:
context: * ! = —
rule: I1 == I2 ⇀ Bool2Int ( I1 ==Int I2 )

rule: I1 != I2 ⇀ Bool2Int ( I1 !=Int I2 )

rule: I1 + I2 ⇀ I1 +Int I2

rule: I1 - I2 ⇀ I1 -Int I2

rule: I1 <= I2 ⇀ Bool2Int ( I1 ≤Int I2 )

rule: ? : ⇀ if( ) else

rule: if( I ) — else St ⇀ St when I ==Int 0

rule: if( I ) St else — ⇀ St when notBool I ==Int 0

rule: V ; ⇀ •

rule: X
V

k

X "→ V

env

rule: X = V
V

k

X "→—
V

env

rule: while( E ) St
if( E ) { St while( E ) St } else {}

k

rule: printf("%d;", I )
void

k

S
S +String Int2String ( I ) +String “;”

out

rule: scanf("%d", N )

void

k

N "→—
I

mem

I
•

in

rule: scanf("%d", & X )

void

k

X "→—
I

env

I
•

in

rule: #include<stdio.h>#include<stdlib.h> Sts ⇀ Sts

rule: { Sts } ⇀ Sts

rule: {} ⇀ •

rule: St Sts ⇀ St ! Sts

rule: * N
V

k

N "→ V

mem

rule: * N = V
V

k

N "→—
V

mem

rule: int X Xl { Sts return E ;}
•

k

•

X "→ int X Xl { Sts return E ;}

funs

rule:




X ( Vl )
Sts ! E ! restore( Env )

k

Env
eraseKLabel ( int , Xl ) "→ Vl

env

X "→ int X Xl { Sts return E ;}
funs




context: int — = !

rule: int X
0

k

•

X "→ 0

env

rule: int X = V
V

k

•

X "→ V

env

rule: V ! restore( Env )
•

k

—
Env

env

rule:




(int*)malloc( N *sizeof(int))

N ′

k

•

N ′ "→ N

ptr

•

N ′ .. N +Nat N ′ "→ 0

mem

N ′

N +Nat N ′

next




rule: free( N )

void

k

N "→ N ′

•

ptr

Mem
Mem [⊥ / N .. N +Nat N ′ ]

mem

context: spawn — ( ! )

rule: spawn X ( Vl )
N

k

N
N +Nat 1

next

•

X ( Vl )

k

N

id

thread

rule:
V

k

N

id

thread

•

•

N

cthreads

rule: join( N )

0

k

N

cthreads

rule: acquire( N )

void

k

N ′
id

N "→ -Int 1
N ′

locks

rule: release( N )

void

k

N ′
id

N "→ N ′

-Int 1

locks

rule: acquire( N )

void

k

N ′
id

Locks •

N "→ N ′

locks

when notBool N in keys Locks

rule: N1 .. N1 ⇀ •List{K}

rule: N1 .. sNat N ⇀ N ,, N1 .. N

end module
Module KERNELC-RACE-DETECTION

imports KERNELC-SEMANTICS
initial configuration:

•K

k?

•K

race?

•Map

env

0

id

thread*

threads

•Set

cthreads

•Map

funs

•List

in

“”

out

•Map

mem

•Map

ptr

•Map

locks

1

next

T

“”

result

K rules:
rule: < k

race
> * N = E ...</ k

race
> < k

race
> * N = E′ ...</ k

race
>

rule: < k
race

> * N = E ...</ k
race

> < k
race

> * N ...</ k
race

>

rule: < T
raceDetected

>... K

race
...</ T

raceDetected

>

end module

Figure 1.2: The full definition of the KernelC language: left—annotated syntax
and desugaring rules; middle and right—initial configuration and semantic rules.

In a nutshell, the K framework relies on computations, configurations, and K
rules in giving semantics to programming language constructs. Computations,

which gave the name of the framework, are lists of tasks, including syntax; they

have the role of capturing the sequential fragment of programming languages.

Configurations of running programs are represented in K as bags of nested cells,

with a great potential for concurrency and modularity. K rules distinguish

themselves by specifying only what is needed from a configuration, and by clearly

identifying what changes, and thus, being more concise, more modular, and

more concurrent than regular rewrite rules.

To exemplify the K framework we will use here parts of the K definition of

KernelC, which is completely defined and used in Chapter 5 for analyzing

(concurrent) C programs for properties such as memory safety or datarace and

deadlock freeness. KernelC defines a nontrivial subset of the C language

containing functions, memory allocation, pointers and pointer arithmetic, and

input/output primitives. It is expressive enough to be able to write C functions

as the one below (which can be used for copying zero-terminated arrays):

void arrCpy(int ∗ a, int ∗ b) {

while (∗ a ++ = ∗ b ++) {}

}

Without modifying anything but the configuration, the language is extended

with the following concurrency constructs: thread creation, lock-based syn-

chronization and thread join.

7



•K

k

•Map

env

0

id

thread*

threads

•Map

locks

•Set

cthreads

•Map

funs

•List

in

•List

out

•Map

mem

•Map

ptr

1

next

T

Figure 1.3: The initial configuration for executing KernelC programs.

Figure 1.2 presents the complete definition (scaled down to fit within the

page size) of KernelC, including concurrency. Without expecting the reader

to actually read the definition as is (we will return to parts of it here, and it

will presented in detail in Chapter 5), note that the left column contains the

BNF syntax and some syntax desugaring functions, while the middle and the

right columns contain the description of the initial configuration for running

KernelC programs, and the semantic rules. One can notice that the semantics

takes no more than twice as much space as the syntax; moreover, since the

graphical form of the K rules makes them expand vertically (thus usually taking

two lines), we actually have about one rule for each language construct, with

the exception of constructs like the conditional which requires two.

Configurations. The initial running configuration of KernelC is presented

in Figure 1.3. The configuration is a nested multiset of labeled cells, in which

each cell can contain either a list, a set, a bag, or a computation. The initial

KernelC configuration consists of a top cell, labeled “T”, holding a bag of cells,

among which a map cell, labeled “mem”, to map locations to values, a list cell,

labeled “in”, to hold input values, and a bag cell, labeled “threads”, which can

hold any number of “thread” cells (signaled by the star “∗” attached to the label

of the cell). The thread cell is itself a bag of cells, among which the “k” cell holds

a computation structure, which plays the role of directing the execution.

Syntax and Computations. Computations extend syntax with a task se-

quentialization operation, “y”. The basic unit of computation is a task, which

can either be a fragment of syntax, maybe with holes in it, or a semantic task,

such as the recovery of an environment. Most of the manipulation of the com-

putation is abstracted away from the language designer via intuitive PL syntax

annotations like strictness constraints which, when declaring the syntax of a

construct also specify the order of evaluation for its arguments. Similar decompo-

sitions of computations happen in abstract machines by means of stacks [59, 60],

8



and also in the refocusing techniques for implementing reduction semantics with

evaluation contexts [41]. However, what is different here is that K achieves

the same thing formally, by means of rules (there are heating/cooling rules

behind the strictness annotations, as explained below), not as an implementation

means, which is what the others do.

The K BNF syntax specified below suffices to parse the program fragment

t = * x; * x = * y; * y = t; specifying a sequence of statements for swapping

the values at two locations in the memory syntax:

Exp ::= Id

| * Exp [strict]

| Exp = Exp [strict(2)]

Stmt ::= Exp ; [strict]

| Stmt Stmt [seqstrict]

The strictness annotations add semantic information to the syntax by specify-

ing the order of evaluation of arguments for each construct. The heating/cooling

rules automatically generated for the strictness annotations above are:

* ERed 
 ERed y * �
E = ERed 
 ERed y E = �

ERed ; 
 ERed y � ;

SRed S 
 SRed y � S

Val SRed 
 SRed y Val �

The heating/cooling rules specify that the arguments mentioned in the

strictness constraint can be taken out for evaluation at any time and plug back in

their original context. Note that the statement composition generates two such

rules (as, by default, strictness applies to each argument); however, since the

constraint specifies sequential strictness, the second statement can be evaluated

only once the first statement was completely evaluated (specified by the Val

variable which should match a value) and its side effects were propagated.

By successively applying these heating rules (from bottom towards top) on

the statement sequence above we obtain the following computations:

t = * x; * x = * y; * y = t; ⇀

t = * x; y � * x = * y; * y = t; ⇀

t = * x y �; y � * x = * y; * y = t; ⇀

* x y t = � y �; y � * x = * y; * y = t; ⇀

x y * � y t = � y �; y � * x = * y; * y = t;

To begin, because statement composition is declared sequentially strict, the left

statement must be evaluated first. The strictness rule will pull the statement

out for evaluation, and leave a hole in its place. Now an expression statement

construct is at the top and, being strict, it requires that the assignment be puled

9



out. Next, the assignment construct being strict in the second argument, its right

hand side must be pulled out for evaluation. Finally, the dereferencing construct

is strict, and the heating rule will pull out the identifier x. Thus, through the

strictness rules, we have obtained the order of evaluation as a sequence of tasks.

K rules. Consider the following “swap” function for swapping the values at

the locations pointed to by the arguments:

void swap(int * x, int * y){
int t = * x; * x = * y; * y = t;

}

Assume we are in the middle of a call to “swap” with arguments “a” and “b”

(which are mapped to memory locations 4 and 5, respectively), and assume

that all statements except the last one have already been executed, and that

in that statement variable y has already been evaluated to location 5. The top

configuration in Figure 1.4 represents a running configuration corresponding

to this situation. By the strictness rules, we know that the next task to be

executed is evaluating t.

Figure 1.4 shows how the K rule for reading the value of a local variable from

the environment can be derived directly from the running configuration having

the evaluation of a local variable as the next task to be executed. First, through

a process named cell comprehension we focus only on the parts of the cells which

are relevant for this rule. At the same time, we can declare our intention to

replace t by its value in the environment (which is 1) by underlining the part that

needs to change and writing its replacement under the line, through what we call

in-place rewriting. Finally, through the process of configuration abstraction, only

the relevant cells are kept, and through generalization we replace the concrete

instances of identifiers and constants with variables of corresponding types.

Jagged edges are used to specify that there could be more items in the cell (in

the corresponding side) in addition to what is explicitly specified.

The thus obtained K rule succinctly describes the intuitive semantics for

reading a local variable: if a local variable X is the next thing to be evaluated

and if X is mapped to a value V in the environment, then replace that occurence

of X by V . Moreover, it does that by only specifying what is needed from

the configuration, which is essential for obtaining modular definitions, and by

precisely identifying what changes, which significantly enhances the concurrency.

Modularity. As mentioned above, the configuration abstraction process is

instrumental in achieving the desired modularity goal for the K framework.

Relying on the initial configuration being specified by the designer, and the fact

that usually the structure of such a configuration does not change during the

execution of a program, the K rules are essentially invariant under change of

structure. This effectively means that the same rule can be re-used in different

10



cell comprehension ⇓ in-place rewriting

configuration abstraction ⇓ generalization

X
V

k

X 7→ V

env

Figure 1.4: From running configurations to K rules

11



definitions as long as the required cells are present, regardless of the additional

context, which can be automatically inferred from the initial configuration. As an

example, the same K rule for reading the value of a local variable can be used with

a configuration as the one specified above, with the full KernelC configuration,

and even with a configuration in which the computation and the environment

cells are in separate parts of the configuration like the one presented below:

t y * 5 = �y � ; y env( a 7→ 4 b 7→ 5 )

k

thread

x 7→ 4 t 7→ 1 y 7→ 5

env

4 7→ 7 5 7→ 7

mem

state

T

Expressivity. The particular structure of the K computations, including the

fact that the current task is always at the top of the computation, greatly

enhances the expressivity of the K framework. The next paragraphs exemplify

the easiness of using K to define constructs which are known to be hard to

define using other frameworks, thus arguing that the K framework reached the

expressivity goal for an ideal definitional framework.

One first such example is the control intensive call with current continuation

(call/cc), which is present in several functional languages (like Scheme), and to

some extent in some imperative programming languages (such as the longjmp

construct in C). Call/cc is known to be hard to capture in most frameworks

(except for reduction semantics with evaluation contexts) due to their lack of

access to the execution context, which is being captured at a meta-level by the

logical context, and is thus not observable in the framework. Having the entire

remainder of computation always following the current redex allows K to capture

this construct in a simple and succinct manner by the following two rules:

Passing computation as value: callcc V

V cc(K )

y K

k

Applying computation as function: cc(K ) V y
V y K

k

12



The first rule wraps the current remainder of the computation as a value and

passes it to the argument of“callcc”, which is supposed to evaluate to a function.

If during the evaluation of that function call the continuation value is applied

to some value, then the remainder of the computation at that time is replaced

by the saved computation to which the passed value is prefixed (as the result

of the original callcc expression).

Another feature which is hard to represent in other frameworks is handling

multiple tasks at the same time, as when defining synchronous communication,

for example. Although SOS-based frameworks can capture specific versions of

this feature for languages like CCS or the π-caculus, they can only do it there

because the communication commands are always at the top of their processes.

K computation’s structure is again instrumental here, as it allows to easily

match two redexes at the same time, as shown by the following rule, defining

synchronous message passing in a multi-agent environment:

N1

me
sendSynch V to N2

skip

k

agent

N2

me
receiveFrom N1

V

k

agent

Reading the rule one can easily get the intended semantics: if one agent, identified

by N1 attempts to send a message to an agent identified by N2, and if that agent

is waiting to receive a message from N1, then the send construct is dissolved

in the first agent, while the receive expression is replaced by the value being

sent within the receiver agent.

We cannot conclude the survey on the expressivity of the K framework with-

out mentioning its reflective capabilities. Based on the fact that K regards all

computational tasks as being abstract syntax trees, all language constructs be-

come labels applied to other ASTs; for example the expression a+3 is represented

in K as + (a(•List{K}) , 3(•List{K})). This abstract view of syntax allows

reducing the computation-creating constructs to the following minimal core:

K ::= KLabel(List{K}) | •K | K y K

List{K} ::= K | •List{K} | List{K} , List{K}

This approach allows a great power of reflection through generic AST manip-

ulation rules. We won’t go into details here, but in Section 4.3.7 we show

how one can use K to define a generic AST visitor pattern and then how to

use that to define powerful reflective features such as code generation or a

binder-independent substitution.

Concurrency. Another feature that makes K appropriate for defining pro-

gramming languages is its natural way of capturing concurrency. Besides being

truely concurrent as the chemical abstract machine, and thus matching the

13



goals set above for an ideal framework, K rules also allow capturing concurrency

with sharing of resources.

Let us exemplify this concurrency power. The two rules specified below are

the KernelC rules for accessing/updating the value at a memory location:

* N

V

k

N 7→ V

mem
* N = V

V

k

N 7→
V

mem

Consider first a configuration where two threads, symbolized by two compu-

tation cells, are both ready to read the value of the same memory location:

* 3 y · · ·
k

* 3 y · · ·
k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

≡� 1 y · · ·
k

1 y · · ·
k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

As the semantics of the K rules specify that the parts of the configuration

which are only read by the rule can be shared by concurrent applications (here

the memory cell construct and the mapping of location 3 to value 1), the read

rule can match for both threads and they can both advance one step concurrently.

A similar thing happens for concurrent updates. As long as the threads

attempt to update distinct locations, the update rules can match at the same

time and the threads can advance concurrently:

* 2 = 9 y · · ·
k

* 3 = 0 y · · ·
k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

≡� 9 y · · ·
k

0 y · · ·
k

2 7→ 9 3 7→ 0 4 7→ 6

mem

T

Moreover, by disallowing rule instances to overlap on the parts they change,

the K semantics enforces sequentialization of dataraces, as shown in Figure 1.5.

1.5 Formally Capturing the Concurrency of K

To formally define the intuition for K concurrent rewriting given in the previous

section, we have used the resemblance between K rules and graph rewriting

rules as well as the existing similar concurrency results for graph rewriting and

14



* 3 = 0 y · · ·
k

* 3 y · · ·
k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

≡� ≡�

0 y · · ·
k

* 3 y · · ·
k

2 7→ 5 3 7→ 0 4 7→ 6

mem

T

* 3 = 0 y · · ·
k

1 y · · ·
k

2 7→ 5 3 7→ 1 4 7→ 6

mem

T

≡� ≡�

0 y · · ·
k

0 y · · ·
k

2 7→ 5 3 7→ 0 4 7→ 6

mem

T

0 y · · ·
k

1 y · · ·
k

2 7→ 5 3 7→ 0 4 7→ 6

mem

T

Figure 1.5: Dataraces are forced to sequentialize.

15



previous approaches on term graph rewriting. The result was a new formalism

for term graph rewriting which captures the intended concurrency of K rewriting,

while remaining sound and complete w.r.t. standard rewriting.

Any K rule can be straight-forwardly represented as a rewrite rule by simply

forgetting that a part of it can be shared with other rules. For example, the

direct representation of K rule ρ: h( x

g(x, x)

, , 1

0

) as a rewrite rule is:

K2R(ρ) : h(x, y, 1)→ h(g(x, x), y, 0),

in which a fresh variable is first added for each of the anonymous variables,

and then the matching pattern is replicated on the right hand side with the

underlined parts being replaced by their corresponding replacements.

The limitation of this representation is that the potential for concurrency with

sharing of resources is compromised by the translation, as concurrent applications

of rewrite rules are only allowed if the rules do not overlap.

Noticing that the read-only pattern of a K rule is similar with the interface

graph of a graph rewriting rule, we have formalized K rewriting through the help

of graph rewriting, adapting existing representations of terms and rules as graph

and graph rewrite rules (mentioned in Section 2.3) to maximize their potential for

concurrent application. Without going into details here (the formalization and

results expand over the entire Chapter 6), let us exemplify here the representation

of K rules as graph rewrite rules and sketch the main result.

The graph rewrite rule corresponding to the K rule ρ above is K2G(ρ):

s

h

x:s

1

int

1

3
⊃

s

h

x:s int

1

⊂

s

h

s

1

g

int

3

0

x:s

int

11 2

The graph on the left represents the matching pattern, in which operation nodes,

such as the one labeled by h link a node corresponding to their result sort (here

s) to other sort nodes corresponding to the arguments of the operation. To

preserve the order of arguments, the edges leaving an operation node are labeled

with the position of the corresponding arguments. Constants are operation nodes

with no outgoing edge, while variables are identified with sort nodes, with the

observation that anonymous variables do not even need to be mentioned—in our

example, there is no outgoing edge from operation node h labeled with 2, as that

position corresponds to an anonymous variable. The middle graph, also called

the interface graph specifies the shared part of the rule. In order to maximize

sharing, note that every node from the matching pattern and all edges except

16



for the outgoing edges of the operation node h are being shared. The right

graph adds edges to replace the removed ones, and maybe additional nodes and

edges, re-linking the nodes of the interface graph.

Applying a graph rule is done by first matching the left graph against the

graph to be rewritten, then removing the part which is not shared in the interface,

and finally using the right graph to re-link the disconnected parts of the graph.

During this process, some nodes and edges might become unreachable from

the root of the term such as, for example the graph corresponding to 1 in our

example, with the intuition that these parts can be garbage-collected.

Classical results in the algebraic theory of graph rewriting (reviewed in

Section 2.2) ensure that concurrent applications of graph rules are possible and

also serializable if they only overlap on the parts matched by their interface

graphs. Since this is the kind of concurrency we intended for K rules, we can

now define the K rewriting relation on terms as follows: term t rewrites in one

step to term t′ if its graph representation as a tree rewrites in one concurrent

step to a graph corresponding to term t′.

Our main result related to the concurrency of K, Theorem 7, shows that

K-rewriting is sound and complete w.r.t. standard term rewriting using the direct

representation of K rules as rewrite rules, and that the concurrent application

of K rules is serializable. Soundness means that applying one K rule can

be simulated by applying its corresponding direct representation as a rewrite

rule. Completeness means the converse, i.e., that one application of the direct

representation of a K rule can be simulated by applying the K rule directly.

Finally, the serialization result ensures that applying multiple K rules in parallel

can be simulated by applying them one by one, maybe multiple times, whence, if

one does not care about the amount of progress achievable in one step, the direct

rewriting logic representation can simulate K rewriting for all practical purposes.

1.6 K-Maude

Since its semantics is given through an embedding into graph rewriting, K
rewriting can be faithfully captured in rewriting logic, using the representation of

graph rewriting in rewriting logic as theories over concurrent objects [104]. This

representation of K rewriting, described in Section 6.5, allows to study within

rewriting logic the amount of concurrency allowed by K definitions. However, as

this representation is non-executable, and since (as seen above) K rewriting can

be simulated using the direct representation of K rules as rewrite rules for most

practical purposes, the current implementation of the K framework, K-Maude,

uses the direct representation of K in rewriting logic for executing and analyzing

K definitions. As previously mentioned, this direct representation is easy to

achieve, by simply discarding the read-only information of K rules. By being

executable, it gains full access to all the exploration and verification tools for

rewriting logic provided by the Maude rewrite engine [34]. Also, although it

17



loses the one-step concurrency (which is now being simulated by multiple rewrite

steps), it is nevertheless sound for all other analysis purposes.

Flattening K rules to rewrite rules is the main task of the K-Maude compiler,

comprising 16 of the 22 stages of the tool, along with generating heating/cooling

rules from strictness annotations and some interface-related stages. Among

these 16 stages, 6 stages are used for transformation and inference processes

like configuration concretization (based on an initial configuration), replacing

anonymous variables with named ones, or reducing in-place rewriting to regular

rewriting as shown above. The remainder 10 stages deal with the flattening of

the K syntax into the AST form. To give an example, the ASCII representation

in the K-Maude tool for the KernelC rule for reading the value of a memory

location presented above is

rule [deref ]: 〈k〉 ∗N:Nat ⇒ V:Val 〈 /k〉 〈mem 〉 N 7→V 〈 /mem〉

while the rewrite rule generated from it which is used to execute programs is

rl [ deref ]:

〈 threads 〉 ?10:Bag

〈 thread 〉 ?11:Bag

〈 k 〉 ’∗ (Int N:Nat(.List{K})) y ?12:K 〈/ k 〉 〈/ thread 〉 〈/ threads 〉
〈 mem 〉?9:Map Int N:Nat(.List{K}) 7→V:KResult 〈/ mem 〉

⇒
〈 threads 〉 ?10:Bag

〈 thread 〉 ?11:Bag

〈 k 〉 V:KResult y ?12:K 〈/ k 〉 〈/ thread 〉 〈/ threads 〉
〈 mem 〉?9:Map Int N:Nat(.List{K}) 7→V:KResult 〈/ mem 〉

.

To allow the visualization of definitions, K-Maude provides a K-to-LATEX

compiler which translates the ASCII K into a highly customizable LATEX code

which can be used to typeset the definitions for presentation and documentation

purposes. Currently the tool offers two LATEX styles which can turn the generated

code into rules as the ones presented in this introduction, which rely on their

graphical form to rapidly communicate the intuition behind the rules, or into

more mathematical-looking rules as the ones used in the remainder of this

dissertation; for example, the mathematical way to typeset the rule for reading

a location from the memory is

〈* N

V

···〉k 〈··· N 7→ V ···〉mem

1.7 Programming Language Definitions and

Tools in K-Maude and K

K-Maude gives K definitions access to the exploration, analysis and proving

tools available for rewriting logic, allowing programs written in the defined

18



programming languages to be executed, traced, explored, and model checked. In

Chapter 5 we show how, with minor alterations to a definition, one can obtain

runtime verification tools for properties such as memory safety or datarace and

deadlock freeness, or how easily is to experiment with different memory models

(i.e., a sequentially consistent one, and one based on x86-TSO [128]). Although

presented in this dissertation on KernelC, these techniques have already been

applied or are in the process of being a applied on the full definition of C in

K-Maude developed by Chucky Ellison [51].

In addition to these runtime analysis efforts, K-Maude is being used for tools

like type checkers (as the one presented in Section 4.1.3) and type inferencers [52],

and in the development (by Elena Naum and Andrei S, tefănescu) of a new program

verification tool using Hoare-like assertions based on matching logic [141], or a

model checking tool (by Irina and Mihai Asavoae [8]) based on the CEGAR cycle.

Regarding the definitional efforts using K-Maude, besides the C definition

mentioned above, K-Maude was used by Patrick Meredith to formalize the K
definition of Scheme [100]. Among the started but not yet finished projects, we

should mention the definition of X10 (by Milos Gligoric and Andrei S, tefănescu),

the definition of Haskell (by Michael Ilseman and David Lazar), and that of

Javascript (by Maurice Rabb). All these definitions and analysis tools can be

found on the K-Maude website [88].

Other language definitions and analysis tools developed using the K technique

before the development of the K-Maude tool include Feng Chen’s definition of

Java [57], Patrick Meredith’s and Michael Katelman’s definition of Verilog [101],

and Mark Hills’ static policy checker for C [81].

1.8 Overall Guide to the Dissertation

Chapter 2 provides a brief introduction to background information on rewriting

logic, which is required for understanding the remainder of the dissertation, and

on graph rewriting, which is required for understanding Chapter 6.

Chapter 3 offers a uniform presentation of the most popular formalisms for

defining the operational semantics of programming languages: natural semantics,

structural operational semantics (SOS), modular SOS, reduction semantics with

evaluation contexts, and the chemical abstract machine. Each of them is shown

to be representable into rewriting logic, and this representation is exemplified

by using it to define the same simple imperative language. Moreover, the

frameworks are compared against each other, and their strengths and weaknesses

are analyzed and presented.

Chapter 4 gives an overview of the K framework. It begins with an example-

based intuitive description of the K framework, showing how it can be used to

define both dynamic and static semantics for languages and how to modularly

extend existing language definitions with new features. The K technique is then

detailed, explaining essentially how rewriting can be used to define programming

19



language semantics by means of nested-cell configurations, computations, and

(K) rewrite rules. The chapter concludes by presenting the definition of the

Agent language, which starts as a language of expressions and then iteratively

adds functional, imperative, control changing, multithreading, multi-agent, and

code generation features. This complex definition aims on challenging existing

language definitional frameworks, while highlighting the power of expression

and the modularity of the K framework.

Chapter 5 shows how one can easily transform K definitions of programming

languages into runtime verification tools. The chapter starts with the definition

of KernelC, a subset of the C programming language containing functions,

memory allocation, pointer arithmetic, and input/output, which can be used to

execute and test real C programs. Next, by performing some minor alterations

to the definition, one obtains a runtime analysis tool for memory safety. Then,

KernelC is extended with threads and synchronization constructs, and two

concurrent semantics are derived from its sequential semantics. The first seman-

tics, defining a sequentially consistent memory model can be easily transformed

into a runtime verification tool for checking datarace and deadlock freeness,

or into a monitoring tool for collecting the trace of events of interest obtained

upon executing a program. The second semantics defines a relaxed memory

model based on the x86-TSO [128] memory model. By exploring the executions

of an implementation of Peterson’s mutual exclusion algorithm [132] for both

definitions, it is shown that the algorithm guarantees mutual exclusion for the

sequentially consistent model, but cannot guarantee it for the relaxed model.

Chapter 6 formally defines a truly concurrent semantics for the K framework

which allows K definitions to capture concurrency with sharing of data as

expressible in current multithreaded languages. The resemblance between K
rules and graph rewrite rules is used to define K concurrent rewriting through

an embedding of K into a novel term-graph rewriting formalism, named K graph

rewriting. Under reasonable restrictions it is shown that K graph rewriting allows

a higher degree of concurrency than the existing term graph rewriting formalisms,

while it remains serializable and sound w.r.t rewriting. K rewriting is then defined

as the projection of K graph rewriting on terms and is shown serializable, as well

as sound and complete w.r.t. standard term rewriting. Finally, it is shown how the

concurrency available through K rewriting can be theoretically captured within

rewriting logic, by using rewriting logic’s ability of capturing graph rewriting.

Chapter 7 describes the K-Maude tool, a Maude implementation of the

direct representation of K in rewriting logic. It builds upon the K notation and

technique presented in Chapter 4 and provides a concrete ASCII representation

for them, as well as a concrete compiler onto the Maude rewrite engine. The

chapter starts with presenting the ASCII representation of the K mathematical

notation which is used in writing K definitions using the K-Maude tool. Then

K-Maude is explained from an user point of view, insisting on its features and

on usability. Then the two translations provided by the tool are explained, one

20



implementing the direct representation of K into rewriting logic as executable

rewrite theories, and the other transforming the definitions into LATEX code.

Finally, Chapter 8 discusses relevant related work, while Chapter 9 presents

the conclusions of the dissertation and opportunities for future research.

1.9 Relationship with Previous Work

This dissertation is part of the rewriting logic semantics (RLS) project, proposed

by Meseguer and Ros,u [109, 110, 111] as an ongoing effort towards develop-

ing a tool-supported computational logical framework for modular program-

ming language design, semantics, formal analysis and implementation based on

rewriting logic [103], with an emphasis on the ability of rewriting to naturally

capture concurrency.

The K framework itself is based on the experience gained from trying to define

complex programming language features and observing how other techniques

coped with the same features. In particular, some features of the K framework

are inspired, or closely related with successful features of other definitional

frameworks. The representation of the computation as a list of tasks has evolved

from the representation of computations in continuations-based interpreters [60].

The idea of cells and structural rules resembles the cells and heating/cooling

rules of the Chemical abstract machine [15]. The ideas of only representing what

is needed in a configuration, relying on details being completed once all pieces

are put together, is related to the Modular SOS [123] approach, as well as to

the monad transformers approach [118] used for the Semantic Lego project [53].

Evaluation contexts are the same concept used in reduction semantics [180].

This and other related work are extensively addressed in Chapter 8.

1.10 Related Publications and Collaborators

This section provides a quick overview of the publications based on the research

presented in this dissertation, and gives attribution to fellow researchers with

whom the presented results were obtained. As all the work in this dissertation was

done in collaboration with Grigore Ros,u, he will only be mentioned here, with the

understanding that he is an implicit co-author to all the publications listed below.

Rewriting Logic Semantics. The research in Chapter 3 was done in collab-

oration with José Meseguer and was published as A Rewriting Logic Approach

to Operational Semantics [160] in the Journal of Information and Computation.

K. The overview of the K framework (Chapter 4), as well as the intuition

and rationale for K concurrent rewriting (Section 6.2) were published as An

Overview of the K Semantic Framework [146] in the Journal of Logic and

Algebraic Programming.

21



Runtime analysis using K. Chapter 5 presents and combines ideas and

constructions from two sources. The work on runtime verification of memory

safety (for a smaller fragment of C) using K was included in the article Runtime

Verification of C Memory Safety [149] co-authored with Worlfram Schulte, which

was presented at Runtime Verification 2009. The work on exploring and analyzing

concurrent executions is based on the author’s previous work with Feng Chen

on predictive runtime analysis, and recasts in K ideas from the paper jPredictor:

A Predictive Runtime Analysis Tool for Java [32] which was presented at the

2008 International Conference on Software Engineering.

K-Maude. The research presented in Chapter 7 was included in K-Maude:

A Rewriting Based Tool for Semantics of Programming Languages [159] which

was presented together with a K-Maude demonstration at the 2010 Workshop

on Rewriting Logic and its Applications. The K-Maude tool itself [88] is a

collaborative project involving researchers from Grigore Ros,u’s UIUC group and

Dorel Lucanu’s University of Ias, i group which have contributed over the time to

the development of the tool through many suggestions, examples, and feature

requests. Among them, the author would like to particularly acknowledge Andrei

Arusoaie and Michael Ilseman for the development and maintenance of the

external user interface, and Chucky Ellison, whose contributions to developing

languages using the K-Maude tool (including a complete definition of C program-

ming language [51]) have led to numerous suggestions for improvements in terms

of both new features and design thus making the tool better and more stable.

22



Chapter 2

Background

This chapter revisits the theoretical background of this dissertation. Since K is

a rewriting framework, we present below two frameworks formalizing two types

of rewriting which will be assumed known for the subsequent development of

the dissertation. These are rewriting logic, presented in Section 2.1, and graph

rewriting, presented in its so called double-pushout algebraic formalization in

Section 2.2. The aim of K is to achieve the concurrency with sharing of resources

made manifest in graph rewriting, while maintaining the simplicity of a first

order representation of terms, as well as benefiting from the generic techniques

and tools available for rewriting logic.

2.1 Rewriting Logic

Rewriting is a crucial paradigm in algebraic specifications, since it provides a nat-

ural means for executing equational specifications. Many specification languages,

including CafeOBJ [42], ELAN [16], Maude [34], OBJ [65], ASF/SDF [171],

provide conditional rewrite engines to execute and reason about specifications.

A rewrite system over a term universe consists of rewrite rules, which can

be locally matched and applied at different positions in a term to gradually

transform it. Due to the locality of rewrite rules, it follows naturally that multiple

rules can apply in parallel. Rewriting logic exploits this, by allowing sideways

and nested (i.e. rewriting-under-variables) parallelism in rule application.

Rewriting logic was introduced by Meseguer [102, 103] as a unified model for

concurrency, capturing the concurrency of standard term rewriting as logical

deduction. Rewriting logic is a computational logic that can be efficiently

implemented and that has good properties as a general and flexible logical and

semantic framework, in which a wide range of logics and models of computation

can be faithfully represented [99].

Two key points to explain are: (i) how rewriting logic combines equational

logic and traditional term rewriting; and (ii) what the intuitive meaning of a

rewrite theory is all about. A rewrite theory is a triple R = (Σ, E,R) with Σ

a signature of function symbols, E a set of (possibly conditional) Σ-equations,

and R a set of Σ-rewrite rules which in general may be conditional, with

conditions involving both equations and rewrites. That is, a rule in R can

23



have the general form

(∀X) t −→ t′ if (
∧

i

ui = u′i) ∧ (
∧

j

wj −→ w′j)

Alternatively, such a conditional rule could be displayed with an inference-

rule-like notation as

(
∧
i ui = u′i) ∧ (

∧
j wj −→ w′j)

t −→ t′

Therefore, the logic’s atomic sentences are of two kinds: equations, and rewrite

rules. Equational theories and traditional term rewriting systems then appear

as special cases. An equational theory (Σ, E) can be faithfully represented as

the rewrite theory (Σ, E, ∅); and a term rewriting system (Σ, R) can likewise

be faithfully represented as the rewrite theory (Σ, ∅, R).

Of course, if the equations of an equational theory (Σ, E) are confluent,

there is another useful representation, namely, as the rewrite theory (Σ, ∅,−→E ),

where
−→
E are the rewrite rules obtained by orienting the equations E as rules

from left to right. This representation is at the basis of much work in term

rewriting, but by implicitly suggesting that rewrite rules are just an efficient

technique for equational reasoning it can blind us to the fact that rewrite rules

can have a much more general non-equational semantics. This is the whole

raison d’être of rewriting logic. In rewriting logic a rewrite theory R = (Σ, E,R)

axiomatizes a concurrent system, whose states are elements of the algebraic data

type axiomatized by (Σ, E), that is, they are E-equivalence classes of ground

Σ-terms, and whose atomic transitions are specified by the rules R. The inference

system of rewriting logic described below then allows us to derive as proofs all

the possible concurrent computations of the system axiomatized by R, that is,

concurrent computation and rewriting logic deduction coincide.

2.1.1 Rewriting Logic Deduction

The inference rules below assume a typed setting, in which (Σ, E) is a membership

equational theory [105] having sorts (denoted s, s′, s′′, etc.), subsort inclusions,

and kinds (denoted k, k′, k′′, etc.), which gather together connected components

of sorts. Kinds allow error terms like 3/0, which has a kind but no sort. Similar

inference rules can be given for untyped or simply typed (many-sorted) versions

of the logic. Given R = (Σ, E,R), the sentences that R proves are universally

quantified rewrites of the form (∀X) t −→ t′, with t, t′ ∈ TΣ(X)k, for some kind

k, which are obtained by finite application of the following rules of deduction:

• Reflexivity. For each t ∈ TΣ(X),
(∀X) t −→ t

• Equality.
(∀X) u −→ v E ` (∀X)u = u′ E ` (∀X)v = v′

(∀X) u′ −→ v′

24



• Congruence. For each f : s1 . . . sn −→ s in Σ, with ti ∈ TΣ(X)si ,

1 ≤ i ≤ n, and with t′jl ∈ TΣ(X)sjl , 1 ≤ l ≤ m,

(∀X) tj1 −→ t′j1 . . . (∀X) tjm −→ t′jm
(∀X) f(t1, . . . , tj1 , . . . , tjm , . . . , tn) −→ f(t1, . . . , t

′
j1
, . . . , t′jm , . . . , tn)

• Replacement. For each θ : X −→ TΣ(Y ) and for each rule in R of the

form

(∀X) t −→ t′ if (
∧

i

ui = u′i) ∧ (
∧

j

wj −→ w′j),

(
∧

x(∀Y ) θ(x) −→ θ′(x)) ∧ (
∧

i(∀Y ) θ(ui) = θ(u′
i)) ∧ (

∧
j(∀Y ) θ(wj) −→ θ(w′

j))

(∀Y ) θ(t) −→ θ′(t′)

where θ′ is the new substitution obtained from the original substitution

θ by some possibly complex rewriting of each θ(x) to some θ′(x) for each

x ∈ X.

• Transitivity
(∀X) t1 −→ t2 (∀X) t2 −→ t3

(∀X) t1 −→ t3

We can visualize the above inference rules as in Figure 2.1.

The notation R ` t −→ t′ states that the sequent t −→ t′ is provable in

the theory R using the above inference rules. Intuitively, we should think of

the inference rules as different ways of constructing all the (finitary) concurrent

computations of the concurrent system specified by R. The “Reflexivity” rule

says that for any state t there is an idle transition in which nothing changes. The

“Equality” rule specifies that the states are in fact equivalence classes modulo

the equations E. The “Congruence” rule is a very general form of “sideways

parallelism,” so that each operator f can be seen as a parallel state constructor,

allowing its arguments to evolve in parallel. The “Replacement” rule supports a

different form of parallelism, which could be called “parallelism under one’s feet,”

since besides rewriting an instance of a rule’s left-hand side to the corresponding

right-hand side instance, the state fragments in the substitution of the rule’s

variables can also be rewritten. Finally, the “Transitivity” rule allows us to

build longer concurrent computations by composing them sequentially.

A somewhat more general version of rewriting logic [24] allows rewrite theories

of the form R = (Σ, E ∪ A,R, φ), where the additional component φ is a

function assigning to each function symbol f ∈ Σ with n arguments a subset

φ(f) ⊆ {1, . . . , n} of those argument positions that are frozen, that is, positions

under which rewriting is forbidden. The above inference rules can then be

slightly generalized. Specifically, the Congruence rule is restricted to non-frozen

positions {j1, . . . , jm}, and the substitution θ′ in the Replacement rule should

25



Reflexivity

!
!

!
!

"
"
"
"

t #
!

!
!

!

"
"

"
"

t

Equality
!

!
!

!

"
"
"
"

u #
!

!
!

!

"
"

"
"

v

‖
!

!
!

!

"
"
"
"

u
′ #

‖
!

!
!

!

"
"

"
"

v
′

Congruence
f

$
$$

%
%
&
&
'

''. . . . . . . . .
%% && %% && %% && %% &&

f
$

$$
%
%
&
&
'

''. . . . . . . . .
%% && %% && %% && %% &&! (()" $$*

#

Replacement
!

!
!

"
"
"

t

%% && %% && %% && %% &&
. . . . . . . . .

!
!

!

"
"
"

t
′

%% && %% && %% && %% &&
. . . . . . . . .! (()" $$*

#

Transitivity

!
!

!
!!

"
"

"
""

t1

# !
!

!
!!

"
"

"
""

t3

!
!

!
!!

"
"

"
""

t2

"
"

"+ !
!

!,

Fig. 1. Visual representation of rewriting logic deduction.

A somewhat more general version of rewriting logic [15] allows rewrite the-
ories of the form R = (Σ, E ∪ A, R, φ), where the additional component φ
is a function assigning to each function symbol f ∈ Σ with n arguments a
subset φ(f) ⊆ {1, . . . , n} of those argument positions that are frozen, that is,
positions under which rewriting is forbidden. The above inference rules can
then be slightly generalized. Specifically, the Congruence rule is restricted
to non-frozen positions {j1, . . . , jm}, and the substitution θ′ in the Replace-
ment rule should only differ from θ for variables x in non-frozen positions.

10

Figure 2.1: Visual representation of rewriting logic deduction.

only differ from θ for variables x in non-frozen positions. The generalized form

R = (Σ, E ∪ A,R, φ), makes possible a more expressive control of the possibility

of rewriting under contexts already supported by the Congruence rule; that is,

it endows rewrite theories with flexible context-sensitive rewriting capabilities.1

Note that, in general, a proof R ` t −→ t′ does not represent an atomic

step, but can represent a complex concurrent computation. In some of the

mathematical proofs that we will give to relate different operational semantics

definitions, it will be easier to work with a “one step” rewrite relation→1, defined

on ground terms. This relation is just the special case in which: (i) Transitivity

is excluded; (ii) m = 1 in the Congruence rule (only one rewrite below); and

(iii) Replacement is restricted, so that no rewriting of the substitution θ to θ′ is

allowed; and (iv) there is exactly one application of Replacement. The relation

→≤1 is defined by allowing either one or no applications of Replacement in the

last condition. Similarly, one can define relations →n (or →≤n) by controlling

the number of applications of the Transitivity rule. However, it should be

noted that rewriting logic does not have a builtin “one-step” rewrite relation, that

1We will not consider this general version. The interested reader is referred to [24].

26



being the reason for which we need a methodology to encode “one step”-based

formalisms such as SOS semantics. The “one-step” relation we define above is

only at the deduction level and is introduced solely to help our proofs.

The whole point of RLS is then to define the semantics of a programming

language L as a rewrite theory RL. RLS uses the fact that rewriting logic

deduction is performed modulo the equations in RL to faithfully capture the

desired granularity of a language’s computations. This is achieved by mak-

ing rewriting rules all intended computational steps, while using equations for

convenient equivalent structural transformations of the state, or auxiliary “in-

frastructure” computations, which should not be regarded as computation steps.

Note that this does not preclude performing also equational simplification with

equations. That is, the set E of equations in a rewrite theory can often be

fruitfully decomposed as a disjoint union E = E0 ∪ A, where A is a set of

structural axioms, such as associativity, commutativity and identity of some

function symbols, and E0 is a set of equations that are confluent and terminating

modulo the axioms A. A rewrite engine supporting rewriting modulo A will

then execute both the equations E0 and the rules R modulo A by rewriting.

Under a condition called coherence [176], this form of execution then provides a

complete inference system for the given rewrite theory (Σ, E,R). However, both

conceptually and operationally, the execution of rules R and equations E0 must

be separated. Conceptually, what we are rewriting with R are E-equivalence

classes, so that the E0-steps become invisible. Operationally, the execution of

rules R and equations E0 must be kept separate for soundness reasons. This is

particularly apparent in the case of executing conditional equations and rules:

for a conditional equation it would be unsound to use rules in R to evaluate its

condition; and for a conditional rule it would likewise be unsound to use rules

in R to evaluate the equational part of its condition.

There are many systems that either specifically implement term rewriting

efficiently, so-called as rewrite engines, or support term rewriting as part of a

more complex functionality. Any of these systems can be used as an underlying

platform for execution and analysis of programming languages defined using the

techniques described in this dissertation. Without attempting to be exhaustive,

we here only mention (alphabetically) some engines that we are more familiar

with, noting that many functional languages and theorem provers provide support

for term rewriting as well: Asf+Sdf [171], CafeOBJ [42], Elan [16], Maude [36],

OBJ [65], and Stratego [177]. Some of these engines can achieve remarkable speeds

on today’s machines, in the order of tens of millions of rewrite steps per second.

2.2 Graph Rewriting

Graph grammars and graph transformations were introduced in the early seventies

in an effort to generalize the concept of Chomsky grammars from strings to

graphs. The main idea was to generalize the concatenation of strings to a

27



gluing construction for graphs. One of the most successful approaches in this

direction was the algebraic approach [46], which defined a graph rewriting step

by two gluing constructions, which in turn, could be algebraically expressed as a

double pushout in the category of graphs. Although initially developed using the

intuition of grammars and focusing on their generative power, graph grammars

were soon adopted for computation purposes, which were called initially graph

transformations, and later graph rewriting, by their analogy to term rewriting.

Nowadays, graph grammars and graph transformations are studied and applied

in many fields of computers science (e.g., data and control flow diagrams, entity-

relationship and UML diagrams, Petri nets) for their ability to explain complex

situations at an intuitive level [47]. We refer the interested reader to Corradini

et al. [39] for a survey of the graph rewriting concepts used in this dissertation, or

to the more recent monography of Ehrig et al. [47] for a comprehensive treatment

of the algebraic approach to graph rewriting.

A graph consists of a set of (labeled) vertices V and a set of (labeled)

edges E linking the vertices in V . Assuming fixed sets LV and LE for node

and for edge labels, respectively, a graph G over labels (LV ,LE) is a tuple

G = 〈V,E, source, target, lv, le〉, where V is the set of vertices (or nodes), E is

a set of edges, source, target : E → V are the source and the target functions,

and lv : V → LV and le : E → LE are the node and the edge labeling functions,

respectively. We will use VG, EG, sourceG, . . . , to refer to the corresponding

components of the tuple describing a graph G. A graph morphism f : G→ G′

is a pair f = 〈fV : VG → VG′ , fE : EG → EG′〉 of functions preserving sources,

targets, and labels. Let Graph(LV,LE) denote the category of graphs over

labels (LV ,LE). Given graph G, let ≺G⊆ V ×V be its path relation: v1 ≺G v2 iff

there is a path from v1 to v2 in G. G is cyclic iff there is some v ∈ VG s.t. v ≺G v.

Given v ∈ VG, let G�v be the subgraph of G (forwardly) reachable from v.

A graph rewrite rule p : (L
l←− K

r−→ R), where p is its name, is a pair

of graph morphisms l : K → L and r : K → R, where l is injective. The

graphs L, K, and R are called the left-hand-side (lhs), the interface, and the

right-hand-side (rhs) of p, respectively.

The graph rewriting process can be intuitively described as follows. Given a

graph G and a match of L into G satisfying some gluing conditions (discussed

below), we can rewrite G into a graph H in two steps: (1) delete from G the

part from L that does not belong to K, obtaining a context C—the gluing

conditions ensure that C is still a graph; (2) embed R into C by gluing it

along the instance of K in C.

Consider the example in Figure 2.2. Assume we are working in a graph

category where there is only one label for nodes and two labels for edges, which

are represented graphically as full edges or dotted edges. Moreover, suppose we

want to represent undirected graphs, so each edge in the graphical representation

represents actually two edges in opposite directions (suggested by the double

arrowhead). The intuition for the dotted edges is that they represent edges

28



(a) L K R

•
•
•

•
•
•

•
•
•

l r

(b)
•

• •

• •

• •

• •

• •

• •

• •

• •

• •

•
G C H = G′ C ′ H ′

(c)
•

• •

• •

• •

• •

• •

•
G C H

Figure 2.2: Illustration of graph rules and graph transformations: (a) A graph
rule for expressing transitivity; (b) a possible sequential application; (c) and a
parallel application combining the two applications above.

missing from the graph. Therefore, the graphs we work with will be full graphs,

with their edges being split between full and dotted ones. In this context, the

rule in Figure 2.2(a) specifies the closure of the edge relation, that is, if there

is a (full) edge from node v1 to node v2 and one from node v2 to node v3, and

the edge from v1 to v3 is dotted (i.e., is missing), then there that edge should

become full as well. Two steps of applying the rule, each with their intermediate

context are represented in Figure 2.2(b).

Formally, given a graph G, a graph rule p : (L
l←− K

r−→ R), and a match

m : L → G, a direct derivation from G to H using p (based on m) exists iff

the diagram below can be constructed,

L K R

G C H

l r

l∗ r∗
m m∗m

where both squares are pushouts in the category of graphs. In this case, C is

called the context graph, and we write G
p,m
==⇒ H or G

p
=⇒ H. As usual with

pushouts, whenever l or r is an inclusion, the corresponding l∗ or r∗ can be

chosen to also be an inclusion.

A direct derivation G
p,m
==⇒ H exists iff the following gluing conditions hold

[44]: (Dangling condition) no edge in EG \mE(EL) is incident to any node in

mV (VL \ lV (VK)); and (Identification condition) there are no x, y ∈ VL∪EL with

x 6= y, m(x) = m(y) and x, y 6∈ l(VK ∪EK). If it exists, H is unique up to graph

isomorphism. The gluing conditions say that whenever a transformation deletes

29



a node, it should also delete all its edges (dangling condition), and that a match

is only allowed to identify elements coming from K (identification condition).

Given a family of graph-rewrite rules pi : (Li
li←− Ki

ri−→ Ri), i = 1, n, not

necessarily distinct, their composed graph-rewrite rule, denoted as p1 + · · ·+ pn,

is a rule p : (L
l←− K

r−→ R) where L, K, and R are the direct sums of the

corresponding components from (pi)i=1,n and, similarly, l and r are the canonical

morphisms induced by (li)i=1,n and (ri)i=1,n, respectively. Given a graph G,

matches (mi : Li → G)i=1,n induce a combined match m : L→ G defined as the

unique arrow amalgamating all particular matches from the universality property

of the direct sum. Matches (mi : Li → G)i=1,n have the parallel independence

property iff for all 1 ≤ i < j < n, mi(Li) ∩ mj(Lj) ⊆ mi(Ki) ∩ mj(Kj). If

(mi : Li → G)i=1,n have the parallel independence property and each mi satisfies

the gluing conditions for rule pi, then the combined match m satisfies the gluing

conditions for the composed rule p1 + · · · + pn, and thus there exists a graph

H such that G
p1+···+pn,m
========⇒ H. Moreover, this derivation is serializable, i.e.,

G
p1+···+pn−1,m

′
==========⇒ Hn−1

pn
=⇒ H, where m′ is the composition of (mi)i=1,n−1 [69,

Theorem 7.3] (recasting prior results [45, 93]).

2.3 Term Graph Rewriting

Term graph rewriting is a research direction within the larger graph-rewriting

context, concerned with using graph rewriting techniques in defining and effi-

ciently implementing term rewriting. The rationale behind this line of work

is generally to be able to give a more efficient implementation of functional

programming languages in the form of lambda calculus or term rewrite systems:

identical subterms are shared using pointers [12]. To this aim, there have been

proposed (and proven sound) several approaches [12, 137, 94] to encoding terms

as graphs (or hypergraphs) and rewrite rules as graph transformation rules.

The term-graph rewriting approach we build upon [68, 83] uses (directed)

hypergraphs, called jungles to encode terms and rules. A hypergraph G =

(V,E, source, target, lv, le) over labels (LV ,LE) has basically the same structure

as a graph; however, each edge is allowed to have (ordered) multiple sources and

targets, that is, the source and target mappings now have as range V ∗, the set

of strings over V . For a hypergraph G, indegreeG(v)/outdegreeG(v) denote the

number of occurrences of a node v in the target/source strings of all edges in G.

Given a signature Σ = (S, F ), a jungle is a hypergraph over (S, F ) satisfying

that: (1) each edge is compatible with its arity, i.e., for each e ∈ E such that

le(e) = f : s1 . . . sk → s, it must be that lv∗(source(e)) = s and lv∗(target(e)) =

s1 . . . sk; (2) outdegree (v) ≤ 1 for any v ∈ V , that is, each node can be the

source of at most one edge; and (3) G is acyclic.

A jungle represents a term as an acyclic hypergraph whose nodes are labeled by

sort names, and whose edges are labeled by names of operations in the signature;

Figure 2.3 (graph G) depicts the jungle representation of term h(f(a), 0, 1).

30



L K R L K R

s

h

x:s y:int int

1

s

x:s y:int int

1

s

h

s y:int int

0g

intx:s

1

s

a

s s

b

L K R L K R
s

h

x:s y:intint

0

s

x:s y:intint

0

s

h

x:s y:intint

1

int

0

s

h

x:s

s

x:s

x:s

l r

l r

l r

l r

(1): h(x, y, 1)→ h(g(x, x), y, 0)

(2): h(x, 0, y)→ h(x, 1, y)

(3): a→ b

(4): f(x)→ x

G C H

s

h

s int int

f 0 1

s

a

s

s int int

0 1

s

s

h

s int int

0g 0

ints

1b

l∗ r∗
h(f(a), 0, 1)

(1)+(3)+(4)
≡≡≡≡≡≡≡≡≡� h(g(b, b), 0, 0)

Figure 2.3: Jungle representations for a couple of rewrite rules and a possible
concurrent step.

31



Constants are edges without any target. Variables are represented as nodes

which are not sources of any edge. Non-linear terms are represented by identifying

the nodes corresponding to the same variable. There could be multiple possible

representations of the same term as a jungle, as identical subterms can be

identified (or not) in the jungle representation.

Let V ARG denote the variables of G; we have that V ARG = {v ∈ VG |
outdegreeG(v) = 0}. The term represented by some node v in a jungle G,

termG(v), is obtained by descending along hyperedges and collecting the hy-

peredge labels. Let G be a jungle. Then

termG(v) =

{
v if v ∈ V ARG

le(e)(term∗G(target(e)) otherwise, where {e} = source−1(v)

A root of a jungle is a node v such that indegree (v) = 0. Let ROOTG denote

the set of roots of G. Given a term t (with variables), a variable-collapsed tree

representing t is a jungleG with a single root rootG which is obtained from the tree

representing t by identifying all nodes corresponding to the same variable, that

is, termG(rootG) = t, and for all v ∈ V , indegree (v) > 1 implies that v ∈ V ARG.

A term rewrite rule left → right is encoded as a jungle evaluation rule

L ←↩ K r−→ R in the following way:

L is a variable-collapsed tree corresponding to left .

K is obtained from L by removing the hyperedge corresponding to the top

operation of left (that is, source−1(rootL)).

R is obtained from K as follows: if right is a variable (i.e., the rule is

collapsing, then the rootL is identified with right ; otherwise, R is the

disjoint union of K and a variable collapsing tree R′ corresponding to right ,

where rootR′ is identified with rootL and each variable of R′ is identified

with its counterpart from V ARL.

l, r L
l←↩ K and K

r−→ R are inclusions with the exception that r maps rootL

to right if right is a variable.

Jungle evaluation is done according to the DPO graph rewriting approach

presented above (although here we are talking about hypergraphs, the results

above carry through [137]). In particular, note that the gluing conditions

are satisfied for each matching morphism m in a jungle G. The dangling

condition holds because VK = VL so there could be no dangling edge. The

identification condition could be violated only if the edge e representing the

top operation of l, i.e., {e} = source−1(rootL) was identified with another

edge e′. However, since the source of an edge is unique, this would lead to

m(rootL) = m(source(e′)), which contradicts with the fact that G (being a

jungle) is acyclic. The (hyper)graph rewriting step obtained upon applying an

evaluation rule to a jungle is called an evaluation step. Since VK = VL we have

32



that all the nodes of the graph to be rewritten are preserved in the context graph

C (i.e., VC = VG), and thus for each v ∈ VG, its correspondent in H is r∗(v).

Among the many interesting results relating term rewriting with jungle

evaluation, we will build our results on the ones presented below.

Theorem 1. Let p be an evaluation rule for a rewrite rule ρ, and let G be a

jungle.

1. Evaluation steps preserve jungles, i.e., if G
p

=⇒ H then H is a jungle;

2. If G
p

=⇒ H, then for each v ∈ VG termG(v)
ρn

=⇒ termH(r∗(v))

3. If ρ is left-linear and termG(v)
ρ

=⇒ t′ for some v ∈ VG, then there exists H

such that G
p

=⇒ H.

Proof. (1) and (2) are proved by Hoffmann and Plump [83][Theorems 5.4 and

5.5].

(3) follows from [83][Lemma 6.2] and [138][Theorem 4.8].

The Induced Rewriting Relation.

Theorem 1 actually shows that jungle evaluation is both sound and complete

for one step of term rewriting using left linear rules.

Corollary 1. If G is a variable-collapsed tree and ρ is left-linear, then

termG(rootG)
ρ

=⇒ t′ iff there exists a jungle G′ such that G
p

=⇒ G′ and

termG′(r
∗(rootG)) = t′.

Indeed, let R be a left-linear rewrite system, and let R be the system

containing the evaluation rules corresponding to the rewrite rules in R. Let ⇒1
R

be the relation defined on Σ-terms by t⇒1
R t′ iff G

p
=⇒ H, where G is a variable-

collapsed tree, termG(rootG) = t, p ∈ R, and termH(r∗(rootG)) = t′. Then,

Corollary 2. ⇒1
R=⇒1

R.

2.3.1 The Bipartite Graph Representation of Jungles

Although inspired from jungle evaluation, and relying of the results presented

above, our graph rewriting approach for capturing K rewriting will not use

hypergraph jungles, but rather an extension of their equivalent (bipartite)

graph representation.

Given a hypergraph G = (VG, EG, sourceG, targetG, lvG, leG), a graph repre-

sentation of G over labels (LV ,LE) is any graph isomorphic with the bipartite

graph G′ = (VG′ , EG′ , sourceG′ , targetG′ , lvG′ , leG′) over labels (LV ∪ LE , Int),

defined by

• VG′ = VG ∪ EG;

• EG′ =
⋃
e∈EG{(e, i) | if |sourceG(e)| < i ≤ 0 or 0 < i ≤ |targetG(e)|;

33



s

h

s int int

f 0 1

s

a

s

h

s
1

f

int
2

0

int

3

1

s
1

a

(a) (b)

Figure 2.4: (a) A hypergraph jungle representing h(f(a), 0, 1); and (b) its
bipartite graph representation.

• sourceG′((e, i)) = v, if i ≤ 0 and v is the (−i+ 1)th element in sourceG(e),

and sourceG′((e, i)) = e, if i > 0;

• targetG′((e, i)) = e, if i ≤ 0, and targetG′((e, i)) = v, if i > 0 and v is the

ith element of targetG(e);

• lvG′ = lvG ∪ leG;

• le((e, i)) = i

Conversely, to any bipartite labeled graph such that the two partitions V1

and V2 have labels in disjoint sets L1 and L2, respectively, we can associate a

hypergraph over (L1,L2), or one over (L2,L1), respectively, depending whether

V1 are chosen to be nodes and V2 edges, or the converse.

G is a graph jungle over Σ if it is the graph representation of some jungle

over Σ. Graph jungles can be characterized as follows:

Proposition 1. Given a signature Σ = (S, F ), a graph G over (S ∪ F, Int) is a

graph jungle over Σ iff:

0. G is bipartite, partitions given by nodes with labels in S—sort nodes—,

and F—operation nodes—;

1. every operation node labeled by f : s1 · · · sn → s is

(i) the target of exactly one edge, labeled with 0 and having its source

labeled with s, and

(ii) the source of n edges having distinct labels in {1, · · · , n}, such that

lv(target(e)) = sle(e) for each such edge e;

2. every sort node has at most one outward edge; and

3. G is acyclic.

For example, the bipartite graph representation of the jungle G in Figure 2.3

(associated to the term h(f(a), 0, 1)) is represented by the graph in Figure 2.4(b).

To avoid cluttering, and since there is no danger of confusion, we choose to omit

34



the label 0 when representing the graphs. The above definitions and results

carry on, but must be adjusted to address the fact that hypergraph edges are

translated into operation nodes in addition to the edges. Let us quickly revise

the definitions and results.

The variables of a graph jungle are sort nodes without outward edges:

V ARG = {v ∈ VG | lv(v) ∈ S and outdegreeG(v) = 0}. termG(v) is defined

on(ly) on sort nodes by:

termG(vs) =





vs, if vs ∈ V ARG
σ(t1, . . . , tn), if {ve} = target(source−1(vs)),

le(ve) = σ : s1 . . . sn → s, and

ti = termG(target(e))

where source(e) = ve and le(e) = i

The notions of root and variable-collapsing tree do not change. For the graph

representation of evaluation rules, the only thing that needs to be adjusted is

that if the rule is non-collapsing, then K is now obtained from L by removing

the operation node linked to root of L and all its adjacent edges. Again, the

gluing conditions are satisfied for any matching (graph) morphism into a graph

jungle G. The argument for the identification condition carries on. The dangling

condition is also satisfied by the fact that in any graph representing a jungle

(including L and G), any operation node with label σ : s1 . . . sn → s has exactly

n + 1 adjacent edges, which are all present in L. Evaluations steps being

performed according to the DPO approach now in the context of concrete graphs,

Theorem 1 can be recast as follows:

Theorem 2. Let p be a graph evaluation rule for a rewrite rule ρ, and let G be

a graph jungle.

1. Evaluation steps preserve graph jungles, i.e., if G
p

=⇒ H then H is a graph

jungle;

2. If G
p

=⇒ H, then for each v ∈ VG termG(v)
ρn

=⇒ termH(r∗(v))

3. If ρ is left-linear and termG(v)
ρ

=⇒ t′ for some v ∈ VG, then there exists H

such that G
p

=⇒ H.

2.4 Discussion

Although the theory of graph rewriting has early on shown the potential for

parallelism with sharing of context, the existing term-graph rewriting approaches

seem to primarily aim at efficiency: rewrite common subterms only once; while

the additional potential for concurrency seems to be regarded more like a bonus.

More specifically, they do not attempt to use the context-sharing information for

enhancing the potential for concurrency, and thus they are not able to specify

35



more concurrent behaviors than rewriting logic already provides. Moreover, while

subterm sharing might be a wonderful idea for functional programs, rewriting with

subterm sharing in the presence of non-determinism can actually miss behaviors

which would have been captured in regular term rewriting. Therefore, the term-

graph rewriting approaches cannot be used directly to achieve the concurrency

we would like for the K framework. In Chapter 6 we will show how the term

graph rewriting approach presented in this section can be relaxed to allow the

representation of K rules and to capture the intended concurrency for K rewriting.

36



Chapter 3

A Rewriting Logic Approach
to Operational Semantics

The purpose of this chapter is to show not only that Rewriting Logic is amenable

for defining programming languages, but also that it can capture with minimal

representational distance the existing major operational semantics definitional

techniques. Therefore, language designers can use their favorite technique to

define languages within rewriting logic, thus benefiting of the generic execution

and analysis tools available for rewriting logic definitions. This chapter can be

considered as a basis for the following development of the dissertation, as the K
framework builds upon the lessons learned from representing these techniques

in rewriting logic, in the attempt to develop the ideal rewriting-based language

definitional framework. A particular emphasis is put on the continuation-based

definitions and their representation in rewriting logic (Section 3.7), which can

be seen as a precursor of the K technique.

An immediate advantage of defining a language as a theory in an existing

logic (as opposed to defining it as a new logic in which one can derive precisely

the intended computations), is that one can use the entire arsenal of techniques

and tools developed for the underlying logic to obtain corresponding techniques

and tools for the particular programming language defined as a theory. Since

rewriting logic is a computational logical framework, “execution” of programs

becomes logical deduction. That means that one can formally analyze programs

or their executions directly within the semantic definition of their programming

language. Moreover, generic analysis tools for rewrite logic specifications can

translate into analysis tools for the defined programming languages. Maude [34]

provides an execution and debugging platform, a BFS state-space exploration,

and an LTL model checker [48], as well as an inductive theorem prover [33]

for rewrite logic theories; these translate immediately into corresponding BFS

reachability analysis, LTL model checking tools, and theorem provers for the

defined languages for free. For example, these generic tools were used to derive

a competitive model checker [57], and a Hoare logic verification tool [152] for

the Java programming language.

Any logical framework worth its salt should be evaluated in terms of its

expressiveness and flexibility. Regarding expressiveness, a very pertinent question

is: how does RLS express various approaches to operational semantics? In

particular, how well can it express various approaches in the SOS tradition? This

37



chapter proposes an answer to these questions. Partial answers, giving detailed

comparisons with specific approaches have appeared elsewhere. For example,

[99] and [175] provide comparisons with standard SOS [136]; [108] compares RLS

with both standard SOS and Mosses’ modular structural operational semantics

(MSOS) [123]; and [103] compares RLS with chemical abstract machine (Cham)

semantics [15]. However, no comprehensive comparison encompassing most

approaches in the SOS tradition has been given to date. To make our ideas

more concrete, in we here use a simple programming language, show how it is

expressed in each different definitional style, and how that style can be faithfully

captured as a rewrite theory in the RLS framework. We furthermore prove

correctness theorems showing the faithfulness of the RLS representation for

each style. Even though we exemplify the techniques and proofs with a simple

language for concreteness’ sake, the process of representing each definitional style

in RLS and proving the faithfulness of the representation is completely general

and mechanical, and in some cases like MSOS has already been automated [28].

The range of styles covered includes: big-step (or natural) SOS semantics; small-

step SOS semantics; MSOS semantics; context-sensitive reduction semantics;

continuation-based semantics; and Cham semantics.

Concerning flexibility, we show that each language definitional style can be

used as a particular definitional methodology within rewriting logic. However,

representing a language definitional style in rewriting logic does not make

that style more flexible: the technique representing it within rewriting logic

inherits the same benefits and limitations that the original definitional style had.

Nevertheless, rewriting logic also captures for each framework their best features.

Challenges

Any logical framework for operational semantics of programming languages has

to meet strong challenges. We list below some of the challenges that we think any

such framework must meet to be successful. We do so in the form of questions

from a skeptical language designer, following each question by our answer on

how the RLS framework meets each challenge question.

1. Q: Can you handle standard SOS?

A: As illustrated in Sections 3.3 and 3.4 for our example language, and

also shown in [99, 175, 108] using somewhat different representations, both

big-step and small-step SOS definitions can be expressed as rewrite theories

in RLS. Furthermore, as illustrated in Section 3.5 for our language, and

systematically explained in [108], MSOS definitions can also be faithfully

captured in RLS.

2. Q: Can you handle context-sensitive reduction?

A: There are two different questions implicit in the above question: (i)

how are approaches to reduction semantics based on evaluation contexts

38



(e.g., [180]) represented as rewrite theories? and (ii) how does RLS support

context-sensitive rewriting in general? We answer subquestion (i) in Section

3.6, where we illustrate with our example language a general method to

handle evaluation contexts in RLS. Regarding subquestion (ii), it is worth

pointing out that, unlike standard SOS, because of its congruence rule,

rewriting logic is context-sensitive and, furthermore, using frozen operator

arguments, reduction can be blocked on selected arguments (see Section

2.1). Rewriting logic provides no support for matching the context in which

a rewrite rule applies and to modify that context at will, which is one of

the major strengths of reduction semantics with evaluation contexts. If

that is what one wants to do, then one should use the technique in Section

8 instead.

3. Q: Can you handle higher-order syntax?

A: Rewriting logic, cannot directly handle higher-order syntax with bind-

ings and reasoning modulo α-conversion. However, it is well-known that

higher-order syntax admits first-order representations, such as explicit

substitution calculi and de Bruijn numbers, e.g., [1, 14, 167]. However,

the granularity of computations is changed in these representations; for

example, a single β-reduction step now requires additional rewrites to per-

form substitutions. In rewriting logic, because computation steps happen

in equivalence classes modulo equations, the granularity of computation

remains the same, because all explicit substitution steps are equational.

Furthermore, using explicit substitution calculi such as CINNI [167], all

this can be done automatically, keeping the original higher-order syntax

not only for λ-abstraction, but also for any other name-binding operators.

4. Q: What about continuations?

A: Continuations [59, 140] are traditionally understood as higher-order

functions. Using the above-mentioned explicit calculi they can be rep-

resented in a first-order way. In Section 3.7 we present an alternative

view of continuations that is intrinsically first-order in the style of, e.g.,

Wand [179], and prove a theorem showing that, for our language, first-

order continuation semantics and context-sensitive reduction semantics

are equivalent as rewrite theories in RLS. We also emphasize that in a

computational logical framework, continuations are not just a means of

implementing a language, but can be used to actually define the semantics

of a language.

5. Q: Can you handle concurrency?

A: One of the strongest points of rewriting logic is precisely that it is a

logical framework for concurrency that can naturally express many different

concurrency models and calculi [104, 98]. Unlike standard SOS, which

forces an interleaving semantics, true concurrency is directly supported.

39



We illustrate this in Section 3.8, where we explain how Cham semantics is

a particular style within RLS.

6. Q: How expressive is the framework?

A: RLS is truly a framework, which does not force on the user any particular

definitional style. This is in fact the main purpose of this chapter, achieved

by showing how quite different definitional styles can be faithfully captured

in RLS. Furthermore, as already mentioned, RLS can express a wide

range of concurrent languages and calculi very naturally, without artificial

encodings. Finally, real-time and probabilistic systems can likewise be

naturally expressed [127, 2, 107].

7. Q: Is anything lost in translation?

A: This is a very important question, because the worth of a logical frame-

work does not just depend on whether something can be represented “in

principle,” but on how well it is represented. The key point is to have a

very small representational distance between what is represented and the

representation. Turing machines have a huge representational distance

and are not very useful for semantic definitions exactly for that reason.

Typically, RLS representations have what we call “ε-representational dis-

tance”, that is, what is represented and its representation differ at most

in inessential details. We will show that all the RLS representations for

the different definitional styles we consider have this feature. In particular,

we show that the original computations are represented in a one-to-one

fashion. Furthermore, the good features of each style are preserved. For

example, the RLS representation of MSOS is as modular as MSOS itself.

8. Q: Is the framework purely operational?

A: Although RLS definitions are executable in a variety of systems sup-

porting rewriting, rewriting logic itself is a complete logic with both a

computational proof theory and a model-theoretic semantics. In particular,

any rewrite theory has an initial model, which provides inductive reasoning

principles to prove properties. What this means for RLS representations

of programming languages is that they have both an operational rewriting

semantics, and a mathematical model-theoretic semantics. For sequential

languages, this model-theoretic semantics is an initial-algebra semantics.

For concurrent languages, it is a truly concurrent initial-model semantics.

In particular, this initial model has an associated Kripke structure in which

temporal logic properties can be both interpreted and model-checked [106].

9. Q: What about performance?

A: RLS as such is a mathematical framework, not bound to any particular

rewrite engine implementation. However, because of the existence of a

range of high-performance systems supporting rewriting, RLS semantic

40



definitions can directly be used as interpreters when executed in such

systems. Performance will then depend on both the system chosen and the

particular definitional style used. The RLS theory might need to be slightly

adapted to fit the constraints of some of the systems. In Section 3.9 we

present experimental performance results for the execution of mechanically

generated interpreters from RLS definitions for our example language using

various systems for the different styles considered. Generally speaking, these

performance figures are very encouraging and show that good performance

interpreters can be directly obtained from RLS semantic definitions.

Benefits

Our skeptical language designer could still say,

So what? What do I need a logical framework for?

It may be appropriate to point out that he/she is indeed free to choose, or not

choose, any framework. However, using RLS brings some intrinsic benefits that

might, after all, not be unimportant to him/her.

Besides the benefits already mentioned in our answers to questions in Section

3, one obvious benefit is that, since rewriting logic is a computational logic,

and there are state-of-the-art system implementations supporting it, there is no

gap between an RLS operational semantics definition and an implementation.

This is an obvious advantage over the typical situation in which one gives

semantics to a language on paper following one or more operational semantics

styles, and then, to “execute” it, one implements an interpreter for the desired

language following “in principle” its operational semantics, but using one’s

favorite programming language and specific tricks and optimizations for the

implementation. This creates a nontrivial gap between the formal operational

semantics of the language and its implementation.

A second, related benefit, is the possibility of rapid prototyping of program-

ming language designs. That is, since language definitions can be directly

executed, the language designer can experiment with various new features of a

language by just defining them, eliminating the overhead of having to implement

them as well in order to try them out. As experimentally shown in Section

3.9, the resulting prototypes can have reasonable performance, sometimes faster

than that of well-engineered interpreters.

A broader, third benefit, of which the above two are special cases, is the

availability of generic tools for: (i) syntax; (ii) execution; and (iii) formal

analysis. The advantages of generic execution tools have been emphasized above.

Regarding (i), languages such as Asf+Sdf [171] and Maude [34] support user-

definable syntax for RLS theories, which for language design has two benefits.

First, it gives a prototype parser for the defined language essentially for free; and

second, the language designer can use directly the concrete syntax of the desired

41



language features, instead of the more common, but harder to read, abstract

syntax tree (AST) representation. Regarding (iii), there is a wealth of theorem

proving and model checking tools for rewriting/equational-based specifications,

which can be used directly to prove properties about language definitions. The

fact that these formal analysis tools are generic, should not fool one into thinking

that they must be inefficient. For example, the LTL model checkers obtained for

free in Maude from the RLS definitions of Java and the JVM compare favorably

in performance with state-of-the-art Java model checkers [57, 58].

A fourth benefit comes from the availability in RLS of what we call the

“abstraction dial,” which can be used to reach a good balance between abstraction

and computational observability in semantic definitions. The point is which

computational granularity is appropriate. A small-step semantics opts for very

fine-grained computations. But this is not necessarily the only or the best option

for all purposes. The fact that an RLS theory’s axioms include both equations

and rewrite rules provides the useful “abstraction dial,” because rewriting takes

place modulo the equations. That is, computations performed by equations are

abstracted out and become invisible. This has many advantages, as explained in

[111]. For example, for formal analysis it can provide a huge reduction in search

space for model checking purposes, which is one of the reasons why the Java

model checkers described in [57, 58] perform so well. For language definition

purposes, this again has many advantages. For example, in Sections 3.4 and

3.3, we use equations to define the semantic infrastructure (stores, etc.) of SOS

definitions; in Section 3.6 equations are also used to hide the extraction and

application of evaluation contexts, which are “meta-level” operations, carrying no

computational meaning; in Section 3.7, equations are also used to decompose the

evaluation tasks into their corresponding subtasks; finally, in Sections 3.5 and

3.8, equations of associativity and commutativity are used to achieve modularity

of language definitions, and true concurrency in chemical-soup-like computations,

respectively. The point in all these cases is always the same: to achieve the

right granularity of computations.

The remainder of this chapter is organized as follows. Section 3.1 introduces

a simple imperative language that will be used to discuss the various definitional

styles and their RLS representations. Section 3.2 gathers some useful facts

about the algebraic representation of stores. Section 3.3 addresses the big-step

semantics. Section 3.4 discusses the small-step SOS, followed by Section 3.5

which discusses modular SOS. Sections 3.6 and 3.7 show how reduction semantics

with evaluation contexts and continuation-based semantics can respectively be

faithfully captured as RLS theories, as well as results discussing the relationships

between these two interesting semantics. Section 3.8 presents the Cham semantics.

Section 3.9 shows that the RLS theories corresponding to the various definitional

styles provide relatively efficient interpreters to the defined languages when

executed on systems that provide support for term rewriting.

42



AExp ::= Name | Int | AExp + AExp | AExp - AExp | AExp * AExp |
AExp / AExp |++ Name

BExp ::= Bool | AExp <= AExp | AExp >= AExp | AExp == AExp |
BExp and BExp | BExp or BExp |not BExp

Stmt ::= skip| Name := AExp | Stmt ; Stmt | {Stmt} |
if BExp then Stmt else Stmt |while BExp Stmt |halt AExp

Pgm ::= Stmt . AExp

Figure 3.1: A Small Imperative Language

3.1 A Simple Imperative Language

To illustrate the various operational semantics styles, we have chosen a small

imperative language having arithmetic and boolean expressions with side ef-

fects (increment expression), short-circuited boolean operations, assignment,

conditional, while loop, sequential composition, blocks and halt. The syntax

of the language is depicted in Figure 3.1.

The semantics of ++x is that of incrementing the value of x in the store

and then returning the new value. The increment is done at the moment of

evaluation, not after the end of the statement as in C/C++. Also, we assume

short-circuit semantics for boolean operations.

This BNF syntax is entirely equivalent to an algebraic order-sorted signature

having one (mixfix) operation definition per production, terminals giving the

name of the operation and non-terminals the arity. For example, the production

defining if-then-else can be seen as an algebraic operation

if_then_else_ : BExp × Stmt × Stmt → Stmt

We will use the following conventions for variables throughout the remainder

of the chapter: X ∈ Name, A ∈ AExp, B ∈ BExp, St ∈ Stmt , P ∈ Pgm, I ∈ Int ,

T ∈ Bool = {true, false}, any of them primed or indexed.

The next sections will use this simple language and will present definitions

in various operational semantics styles (big step, small step SOS, MSOS, re-

duction using evaluation contexts, continuation-based, and Cham), as well the

corresponding RLS representation of each definition. We will also characterize

the relation between the RLS representations and their corresponding defini-

tional style counterparts, pointing out some strengths and weaknesses for each

style. The reader is referred to [89, 136, 123, 180, 15] for further details on

the described operational semantics styles.

We assume equational definitions for basic operations on booleans and in-

tegers, and assume that any other theory defined here includes them. One of

the reasons why we wrapped booleans and integers in the syntax is precisely

to distinguish them from the corresponding values, and thus to prevent the

“builtin” equations from reducing expressions like 3 + 5 directly in the syntax (we

43



wish to have full control over the computational granularity of the language),

since our RLS representations aim to have the same computational granularity

of each of the different styles represented.

3.2 Store

Unlike in various operational semantics, which usually abstract stores as functions,

in rewriting logic we explicitly define the store as an algebraic datatype: a store is

a set of bindings from variables to values, together with two operations on them,

one for retrieving a value, another for setting a value. We show that well-formed

stores correspond to partially defined functions. Having this abstraction in place,

we can regard them as functions for all practical purposes from now on.

To define the store, we assume a pairing “binding” constructor “ 7→ ”,

associating values to variables1, and an associative and commutative union

operation“ ”with ∅ as its identity to put together such bindings. The equational

definition EStore of operations [ ] to retrieve the value of a variable in the store

and [ ← ] to update the value of a variable is given by the following equations,

that operate modulo the associativity and commutativity of :

(S X 7→ I)[X] = I

(S X 7→ I)[X ′] = S[X ′] if X 6= X ′

(S X 7→ I)[X ← I ′] = S X 7→ I ′

(S X 7→ I)[X ′ ← I ′] = S[X ′ ← I ′] X 7→ I if X 6= X ′

∅[X ← I] = X 7→ I

Note the X 6= X appearing as a condition is not a negative condition, but

rather a Boolean predicate, which can be equationally defined for any con-

structor-based type such as the type of variables, for example. Since these

definitions are equational, from a rewriting logic semantic point of view they

are invisible: transitions are performed modulo these equations. This way we

can maintain a coarser computational granularity, while making use of auxiliary

functions defined using equations. Although it might seem that, by using built-

ins as integers and names, one cannot guarantee the existence of the initial

model, notice that all the “built-ins” appearing in these definitions (names,

booleans, integers) are definable as initial models of corresponding equational

theories. And indeed, when performing formal proofs, one will make use of

these equational definitions of the so-called built-ins. A store s is well-formed

if EStore ` s = x1 7→ i1 . . . xn 7→ in for some xj ∈ Name and ij ∈ Int , for all

1 ≤ j ≤ n, such that xi 6= xj for any i 6= j. We say that a store s is equivalent to

a finite partial function σ : Name
◦→ Int , written s ' σ, if s is well-formed and

1 In general, one would have both an environment, and a store, with variables mapped to
locations in the environment, and locations mapped to values in the store. However, for the
sake of brevity, and given the simplicity of our example language, we do not use environments
and map variables directly to values in the store.

44



behaves as σ, that is, if for any x ∈ Name, i ∈ Int , σ(x) = i iff EStore ` s[x] = i.

We recall that, given a store-function σ, σ[i/x] is defined as the function mapping

x to i and other variables y to σ(y).

Proposition 2. Let x, x′ ∈ Name, i, i′ ∈ Int, s, s′ ∈ Store and finite partial

functions σ, σ′ : Name
◦→ Int.

1. ∅ '⊥ where ⊥ is the function undefined everywhere.

2. (s x 7→ i) ' σ implies that s ' σ[⊥ /x] where σ[⊥ /x] is defined as σ

restricted to Dom(σ) \ {x}.

3. If s ' σ then also s[x← i] ' σ[i/x].

Proof. 1. Trivial, since EStore 6` ∅[x] = i for any x ∈ Name, i ∈ Int .

2. Let σ′ be such that s ' σ′. We will prove that Dom(σ′) = Dom(σ)\{x} and

for any x′ ∈ Dom(σ′), σ′(x) = σ(x). Consider an arbitrary x′. If x′ = x,

then EStore 6` s[x′] = i′ for any i′, since otherwise we would have EStore `
s = s′ x 7→ i′ which contradicts the well-formedness of s x 7→ i; therefore,

σ′ is not defined on x′. If x′ 6= x, then EStore ` s[x′] = (s x 7→ i)[x′],

therefore σ′ is defined on x′ iff σ is defined on x′, and if so σ′(x′) = σ(x′).

3. Suppose s ' σ. We distinguish two cases —if σ is defined on x or if it is

not. If it is, then let us say that σ(x) = i′; in that case we must have that

EStore ` s[x] = i′ which can only happen if EStore ` s = s′ x 7→ i′, whence

EStore ` s[x← i] = s′ x 7→ i. Let x′ be an arbitrary variable in Name. If

x′ = x then

EStore ` (s[x← i])[x′] = (s′ x 7→ i)[x′] = i.

If x′ 6= x then

EStore ` (s[x← i])[x′] = (s′ x 7→ i)[x′] = s′[x′] = (s′ x 7→ i′)[x′] = s[x′].

If σ is not defined for x, it means that EStore 6` s[x] = i for any i,

whence EStore 6` s = s′ x 7→ i. If EStore ` s = ∅ then we are done,

since EStore ` (x 7→ i)[x′] = i′ iff x = x′ and i = i′. If EStore 6` s = ∅,
it must be that EStore ` s = x1 7→ i1 . . . xn 7→ in with xi 6= x. This

leads to EStore ` s[x ← i] = · · · = (x1 7→ i1 . . . xi 7→ ii)[x ← i](xi+1 7→
ii+1 . . . xn 7→ in) = · · · = ∅[x← i]s = (x 7→ i)s = s(x 7→ i).

In the following, we will use symbols S, S′, S1, ..., to denote variables

of type Store.

45



Types of configurations: 〈Int,Store〉, 〈Bool,Store〉, 〈AExp,Store〉,
〈BExp,Store〉, 〈Stmt,Store〉, 〈Pgm〉, 〈Int〉.

·
〈I, σ〉 ⇓ 〈I, σ〉

·
〈X,σ〉 ⇓ 〈σ(X), σ〉
·

〈++X,σ〉 ⇓ 〈I, σ[I/X]〉 , if I = σ(X) + 1

〈A1, σ〉 ⇓ 〈I1, σ1〉, 〈A2, σ1〉 ⇓ 〈I2, σ2〉
〈A1 +A2, σ〉 ⇓ 〈I1 +Int I2, σ2〉

·
〈T, σ〉 ⇓ 〈T, σ〉

〈A1, σ〉 ⇓ 〈I1, σ1〉, 〈A2, σ1〉 ⇓ 〈I2, σ2〉
〈A1<=A2, σ〉 ⇓ 〈(I1 ≤Int I2), σ2〉

〈B1, σ〉 ⇓ 〈true, σ1〉, 〈B2, σ1〉 ⇓ 〈T, σ2〉
〈B1 and B2, σ〉 ⇓ 〈T, σ2〉
〈B1, σ〉 ⇓ 〈false, σ1〉

〈B1 and B2, σ〉 ⇓ 〈false, σ1〉
〈B, σ〉 ⇓ 〈T, σ′〉

〈not B, σ〉 ⇓ 〈not(T ), σ′〉

·
〈skip, σ〉 ⇓ 〈σ〉
〈A, σ〉 ⇓ 〈I, σ′〉

〈X:=A, σ〉 ⇓ 〈σ′[I/X]〉
〈St1, σ〉 ⇓ 〈σ′′〉, 〈St2, σ′′〉 ⇓ 〈σ′〉

〈St1;St2, σ〉 ⇓ 〈σ′〉
〈St, σ〉 ⇓ 〈σ′〉
〈{St}, σ〉 ⇓ 〈σ′〉

〈B, σ〉 ⇓ 〈true, σ1〉, 〈St1, σ1〉 ⇓ 〈σ2〉
〈if B then St1 else St2, σ〉 ⇓ 〈σ2〉
〈B, σ〉 ⇓ 〈false, σ1〉, 〈St2, σ1〉 ⇓ 〈σ2〉
〈if B then St1 else St2, S〉 ⇓ 〈σ2〉

〈B, σ〉 ⇓ 〈false, σ′〉
〈while B St, σ〉 ⇓ 〈σ′〉

〈B, σ〉 ⇓ 〈true, σ1〉, 〈St, σ1〉 ⇓ 〈σ2〉, 〈while B St, σ2〉 ⇓ 〈σ′〉
〈while B St, σ〉 ⇓ 〈σ′〉

〈St, ∅〉 ⇓ 〈σ〉, 〈A, σ〉 ⇓ 〈I, σ′〉
〈St.A〉 ⇓ 〈I〉

Figure 3.2: The BigStep language definition

46



〈X,S〉 → 〈S[X], S〉
〈++X,S〉 → 〈I, S[X ← I]〉 if I = S[X] + 1

〈A1 +A2, S〉 → 〈I1 +Int I2, S2〉 if 〈A1, S〉 → 〈I1, S1〉 ∧ 〈A2, S1〉 → 〈I2, S2〉
〈A1<=A2, S〉 → 〈(I1 ≤Int I2), S2〉 if 〈A1, S〉 → 〈I1, S1〉 ∧ 〈A2, S1〉 → 〈I2, S2〉

〈B1 and B2, S〉 → 〈T, S2〉 if 〈B1, S〉 → 〈true, S1〉 ∧ 〈B2, S1〉 → 〈T, S2〉
〈B1 and B2, S〉 → 〈false, S1〉 if 〈B1, S〉 → 〈false, S1〉
〈not B,S〉 → 〈not(T ), S′〉 if 〈B,S〉 → 〈T, S′〉

〈skip, S〉 → 〈S〉
〈X:=A,S〉 → 〈S′[X ← I]〉 if 〈A,S〉 → 〈I, S′〉

〈St1;St2, S〉 → 〈S′〉 if 〈St1, S〉 → 〈S′′〉 ∧ 〈St2, S′′〉 → 〈S′〉
〈{St}, S〉 → 〈S′〉 if 〈St, S〉 → 〈S′〉

〈if B then St1 else St2, S〉 → 〈S2〉 if 〈B,S〉 → 〈true, S1〉 ∧ 〈St1, S1〉 → 〈S2〉
〈if B then St1 else St2, S〉 → 〈S2〉 if 〈B,S〉 → 〈false, S1〉 ∧ 〈St2, S1〉 → 〈S2〉

〈while B St, S〉 → 〈S′〉 if 〈B,S〉 → 〈false, S′〉
〈while B St, S〉 → 〈S′〉 if 〈B,S〉 → 〈true, S1〉 ∧ 〈St, S1〉 → 〈S2〉

∧〈while B St, S2〉 → 〈S′〉
〈St.A〉 → 〈I〉 if 〈St, ∅〉 → 〈S〉 ∧ 〈A,S〉 → 〈I, S′〉

Figure 3.3: RBigStep rewriting logic theory

3.3 Big-Step Operational Semantics

Introduced as natural semantics in [89], also named relational semantics in

[116], or evaluation semantics, big-step semantics is “the most denotational” of

the operational semantics. One can view big-step definitions as definitions of

functions interpreting each language construct in an appropriate domain.

Big step semantics can be easily represented within rewriting logic. For

example, consider the big-step rule defining integer division:

〈A1, σ〉 ⇓ 〈I1, σ1〉, 〈A2, σ1〉 ⇓ 〈I2, σ2〉
〈A1/A2, σ〉 ⇓ 〈I1/IntI2, σ2〉

, if I2 6= 0.

This rule can be automatically translated into the rewrite rule:

〈A1/A2, S〉 → 〈I1/IntI2, S2〉 if 〈A1, S〉 → 〈I1, S1〉 ∧ 〈A2, S1〉 → 〈I2, S2〉 ∧ I2 6= 0

The complete big-step operational semantics definition for our simple lan-

guage, except its halt statement (which is discussed at the end of this section),

which we call BigStep, is presented in Figure 3.2. We choose to exclude from the

presentation the semantics for constructs entirely similar to the ones presented,

such as “−”, “∗”, “/” and “or”. To give a rewriting logic theory for the big-step

semantics, one needs to first define the various configuration constructs, which

are assumed by default in BigStep, as corresponding operations extending the

signature. Then one can define the rewrite theory RBigStep corresponding to

the big-step operational semantics BigStep entirely automatically as shown by

Figure 3.3. Note that, because the rewriting relation is reflexive, we did not

need to add the reflexivity rules for boolean and integer values.

47



Due to the one-to-one correspondence between big-step rules in BigStep

and rewrite rules in RBigStep , it is easy to prove by induction on the length

of derivations the following result:

Proposition 3. For any p ∈ Pgm and i ∈ Int, the following are equivalent:

1. BigStep ` 〈p〉 ⇓ 〈i〉

2. RBigStep ` 〈p〉 →1 〈i〉

Proof. A first thing to notice is that, since all rules involve configurations,

rewriting can only occur at the top, thus the general application of term rewriting

under contexts is disabled by the definitional style. Another thing to notice

here is that all configurations in the right hand sides are normal forms, thus the

transitivity rule for rewriting logic also becomes inapplicable. Suppose s ∈ Store

and σ : Name
◦→ Int such that s ' σ. We prove the following statements:

1. BigStep ` 〈a, σ〉 ⇓ 〈i, σ′〉 iff RBigStep ` 〈a, s〉 →1 〈i, s′〉 and s′ ' σ′,
for any a ∈ AExp, i ∈ Int , σ′ : Name

◦→ Int and s′ ∈ Store.

2. BigStep ` 〈b, σ〉 ⇓ 〈t, σ′〉 iff RBigStep ` 〈b, s〉 →1 〈t, s′〉 and s′ ' σ′,
for any b ∈ AExp, t ∈ Bool , σ′ : Name

◦→ Int and s′ ∈ Store.

3. BigStep ` 〈st, σ〉 ⇓ 〈σ′〉 iff RBigStep ` 〈st, s〉 →1 〈s′〉 and s′ ' σ′,
for any st ∈ Stmt , σ′ : Name

◦→ Int and s′ ∈ Store.

4. BigStep ` 〈p〉 ⇓ 〈i〉 iff RBigStep ` 〈p〉 →1 〈i〉,
for any p ∈ Pgm and i ∈ Int .

Each can be proved by induction on the size of the derivation tree. To avoid

lengthy and repetitive details, we discuss the corresponding proof of only one

language construct in each category:

1. BigStep ` 〈x++, σ〉 ⇓ 〈i, σ[i/x]〉 iff

i = σ(x) + 1 iff

EStore ⊆ RBigStep ` i = s[x] + 1 iff

RBigStep ` 〈x++, s〉 →1 〈i, s[x← i]〉.
This completes the proof, since s[x← i] ' σ[i/x], by 3 in Proposition 2.

2. BigStep ` 〈b1 and b2, σ〉 ⇓ 〈t, σ′〉 iff

(BigStep ` 〈b1, σ〉 ⇓ 〈false, σ′〉 and t = false

or BigStep ` 〈b1, σ〉 ⇓ 〈true, σ′′〉 and BigStep ` 〈b2, σ′′〉 ⇓ 〈t, σ′〉 ) iff

(RBigStep ` 〈b1, s〉 →1 〈false, s′〉, s′ ' σ′ and t = false

or RBigStep ` 〈b1, s〉 →1 〈true, s′′〉, s′′ ' σ′′,
RBigStep ` 〈b2, s′′〉 →1 〈t, σ′〉 and s′ ' σ′ ) iff

RBigStep ` 〈b1 and b2, s〉 →1 〈t, s′〉 and s′ ' σ′.

3. BigStep ` 〈while b st, σ〉 ⇓ 〈σ′〉 iff

(BigStep ` 〈b, σ〉 ⇓ 〈false, σ′〉

48



or BigStep ` 〈b, σ〉 ⇓ 〈true, σ1〉
and BigStep ` 〈st, σ1〉 ⇓ 〈σ2〉
and BigStep ` 〈while b st, σ2〉 ⇓ 〈σ′〉 ) iff

(RBigStep ` 〈b, s〉 →1 〈false, s′〉 and s′ ' σ′
or RBigStep ` 〈b, s〉 →1 〈true, s1〉, s1 ' σ1

and RBigStep ` 〈st, s1〉 →1 〈s2〉, s2 ' σ2

and RBigStep ` 〈while b st, s2〉 →1 〈s′〉 and s′ ' σ′ ) iff

RBigStep ` 〈while b st, s〉 →1 〈s′〉 and s′ ' σ′.

4. BigStep ` 〈st.a〉 ⇓ 〈i〉 iff

BigStep ` 〈st,⊥〉 ⇓ 〈σ〉 and BigStep ` 〈a, σ〉 ⇓ 〈i, σ′〉 iff

RBigStep ` 〈st, ∅〉 →1 〈s〉, s ' σ, RBigStep ` 〈a, s〉 →1 〈i, s′〉 and s′ ' σ′ iff

RBigStep ` 〈st.a〉 →1 〈i〉

This completes the proof.

The only apparent difference between BigStep and RBigStep is the different

notational conventions they use. However, as the above theorem shows, there is

a one-to-one correspondence also between their corresponding “computations”

(or executions, or derivations). Therefore, RBigStep actually is the big-step

operational semantics BigStep, not an “encoding” of it. Note that, in order to be

faithfully equivalent to BigStep computationally,RBigStep lacks the main strength

of rewriting logic that makes it an appropriate formalism for concurrency, namely,

that rewrite rules can apply under any context and in parallel (here all rules are

syntactically constrained so that they can only apply at the top, sequentially).

Strengths. Big-step operational semantics allows straightforward recursive

definition. It can be easily and efficiently interpreted in any recursive, functional

or logical framework. It is particularly useful for defining type systems.

Weaknesses. Due to its monolithic, single-step evaluation, it is hard to debug

or trace big-step semantic definitions. If the program is wrong, no information

is given about where the failure occurred. Divergence is not observable in the

specified evaluation relation. It may be hard or impossible to model concurrent

features. It is not modular, e.g., to add side effects to expressions, one must

redefine the rules to allow expressions to evaluate to pairs (value-store). It is

inconvenient (and non-modular) to define complex control statements; consider,

for example, adding halt to the above definition —one needs to add a special

configuration halting(I), and the following rules:

〈halt A,S〉 → halting(I) if 〈A.S〉 → 〈I, S′〉
〈St1;St2, S〉 → halting(I) if 〈St1, S〉 → halting(I)

〈while B St, S〉 → halting(I) if 〈B,S〉 → 〈S′〉 ∧ 〈St, S′〉 → halting(I)

〈St.A, S〉 → 〈I〉 if 〈St, ∅〉 → halting(I)

49



3.4 Small-Step Operational Semantics

Introduced by Plotkin in [136], also called transition semantics or reduction

semantics, small-step semantics captures the notion of one computational step.

One inherent technicality involved in capturing small-step operational se-

mantics as a rewrite theory in a one-to-one notational and computational cor-

respondence is that the rewriting relation is by definition transitive, while the

small-step relation is not transitive (its transitive closure can be defined a poste-

riori). Therefore, we need to devise a mechanism to “inhibit” rewriting logic’s

transitive and uncontrolled application of rules. An elegant way to achieve this

is to view a small step as a modifier of the current configuration. Specifically, we

consider “·” to be a modifier on the configuration which performs a “small-step”

of computation; in other words, we assume an operation · : Config → Config.

Then, a small-step semantic rule, e.g.,

〈A1, S〉 → 〈A′1, S′〉
〈A1 +A2, S〉 → 〈A′1 +A2, S′〉

is translated, again automatically, into a rewriting logic rule, e.g.,

·〈A1 +A2, S〉 → 〈A′1 +A2, S
′〉 if ·〈A1, S〉 → 〈A′1, S′〉

A similar technique is proposed in [108], but there two different types of

configurations are employed, one standard and the other “tagged” with the mod-

ifier. However, allowing “·” to be a modifier rather than a part of a configuration

gives more flexibility to the specification —for example, one can specify that one

wants two steps simply by putting two dots in front of the configuration.

The complete 2 small-step operational semantics definition for our simple

language except its halt statement (which is discussed at the end of this section),

which we call SmallStep, is presented in Figure 3.4. The corresponding small-step

rewriting logic theory RSmallStep is given in Figure 3.5. The language described

here does not involve labels on rules like in the SOS of concurrent systems. For

that, one would take an approach similar to that presented in Section 3.5, that

is, pushing the labels back into the configurations.

As for big-step semantics, the rewriting under context deduction rule for

rewriting logic is again inapplicable, since all rules act at the top, on config-

urations. However, in SmallStep it is not the case that all right hand sides

are normal forms (this actually is a key feature of small-step semantics). The

“·” operator introduced in RSmallStep prevents the unrestricted application of

transitivity, and can be regarded as a token given to a configuration to allow it

2However, for brevity’s sake, we don’t present the semantics of similar constructs, such as
−, ∗, /, or.

50



Types of configurations: 〈AExp,Store〉, 〈BExp,Store〉, 〈Stmt,Store〉,
〈Pgm,Store〉

·
〈X,σ〉 → 〈(σ(X)), σ〉
·

〈++X,σ〉 → 〈I, σ[I/X]〉 , if I = σ(X) + 1

〈A1, σ〉 → 〈A′1, σ′〉
〈A1 +A2, σ〉 → 〈A′1 +A2, σ′〉

〈A2, σ〉 → 〈A′2, σ′〉
〈I1 +A2, σ〉 → 〈I1 +A′2, σ

′〉
·

〈I1 + I2, σ〉 → 〈I1 +Int I2, σ〉

〈A1, σ〉 → 〈A′1, σ′〉
〈A1<=A2, σ〉 → 〈A′1<=A2, σ′〉

〈A2, σ〉 → 〈A′2, σ′〉
〈I1<=A2, σ〉 → 〈I1<=A′2, σ′〉

·
〈I1<=I2, σ〉 → 〈(I1 ≤Int I2), σ〉

〈B1, σ〉 → 〈B′1, σ′〉
〈B1 and B2, σ〉 → 〈B′1 and B2, σ′〉

·
〈trueand B2, σ〉 → 〈B2, σ〉

·
〈falseand B2, σ〉 → 〈false, σ〉

〈B, σ〉 → 〈B′, σ′〉
〈not B, σ〉 → 〈not B′, σ′〉

·
〈nottrue, σ〉 → 〈false, σ〉

·
〈notfalse, σ〉 → 〈true, σ〉

〈A, σ〉 → 〈A′, σ′〉
〈X:=A, σ〉 → 〈X:=A′, σ′〉

·
〈X:=I, σ〉 → 〈skip, σ[I/X]〉

〈St1, σ〉 → 〈St′1, σ′〉
〈St1;St2, σ〉 → 〈St′1;St2, σ′〉

·
〈skip;St2, σ〉 → 〈St2, σ〉

·
〈{St}, σ〉 → 〈St, σ〉

〈B, σ〉 → 〈B′, σ′〉
〈if B then St1 else St2, σ〉 → 〈if B′ then St1 else St2, σ′〉

·
〈iftruethen St1 else St2, σ〉 → 〈St1, σ〉

·
〈iffalsethen St1 else St2, σ〉 → 〈St2, σ〉

·
〈while B St, σ〉 → 〈if B then (St; while B St) else skip, σ〉

〈St, σ〉 → 〈St′, σ′〉
〈St.A, σ〉 → 〈St′.A, σ′〉

〈A, σ〉 → 〈A′, σ′〉
〈skip.A, σ〉 → 〈skip.A′, σ′〉

〈P, ∅〉 →∗ 〈skip.I, σ〉
eval(P )→ I

Figure 3.4: The SmallStep language definition

51



·〈X,S〉 → 〈(S[X]), S〉
·〈++X,S〉 → 〈I, S[X ← I]〉 if I = S[X] + 1

·〈A1 +A2, S〉 → 〈A′1 +A2, S
′〉 if ·〈A1, S〉 → 〈A′1, S′〉

·〈I1 +A2, S〉 → 〈I1 +A′2, S
′〉 if ·〈A2, S〉 → 〈A′2, S′〉

·〈I1 + I2, S〉 → 〈I1 +Int I2, S〉
·〈A1 <= A2, S〉 → 〈A′1 <= A2, S

′〉 if ·〈A1, S〉 → 〈A′1, S′〉
·〈I1 <= A2, S〉 → 〈I1 <= A′2, S

′〉 if ·〈A2, S〉 → 〈A′2, S′〉
·〈I1 <= I2, S〉 → 〈(I1 ≤Int I2), S〉
·〈B1 and B2, S〉 → 〈B′1 and B2, S

′〉 if ·〈B1, S〉 → 〈B′1, S′〉
·〈trueand B2, S〉 → 〈B2, S〉

·〈falseand B2, S〉 → 〈false, S〉
·〈not B,S〉 → 〈not B′, S′〉 if ·〈B,S〉 → 〈B′, S′〉
·〈nottrue, S〉 → 〈false, S〉
·〈notfalse, S〉 → 〈true, S〉
·〈X := A,S〉 → 〈X := A′, S′〉 if ·〈A,S〉 → 〈A′, S′〉

·〈X := I, S〉 → 〈skip, S[X ← I]〉
·〈St1;St2, S〉 → 〈St′1;St2, S

′〉 if ·〈St1, S〉 → 〈St′1, S′〉
·〈skip;St2, S〉 → 〈St2, S〉

·〈{St}, S〉 → 〈St, S〉
·〈if B then St1 else St2, S〉

→ 〈if B′ then St1 else St2, S
′〉 if ·〈B,S〉 → 〈B′, S′〉

·〈iftruethen St1 else St2, S〉 → 〈St1, S〉
·〈iffalsethen St1 else St2, S〉 → 〈St2, S〉

·〈while B St, S〉
→ 〈if B then (St; while B St) else skip, S〉

·〈St.A, S〉 → 〈St′.A, S′〉 if ·〈St, S〉 → 〈St′, S′〉
·〈skip.A, S〉 → 〈skip.A′, S′〉 if ·〈A,S〉 → 〈A′, S′〉

eval(P ) = smallstep(〈P, ∅〉)
smallstep(〈P, S〉) = smallstep(·〈P, S〉)

smallstep(·〈skip.I, S〉)→ I

Figure 3.5: RSmallStep rewriting logic theory

52



to change to the next step. We use transitivity at the end (rules for smallstep)

to obtain the transitive closure of the small-step relation by specifically giving

tokens to the configuration until it reaches a normal form.

Again, there is a direct correspondence between SOS-style rules and rewriting

rules, leading to the following result, which can also be proved by induction

on the length of derivations:

Proposition 4. For any p ∈ Pgm, σ, σ′ : Name
◦→ Int and s ∈ Store such that

s ' σ, the following are equivalent:

1. SmallStep ` 〈p, σ〉→〈p′, σ′〉, and

2. RSmallStep ` ·〈p, s〉→1 〈p′, s′〉 and s′ ' σ′.

Moreover, the following are equivalent for any p ∈ Pgm and i ∈ Int:

1. SmallStep ` 〈p,⊥〉 →∗ 〈skip.i, σ〉 for some σ : Name
◦→ Int, and

2. RSmallStep ` eval(p)→ i.

Proof. As for big-step, we split the proof into four cases, by proving for each

syntactical category the following facts (suppose s ∈ Store, σ : Name
◦→ Int ,

s ' σ):

1. SmallStep ` 〈a, σ〉 → 〈a′, σ′〉 iff RSmallStep ` ·〈a, s〉 →1 〈a′, s′〉 and s′ ' σ′,

for any a, a′ ∈ AExp, σ′ : Name
◦→ Int and s′ ∈ Store.

2. SmallStep ` 〈b, σ〉 → 〈b′, σ′〉 iff RSmallStep ` ·〈b, s〉 →1 〈b′, s′〉 and s′ ' σ′,
for any b, b′ ∈ BExp, σ′ : Name

◦→ Int and s′ ∈ Store.

3. SmallStep ` 〈st, σ〉 → 〈st′, σ′〉 iff RSmallStep ` ·〈st, s〉 →1 〈st′, s′〉 and

s′ ' σ′,
for any st, st′ ∈ Stmt , σ′ : Name

◦→ Int and s′ ∈ Store.

4. SmallStep ` 〈p, σ〉 → 〈p′, σ′〉 iff RSmallStep ` ·〈p, s〉 →1 〈p′, s′〉 and s′ ' σ′,

for any p, p′ ∈ Pgm, σ′ : Name
◦→ Int and s′ ∈ Store.

These equivalences can be shown by induction on the size of the derivation tree.

Again, we only show one example per category:

1. SmallStep ` 〈a1 + a2, σ〉 → 〈a1 + a′2, σ
′〉 iff

a1 = i and SmallStep ` 〈a2, σ〉 → 〈a′2, σ′〉 iff

a1 = i, RSmallStep ` ·〈a2, s〉 →1 〈a′2, s′〉 and s′ ' σ′ iff

RSmallStep ` ·〈a1 + a2, s〉 →1 〈a1 + a′2, s
′〉 and s′ ' σ′.

2. SmallStep ` 〈not true, σ〉 → 〈false, σ〉 iff

RSmallStep ` ·〈not true, s〉 →1 〈false, s〉.

3. SmallStep ` 〈st1; st2, σ〉 → 〈st′1; st2, σ
′〉 iff

SmallStep ` 〈st1, σ〉 → 〈st′1, σ′〉 iff

RSmallStep ` ·〈st1, s〉 →1 〈st′1, s′〉 and s′ ' σ′ iff

RSmallStep ` ·〈st1; st2, s〉 →1 〈st′1 + st2, s
′〉 and s′ ' σ′.

53



4. SmallStep ` 〈st.a, σ〉 → 〈st.a′, σ′〉 iff

st = skip and SmallStep ` 〈a, σ〉 → 〈a′, σ′〉 iff

st = skip, RSmallStep ` ·〈a, s〉 →1 〈a′, s′〉 and s′ ' σ′ iff

RSmallStep ` ·〈st.a, s〉 → 〈st.a′, s′〉 and s′ ' σ′.

Let us now move to the second equivalence. For this proof let →n be the

restriction of RSmallStep relation → to those pairs which can be provable by

exactly applying n − 1 times the Transitivity rule if n > 0, or Reflexivity

for n = 0. We first prove the following more general result (suppose p ∈ Pgm,

σ : Name
◦→ Int and s ∈ Store such that s ' σ):

SmallStep ` 〈p, σ〉 →n 〈p′, σ′〉 iff

RSmallStep ` smallstep(〈p, s〉)→n smallstep(·〈p′, s′〉) and s′ ' σ′,

by induction on n. If n = 0 then 〈p, σ〉 = 〈p′, σ′〉 and since RSmallStep `
smallstep(〈p, s〉) = smallstep(·〈p, s〉) we are done. If n > 0, we have that

SmallStep ` 〈p, σ〉 →n 〈p′, σ′〉 iff

SmallStep ` 〈p, σ〉 → 〈p1, σ1〉 and SmallStep ` 〈p1, σ1〉 →n−1 〈p′, σ′〉 iff

RSmallStep ` ·〈p, s〉 → 〈p1, s1〉 and s1 ' σ1 (by 1)

and RSmallStep ` smallstep(〈p1, s1〉)→n−1 smallstep(·〈p′, s′〉) and s′ ' σ′
(by the induction hypothesis)

iff

RSmallStep ` smallstep(·〈p, s〉)→1 smallstep(〈p1, s1〉) and s1 ' σ1

and RSmallStep ` smallstep(〈p1, s1〉)→n−1 smallstep(·〈p′, s′〉) and s′ ' σ′ iff

RSmallStep ` smallstep(·〈p, s〉)→n smallstep(·〈p′, s′〉) and s′ ' σ′.
We are done, since RSmallStep ` smallstep(〈p, s〉) = smallstep(·〈p, s〉).

Finally, SmallStep ` 〈p,⊥〉 →∗ 〈skip.i, σ〉 iffRSmallStep ` smallstep(〈p, ∅〉)→
smallstep(·〈skip.i, s〉), s ' σ; the rest follows from RSmallStep ` eval(p) =

smallstep(〈p, ∅〉) and RSmallStep ` smallstep(·〈skip.i, s〉) = i.

Strengths. Small-step operational semantics precisely defines the notion of

one computational step. It stops at errors, pointing them out. It is easy to trace

and debug. It gives interleaving semantics for concurrency.

Weaknesses. Each small step does the same amount of computation as a big

step in finding the next redex. It does not give a “true concurrency” semantics,

that is, one has to choose a certain interleaving (no two rules can be applied

on the same term at the same time), mainly because reduction is forced to

occur only at the top. One of the reasons for introducing SOS was that abstract

machines need to introduce new syntactic constructs to decompose the abstract

syntax tree, while SOS would and should only work by modifying the structure of

the program. We argue that this is not entirely accurate: for example, one needs

to have the syntax of boolean values if one wants to have boolean expressions,

and needs an if mechanism in the above definition to evaluate while. The fact

that these features are common in programming languages does not mean that

the languages which don’t want to allow them should be despised. It is still hard

54



to deal with control —for example, consider adding halt to this language. One

cannot simply do it as for other ordinary statements: instead, one has to add a

corner case (additional rule) to each statement, as shown below:

·〈halt A,S〉 → 〈halt A′, S′〉 if ·〈A,S〉 → 〈A′, S′〉
·〈halt I;St, S〉 → 〈halt I, S〉
·〈halt I.A, S〉 → 〈skip.I, S〉

If expressions could also halt the program, e.g., if one adds functions, then a

new rule would have to be added to specify the corner case for each halt-related

arithmetic or boolean construct. Moreover, by propagating the “halt signal”

through all the statements and expressions, one fails to capture the intended com-

putational granularity of halt: it should just terminate the execution in one step!

3.5 MSOS Semantics

MSOS semantics was introduced by Mosses in [122, 123] to deal with the non-

modularity issues of small-step and big-step semantics. The solution proposed

in MSOS involves moving the non-syntactic state components to the labels

on transitions (as provided by SOS), plus a discipline of only selecting needed

attributes from the states.

A transition in MSOS is of the form P
X−→ P ′, where P and P ′ are program

expressions and X is a label describing the structure of the state both before

and after the transition. If X is missing, then the state is assumed to stay

unchanged. Specifically, X is a record containing fields denoting the semantic

components; the preferred notation in MSOS for saying that in the label X the

semantic component associated to the field name σ (e.g., a store name) is σ0

(e.g., a function associating values to variables) is X = {σ = σ0, . . .}. Modularity

is achieved by the record comprehension notation “. . .” which indicates that

more fields could follow but that they are not of interest for this transition.

If record comprehension is used in both the premise and the conclusion of an

MSOS rule, then all occurrences of “. . .” stand for the same fields with the

same semantic components. Fields of a label can fall in one of the following

categories: read-only, read-write and write-only.

Read-only fields are only inspected by the rule, but not modified. For

example, when reading the location of a variable in an environment, the en-

vironment is not modified.

Read-write fields come in pairs, having the same field name, except that the

“write” field name is primed. They are used for transitions modifying existing

state fields. For example, a store field σ can be read and written, as illustrated

by the MSOS rule‘ for assignment:

unobs{σ = σ0, σ
′ = σ0 . . .}

X:=I
{σ=σ0,σ′=σ0[I/X],...}−−−−−−−−−−−−−−−→ skip

55



The above rule says that, if before the transition the store was σ0, after the

transition it will become σ0[I/X], updating X by I. The unobs predicate is

used to express that the rest of the state does not change.

Write-only fields are used to record things whose values cannot be inspected

before a transition such as emission of actions to the outside world (e.g., output,

recording of the trace). Their names are always primed and they have a free

monoid semantics —everything written on them is actually added at the end.

A good example of the usage of write-only fields would be a rule for defining

a print language construct:

unobs{out′ = (), . . .}
print(I)

{out′=I,...}−−−−−−−→ skip

where “()” stand for monoid unit.

The state after this rule is applied will have the out field containing “LI”,

where the juxtaposition LI denotes the free monoid multiplication of L and I.

The MSOS description of the small-step SOS definition in Figure 3.4 is given

in Figure 3.6 (we let X range over labels on transitions).

Because the part of the state not involved in a certain rule is hidden through

the “. . .” notation, language extensions can be made modularly. Consider, for

example, adding halt to the definition in Figure 3.6. One possible way to do it

is to follow the technique proposed in [123] for adding non-parametric abrupt

termination, with some modifications to suit our needs to abruptly terminate the

program with a value. For this, we add a write-only field in the record, say halt?

having as arrows the monoid freely generated by integer numbers, along with a

language construct stuck to block the execution of the program. To ”catch the

halt signal” we extend the abstract syntax with a new construct, say program,

applied to a top-level program. The first set of MSOS rules for halt are then:

A
X−→ A′

halt A
X−→ halt A′

unobs{halt?′ = (), . . .}
halt I

{halt?′=I,...}−−−−−−−−−→ stuck

P
{halt?′=I,...}−−−−−−−−−→ P ′

program P
{halt?′=I,...}−−−−−−−−−→ program skip.I

P
{halt?′=(),...}−−−−−−−−−→ P ′

program P
{halt?′=(),...}−−−−−−−−−→ program P ′

An alternative to the above definition, which would not require the intro-

duction of new syntax, is to make halt? a read-write field with possible values

integers along with a default value nil and use an unobservable transition at

56



unobs{σ, . . .}, σ(X) = I

X
{σ,...}−−−−→ I

unobs{σ = σ0, σ
′ = σ0, . . .}, I = σ0(X) + 1

++X
{σ=σ0,σ′=σ0[I/X],...}−−−−−−−−−−−−−−−→ I

A1
X−→ A′1

A1 +A2
X−→ A′1 +A2

A2
X−→ A′2

I1 +A2
X−→ I1 +A′2

I = I1 +Int I2
I1 + I2 → I

A1
X−→ A′1

A1<=A2
X−→ A′1<=A2

A2
X−→ A′2

I1<=A2
X−→ I1<=A′2

T = I1 ≤Int I2
I1<=I2 → T

B1
X−→ B′1

B1 and B2
X−→ B′1 and B2

trueand B2 → B2

falseand B2 →false

B
X−→ B′

not B
X−→not B′

nottrue→false

notfalse→true

A
X−→ A′

X:=A
X−→ X:=A′

unobs{σ = σ0, σ
′ = σ0, . . .}

X:=I
{σ=σ0,σ′=σ0[I/X],...}−−−−−−−−−−−−−−−→ skip

St1
X−→ St′1

St1;St2
X−→ St′1;St2

skip;St2 → St2

{St} → St

B
X−→ B′

if B then St1 else St2
X−→if B′ then St1 else St2

iftruethen St1 else St2 → St1

iffalsethen St1 else St2 → St2

while B St→if B then (St; while B St) else skip

St
X−→ St′

St.A
X−→ St′.A

A
X−→ A′

skip.A
X−→ skip.A′

Figure 3.6: The MSOS language definition

57



top to terminate the program:

A
X−→ A′

halt A
X−→ halt A′

unobs{halt? = nil, halt?′ = nil, . . .}
halt I

{halt?=nil,halt?′=I,...}−−−−−−−−−−−−−−−→ stuck

unobs{halt? = I, . . .}
P
{halt?=I,...}−−−−−−−−→ skip.I

However, since the last rule is based on observation of the state, the program

is not forced to terminate as soon as halt is consumed (as was the case in the

first definition), since in the case of non-determinism, for example, there might

be other things which are still computable.

To give a faithful representation of MSOS definitions in rewriting logic, we

here follow the methodology in [108]. Using the fact that labels describe changes

from their source state to their destination state, one can move the labels back

into the configurations. That is, a transition step P
u−→ P ′ is modeled as a

rewrite step ·〈P, upre〉 → 〈P ′, upost〉, where upre and upost are records describing

the state before and after the transition. Notice again the use of the “·” operator

to emulate small steps by restricting transitivity. State records can be specified

equationally as wrapping (using a constructor“{ }”) a set of fields built from fields

as constructors, using an associative and commutative concatenation operation

“ , ”. Fields are constructed from state attributes; for example, the store can

be embedded into a field by a constructor “σ : ”.

Records upre and upost are computed from u in the following way:

• For unobservable transitions, upre = upost; same applies for unobservable

attributes in premises;

• Read-only fields of u are added to both upre and upost.

• Read-write fields of u are translated by putting the read part in upre and

the (now unprimed) write part in upost. The assignment rule, for example,

becomes:

·〈X:=I, {σ : S0,W}〉 → 〈skip, {σ : S0[X ← I],W}〉

Notice that the “. . .” notation gets replaced by a generic field-set variable

W .

• Write-only fields i′ = v of u are translated as follows: i : L, with L a fresh

new variable, is added to upre, and i : Lv is added to upost. For example,

the print rule above becomes:

·〈print(I), {out : L,W}〉 → 〈skip, {out : LI,W}〉

58



• When dealing with observable transitions, both state records meta-variables

and . . . operations are represented in upre by some variables, while in upost

by others. For example, the first rule defining addition in Figure 3.6 is

translated into:

·〈A1 +A2, R〉 → 〈A′1 +A2, R
′〉 if ·〈A1, R〉 → 〈A′1, R′〉

The key thing to notice here is that modularity is preserved by this translation.

What indeed makes MSOS definitions modular is the record comprehension

mechanism. A similar comprehension mechanism is achieved in rewriting logic

by using sets of fields and matching modulo associativity and commutativity.

That is, the extensibility provided by the “. . .” record notation in MSOS is

here captured by associative and commutative matching on the W variable,

which allows new fields to be added.

The relation between MSOS and RMSOS definitions assumes that MSOS

definitions are in a certain normal form [108] and is made precise by the following

theorem, strongly relating MSOS and modular rewriting semantics.

Theorem 3. [108] For each normalized MSOS definition, there is a strong

bisimulation between its transition system and the transition system associated

to its translation in rewriting logic.

The above presented translation is the basis for the Maude-MSOS tool [28],

which has been used to define and analyze complex language definitions, such

as Concurrent ML [27].

Figure 3.7 presents the rewrite theory corresponding to the MSOS definition

in Figure 3.6. The only new variable symbols introduced are R,R′, standing for

records, and W standing for the remainder of a record.

Strengths. As it is a framework on top of any operational semantics, it inherits

the strengths of the semantics for which it is used; moreover, it adds to those

strengths the important new feature of modularity. It is well-known that SOS

definitions are typically highly unmodular, so that adding a new feature to the

language often requires the entire redefinition of the SOS rules.

Weaknesses. Control is still not explicit in MSOS, making combinations

of control-dependent features (e.g., call/cc) impossible to specify [123, page

223]. Also, MSOS still does not allow to capture the intended computational

granularity of some defined language statements. For example, the desired

semantics of “halt i” is “stop the execution with the result i”; unfortunately,

MSOS, like its SOS ancestors, still needs to “propagate” the halting signal along

the syntax all the way to the top.

59



·〈X, {σ : S,W}〉 → 〈I, {σ : S,W}〉 if I = S[X]
·〈++X, {σ : S0,W}〉 → 〈I, {S0[X ← I],W}〉 if I = S0[X] + 1

·〈A1 +A2, R〉 → 〈A′
1 +A2, R

′〉 if ·〈A1, R〉 → 〈A′
1, R

′〉
·〈I1 +A2, R〉 → 〈I1 +A′

2, R
′〉 if ·〈A2, R〉 → 〈A′

2, R
′〉

·〈I1 + I2, R〉 → 〈I1 +Int I2, R〉
·〈A1<=A2, R〉 → 〈A′

1<=A2, R
′〉 if ·〈A1, R〉 → 〈A′

1, R
′〉

·〈I1<=A2, R〉 → 〈I1<=A′
2, R

′〉 if ·〈A2, R〉 → 〈A′
2, R

′〉
·〈I1<=I2, R〉 → 〈I1 ≤Int I2, R〉

·〈B1 and B2, R〉 → 〈B′
1 and B2, R

′〉 if ·〈B1, R〉 → 〈B′
1, R

′〉
·〈trueand B2, R〉 → 〈B2, R〉

·〈falseand B2, R〉 → 〈false, R〉
·〈not B,R〉 → 〈not B′, R′〉 if ·〈B,R〉 → 〈B′, R′〉
·〈nottrue, R〉 → 〈false, R〉
·〈notfalse, R〉 → 〈true, R〉
·〈X:=A,R〉 → 〈X:=A′, R′〉 if ·〈A,R〉 → 〈A′, R′〉

·〈X:=I, {σ : S0,W}〉 → 〈skip, {σ : S0[X ← I],W}〉
·〈St1;St2, R〉 → 〈St′1;St2, R

′〉 if ·〈St1, R〉 → 〈St′1, R′〉
·〈skip;St2, R〉 → 〈St2, R〉

·〈{St}, R〉 → 〈St,R〉
·〈if B then St1 else St2, R〉

→ 〈if B′ then St1 else St2, R
′〉 if ·〈B,R〉 → 〈B′, R′〉

·〈iftruethen St1 else St2, R〉 → 〈St1, R〉
·〈iffalsethen St1 else St2, R〉 → 〈St2, R〉

·〈while B St,R〉
→ 〈if B then (St; while B St) else skip, R〉

·〈St.A,R〉 → 〈St′.A,R′〉 if ·〈St,R〉 → 〈St′, R′〉
·〈skip.A,R〉 → 〈skip.A′, R′〉 if ·〈A,R〉 → 〈A′, R′〉

Figure 3.7: RMSOS rewriting logic theory

3.6 Reduction Semantics with Evaluation

Contexts

Introduced in [180], also called context reduction, the evaluation contexts style

improves over small-step definitional style in two ways:

1. it gives a more compact semantics to context-sensitive reduction, by using

parsing to find the next redex rather than small-step rules; and

2. it provides the possibility of also modifying the context in which a reduction

occurs, making it much easier to deal with control-intensive features. For

example, defining halt is done now using only one rule, C[halt I] → I,

preserving the desired computational granularity. Additionally, one can

also incorporate the configuration as part of the evaluation context, and

thus have full access to semantic information on a “by need basis”; the

PLT-Redex implementation of context reduction, for example, supports

this approach. Notice how the assignment rule, for example, modifies both

the redex, transforming it to skip, and the evaluation context, altering

the state which can be found at its top. In this framework, constructs like

call/cc can be defined with little effort.

60



CConf ::= 〈CPgm,Store〉
CPgm ::= [] | skip.CAExp | CStmt.AExp
CStmt ::= [] | CStmt; Stmt | X:=CAExp

| if CBExp then Stmt else Stmt
| halt CAExp

CBExp ::= [] | Int<=CAExp | CAExp<=AExp
| CBExp and BExp |not CBExp

CAExp ::= [] | Int + CAExp | CAExp + AExp

E → E′

C[E]→ C[E′]

I1 + I2 → (I1 +Int I2)
〈P, σ〉[X]→ 〈P, σ〉[(σ(X))]
〈P, σ〉[++X]→ 〈P, σ[I/X]〉[I] when I = σ(X) + 1

I1<=I2 → (I1 ≤Int I2)
true and B → B
false and B →false

not true→false

not false→true

if true then St1 else St2 → St1
if false then St1 else St2 → St2
skip;St→ St
{St} → St
〈P, σ〉[X:=I]→ 〈P, σ[I/X]〉[skip]
while B St→if B then (St; while B St) else skip

C[halt I]→ 〈I〉

C[skip.I]→ 〈I〉

Figure 3.8: The CxtRed language definition

61



In a context reduction semantics of a language, one typically starts by defining

the syntax of evaluation contexts. An evaluation context is a program with a

“hole”, the hole being a placeholder where the next computational step takes

place. If C is such a context and E is some expression whose type fits into the

type of the hole of C, then C[E] is the program formed by replacing the hole of

C by E. The characteristic reduction step underlying context reduction is:

E → E′

C[E]→ C[E′]
,

extending the usual “only-at-the-top” reduction by allowing reduction steps to

take place under any desired evaluation context. Therefore, an important part

of a context reduction semantics is the definition of evaluation contexts, which is

typically done by means of a context-free grammar. The definition of evaluation

contexts for our simple language is found in Figure 3.8 (we let [] denote the“hole”).

In this BNF definition of evaluation contexts, S is a store variable. Therefore,

a “top level” evaluation context will also contain a store in our simple language

definition. There are also context-reduction definitions which operate only on

syntax (i.e., no additional state is needed), but instead one needs to employ some

substitution mechanism (particularly in definitions of λ-calculus based languages).

The rules following the evaluation contexts grammar in Figure 3.8 complete the

context reduction semantics of our simple language, which we call CxtRed .

By making the evaluation context explicit and changeable, context reduction

is, in our view, a significant improvement over small-step SOS. In particular,

one can now define control-intensive statements like halt modularly and at

the desired level of computational granularity. Even though the definition in

Figure 3.8 gives one the feeling that evaluation contexts and their instantiation

come “for free”, the application of the “rewrite in context” rule presented above

can be expensive in practice. This is because one needs either to parse/search the

entire configuration to put it in the form C[E] for some appropriate C satisfying

the grammar of evaluation contexts, or to maintain enough information in some

special data-structures to perform the split C[E] using only local information

and updates. Moreover, this “matching-modulo-the-CFG-of-evaluation-contexts”

step needs to be done at every computation step during the execution of a

program, so it may easily become the major bottleneck of an executable engine

based on context reduction. Direct implementations of context reduction such as

PLT-Redex cannot avoid paying a significant performance penalty [181]. Danvy

and Nielsen propose in [41] a technique for efficiently interpreting a restricted

form of reduction semantics definitions by means of “refocusing” functions which

yield efficient abstract machines. Although these refocusing functions are equa-

tionally definable, since we aim here to achieve minimal representational distance,

we prefer to translate the definitions into rewriting logic by leaving the rules

unchanged and implementing the decompose and plug functions from reduction

semantics by means of equations. Next section will present an abstract-machine

62



s2c(〈P, S〉) = 〈C, S〉[R] if C[R] = s2c(P )
s2c(skip.I) = [][skip.I]
s2c(skip.A) = (skip.C)[R] if C[R] = s2c(A)
s2c(St.A) = (C.A)[R] if C[R] = s2c(St)
s2c(halt I) = [][halt I]
s2c(halt A) = (halt C)[R] if C[R] = s2c(A)
s2c(while B St) = [][while B St]
s2c(if T then St1 else St2) = [][if T then St1 else St2]
s2c(if B then St1 else St2) = (if C then St1 else St2)[R] if C[R] = s2c(B)
s2c({St}) = [][{St}]
s2c(skip;St2) = [][skip;St2]
s2c(St1;St2) = (C;St2)[R] if C[R] = s2c(St1)
s2c(X:=I) = [][X:=I]
s2c(X:=A) = (X:=C)[R] if C[R] = s2c(A)
s2c(I1<=I1) = [][I1<=I2]
s2c(I<=A) = (I<=C)[R] if C[R] = s2c(A)
s2c(A1<=A2) = (C<=A2)[R] if C[R] = s2c(A1)
s2c(T and B2) = [][T and B2]
s2c(B1 and B2) = (C and B2)[R] if C[R] = s2c(B1)
s2c(not T ) = [][not T ]
s2c(not B) = (not C)[R] if C[R] = s2c(B)
s2c(X) = [][X]
s2c(++X) = [][++X]
s2c(I1 + I2) = [][I1 + I2]
s2c(I +A) = (I + C)[R] if C[R] = s2c(A)
s2c(A1 +A2) = (C +A2)[R] if C[R] = s2c(A1)

Figure 3.9: Equational definition of s2c

definition of a programming language in rewriting logic, resembling Felleisen’s

CK machine [59], which is obtained by applying Danvy and Nielsen’s technique.

Context reduction is trickier to faithfully capture as a rewrite theory, since

rewriting logic, by its locality, always applies a rule in context, without actually

having the capability of changing the given context. Also, from a rewriting

point of view, context-reduction captures context-sensitive rewriting, which,

although supported by rewriting logic in the form of congruence restricted to

the non-frozen arguments of each operator, cannot be captured “as-is” in its

full generality within rewriting logic.

To faithfully model context-reduction, we make use of two equationally-

defined operations: s2c, which splits a piece of syntax into a context and a

redex, and c2s, which plugs a piece of syntax into a context. In our rewriting

logic definition, C[R] is not a parsing convention, but rather a constructor

conveniently representing the pair (context C, redex R). In order to have

an algebraic representation of contexts we extend the signature by adding a

constant [], representing the hole, for each syntactic category. The operation s2c,

presented in Figure 3.9, has an effect similar to what one achieves by parsing in

context reduction, in the sense that given a piece of syntax it yields C[R]. It

is a straight-forward, equational definition of the decompose function used in

context-reduction implementations based on the syntax of contexts. We here

63



c2s([][H]) = H
c2s(〈P, S〉[H]) = 〈c2s(P [H]), S〉
c2s(〈I〉[H]) = 〈I〉
c2s(E1.E2[H]) = c2s(E1[H]).c2s(E2[H])
c2s(halt E[H]) =halt c2s(E[H])
c2s(while E1 E2[H]) =while c2s(E1[H]) c2s(E2[H])
c2s(if E then E1 else E2[H]) =

if c2s(E[H]) then c2s(E1[H]) else c2s(E2[H])
c2s({E}[H]) = {c2s(E[H])}
c2s(E1;E2[H]) = c2s(E1[H]); c2s(E2[H])
c2s(X:=E[H]) = X:=c2s(E[H])
c2s(skip[H]) = skip
c2s(E1<=E2[H]) = c2s(E1[H])<=c2s(E2[H])
c2s(E1 and E2[H]) = c2s(E1[H]) and c2s(E2[H])
c2s(not E[H]) =not c2s(E[H])
c2s(true[H]) = true

c2s(false[H]) = false
c2s(++X[H]) = ++X
c2s(E1 + E2[H]) = c2s(E1[H]) + c2s(E2[H])
c2s(I[H]) = I

Figure 3.10: Equational definition of c2s

assume the same restrictions on the context syntax as in [41], namely that

the grammar defining them is context-free and that there is always a unique

decomposition of an expression into a context and a redex. The operation c2s,

presented in Figure 3.10, is the equational definition of the plug function used in

interpreting context-reduction definitions, and it is a morphism on the syntax.

Notice that (from the defining equations) we have the guarantee that it will

be applied only to “well-formed” contexts (i.e., contexts containing only one

hole). The rewrite theory RCxtRed is obtained by adding the rules in Figure 3.11

to the equations of s2c and c2s.

The RCxtRed definition is a faithful representation of context reduction

semantics: indeed, it is easy to see that s2c recursively finds the redex taking

into account the syntactic rules defining a context in the same way a parser

would, and in the same way as other current implementations of this technique

do it. Also, since parsing issues are abstracted away using equations, the

computational granularity is the same, yielding a one-to-one correspondence

between the computations performed by the context reduction semantics rules

and those performed by the rewriting rules.

Theorem 4. Suppose that s ' σ. Then the following hold:

1. 〈p, σ〉 parses in CxtRed as 〈c, σ〉[r] iff RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[r];

2. RCxtRed ` c2s(c[r]) = c[r/[]] for any valid context c and appropriate redex

r;

3. CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 iff RCxtRed ` ·(〈p, s〉)→1 〈p′, s′〉 and s′ ' σ′;

4. CxtRed ` 〈p, σ〉 → 〈i〉 iff RCxtRed ` ·(〈p, s〉)→1 〈i〉;

64



·(I1 + I2)→ (I1 +Int I2)
·(〈P, S〉[X])→ 〈P, S〉[(S[X])]

·(〈P, S〉[++X])→ 〈P, S[X ← I]〉[I] if I = s(S[X])
·(I1<=I2)→ (I1 ≤Int I2)

·(trueand B)→ B
·(falseand B)→false

·(nottrue)→false

·(notfalse)→true

·(iftruethen St1 else St2)→ St1
·(iffalsethen St1 else St2)→ St2

·(skip;St)→ St
·({St})→ St

·(〈P, S〉[X:=I])→ 〈P, S[X ← I]〉[skip]
·(while B St)

→if B then (St; while B St) else skip

·(C[halt I])→ 〈I〉[[]]
·(C[skip.I])→ 〈I〉[[]]

·(C[R])→ C[R′] if ·(R)→ R′

·(Cfg)→ c2s(C[R]) if ·(s2c(Cfg))→ C[R]
eval(P ) = reduction(〈P, ∅〉)

reduction(Cfg) = reduction(·(Cfg))
reduction(〈I〉) = I

Figure 3.11: RCxtRed rewriting logic theory

5. CxtRed ` 〈p,⊥〉 →∗ 〈i〉 iff RCxtRed ` eval(p)→ i.

Proof. 1. By induction on the number of context productions applied to

parse the context, which is the same as the length of the derivation of

RCxtRed ` s2c(syn) = c[r], respectively, for each syntactical construct syn.

We only show some of the more interesting cases.

Case ++ x: ++x parses as [][++x]. Also RCxtRed ` s2c(++x) = [][++x] in

one step (it is an instance of an axiom).

Case a1 <= a2: a1 <= a2 parses as a1 <= c[r] iff

a1 ∈ Int and a2 parses as c[r] iff

a1 ∈ Int and RCxtRed ` s2c(a2) = c[r] iff

RCxtRed ` s2c(a1<=a2) = (a1<=c)[r].

Case x := a: x := a parses as [][x:=a] iff a ∈ Int , iff

RCxtRed ` s2c(x:=i) = [][x:=i].

Case st.a: st.a parses as st.c[r] iff

st = skip and a parses as c[r], iff

st = skip and RCxtRed ` s2c(a) = c[r] iff

RCxtRed ` s2c(at.a) = st.c[r].

Case 〈p, σ〉: 〈p, σ〉 parses as c[r] iff

p parses as c′[r] and c = 〈c′, s〉 iff

65



RCxtRed ` s2c(p) = c′[r] and c = 〈c′, s〉 iff

RCxtRed ` s2c(〈p, s〉) = 〈c′, s〉[r].

2. From the way it was defined, c2s acts as a morphism on the structure of

syntactic constructs, changing [] in C by R. Since c2s is defined for all

constructors, it will work for any valid context C and pluggable expression

e. Note, however, that c2s works as stated also on multi-contexts (i.e., on

contexts with multiple holes), but this aspect does not interest us here.

3. There are several cases again to analyze, depending on the particular

reduction that provoked the derivation CxtRed ` 〈p, σ〉 → 〈p′, σ〉. We only

discuss some cases; the others are treated similarly.

CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 because of CxtRed ` 〈c, σ〉[x]→ 〈c, σ〉[σ(x)] iff

〈p, σ〉 parses as 〈c, σ〉[x] and 〈p′, σ′〉 is 〈c, σ〉[σ(x)] (in particular σ′ = σ) iff

RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[x], RCxtRed ` s[x] = i where i = σ(x) and

RCxtRed ` c2s(〈c, s〉[i]) = 〈p′, s〉 iff

RCxtRed ` ·(〈p, s〉)→1 〈p′, s〉, because RCxtRed ` ·(〈c, s〉[x])→1 〈c, s〉[i].
CxtRed ` 〈p, σ〉 → 〈p′, σ〉 because of not true→false

c[not true]→c[false] for some evaluation

context c iff

〈p, σ〉 parses as c[not true] and 〈p′, σ〉 is c[false] iff

RCxtRed ` s2c(〈p, s〉) = c[not true] and RCxtRed ` c2s(c[false]) = 〈p′, s〉
iff

RCxtRed ` ·(〈p, s〉) →1 〈p′, s〉, because RCxtRed ` ·(c[not true]) →1

c[false] (which follows since RCxtRed ` ·(not true)→1 false).

CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 because of

CxtRed ` 〈c, σ〉[x:=i]→ 〈c, σ[i/x][skip]〉 iff

〈p, σ〉 parses as 〈c, σ〉[x:=i], σ′ = σ[i/x] and 〈p′, σ′〉 is 〈c, σ′〉[skip] iff

RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[x:=i], s′ = s[x ← i] ' σ′ and RCxtRed `
c2s(〈c, s′〉[skip]) = 〈p′, s′〉 iff

RCxtRed ` ·(〈p, s〉)→1 〈p′, s′〉, because

RCxtRed ` ·(〈c, s〉[x:=i])→1 〈c, s′〉[skip].

4. CxtRed ` 〈p, σ〉 → 〈i〉 because of CxtRed ` c[skip.i]→ 〈i〉 iff

〈p, σ〉 parses as 〈[], σ〉[skip.i] iff

RCxtRed ` s2c(〈p, s〉) = 〈[], s〉[skip.i] iff

RCxtRed ` ·(〈p, s〉) = 〈i〉, since RCxtRed ` ·(〈[], σ〉[skip.i]) →1 〈i〉[[]] and

since RCxtRed ` c2s(〈i〉[[]]) = 〈i〉.
Also, CxtRed ` 〈p, σ〉 → 〈i〉 because of CxtRed ` c[halt i]→ 〈i〉 iff

〈p, σ〉 parses as 〈c, σ〉[halt i] iff

RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[halt i] iff

RCxtRed ` ·(〈p, s〉) = 〈i〉 since RCxtRed ` ·(〈c, σ〉[halt i]) →1 〈i〉[[]] and

since RCxtRed ` c2s(〈i〉[[]]) = 〈i〉.

66



5. This part of the proof follows the same pattern as that for the similar

property for SmallStep (Proposition 4), using the above properties and

replacing smallstep by reduction.

Strengths. Context reduction semantics divides SOS rules into computational

rules and rules needed to find the redex; the latter are transformed into grammar

rules generating the allowable contexts. This makes definitions more compact.

It improves over SOS semantics by allowing the context to be changed by

execution rules. It can easily deal with control-intensive features. It is more

modular than SOS.

Weaknesses. It still only allows “interleaving semantics” for concurrency.

Although context-sensitive rewriting might seem to be easily implementable

by rewriting, in fact all current implementations of context reduction work by

transforming context grammar definitions into traversal functions, thus being as

(in)efficient as the small-step implementations (one has to perform an amount of

work linear in the size of the program for each computational step). However, one

might obtain efficient implementations for restricted forms of context-reduction

definitions by applying refocusing techniques [41].

3.7 A Continuation-Based Semantics

The idea of continuation-based interpreters for programming languages and

their relation to abstract machines has been well studied (see, for example,

[59]). In this section we propose a rewriting logic theory based on a structure

that provides a first-order representation of continuations [179, 60]; this is the

only reason why we call this structure a “continuation”; but notice that it can

just as well be regarded as a post-order representation of the abstract syntax

tree of the program, so one needs no prior knowledge of continuations [59] in

order to understand this section. In particular, the definition presented here is

very close to the representation of K computations described in the following

chapter, distinguishing itself from the traditional first-order representation of

continuations by the fact that the redex is here kept with the continuation,

more precisely at its top. We will show the equivalence of this theory to the

context reduction semantics theory.

Based on the desired order of evaluation, the program is sequentialized by

transforming it into a list of tasks to be performed in order. This is done once

and for all at the beginning, the benefit being that at any subsequent moment in

time we know precisely where the next redex is: at the top of the list of tasks. We

call this list of tasks a continuation, but is nothing more than a pure first-order

flattening of the program and can be easily introduced without appealing to

high-order constructs. For example aexp(A1 + A2) = (aexp(A1), aexp(A2)) y +

67



aexp(I) = I
aexp(A1 +A2) = (aexp(A1), aexp(A2)) y +
k(aexp(X) y K) store(Store)→ k(Store[X] y K) store(Store)
k(aexp(++X) y K) store((X = I)Store)

→ k(s(I) y K) store((X = s(I))Store)
k(I1, I2 y + y K)→ k(I1 +Int I2 y K)

bexp(true) = true bexp(false) = false
bexp(A1<=A2) = (aexp(A1), aexp(A2)) y≤
bexp(B1 and B2) = bexp(B1) y and(bexp(B2))
bexp(not B) = bexp(B) y not
k(I1, I2 y≤y K)→ k(I1 ≤Int I2 y K)
k(true y and(K2) y K)→ k(K2 y K)
k(false y and(K2) y K)→ k(false y K)
k(T y not y K)→ k(notBoolT y K)

stmt(skip) = nothing
stmt(X := A) = aexp(A) y write(X)
stmt(St1;St2) = stmt(St1) y stmt(St2) stmt({St}) = stmt(St)

stmt(if B then St1 else St2) = bexp(B) y if(stmt(St1), stmt(St2))
stmt(while B St) = bexp(B) y while(bexp(B), stmt(St))
stmt(halt A) = aexp(A) y halt
k(I y write(X) y K) store(Store)→ k(K) store(Store[X ← I])
k(true y if(K1,K2) y K)→ k(K1 y K)
k(false y if(K1,K2) y K)→ k(K2 y K)
k(true y while(K1,K2) y K)→ k(K2 y K1 y while(K1,K2) y K)
k(false y while(K1,K2) y K)→ k(K)
k(I y halt y K)→ k(I)

pgm(St.A) = stmt(St) y aexp(A)

〈P 〉 = result(k(pgm(P )) store(empty))
result(k(I) store(Store)) = I

Figure 3.12: Rewriting logic theory RK (continuation-based definition)

68



precisely encodes the order of evaluation: first A1, then A2, then add the values.

Also, stmt(if B then St1 else St2) = B y if(stmt(St1), stmt(St2)) says

that St1 and St2 are dependent on the value of B for their evaluation. The

fact that we denote the above relation by equality, although we operationally

interpret it from left to right, indicates that the two terms are structurally equal

(and in fact, they are equal in the initial model of the specification) —at any time

during the evaluation one could apply the equations backwards and reconstitute

the current state of the program being executed.

The top level configuration is constructed by an operator“ ”putting together

the store (wrapped by a constructor store) and the continuation (wrapped by k).

Also, syntax is added for the continuation items. Here the distinction between

equations and rules becomes even more obvious: equations are used to prepare the

context in which a computation step can be applied, while rewrite rules exactly

encode the computation steps semantically, yielding the intended computational

granularity. Specifically pgm, stmt, bexp, aexp are used to flatten the program to

a continuation, taking into account the order of evaluation. The continuation is

defined as a list of tasks, where the list constructor “ y ” is associative, having

as identity a constant “nothing”. We also use lists of values and continuations,

each having an associative list append constructor “ , ” with identity “.”. We

use variables K and V to denote continuations and values, respectively; also,

we use Kl and Vl for lists of continuations and values, respectively. The rewrite

theory RK specifying the continuation-based definition of our example language

is given in Figure 3.12. Lists of expressions are evaluated using the following

(equationally defined) mechanism:

k((V l,Ke,Kel) y K) = k(Key (V l,nothing ,Kel) y K)

Because in rewriting engines equations are also executed by rewriting, one would

need to split the above rule into two rules:

k((V l,Ke,Kel) y K = k(Key (V l,nothing ,Kel) y K)

k(V y (V l,nothing ,Kel) y K) = k((V l, V,Kel) y K)

The semantics we obtain here for this simple sequential language is an abstract

machine, similar in spirit to the one obtainable by applying CPS transformers

on an interpreter as in [150] or that obtained by applying refocusing [41] on the

context-reduction definition. One slight difference is that we keep the state and

the continuation as distinct entities at the top level, rather than embedding the

state as part of the context/continuation structure. In a computational logic

framework like rewriting logic where the gap between ”implementations” and

”specifications” is almost inexistent, this continuation-like style can be used to

define languages, not only to efficiently interpret them.

69



An important benefit of this definitional style is that of gaining locality.

Now one needs to specify from the context only what is needed to perform the

computation. This indeed gives the possibility of achieving “true concurrency”,

since rules which do not act on the same parts of the context can be applied in

parallel. That is one of the main reasons for which the K technique choses to

represent computations using a similar first-order representation of continuations.

Strengths. In continuation-based semantics there is no need to search for a

redex anymore, because the redex is always at the top. It is much more efficient

than direct implementations of evaluation contexts or small-step SOS. Also,

this style greatly reduces the need for conditional rules/equations; conditional

rules/equations might involve inherently inefficient reachability analysis to check

the conditions and are harder to deal with in parallel environments. An important

“strength”specific to the rewriting logic approach is that reductions can now apply

wherever they match, in a context-insensitive way. Additionally, continuation-

based definitions in the RLS style above are very modular (particularly due to

the use of matching modulo associativity and commutativity).

Weaknesses. The program is now hidden in the continuation: one has to either

learn to like it like this, or to write a backwards mapping to retrieve programs

from continuations3; to flatten the program into a continuation structure, several

new operations (continuation constants) need to be introduced, which “replace”

the corresponding original language constructs.

Relation with Context Reduction

We next show the equivalence between the continuation-based and the context

reduction rewriting logic definitions. The specification in Figure 3.13 relates

the two semantics, showing that at each computational “point” it is possible to

extract from our continuation structure the current expression being evaluated.

For each syntactical construct Syn ∈ {AExp,BExp,Stmt,Pgm}, we equationally

define two (partial) functions:

• k2Syn takes a continuation encoding of Syn into Syn; and

• kSyn extracts from the tail of a continuation a Syn and returns it together

with the remainder prefix continuation.

Together, these two functions can be regarded as a parsing process, where the

continuation plays the role of “unparsed” syntax, while Syn is the abstract syntax

tree, i.e., the “parsed” syntax. The formal definitions of k2Syn and kSyn are

given in Figure 3.13.

3However, we regard these as minor syntactic details. After all, the program needs to be
transformed into an abstract syntax tree (AST) in any of the previous formalisms. Whether
the AST is kept in prefix versus postfix order is somewhat irrelevant.

70



k2Pgm(K) = k2Stmt(K ′).A if {K ′, A} = kAExp(K)
k2Stmt(nothing) = skip

k2Stmt(K) = k2Stmt(K ′);St if {K ′, St} = kStmt(K) ∧K ′ 6= nothing
k2Stmt(K) = St if {K ′, St} = kStmt(K) ∧K ′ = nothing
kStmt(K y write(X)) = {K ′, X:=A} if {K ′, A} = kAExp(K)
kStmt(K y while(K1,K2)) = {K ′, if B then {St; while B1St} else skip}

if {K ′, B} = kBExp(K) ∧B1 = k2BExp(K1) ∧ St = k2Stmt(K2) ∧B 6= B1

kStmt(K y while(K1,K2)) = {K ′, while B St}
if {K ′, B} = kBExp(K) ∧B1 = k2BExp(K1) ∧ St = k2Stmt(K2) ∧B = B1

kStmt(K y if(K1,K2)) = {K ′, if B then k2Stmt(K1) else k2Stmt(K2)}
if {K ′, B} = kBExp(K)

kStmt(K y halt) = {K ′, halt A} if {K ′, A} = kAExp(K)
k2AExp(K) = A if {nothing , A} = kAExp(K)
kAExp(K y kv(Kl, V l) y K ′) = kAExp(V l,K,Kl y K ′)

kAExp(K y aexp(A)) = {K,A}
kAExp(K y I) = {K, I}
kAExp(K y K1,K2 y +) = {K, k2AExp(K1) + k2AExp(K2)}
k2BExp(K) = B if {nothing , B} = kBExp(K)
kBExp(K y kv(Kl, V l) y K ′) = kBExp(V l,K,Kl y K ′)

kBExp(K y T ) = {K,T}
kBExp(K y K1,K2 y≤) = {K, k2AExp(K1)<=k2AExp(K2)}
kBExp(K y and(K2)) = {K1, B1 and k2BExp(K2)} if {K1, B1} = kBExp(K)
kBExp(K y not) = {K ′, not B} if {K ′, B} = kBExp(K)

Figure 3.13: Recovering the abstract syntax trees from continuations

71



We will show below that for any step CxtRed takes, RK performs at most

one step to reach the same4 configuration. No steps are performed for skip, or

for dissolving a block (because these were dealt with when we transformed the

syntax into continuation form), or for dissolving a statement into a skip (there is

no need for that when using continuations). Also, no steps will be performed for

loop unrolling, because this is not a computational step; it is a straightforward

structural equivalence. In fact, note that, because of its incapacity to distinguish

between computational steps and structural equivalences, CxtRed does not

capture the intended granularity of while: it wastes a computation step for

unrolling the loop and one when dissolving the while into skip; neither of these

steps has any computational content.

In order to clearly explain the relation between reduction contexts and

continuations, we go a step further and define a new rewrite theory RK′ which,

besides identifying while with its unrolling, adds to RK the idea of contexts,

holes, and pluggable expressions. More specifically, we add a new constant “[]”

and the following equation, again for each syntactical category Syn:

k(syn(Syn) y K ′) = k(syn(Syn) y syn([]) y K ′),

replacing the equation for evaluating lists of expressions, namely,

k((Vl,Ke,Kel) y K) = k(Ke y (Vl,nothing,Kel) y K),

by the following equation which puts in a hole instead of nothing:

k((Vl,Ke,Kel) y K) = k(Ke y (Vl, syn([]),Kel) y K)

The intuition for the first rule is that, as we will next show, for any well-formed

continuation (i.e., one obtained from a syntactic entity) having a syntactic entity

as its prefix, its corresponding suffix represents a valid context where the prefix

syntactic entity can be plugged in. As expected, RK′ does not bring any novelty

to RK , that is,for any term t in RK , TreeRK (t) is bisimilar to TreeRK′ (t).

Proposition 5. For each arithmetic context c in CxtRed and r ∈ AExp, we have

that RK′ ` k(aexp(c[r])) = k(aexp(r) y aexp(c))). Similarly for any possible

combination for c and r among AExp, BExp, Stmt, Pgm, Cfg.

(Note that r in the proposition above needs not be a redex, but can be any

expression of the right syntactical category, i.e., pluggable in the hole.)

Proof. ++x = [][++x]: RK′′ ` k(aexp(++x)) = k(aexp(++x) y aexp([]))

a1 + a2 = [] + a2[a1]: RK′′ ` k(aexp(a1 + a2)) = k((aexp(a1), aexp(a2)) y +)

= k(aexp(a1) y (aexp([]), aexp(a2)) y +) = k(aexp(a1) y aexp([] + a2))

4“same” modulo irrelevant but equivalent syntactic notational conventions.

72



i1 + a2 = i1 + [][a2]: RK′′ ` k(aexp(i1 + a2)) = k((aexp(i1), aexp(a2)) y +)

= k(aexp(a2) y (i1, aexp([])) y +) = k(aexp(a2) y aexp(i1 + [])).

b1 and b2 = [] and b2[b1]:

RK′′ ` k(bexp(b1 and b2)) = k(bexp(b1) y and(bexp(b2)))

= k(bexp(b1) y bexp([]) y and(aexp(b2))) = k(bexp(b1) y bexp([]and b2)).

t and b2 = [][t and b2]:

RK′′ ` k(bexp(t and b2)) = k(bexp(t and b2) y bexp([])).

st.a = [].a[st]: RK′′ ` k(pgm(st.a)) = k(stmt(st) y aexp(a))

= k(stmt(st) y stmt([]) y aexp(a)) = k(stmt(st) y pgm([].a)).

skip.a = skip.[][a]: RK′′ ` k(pgm(skip.a)) = k(stmt(skip) y aexp(a))

= k(aexp(a)) = k(aexp(a) y aexp([]))

= k(aexp(a) y stmt(skip) y aexp([])) = k(aexp(a) y pgm(skip.[])).

All other constructs are dealt with in a similar manner.

Lemma 1. RK′ ` k(k1) = k(k2) implies that for any krest, RK′ ` k(k1 y
krest) = k(k2 y krest)

Proof. We can replay all steps in the first proof, for the second proof, since all

equations only modify the head of a continuation.

By structural induction on the equational definitions, thanks to the one-to-one

correspondence of rewriting rules, we obtain the following result:

Theorem 5. Suppose s ' σ.

1. If CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 then RK′ ` k(pgm(p)) store(s)→≤1

k(pgm(p′)) store(s′) and s′ ' σ′, where →≤1=→0 ∪ →1.

2. If RK′ ` k(pgm(p)) store(s) → k(k′) store(s′) then there exists p′ and σ′

such that CxtRed ` 〈p, σ〉 →∗ 〈p′, σ′〉, RK′ ` k(pgm(p′)) = k(k′) and

s′ ' σ′.

3. CxtRed ` 〈p,⊥〉 →∗ i iff RK′ ` 〈p〉 → i for any p ∈ Pgm and i ∈ Int.

Proof. (Sketch)

1. First, one needs to notice that rules in RK′ correspond exactly to those

in CxtRed . For example, for i1 + i2 → i1 +Int i2, which can be read as

〈c, σ〉[i1 + i2]→ 〈c, σ〉[i1 +Int i2] we have the rule k((i1, i2) y + y krest)→
k((i1 +Int i2) y krest) which, taking into account the above results, has,

as a particular instance: k(pgm(c[i1 + i2])) → k(pgm(c[i1 +Int i2]). For

〈c, σ〉[x:=i] → 〈c, σ[i/x]〉[skip] we have k(i y write(x) y k) store(s) →
k(k) store(s[x← i]) which again has as an instance:

k(pgm(c[x:=i]) store(s)→ k(c[skip) store(s[x← i]).

73



2. Actually σ′ is uniquely determined by s′ and p′ is the program obtained by

advancing p all non-computational steps —which were dissolved by pgm,

or are equationally equivalent in RK′ , such as unrolling the loops—, then

performing the step similar to that in RK′ .

3. Using the previous two statements, and the rules for halt or end of the

program from both definitions. We exemplify only halt, the end of the

program is similar, but simpler. For 〈c, σ〉[halt i] → i we have k(i y
halt y k) → k(i), and combined with RK′ ` result(k(i) store(s)) = i we

obtain RK′ ` result(k(pgm(c[halt i])) store(s))→ i.

3.8 The Chemical Abstract Machine

Berry and Boudol’s chemical abstract machine, or Cham [15], is both a model

of concurrency and a specific style of giving operational semantics definitions.

Properly speaking, it is not an SOS definitional style. Berry and Boudol identify

a number of limitations inherent in SOS, particularly its lack of true concurrency,

and what might be called SOS’s rigidity and slavery to syntax [15]. They then

present the Cham as an alternative to SOS. In fact, as already pointed out in [103],

what the Cham is, is a particular definitional style within RLS. That is, every

Cham is, by definition, a specific kind of rewrite theory; and Cham computation

is precisely concurrent rewriting computation; that is, proof in rewriting logic.

The basic metaphor giving its name to the Cham is inspired by Banâtre and

Le Métayer’s GAMMA language [10]. It views a distributed state as a “solution”

in which many “molecules” float, and understands concurrent transitions as

“reactions” that can occur simultaneously in many points of the solution. It

is possible to define a variety of chemical abstract machines. Each of them

corresponds to a rewrite theory satisfying certain common conditions.

There is a common syntax shared by all chemical abstract machines, with

each machine possibly extending the basic syntax by additional function symbols.

The common syntax is typed, and can be expressed as the following order-

sorted signature Ω:

sorts Molecule, Molecules, Solution .

subsorts Solution < Molecule < Molecules .

op λ :−→Molecules .

op , : Molecules Molecules−→Molecules .

op {| |} : Molecules−→Solution . *** membrane operator

op / : Molecule Solution−→Molecule . *** airlock operator

A Cham is then a rewrite theory C = (Σ,AC , R), with Σ ⊇ Ω, together with a

partition R = Reaction ]Heating ] Cooling ]AirlockAx . The associativity and

commutativity (AC) axioms are asserted of the operator , , which has identity

74



λ. The rules in R may involve variables, but are subject to certain syntactic

restrictions that guarantee an efficient form of AC matching [15]. AirlockAx

is the bidirectional rule5 {|m,M |} 
 {|m B {|M |}|}, where m is a variable of

sort Molecule and M a variable of sort Molecules. The purpose of this axiom

is to choose one of the molecules m in a solution as a candidate for reaction

with other molecules outside its membrane. The Heating and Cooling rules can

typically be paired, with each rule t −→ t′ ∈ Heating having a symmetric rule

t′ −→ t ∈ Cooling , and vice-versa, so that we can view them as a single set

of bidirectional rules t′ 
 t in Heating-Cooling.

Berry and Boudol [15] make a distinction between rules, which are rewrite

rules specific to each Cham —and consist of the Reaction, Heating, and Cooling

rules— and laws which are general properties applying to all Chams for governing

the admissible transitions. The first three laws, the Reaction, Chemical and

Membrane laws, just say that the Cham evolves by AC -rewriting. The fourth

law states the axiom AirlockAx. The Reaction rules are the heart of the Cham

and properly correspond to state transitions. The rules in Heating-Cooling

express structural equivalence, so that the Reaction rules may apply after the

appropriate structurally equivalent syntactic form is found. A certain strategy

is typically given to address the problem of finding the right structural form,

for example to perform “heating” as much as possible. In rewriting logic terms,

a more abstract alternative view is to regard each Cham as a rewrite theory

C = (Σ,ACI ∪ Heating-Cooling ∪ AirlockAx ,Reaction), in which the Heating-

Cooling rules and the AirlockAx axiom have been made part of the theory’s

equational axioms. That is, we can more abstractly view the Reaction rules as

applied modulo ACI ∪ Heating-Cooling ∪ AirlockAx .

As Berry and Boudol demonstrate in [15], the Cham is particularly well-suited

to give semantics to concurrent calculi, yielding considerably simpler definitions

than those afforded by SOS. In particular, [15] presents semantic definitions

for the TCCS variant of CCS, a concurrent λ-calculus, and Milner’s π-calculus.

Milner himself also used Cham ideas to provide a compact formulation of his

π-calculus [114]. Since our example language is sequential, it cannot take full

advantage of the Cham’s true concurrent capabilities. Nevertheless, there are

interesting Cham features that, as we explain below, turn out to be useful even in

this sequential language application. A Cham semantics for our language is given

in Figure 3.14. Note that, since the Cham is itself a rewrite theory, in this case

there is no need for a representation in RLS, nor for a proof of correctness of such

a representation; that is, the “representational distance” in this case is equal to 0.

Again, RLS does not advocate any particular definitional style: the Cham style

is just one possibility among many, having its own advantages and limitations.

The Cham definition for our simple programming language takes the CxtRed

definition in Figure 3.8 as a starting point. More precisely, we follow the

“refocusing” technique [41]. We distinguish two kinds of molecules: syntactic

5Which is of course understood as a pair of rules, one in each direction.

75



St.A
 [St | [[].A]]
skip.A
 [A | [skip.[]]]
[X:=A | C]
 [A | [X:=[] | C]]
[St1;St2 | C]
 [St1 | [[];St2 | C]]
[if B then St1 else St2 | C]
 [B | [if [] then St1 else St2 | C]]
[halt A | C]
 [A | [halt [] | C]]
[A1<=A2 | C]
 [A1 | [[]<=A2 | C]]
[I<=A | C]
 [A | [I<=[] | C]]
[B1 and B2 | C]
 [B1 | [[] and B2 | C]]
[not B | C]
 [B | [not [] | C]]
[A1 +A2 | C]
 [A1 | [[] +A2 | C]]
[I +A | C]
 [A | [I + [] | C]]

I1 + I2 → (I1 +Int I2)
[X | C], {|(X, I)B σ|} → [I | C], {|(X, I)B σ|}
[++X | C], {|(X, I)B σ|} → [I +Int 1 | C], {|(X, I +Int 1)B σ|}
I1<=I2 → (I1 ≤Int I2)
true and B → B
falseand B →false

not true→false

notfalse→true

iftruethen St1 else St2 → St1
iffalsethen St1 else St2 → St2
skip;St→ St
{St} → St
[X:=I | C], {|(X, I ′)B σ|} → [skip | C], {|(X, I)B σ|}
[while B St | C]→ [if B then (St; while B St) else skip | C]
[halt I | C], σ → I
skip.I, σ → I

Figure 3.14: The Cham language definition

molecules and store molecules. Syntactic molecules are either language constructs

or evaluation contexts and we will use “[ | ]” as a molecule constructor for

stacking molecules. We let C range over syntactic molecules representing stacked

contexts. Store molecules are pairs (x, i), where x is a variable and i is an

integer. The store is a solution containing store molecules. Then the definition

of “refocusing” functions is translated into heating/cooling rules, bringing the

redex to the top of the syntactic molecule. This allows for the reduction rules to

only operate at the top, in a conceptually identical way as for continuation based

definitions in Figure 3.12, both of them basically following the K technique.

One can notice a strong relation between our Cham and CxtRed definitions,

in the sense that a step performed using reduction under evaluation contexts is

equivalent to a suite of heating steps followed by one transition step and then by

as many cooling steps as possible. That is, given programs P , P ′ and states σ, σ′:

CxtRed ` 〈P, σ〉 → 〈P ′, σ′〉 ⇐⇒ Cham ` P, {|σ|}⇀∗;→1;↽∗ P ′, {|σ′|}

76



Note that we could not use the existing airlock mechanism to stack evaluation

contexts since that could lead to unsound computations. Indeed, say one would

use constructs {| B |} to stack contexts, replacing the [ | ] construct. Then

by applying heating on skip; 3/4/5, one can obtain the following sequence (of

structurally equivalent molecules):

skip; 5/(2/x) ⇀ {|5/(2/x)B {|skip; []|}|}⇀ {|2/xB {|5/[]B {|skip; []|}|}|}
⇀ {|xB {|2/[]B {|5/[]B {|skip; []|}|}|}|}

Now, by applying the cooling, then heating rules for airlock, one obtains the

following sequence (of, again, equivalent molecules):

{|xB {|2/[]B {|5/[]B {|skip; []|}|}|}|}⇁ {|xB {|2/[]B {|5/[], skip; []|}|}|}
⇁ {|xB {|2/[], 5/[], skip; []|}|}⇀ {|xB {|5/[]B {|2/[], skip; []|}|}|}
⇀ {|xB {|5/[]B {|2/[]B {|skip; []|}|}|}|}

Finally, by applying cooling rules for contexts, we obtain the sequence:

{|xB {|5/[]B {|2/[]B {|skip; []|}|}|}|}⇁ {|5/xB {|2/[]B {|skip; []|}|}|}
⇁ {|2/(5/x)B {|skip; []|}|}⇁ skip; 2/(5/x)

However, skip; 5/(2/x) and skip; 2/(5/x) are obviously not structurally equi-

valent.

The above language definition does not exhibit the strengths of the Cham,

since Cham was designed to handle easily concurrent constructs, which are

missing from our language. However, making the above language concurrent in

Cham comes at no additional effort. One can execute multiple programs at the

same time, sharing the store, simply by putting them together, and together

with the store at the top-level solution and replacing the rule for the end of

the program by skip.I → I, to allow all programs to finish their evaluation

and keep the results.

When Cham definitions follow the style in Figure 3.14, i.e., taking a context-

reduction-like approach, one could use as evaluation strategies heating only

on redexes and cooling only on values, which would lead to a deterministic

abstract-machine. Moreover, one can notice that airlock rules were introduced

to select elements from a set without specifying the rest of the set, abstracted by

a molecule. Efficient implementations should probably do exactly the opposite,

that is, matching in the sets. To do that in our rewrite framework, one would

orient the airlock rules in the sense of inserting back the “airlocked” molecules

into their original solution and to apply them on the terms of the existing rules,

to make the definition executable. The only rules changing in the definition above

are those involving the store; for example, the assignment rule is transformed into:

[X:=I | C], {|(X, I ′), σ|} → [skip | C], {|(X, I), σ|}

77



One should notice that the specification obtained by these transformations

is equivalent to the initial one, since it does not change the equivalence classes

and the transitions. The main advantage of the newly obtained specification

is that it is also executable in a deterministic fashion, that is, there is no need

to search for a final state anymore.

Strengths. Being a special case of rewriting logic, it inherits many of the ben-

efits of rewriting logic, being specially well-suited for describing truly concurrent

computations and concurrent calculi.

Weaknesses. Heating/cooling rules are hard to implement efficiently in general

—an implementation allowing them to be bidirectional in an uncontrolled manner

would have to search for final states, possibly leading to a combinatorial explosion.

Rewriting strategies such as those in [17, 177, 49] can be of help for solving

particular instances of this problem. Although this solution-molecule paradigm

seems to work pretty well for languages in which the structure of the state is

simple enough, it is not clear how one could represent the state for complex

languages, with threads, locks, environments, an so on. Finally, Chams provide

no mechanism to freeze the current molecular structure as a ”value”, and then to

store or retrieve it, as we would need in order to define language features like

call/cc. Even though it was easy to define halt because we simply discarded

the entire solution, it would seem hard or impossible to define more complex

control-intensive language features in Cham.

3.9 Experiments

RLS definitions, being executable, actually are also interpreters for the program-

ming languages they define. One can take an RLS executable definition as is

and execute it on top of a rewrite engine.

However, one should not wrongly conclude from this that in order to make

any use of RLS definitions of programming languages, in particular of those

following the various definitional styles proposed in this chapter, one must

have an advanced rewrite engine. In fact, one can implement interpreters for

languages given an RLS definition using one’s programming language of choice.

Although the proposed RLS definitions follow the same style and intuitions,

and have the same strengths and limitations as their original formulation in

their corresponding definitional styles, we believe that automating the process of

generating interpreters from the rewriting logic language definitions following a

specific operational semantics style should be easier than doing it directly from

the original definition, since the rewriting logic definition is already executable.

Furthermore, since most of the definitional styles presented in this chapter

use a restricted from of rewriting, one can hope for automatic translations of

those definitions into interpreters in programming languages offering a limited

78



support for matching and rewriting. To test this claim, we have manually but

mechanically translated the RLS definitions for all styles (except for MSOS and

the Cham) in Haskell, Ocaml and Prolog. Section 3.10 discusses our translation

procedures into these programming languages.

We compare the running times and memory requirements of the interpreters

derived mechanically using the above-mentioned procedures, with those of the

“free” interpreters given by executing the definition “as-is” on two rewrite engines

(marked with ? in the tables), namely Asf+Sdf 1.5 (a compiler) and Maude

2.2 (a fast interpreter with good tool support), as well as with those obtained

executing off-the-shelf interpreter implementations in Scheme, used in teaching

programming languages (marked with ] in the tables). For Scheme we have used

PLT-Scheme as an interpreter and language interpreter implementations from

[60], chapters 3.9 (evaluation semantics) and 7.3 (continuation based semantics),

and a PLT-Redex definition given as example in the installation package (for

context reduction). Big-step interpreters are also compared against bc, a C-

written interpreter for a subset of C working only with integers (bc comes as part

of UNIX; type ”man bc” for documentation), and two interpreters implemented

using monads in Haskell and Ocaml (we mark these interpreters with [ in

Figure 3.16). Since RLS representations of MSOS and Cham definitions rely

intensively on matching modulo associativity and commutativity, which is only

supported by Maude, we have only performed some experiments on their RLS

definitions in Maude. For Cham we preferred to give the times obtained by using

the novel transformations and strategies presented in Section 3.8 for making the

specification “more executable”. Using the specification as is, Cham is extremely

ineffective when executed: it takes about 1205MB of memory and 188 seconds to

search for the solution of running the Collatz program (explained below) up to 3.

One may naturally ask: “What is the point of all these experiments? They

show little or nothing to support the RLS resulting definitions compared to

their original definitions, and only show what programs (interpreters) in what

programming languages are more efficient than others.” Our goal here is to

convey the reader our strong belief, supported by empirical evaluation, that

the working language designer may be better off in practice formally defining

a desired language, using some preferred definitional style, than implementing

an interpreter in an ad-hoc way for that language, even in a preferred program-

ming language. Unfortunately, the latter approach is also how programming

language concepts are being taught in many places. Formal definitions tend to

be significantly more compact, easier to read and more modular than ad-hoc

language implementations, so they are easier to change and experiment with.

Additionally, they can serve as a mathematical object capturing the essence

of the desired language. One can then use this mathematical object for many

other purposes in addition to executing programs, including formal analyses

such as theorem proving and model-checking, static analysis, partial evaluation,

compiler generation, and so on. Of course, this belief transcends the boundaries

79



x0 := 0;
while (++x0<=2){
x1:=0;
while (++x1<=2){
· · ·

x18:=0;
while (++x18<=2){
skip;
}

· · ·
}
}.0

nr:=300;
while (not (nr<=2)){
n:=nr;
nr:=nr− 1;
while (not (n==1)){

steps:=steps + 1;
r:=n;
q:=0;
while (not (r<=1)){
r:=r − 2;
q:=q + 1
};
if (r==0)
then n:=q
else n:=3 ∗ n+ 1
}
}
}.steps

(a) (b)

Figure 3.15: Programs used in evaluation: (a) A tower of loops, each performing
two iterations; (b) Program testing Collatz’s conjecture up to 300.

of rewriting logic; what RLS gives us here is a unified framework, with a uni-

form notation supported by a rigorous computational logic, in which one can

formally define programming languages using any of the desired styles. None

of the translations from RLS definitions into programming languages has been

implemented, because that is not the focus of this dissertation. Nevertheless, we

strongly believe that they can be implemented with relatively little effort.

One of the programs chosen to test various implementations consists of n

nested loops, each of 2 iterations, parameterized by n. The other program tests

the Collatz’s conjecture up to 300. Collatz’s conjecture states that starting from

any positive number n and performing the following operations:

• if n is even then divide it by 2;

• if n is odd then multiply it by 3 and add 1;

after a finite number of steps, the value of n will become 1. To make the program

more computation-intensive (and also to maximize the number of language

constructs used), we here use repeated subtraction to compute division. We

also count in steps the cumulative number of operations performed until 1 is

reached for all numbers tested and return it as the result of the program. The

source code for the programs used is presented in Figure 3.15.

Figures 3.16, 3.17, 3.18, and 3.19, give for each definitional style the running

time of the various interpreters. For the largest number n (18) of nested loops,

peak memory usage was also recorded. Times are expressed in seconds. A limit

80



N nested loops(1..2) Collatz’ conjecture
N 15 16 18 Memory up to 300

for 18
?Asf+Sdf 1.7 2.9 11.6 13mb 265.1
[BC 0.3 0.6 2.3 <1mb 13.8
Haskell 0.3 0.7 2.8 4mb 32.1
[Haskell (monads) 0.6 1.4 4.4 3mb 58.7
?Maude 3.8 7.7 31.5 6mb 184.5
Ocaml 0.5 1.1 5.0 1mb 10.2
[Ocaml (monads) 0.5 0.9 3.8 2mb 21.5
Prolog 1.6 1.9 7.6 316mb -
]Scheme [60] 3.8 7.4 30.2 13mb 122.3

Figure 3.16: Execution times for Big Step definitions

N nested loops(1..2) Collatz’ conjecture
N 15 16 18 Memory up to 300

for 18
?Asf+Sdf 11.9 25.7 115.0 9mb 769.6
Haskell 3.2 7.0 31.64 3mb 167.4
?Maude 63.4 131.2 597.4 6mb >1000
Ocaml 1.0 2.2 9.9 1mb 21.0
Prolog 7.0 14.5 - >700mb -

Figure 3.17: Execution times for Small Step definitions

of 700mb was set on memory usage, to avoid swapping; the symbol “-” found

in a table cell signifies that the memory limit was reached. For Haskell we

have used the ghc 6.4.2 compiler. For Ocaml we have used the ocamlcopt

3.09.3 compiler. For Prolog we have compiled the programs using the gprolog

1.3.0 compiler. For Scheme we have used the PLT-Scheme (mzscheme 3.7.1)

interpreter. Tests were performed on an Intel Pentium 4@2GHz with 1GB

RAM, running Linux.

To have an overview of execution times obtained by using the RLS defi-

nition as is for all the styles presented, Figure 3.20 shows, side by side, their

execution times in Maude.

N nested loops(1..2) Collatz’ conjecture
N 9 15 16 18 Memory up to 300

for 18
?Asf+Sdf 0.6 88.7 214.4 1008.6 10mb 891.3
Haskell 0.1 5.8 12.0 53.9 3mb 157.2
?Maude 0.8 76.2 162.8 713.2 6mb 1931.6
Ocaml 0.0 1.8 3.8 16.7 1mb 11.0
Prolog 0.1 9.4 - - >700mb -
]PLT-Redex 198.2 - - - >700mb -

Figure 3.18: Execution times for Context Reduction definitions

81



N nested loops(1..2) Collatz’ conjecture
N 15 16 18 Memory up to 300

for 18
?Asf+Sdf 2.5 4.7 18.3 13mb 344.7
Haskell 0.6 1.1 4.4 4mb 41.1
?Maude 8.4 15.6 63.2 7mb 483.9
Ocaml 0.5 1.1 5.0 1mb 10.9
Prolog 3.0 6.2 24.0 ≈500mb -
]Scheme [60] 5.9 11.3 45.2 10mb 323.6

Figure 3.19: Execution times for Continuation based definitions

N nested loops(1..2) Collatz’ conjecture
N 15 16 18 Memory up to 300

for 18
Big-Step 3.8 7.7 31.5 6mb 184.5
Small-Step 63.4 131.2 597.4 6mb 1249.1
Context-Reduction 76.2 162.8 713.2 6mb 1931.6
Continuation-Based 8.4 15.6 63.2 7mb 483.9
MSOS 61.9 127.4 566.3 6mb 1421.5
Cham 15.7 31.5 129.2 6mb 618.0

Figure 3.20: Execution times for RLS definitions interpreted in Maude

Prolog yields pretty fast interpreters. However, for backtracking reasons, it

needs to maintain the stack of all predicates tried on the current path, thus the

amount of memory grows with the number of computational steps. The style

promoted in [60] seems to also take into account efficiency. Its only drawback is

the fact that it looks more like an implementation, the representational distance

to the big-step definition being much bigger than in interpreters based on RLS.

The PLT-Redex implementation of context reduction seems to serve more a

didactic purpose. It compensates for lack of speed by providing a nice interface

and the possibility to visually trace a run. The rewriting logic implementations

seem to be quite efficient in terms of speed and memory usage, while keeping

a minimal representational distance to the operational semantics definitions.

In particular, RLS definitions interpreted in Maude are comparable in terms

of efficiency with the interpreters in Scheme, while having the advantage of

being formal definitions. The main reason for Maude and Scheme being slower

than the others, is because they are both interpreters while the others are

compilers. It is well known that compilers usually generate executables one order

of magnitude faster than their interpreted versions. Also, it is good to notice

that the interpreter obtained by mechanically compiling the RLS definition in

Ocaml can reach the speed of the hand-optimized, C-written bc interpreter.

82



3.10 Obtaining Interpreters from RLS

Definitions

Since the definitions presented above are deterministic and use a restricted form

of rewriting (with the exception of MSOS and Cham), we believe it is straight-

forward to generate interpreters from them in languages having built-in support

for pattern matching and abstract data types. The main principle we use is to

translate rewriting rules into evaluation functions. Since the store was defined

separately and relies on matching modulo associativity and commutativity, we

abstract it away, assuming each such language comes with a pre-defined store.

In the following we will show, with the definitions of assignment from big-step

and continuation semantics how their translation appears as part of the chosen

implementation languages. Since functional languages have a particular way of

declaring abstract data types, you will notice that the syntax of the program

looks different in different languages. However, assuming the existence of an

external parser, we could ask from that parser to give as output terms of the

abstract data type in the corresponding language.

3.10.1 Big-Step Based Definitions

The rewriting rule for assignment in big-step is:

〈X:=A,S〉 → 〈S′[X ← I]〉 if 〈A,S〉 → 〈I, S′〉

Asf+Sdf Since Asf+Sdf is a rewriting engine, translating RLS specifications

to Asf+Sdf interpreters is mostly a matter of using a different notation.

In fact Asf+Sdf adopts a notation with setting the premises above the

line, close to the original semantics.

[] <I,S1> := <A,S>

==========================

<X := A,S> = bind(S1,X,I)

Haskell We use Scgf(st,s) and Acfg(a,s), etc., to encode configurations

〈st, s〉 and 〈a, s〉, respectively. We define an evaluation function for each

type of configuration, for example eStmt is the function evaluating Scfg

configurations and eAExp is evaluating Acfg configurations. The matching

of the evaluation of premises is performed by using the let construct.

eStmt (Scfg (Assign x a) s) =

let (Acfg (Int i) s1) = eAExp (Acfg a s)

in (bind s1 x i)

Maude Since Maude is the standard execution engine for rewriting logic speci-

fications, the rules here are the ones in the specification.

83



rl < X := A,S > => S1[X <- I] if < A,S > => {I,S1} .

Ocaml Since Ocaml supports polymorphic functions, we only need to define

one evaluation function for all constructs. Then matching is used to obtain

the starting term and match ... with ... is used for evaluating the

premises.

let rec eval = function

...

| Scfg(Assign(x,a),s) ->

(match eval (Acfg(a,s)) with Acfg(Int(i),s1) ->

(bind s1 x i))

Prolog In Prolog we define a relation for each type of configuration and use

unification for matching only purposes. Note that while in Ocaml, con-

structors of abstract data types start with capital letter, in Prolog this

would correspond to variables, so we need to use scfg, acfg, etc., to encode

configurations.

eStmt(scfg(X = A,S),S2) :- eAExp(acfg(AE,S),acfg(I,S1)),

bind(S1,X,I,S2).

3.10.2 Continuation Based Definitions

Recall that the RLS semantics for assignment consists of an equation and a rule:

stmt(X := A) = aexp(A) y write(X)

k(I y write(X) y K) store(Store)→ k(K) store(Store[X ← I])

Asf+Sdf Again, the translation to Asf+Sdf implies minimal or no modifica-

tions. Note that Asf+Sdf makes no distinction between equations and

rules, all of them being written as equations.

[] stmt(X := A) = aexp(A) -> write(X)

[] k(int(I) -> write(X) -> K) store(Store)

= k(K) store(bind(Store,X,I))

Haskell The continuation concatenation is replaced by list concatenation. The

evaluation rules are transformed into a recursive evaluation function acting

at the top of the state.

stmt (Assign x a)) = (aexp a) ++ [Kwrite x]

result (Kval (Vint i):Kwrite x:k) s = result k (bind s x i)

Maude Representation in Maude is the exact rewriting logic definition.

84



eq stmt(X := A) = aexp(A) -> write(X) .

rl k(int(I) -> write(X) -> K) store(Store)

=> k(K) store(Store[X <- I]) .

Ocaml A similar approach as that for Haskell.

let rec stmt = function

...

| Assign(x, a) -> (aexp a) @ [Kwrite x]

let rec result s = function

...

| (Kval (Vint i)::Kwrite x::k) -> result (bind s x i) k

Prolog Same approach as for the functional languages above, but we now define

(functional) evaluation relations for functions decomposing the program

and a one-step rewrite relation for the top-level evaluation process.

stmt(X = A,K) :- aexp(A,KA), append(KA,[write(X)],K) .

step(conf(store(S),v([I]),k([write(X)|K])),

conf(store(S1),v(Vl),k(K)))

:- bind(S,X,I,S1).

3.11 Discussion

In this chapter we have tried to show how RLS can be used as a logical framework

for operational semantics definitions of programming languages. In particular,

by showing in detail how it can faithfully capture big-step and small-step SOS,

MSOS, context reduction, continuation-based semantics, and the Cham, we

hope to have illustrated what might be called its ecumenical character; that

is, its flexible support for a wide range of definitional styles, without forcing or

pre-imposing any given style. In fact, we think that this flexibility makes RLS

useful as a way of exploring new definitional styles.

However, existing language definitional styles bring their own limitation inside

rewriting logic, and thus fail to fully make use of the flexibility of the logic itself.

Moreover, rewriting logic is a meta-logic, and thus does not give any recipe for

defining programming languages. Therefore, a natural question arises:

What would be the ideal language definitional framework which can

be based on rewriting logic?

This remainder of this dissertation advances the K framework—a rewriting-based

language definitional framework, which attempts to combine the strengths of all

the definitional styles presented in this chapter with that of unrestricted use of

rewriting—as a serious candidate for answering the question above.

85



Acknowledgments. We thank our fellow researchers in the RLS project,

including Wolfgang Ahrendt, Musab Al-Turki, Marcelo d’Amorim, Eyvind W.

Axelsen, Christiano Braga, Illiano Cervesato, Fabricio Chalub, Feng Chen,

Manuel Clavel, Azadeh Farzan, Alejandra Garrido, Mark Hills, Einar Broch

Johnsen, Ralph Johnson, Michael Katelman, Laurentiu Leustean, Narciso Mart́ı-

Oliet, Olaf Owe, Stefan Reich, Andreas Roth, Juan Santa-Cruz, Ralf Sasse,

Koushik Sen, Mark-Oliver Stehr, Carolyn Talcott, Prasanna Thati, Ram Prasad

Venkatesan, and Alberto Verdejo, for their many contributions, which have both

advanced the project and stimulated our ideas. We also thank the students at

UIUC who attended courses on programming language design, semantics and

formal methods, who provided important feedback and suggestions. Last but

not least, we thank Mark Hills for fruitful discussions and his help in adjusting

the PLT-Redex implementation to suit our needs.

86



Chapter 4

An Overview of the K
Semantic Framework

The K framework, started in 2003 by Ros,u [142] for teaching a programming

languages class, and continuously developed since then [80, 146, 144], is a

specialized framework for defining and analyzing programming languages based

on rewriting. K applies the lessons learned from representing and evaluating

existing language definitional frameworks in rewriting logic (Chapter 3) with the

full power of rewriting, to allow developing powerful, modular, versatile, and

clear definitions of programming languages. Moreover, through its representation

in rewriting logic, it gains executability and access to the generic, but powerful,

execution and analysis tools available for rewrite theories (debugging and tracing,

BFS exploration, LTL model checker, inductive theorem prover).

The introduction and development of the K framework was largely motivated

by the observation that after more than 40 years of systematic research in

programming language semantics, the quest for an ideal language definitional

framework remains largely open to the working programming language designer,

but also to the entire research community. In our view, which synthesizes views

taken by existing approaches, such an ideal framework should satisfy at least

the following requirements.

Versatility. It should give a unified approach to define not only languages but

also language-related abstractions, such as type checkers, type inferencers,

abstract interpreters, safety policy or domain-specific checkers. The current

state-of-the art is that language designers use different approaches or styles

to define different aspects of a language, sometimes even to define different

components of the same aspect.

Expression power. It should be able to define arbitrarily complex language

features, including, obviously, all those found in existing languages, while

being able to also capture their intended computational granularity. For

example, features like call-with-current-continuation and true concurrency

are hard or impossible to define in many existing frameworks.

Modularity. It should be modular, i.e., adding new language features does not

require modifying existing definitions of unrelated features. Modularity is

crucial for scalability and reuse.

87



Non-determinism&concurrency. It should provide good support for non-

determinism and concurrency, at any desired granularity.

Generality. Is should be generic, that is, not tied to any particular programming

language or paradigm.

Executability. Is should be executable, so one can “test” language or formal

analyzer definitions, as if one already had an interpreter or a compiler for

one’s language. Efficient executability of language definitions may even

eliminate the need for additional interpreters.

Analyzability. It should provide state-exploration capabilities, including ex-

haustive behavior analysis (e.g., model-checking), when one’s language is

non-deterministic or/and concurrent.

Provability. It should provide corresponding initial-model or axiomatic seman-

tics (to allow inductive or Hoare-style proofs), so that one can formally

reason about programs.

The list above contains a minimal set of desirable features that an ideal

language definitional framework should have. There are additional desirable

requirements of an ideal language definitional framework that are more subjective

and thus more difficult to quantify. For example, it should be simple and easy

to understand, teach and use by mainstream enthusiastic language designers,

not only by language experts—in particular, an ideal framework should not

require its users to have advanced understanding of category theory, logics, or

type theory in order to use it. Also, it should have good data representation

capabilities and should allow proofs of theorems about programming languages

that are easy to comprehend. Additionally, a framework providing support for

parsing programs directly in the desired language syntax may be desirable, so

that an external parser is not needed.

The requirements above are nevertheless ambitious. Proponents of existing

language definitional frameworks may argue that their favorite framework has

these properties; however, a careful analysis of existing language definitional

frameworks reveals that they actually fail to satisfy some of these ideal features

(see Chapter 8 for more details on that). Others may argue that their favorite

framework has some of the properties above, the “important ones”, declaring the

other properties either“not interesting”or“something else”. For example, one may

say that what is important in one’s framework is to achieve a dynamic semantics

of a language, but that defining type systems, proving properties about programs,

model checking, etc., are “something else” and therefore are allowed to require

a different “encoding” of the language. Our position is that an ideal language

definitional framework should not compromise any of the requirements above.

Whether K satisfies all the requirements above or not is, and probably will al-

ways be, open. What we can mention with regards to this aspect, though, is that

88



K was motivated and stimulated by the observation that the existing language

definitional frameworks fail to fully satisfy these minimal requirements; conse-

quently, K’s design and development were conducted aiming explicitly to fulfill all

requirements discussed above, promoting none of them at the expense of others.

The K framework consists of two components: the K technique, discussed in

this chapter, and K rewriting, a concurrent rewriting semantics for K discussed

in Chapter 6. Like a term rewrite system, a K-system consists of a signature for

building terms and of a set of rules for iteratively rewriting terms. Emerging from

rewriting logic [103], K rules can be applied concurrently and unrestricted by

context. Moreover, K rules inherit features from graph rewrite rules, containing

information about what part of the matched term is left unchanged by the rule

(called the read-only part), similar to interfaces in graph rewriting [44]. Besides

offering a more compact notation for the rewrite rules, identifying the read-only

part can also potentially enhance the concurrency: two overlapping rules can

be applied in parallel if they only overlap on their read-only part, similar to

the concept of parallel independence in graph rewriting [44]. However, if one is

not interested in the degree of concurrency allowed by a K definition, one can

safely ignore the information regarding the read-only part, and view K rules

as an alternative notation for rewrite rules. Our prototype implementation,

described in Chapter 7, takes this approach, which allows K definitions to benefit

from the existing infrastructure and analysis tools provided for rewriting logic

theories by the Maude [34] rewrite engine.

The remainder of this chapter is structured as follows. Section 4.1 discusses

the K framework intuitively, by means of defining a simple imperative language

and an extension of it; this section should give the reader quite a clear feel for

what K is about and how it operates. Section 4.2 presents the K technique,

explaining essentially how rewriting can be used to define programming language

semantics by means of nested-cell configurations, computations and rewrite rules.

To illustrate the power of the K framework, Section 4.3 presents an increasingly

complex, modular, and concurrent definition of Agent, a pedagogical multi-

agent and multi-threaded functional programming language with imperative and

control features. Finally, Section 4.4 provides connections with the remainder

of the dissertation.

4.1 K Overview by Example

The role of this section is threefold: (1) it gives the reader a better understanding

of the K framework before we proceed to define it rigorously in the remainder

sections; (2) it shows how K avoids some of the limitations of other semantic

approaches; and (3) it shows that K is actually easy to use. We use as concrete

examples the Imp language, a very simple imperative language, and Imp++, an

extension of Imp with: increment to exhibit side-effects for expressions; input

and output; halt, to show how K deals with abrupt termination; and spawning

89



of threads, to show how concurrency is handled. We define both an executable

semantics and a type system for these languages. The type system is included

mainly for demonstration purposes, to show that one can use the same framework,

K, to define both dynamic and static semantics of languages.

Programming languages, calculi, as well as type systems or formal analyzers

can be defined in K by making use of special, potentially nested (K) cell structures,

and (K) (rewrite) rules. There are two types of K rules: computational rules,

which count as computational steps, and structural rules, which do not count

as computational steps. The role of the structural rules is to rearrange the

term so that the computational rules can apply. K rules are unconditional (they

may have ordinary side conditions, though, as rule schemata), and they are

context-insensitive, so K rules apply concurrently as soon as they match, without

any contextual delay or restrictions.

Computations One sort has a special meaning in K, namely the sort K of

computations. The intuition for terms of sort K is that they have computational

contents, such as programs or fragments of programs have; indeed, computations

extend the syntax of the original language. Computations have a list structure,

capturing the intuition of computation sequentialization, with list constructor

y (read “followed by”) and unit “·” (the empty computation). Computations

give an elegant and uniform means to define and handle evaluation contexts [180]

and/or continuations [59]. Indeed, a computation “v y C” can be thought of as

“C[v], that is, evaluation context C applied to v” or as “passing v to continuation

C”. Computations can be handled like any other term in a rewriting environment,

that is, they can be matched, moved from one place to another, modified, or

even deleted. A term may contain an arbitrary number of computations, which

can evolve concurrently; they can be thought of as execution threads. Rules

corresponding to inherently sequential operations (such as lookup/assignment

of variables in the same thread) must be designed with care, to ensure that

they are applied only at the top of computations.

The distinctive feature of K, compared to other term rewriting approaches

to defining programming languages, is that K allows rewrite rules to apply

concurrently even in cases when they overlap, provided that they do not change

the overlapped portion of the term. This allows for truly concurrent semantics.

For example, two threads can read the same location of memory concurrently,

even though the corresponding rules overlap on the store location being read.

K achieves, in one uniform framework, the benefits of both the chemical

abstract machines (or Chams) and reduction semantics with evaluation contexts,

at the same time avoiding what might be called the “rigidity to chemistry” of

the former and the “rigidity to syntax” of the latter. Like the other semantic

approaches that can be represented in rewriting logic presented in Chapter 3, K
can also be represented in rewriting logic. This dissertation describes two such

representations: an executable one, which gives an interleaving semantics for

90



concurrency with sharing of resources, and a completely faithful one, obtained

through an intermediate embedding into graph rewriting.

The concurrent semantics for K rewriting and its faithful representation in

rewriting logic are presented in detail in Chapter 6. The executable representation

of K in rewriting logic, whose implementation in the Maude [34] rewrite engine

is presented in Chapter 7, can be used to execute K definitions, thus providing

“interpreters for free” directly from formal language definitions; additionally,

general-purpose formal analysis techniques and tools developed for rewriting

logic, such as state space exploration for safety violations or model-checking, give

us corresponding techniques and tools for the defined languages, at no additional

development cost. The fact that this executable representation looses part of

the true concurrency of K does not limit its access to the execution and analysis

tools for rewrite theories, as the implementation of rewriting logic in the Maude

rewrite engine also considers a fully interleaved semantics when executing or

exploring transitions systems for rewrite theories.

4.1.1 K Semantics of Imp

Figure 4.1 shows the complete K definition of Imp, except for the configuration;

the Imp configuration is explained separately below. The left column gives the

Imp syntax. The middle column contains special syntax K annotations, called

strictness attributes, stating the evaluation strategy of some language constructs.

Finally, the right column gives the semantic rules.

K makes intensive use of the context-free grammar (CFG) notation for syntax

and for configurations, extended with specialized “algebraic” notation for lists,

sets, multisets (bag) and maps. For any sort S, the sort List†?[S] (or Bag†?[S],

or Set†?[S]) defines the ?-separated lists (or bags, or sets) of elements of sort

S, with identity †. If unspecified, by default ? is , for lists and for bags

and sets, and † is “·”. For example, List[S] defines comma-separated lists of

elements of type S, and could be expressed with the lower-level CFG productions

List[S] ::= · | S(, S)∗. Similarly, sort Map†?[S1 7→S2] contains a set of mappings

source 7→ target , with source of sort S1 and target of sort S2, separated by ?

and with identity †; be default, ? is and † is “·”.
Like in the Cham, program or system configurations in K are organized as

potentially nested structures of cells (we call them cells instead of molecules to

avoid confusion with terminology in Cham and chemistry). However, unlike the

Cham which only provides multisets (or bags), K also provides list, set and map

cells in addition to multiset cells; K’s cells may be labeled to distinguish them

from each other. We use angle brackets as cell wrappers.

The K configuration of IMP can be defined as:

ConfigurationImp ≡ 〈〈K〉k 〈Map[Id 7→ Int ]〉state〉>

91



In words, Imp configurations consist of a top cell 〈〉> containing two other

cells inside: a cell 〈〉k which holds a term of sort K (terms of sort K are

called computations and extend the original language syntax as explained

in the next paragraph) and a cell 〈〉state which holds a map from variables

to integers. For example, “〈〈x = 1 ; y = x + 1 ;〉k 〈·〉state〉>” is a configuration

holding program “x = 1 ; y = x + 1 ;” and empty state, while the configuration

“〈〈x = 1 ; y = x + 1 ;〉k 〈x 7→ 0, y 7→ 1〉state〉>”holds the same program and a state

mapping x to 0 and y to 1.

K provides special notational support for computational structures, or simply

computations. Computations have the sort K, which is therefore builtin in

the K framework; the intuition for terms of sort K is that they have computa-

tional contents, such as, for example, a program or a fragment of program has.

Computations extend the original language/calculus/system syntax with special

“y”-separated lists “T1 y T2 y · · · y Tn” comprising (computational) tasks,

thought of as having to be“processed”sequentially (“y”reads“followed by”). The

identity of the “y” associative operator is “·”. Like in reduction semantics with

evaluation contexts, K allows one to define evaluation contexts over the language

syntax. However, unlike in reduction semantics, parsing does not play any crucial

role in K, because K replaces the hard-to-implement split/plug operations of

evaluation contexts by plain, context-insensitive rewriting. Therefore, instead of

defining evaluation contexts using context-free grammars and relying on splitting

syntactic terms (via parsing) into evaluation contexts and redexes, in K we define

evaluation contexts using special rewrite rules. For example, the evaluation

contexts of sum, comparison and conditional in Imp can be defined as follows, by

means of structural rules (the sum “+” is non-deterministic, i.e., the evaluation

procedure for its arguments is not fixed and the comparison “<=” is sequential):

a1 + a2 
 a1 y � + a2

a1 + a2 
 a2 y a1 +�
a1 <= a2 
 a1 y � <= a2

i1 <= a2 
 a2 y i1 <= �
if b then s1 else s2 
 by if � then s1 else s2

The symbol 
 stands for two structural rules, one left-to-right and another

right-to-left.

The right-hand sides of the structural rules above contain, besides the task

sequentialization operator y, freezer operators containing � in their names,

such as “� + ”, “ + �”, etc. The first rule above says that in any expression

of the form “a1 + a2”, a1 can be scheduled for processing while a2 is being held

for future processing. Since the rules above are bi-directional, they can be used

at will to structurally re-arrange the computations for processing. Thus, when

iteratively applied left-to-right they fulfill the role of splitting syntax into an

evaluation context (the tail of the resulting sequence of computational tasks)

and a redex (the head of the resulting sequence), and when applied right-to-

92



Original language syntax Strictness Semantics
AExp ::= Int | Id 〈x

i
···〉k 〈··· x 7→ i ···〉state

| AExp + AExp [strict ] i1 + i2 → i1 +Int i2
| AExp / AExp [strict ] i1 / i2 → i1/Int i2 when i1 6= 0

BExp ::= AExp <= AExp [seqstrict ] i1 <= i2 → i1 ≤Int i2
| notBExp [strict ] not t→ ¬Bool t
| BExp and BExp [strict(1)] true and b→ b

false and b→false

Stmt ::= skip; skip;→ ·
| Id = AExp ; [strict(2)] 〈x = i ;

·
···〉k 〈··· x 7→

i
···〉state

| Stmt Stmt s1 s2 ⇀ s1 y s2

| ifBExp thenStmt
elseStmt

[strict(1)] if true then s else → s
if false then else s→ s

| whileBExp do Stmt 〈 while b do s
if b then(s while b do s)

else skip;

···〉k

Pgm ::= var List[Id ] ; Stmt 〈var xl ; s
s

〉k 〈 ·
xl 7→ 0

〉state

Figure 4.1: K definition of Imp: syntax (left), annotations (middle) and semantics
(right); x ∈ Id , xs ∈ List[Id ], i, i1, i2 ∈ Int , t ∈ Bool , b ∈ BExp, s, s1, s2 ∈ Stmt
(b, s, s1, s2 can also be in K)

left they fulfill the role of plugging syntax into context. Such structural rules

are called heating/cooling rules in K, since they are reminiscent of the Cham

heating/cooling rules; for example, a1 + a2 is “heated” into a1 y � + a2,

while a1 y � + a2 is “cooled” into a1 + a2. A language definition can use

structural rules not only for heating/cooling but also to give the semantics of

some language constructs; this will be discussed later in this section.

To avoid writing obvious heating/cooling structural rules like the above, we

prefer to use the strictness attribute syntax annotations in K, as shown in the

middle column in Figures 4.1 and 4.2: “strict” means non-deterministically strict

in all enlisted arguments (given by their positions) or by default in all arguments

if none enlisted, meaning that all specified arguments must be evaluated before

evaluating the construct itself, and “seqstrict” is like strict but each argument

is fully processed before moving to the next one (see the second structural

rule of “<=” above).

The structural rules corresponding to strictness attributes (or the heat-

ing/cooling rules) decompose and eventually push the tasks that are ready for

processing to the top (or the left) of the computation. Semantic rules then tell

how to process the atomic tasks. The right column in Figure 4.1 shows the

semantic K rules of Imp. To understand them, let us first discuss the important

notion of a K rule, which is a strict generalization of the usual notion of a rewrite

rule. To take full advantage of K’s support for concurrency, K rules explicitly

93



mention the parts of the term that they read, write, or do not care about. The

underlined parts are those which are written by the rule; the term underneath

the line is the new subterm replacing the one above the line.

All writes in a K rule are applied in one parallel step, and, with some reason-

able restrictions discussed in Chapter 6 (that avoid read/write and write/write

conflicts), writes in multiple K rule instances can also apply in parallel. The

operations which are not underlined represent the read-only part of the term:

they need to stay unchanged during the application of the rule. Ellipses “···” at

the beginning or end of cells are used to locate in the cell the specified content, by

indicating that there could be more items in the cell before or after the specified

content, respectively. While cells holding lists (including the computation cell)

can have ellipses on any (or both) ends of the cell, we convene that cells holding

sets, bags, or maps should always use ellipses on both ends, as the contents are

to be located “in the middle” of the cell. The anonymous variables “ ” are used

to represent parts of the term that the current rule does not need to refer to.

For example, the lookup rule (the first rule in Figure 4.1) says that once

program variable x reaches the top (beginning) of the computation, it is replaced

by the value to which it is mapped in the state, regardless of the remaining

computation (which is indicated by the ellipses on the right side of the 〈〉k cell)

or the other mappings in the state (which is indicated by ellipses in both sides

of the 〈〉state cell). Similarly, the assignment rule says that once the assignment

statement “x = i ;” reaches the top of the computation, the value of x in the

store is replaced by i and the statement dissolves; “·” is the unit (or empty)

computation (“·” tends to be used in K as a polymorphic unit of most if not all

list, set and multiset structures). The rule for variable declarations in Figure

4.1 (last one) expects an empty state and allocates and initializes with 0 all the

declared variables; the dotted or dashed lines signify that the rule is structural,

which is discussed next.

K rules are split in two categories: computational rules and structural rules.

Computational rules capture the intuition of computational steps in the execution

of the defined system or language, while structural rules capture the intuition of

structural rearrangement, rather than computational evolution, of the system.

We use dashed or dotted lines in the structural rules to convey the idea that

they are lighter-weight than the computational rules. Ordinary rewrite rules

are a special case of K rules, when the entire term is replaced; in this case, we

prefer to use the standard notation l→ r as syntactic sugar for computational

rules and the notation l ⇁ r or l ⇀ r as syntactic sugar for structural rules. We

have seen several structural rules at the beginning of this section, namely the

heating/cooling rules corresponding to the strictness attributes. Figure 4.1 shows

three more: s1 s2 is rearranged as s1 y s2, loops are unrolled when they reach

the top of the computation (unconstrained unrolling would lead to undesirable

non-termination), and declared variables are allocated in the state. There are

no rigid requirements on when rules should be computational versus structural

94



Original language syntax Semantics
AExp ::=

| ++ Id 〈 ++x
i+Int 1

···〉k 〈··· x 7→ i
i+Int 1

···〉state

| read 〈read
i
···〉k 〈i

·
···〉in

Stmt ::=
| printAExp ; [strict ] 〈print i ;

·
···〉k 〈··· ·

i
〉out

| spawnStmt 〈spawn s
·

···〉k ·
〈s〉k

| haltThread; 〈haltThread;y
·

〉k

〈·〉k ⇁ ·

Figure 4.2: K definition of Imp++ (extends that of Imp in Figure 4.1, without
changing anything)

and, in the latter case, on when one should use l ⇁ r or l ⇀ r as syntactic

sugar. We (subjectively) prefer to use structural rules for desugaring (like for

sequential composition), loop unrolling and declarations, and we prefer to use

“⇀” when syntax is split into computational tasks and “⇁” when computational

tasks are put back into the original syntax.

Each K rule can be easily “desugared” into a standard term rewrite rule by

combining all its changes into one top-level change. The relationship between

K rewriting and conventional term rewriting and rewriting logic is discussed

in Chapter 6. The main point is that through this desugaring, the resulting

conventional rewrite system associated to a K-system lacks the full potential

for concurrency of the original K-system.

4.1.2 K Semantics of Imp++

Figure 4.2 shows how the K semantics of Imp can be seamlessly extended into a

semantics for Imp++. To accommodate input and output, two new cells need

to be added to the configuration:

ConfigurationImp++ ≡ 〈〈K〉k 〈Map[Id 7→ Int ]〉state 〈List[Int ]〉out 〈List[Int ]〉in〉>

However, note that none of the existing Imp rules needs to change, because

each of them only matches what it needs from the configuration. The increment

construct “++ ” introduces side effects for expressions: it increments the value

of the identifier and evaluates to that value. The rule for the read construct

uses the first element from the 〈〉input cell (and replaces it by the unit “·”) to

replace the read expression. The print construct is strict and its rule adds the

value of its argument to the end of the 〈〉out buffer (matches and replaces the

95



unit “·” at the end of the buffer). The rule for haltThread dissolves the current

computation, and the rule for spawn creates a new 〈〉k cell initialized with the

spawned statement. The code in this new cell will be processed concurrently

with the other threads. The last rule “cools” down a terminated thread by

simply dissolving it; it is a structural rule because, again, we do not want it

to count as a computation.

We conclude this section with a discussion on the concurrency of the K
definition of Imp++. Since in K rule instances can share read-only data, various

instances of the look up rule can apply concurrently, in spite of the fact that

they overlap on the state. Similarly, since the rules for variable assignment and

increment do not update anything else in the 〈〉state cell except the mapping

corresponding to the variable, multiple assignments, increments and reads of

distinct variables can happen concurrently. However, if two threads want to write

the same variable, or if one wants to write it while another wants to read it, then

the two corresponding rules need to interleave, because the two rule instances

are in a concurrency conflict. Note also that the rules for read/print match

and change the beginning/end of the 〈〉in/〈〉out cell. That means, in particular,

that multiple read/print statements by various threads need to be interleaved

for the same reason as above; however, one read could be executed in parallel

with one print command. On the other hand, the rule for spawn matches any

empty top-level position and replaces it by the new thread, so threads can spawn

threads concurrently. Similarly, multiple threads can be dissolved concurrently

when they are done (last “cooling” structural rule). These desirable concurrency

aspects of Imp++ are possible to define formally thanks to the specific nature of

the K rules. If we used standard rewrite rules instead of K rules, then many of

the concurrent steps above would need to be interleaved because rewrite rule

instances which overlap cannot be applied concurrently.

4.1.3 K Type System for Imp/Imp++

The K semantics of Imp/Imp++ discussed above can be used to execute even

ill-typed Imp/Imp++ programs, which may be considered undesirable by some

language designers. Indeed, one may want to define a type checker for a desired

typing policy, and then use it to discard as inappropriate programs that do

not obey the desired typing policy. We next show how to define a type system

for Imp/Imp++ using the very same K framework. The type system is defined

like an (executable) semantics of the language, but one in the more abstract

domain of types rather than in the concrete domain of values. The technique

is general and has been used to define more complex type systems, such as

higher-order polymorphic ones [52].

The typing policy that we want to enforce on Imp/Imp++ programs is easy:

all variables in a program have by default integer type and must be declared,

arithmetic/Boolean operations are applied only on expressions of corresponding

96



Original language syntax Strictness Semantics
AExp ::= Int i→ int

| Id 〈 x
int
···〉k 〈··· x ···〉vars

| AExp + AExp [strict ] int + int → int
| AExp / AExp [strict ] int / int → int
| ++ Id 〈++x

int
···〉k 〈··· x ···〉vars

| read read→ int
BExp ::= AExp <= AExp [strict ] int <= int → bool

| notBExp [strict ] not bool → bool
| BExp and BExp [strict ] bool and bool → bool

Stmt ::= skip; skip;→ stmt
| Id = AExp ; [strict(2)] 〈x = int ;

stmt
···〉k 〈··· x ···〉vars

| Stmt Stmt [strict ] stmt stmt → stmt
| ifBExp then Stmt

else Stmt
[strict ] if bool then stmt

else stmt
→ stmt

| whileBExp do Stmt [strict ] while bool do stmt → stmt
| printAExp ; [strict ] print int ;→ stmt
| haltThread; haltThread;→ stmt
| spawnStmt [strict ] spawn stmt → stmt

Pgm ::= var List[Id ] ; Stmt 〈var xl ; s
sy pgm

〉k 〈 ·
xl
〉vars

stmt y pgm → pgm

Figure 4.3: K type system for Imp++ (and Imp)

types, etc. Since programs and fragments of programs are now going to be

rewritten into their types, we need to add to computations some basic types.

Also, in addition to the computation to be typed, configurations must also

hold the declared variables. Thus, we define the following (the “. . . ” in the

definition of K includes all the default syntax of computations, such as the

original language syntax, “y”, freezers, etc.):

K ::= . . . | int | bool | stmt | pgm

ConfigurationType
Imp++ ≡ 〈〈K〉k 〈Set[Id ]〉vars〉>

Figure 4.3 shows the Imp/Imp++ type system as a K system over such

configurations. Constants reduce to their types, and types are propagated

through each language construct in a straightforward manner. Note that almost

each language construct is strict now, because we want to type all its arguments

in almost all cases in order to apply the typing policy of the construct. Two

constructs are exceptions, namely the increment and the assignment. The typing

policy of these constructs is that they take precisely a variable and not something

that types to int . If we defined, e.g., the assignment strict and with rule int = int ,

then our type system would allow ill-formed programs like “x + y=0 ;”. Note how

97



we defined the typing policy of programs “var xl ; s”: the declared variables xl

are stored into the 〈〉vars cell (expected to be initially empty) and the statement

is scheduled for typing (using a structural rule), placing a “reminder” in the

computation that the pgm type is eventually expected; once/if the statement

is correctly typed, the type pgm is generated.

4.2 The K Technique

Q: What are these Question/Answer boxes in this section?

A: Each subsection in this section introduces an important com-

ponent of the K technique, such as configurations, computations,

or semantic rules. Each Q/A box captures the essence of the

corresponding subsection from a user perspective. They will ease

the understanding of how the various components fit together.

Q/A

In this section we present the K technique, which consists of a series of

guidelines and notations that turn K into an effective framework for defining

programming languages or calculi. The development of the K technique has

been driven by practical needs, and it is the result of our efforts to define various

programming languages, paradigms, and calculi as rewrite or K-systems. We

would like to make two important observations before we proceed:

1. The K technique is flexible and open-ended. Our current guidelines and

notations are convenient enough to define the range of languages, features

and calculi that we considered so far. Some readers may, however, prefer

different or new notations. As an analogy, there are no rigid rules for how to

write an SOS configuration [136]: one may use the angle-bracket notation

〈code, state, . . .〉, the square bracket notation [code, state, . . .], or even the

simple tuple notation (code, state, . . .); also, one may use a different (from

comma) symbol to separate the various configuration ingredients and,

even further, one could use writing conventions (such as the “state” or

“exception” conventions in [116]) to simplify the writing of SOS definitions.

Even though we believe that our notational conventions discussed in this

section should be sufficient for any definitional task, we still encourage our

reader to feel free to change our notations or propose new ones if needed

to better fit one’s needs or style. Nevertheless, our current prototype

implementation of K described in Chapter 7 relies on our current notation

as described in this section; therefore, to use our tool one needs to obey

our notation.

2. The K technique yields a semantic definitional style. As an analogy, no

matter what notations one uses for configurations and other ingredients

98



in SOS definitions (see item above), or even whether one uses rewriting

logic or any other computational framework to represent and execute SOS

definitions or not, SOS still remains SOS, with all its advantages and

limitations; the same holds true for any other definitional style. Simi-

larly, we expect that the K technique can be represented or implemented

in various back-end computational frameworks. Indeed, the same way

the various conventional language definitional styles become definitional

methodologies or styles within rewriting logic as shown in Chapter 3, the

K technique can also be cast as a definitional methodology or style within

other computational frameworks; in Chapter 7 we show how this can be

done for rewriting logic and Maude, for example. We prefer K rewriting

as the intended semantics for the K technique because we believe that it

ensures the maximum of concurrency one can hope for in K definitions.

However, if one is not sensitive to this true concurrency aspect or if one

prefers a certain computational framework over anything else, then one

can very well use the K technique in that framework.

4.2.1 K Configurations: Nested Cell Structures

Q: Do I need to define a configuration for my language?

A: No, but it is strongly recommended to define one whenever

your language is non-trivial. Even if you define no configuration,

you still need to define the cells used later on in the semantic

rules; otherwise the rules will not parse.

Q: How can I define a configuration?

A: All you need is to define a potentially nested-cell structure like

in Figure 4.4, which is a cell term over the simple cell grammar

described below. By defining the configuration you have three

benefits:

• You implicitly define all the needed cells, which is required

anyway;

• You can reuse existing semantic rules that were conceived for

more abstract configurations, via a process named context

transformation; and

• You have a better understanding of all the semantic ingre-

dients that you need for your subsequent semantics as well

as their role.

Q/A

In K definitions, the programming language, calculus or system configuration

is represented as a potentially nested cell structure. This is similar in spirit to how

configurations are represented in chemical abstract machines (Chams, see [15]) or

99



in membrane systems (P-systems, see [131]), except that K’s cells can hold more

varied data and are not restricted to certain means to communicate with their

environment. The various cells in a K configuration hold the infrastructure needed

to process the remaining computation, including the computation itself; cells can

hold, for example, computations (these are discussed in depth in Section 4.2.2),

environments, heaps or stores, remaining input, output, analysis results, resources

held, bookkeeping information, and so on. The number and type of cells that

appear in a configuration is not fixed and is typically different from definition to

definition. K assumes and makes intensive use of the entire range of structures

allowed by algebraic CFGs, such as lists, sets, multisets, and maps.

Formally, K configurations have the following simple, nested-cell structure:

Cell ::= 〈CellContents〉CellLabel

CellContents ::= Sort | Bag [Cell ]

CellLabel ::= CellName | CellName∗
CellName ::= > | k | | env | store | . . .

(language-specific cell names; >, k are common)

where Sort can be any sort name, including arbitrary list (List[Sort ]), set

(Set[Sort ]), bag (Bag[Sort ]) or map (Map[Sort1 7→Sort2 ]) sorts. Many K def-

initions share the cell labels > (which stands for “top”) and k (which stays

for “computation”). They are built-in in our implementation of K in Maude

described in Chapter 7, so one needs not declare them in each language definition.

The white-space or “invisible” label “ ” may be preferred as an alternative to

> and/or k, particularly when there is a need for only one cell type, like in the

definitions of CCS and Pi calculi. The cells with starred labels say that there

could be multiple instances, or clones, of that cell. This multiplicity information

is optional1, but can be useful for context transformation (Section 4.2.5).

We have seen so far three K configurations, for Imp, for Imp++, and for

their type system:

ConfigurationImp ≡ 〈〈K〉k 〈Map[Id 7→ Int ]〉state〉>
ConfigurationImp++ ≡ 〈〈K〉k 〈Map[Id 7→ Int ]〉state 〈List[Int ]〉in 〈List[Int ]〉out〉>
ConfigurationType

Imp++ ≡ 〈〈K〉k 〈Set[Id ]〉vars〉>

Notice that they all obey the general cell grammar above, that is, they are nested

cell structures; the bottom cells only contain a sort and no other cells.

As a more complex example, Figure 4.4 presents the K configuration of

Agent (see Section 4.3), a pedagogical language conceived to challenge and

expose the limitations of the various language definitional frameworks.

Figure 4.4 presents both a textual representation of Agent configurations

(as the ones for Imp and Imp++ described above), as well as a graphical one,

1Note, in particular, that we omitted it for the k label in the Imp++ configuration (Imp++ is
multithreaded).

100



Configuration ≡ 〈Agents I /O Messages Rest 〉!
Agents ≡

〈
Threads 〈 $→K 〉mem〈 〉nextLoc

〈 K 〉busy 〈 〉me 〈 〉parent

〉

agents∗
Threads ≡

〈 〈
〈 〉k 〈 K $→ 〉holds

〉
thread∗

〉
control

I /O ≡ 〈〈 〉in 〈 K 〉out〉I/O

Messages ≡ 〈〈〈 〉from 〈 〉to 〈K〉body〉msg∗〉msgs

Rest ≡ 〈 〉waiting〈 〉world〈 〉barrier〈 〉nextAgent

K !→

!→K K

K

#

〈〉!
〈〉agent∗
〈〉control

〈〉thread∗
〈〉k

〈〉nextId

〈〉holds

〈〉mem

〈〉nextLoc

〈〉busy

〈〉me

〈〉parent

〈〉I/O

〈〉in
〈〉out

〈〉msgs

〈〉msg∗
〈〉from
〈〉to
〈〉body

〈〉waiting

〈〉world

〈〉barrier

〈〉nextAgent

Configuration ≡ 〈Agents I /O Messages Rest 〉!
Agents ≡

〈
Threads 〈 $→K 〉mem〈 〉nextLoc

〈 K 〉busy 〈 〉me 〈 〉parent

〉

agents∗
Threads ≡

〈 〈
〈 〉k 〈 K $→ 〉holds

〉
thread∗

〉
control

I /O ≡ 〈〈 〉in 〈 K 〉out〉I/O

Messages ≡ 〈〈〈 〉from 〈 〉to 〈K〉body〉msg∗〉msgs

Rest ≡ 〈 〉waiting〈 〉world〈 〉barrier〈 〉nextAgent

K !→

!→K K

K

#

〈〉!
〈〉agent∗
〈〉control

〈〉thread∗
〈〉k

〈〉nextId

〈〉holds

〈〉mem

〈〉nextLoc

〈〉busy

〈〉me

〈〉parent

〈〉I/O

〈〉in
〈〉out

〈〉msgs

〈〉msg∗
〈〉from

〈〉to
〈〉body

〈〉waiting

〈〉world

〈〉barrier

〈〉nextAgent

Configuration ≡ 〈Agents I /O Messages Rest 〉!
Agents ≡

〈
Threads 〈 $→K 〉mem〈 〉nextLoc

〈 K 〉busy 〈 〉me 〈 〉parent

〉

agents∗
Threads ≡

〈 〈
〈 〉k 〈 K $→ 〉holds

〉
thread∗

〉
control

I /O ≡ 〈〈 〉in 〈 K 〉out〉I/O

Messages ≡ 〈〈〈 〉from 〈 〉to 〈K〉body〉msg∗〉msgs

Rest ≡ 〈 〉waiting〈 〉world〈 〉barrier〈 〉nextAgent

K !→

!→K K

K

#

〈〉!
〈〉agent∗
〈〉control

〈〉thread∗
〈〉k

〈〉nextId

〈〉holds

〈〉mem

〈〉nextLoc

〈〉busy

〈〉me

〈〉parent

〈〉I/O

〈〉in
〈〉out

〈〉msgs

〈〉msg∗
〈〉from

〈〉to
〈〉body

〈〉waiting

〈〉world

〈〉barrier

〈〉nextAgent

Figure 4.4: The configuration of the Agent language in both term (top) and
graphical (middle) representation, with short explanation of cell contents (bot-
tom)

101



which can be automatically generated by the K2Latex component of our current

implementation of K in Maude described in Chapter 7. The Agent configurations

have five levels of cell-nesting and several cells labels are starred, meaning that

there can be multiple instances of those cells. For example, the top cell may

contain multiple 〈〉agent cells; each agent may contain, besides information like a

local store, busy resources (used as locks for thread synchronization), etc., an

arbitrary number of 〈〉thread cells grouped in a 〈〉control cell; each thread contains

a local computation and a number of resources (locks) held by the thread. As

one may expect, real life language definitions tend to employ rather complex

configurations. For example the K definition of C [51] uses more than fifty

cells with five levels of nesting.

The advantage of representing configurations as nested cell-structures is that,

like in MSOS [123], subsequent rules only need to mention those configuration

items that are needed for those particular rules, as opposed to having to mention

the entire configuration, whether needed or not, like in conventional SOS. We

can add or remove items from a configuration as we like, only impacting the

rules that use those particular configuration items. Rules that do not need the

changed configuration items do not need to be touched. This is an important

aspect of K, which significantly contributes to its modularity.

Defining a configuration for a K semantics of a language, calculus or system

is an optional step, in that it suffices to only define the desirable cell syntax

so that configurations like the desired one parse as ordinary cell terms. That

indeed provides all the necessary infrastructure to give the semantic K rules.

However, providing a specific configuration term is useful in practice for at least

two reasons. First, the configuration can serve as an intuitive skeleton for writing

the subsequent semantic rules, one which can be consulted to quickly find out, for

example, what kind of cells are available and where they can be found. Second, the

configuration structure is the basis for context transformation (see Section 4.2.5),

which gives more modularity to K rules by allowing them to be reusable in

language extensions that require changes in the structure of the configuration.

102



4.2.2 K Computations: y-Separated Nested Lists of

Tasks

Q: What are K computations?

A: Computations are an intrinsic part of the K framework. They

extend abstract syntax with a special nested-list structure and

can be thought of as sequences of fragments of program that

need to be processed sequentially.

Q: Do I need to define computations myself?

A: What is required is to define an abstract syntax of your

language (discussed below) and desired evaluation strategies for

the language constructs (discussed in Section 4.2.3), which need

to be defined no matter what framework you prefer. By doing so,

you implicitly define the basic K computational infrastructure.

In many cases you do not need to define any other computation

constructs.

Q: Do I need to understand in depth what computations are in

order to use K?

A: Not really. If you follow a purely syntactic definitional style

mimicking reduction semantics with evaluation contexts [180] in

K, then the only computations that you will ever see in your

rules are abstract syntax terms.

Q: What is the benefit of using more complex (than abstract

syntax) computations?

A: Using K at its full strength. Many complex languages are very

hard or impossible to define purely syntactically, while they admit

elegant and natural definitions using proper K computations. For

example, the Agent language in Section 4.3.

Q/A

K takes a very abstract view of language syntax and, in theory, it is not

concerned at all with parsing aspects2. More precisely, in K there is only one

top-level sort3 associated to all the language syntax, called K and standing

for computational structures or computations, and terms t of sort K have the

abstract syntax tree (AST) representation l(t1, . . . , tn), where l is some K label

and t1,. . . ,tn are terms of sort K, extended with the list (infix) construct “y”,

read “followed by” or “and then”; for example, if t1, t2, . . . , tn are computations

then t1 y t2 y · · ·y tn is also a computation, namely the one sequentializing t1,

t2, . . . , tn. All the original language constructs, including constants and program

2In practice, like in all other language semantics frameworks, some parser is always assumed
or effectively used as a front-end to K to parse and transform the language syntax into its
abstract K syntax.

3Technically, one can define more than one top-level computation sort; however, for simplicity
we prefer to keep only one computation sort for now.

103



variables, as well as all the freezers (discussed below), are regarded as labels.

For notational convenience, we continue to write K-terms using the original

syntax instead of the harder to read AST notation. Formally, computations

are defined as follows:

K ::= KLabel(List [K]) | Listy[K]

KLabel ::= (one per language construct, plus auxiliary ones as needed)

The first construct scheme for K abstractly captures any programming language

syntax as an AST, provided that one adds one KLabel for each language construct.

For example, in the case of the IMP language, we add to KLabel all the following

labels corresponding to the Imp syntax:

KLabel Imp ::= Int | Id | + | / | <= |not | and |skip;| = ;|
| if then else |while do |var ;

We recommend the use of the mix-fix notation for labels, like in the above labels

corresponding to the Imp language; the mix-fix notation was introduced by

the OBJ language [65] and followed by many other similar languages, where

underscores in the name of an operation mark the places of its arguments.

In addition to the language syntax, KLabel may include additional labels for

semantic reasons; e.g, labels corresponding to semantic domain values which may

have not been automatically included in the syntax of the language, such as the

Bool domain in the case of Imp. We take the liberty to call K constants those

computations which are labels applied to, and always intended to be applied to,

an empty list of arguments (e.g., skip; (), true (), 1(), 2(), etc.)

Most K labels always take a fixed number of arguments; e.g., the label

if then else above takes 3 arguments. Even though the simplistic syntax

of K cannot enforce the fixed number of arguments in the semantics, one can show

that the semantic rules never change the number of arguments of such labels, so

they will always have the original number of arguments as given by the original

parsing of the program. There are syntactic language constructs, however, which

are allowed to take an arbitrary number of arguments. A typical example is,

for example, lists of expressions or lists of variables in variable declarations. A

list of expressions “e1 , e2 , ... , en” is captured as a K computation of the

form “ , (t1, t2, ..., tn)” (with , () for the empty list), where ti is the K
representation of ei. Therefore, lists of expressions are regarded as labels applied

to an arbitrary number of arguments; the name of the label is inspired from list

constructs being thought of as binary associative operations.

It is convenient in many K definitions to distinguish syntactically between

proper computations and computations which are finished. A similar phenomenon

is common and also accepted in other definitional styles, which distinguish

between proper expressions and values, for example. To make this distinction

smooth, we add the KResult syntactic subcategory of K which is constructed

104



using corresponding labels (all labels in KResultLabel are also in KLabel):

KResult ::= KResultLabel(List [K])

KResultLabel ::= (one per construct of terminated computations,

e.g., values, results, etc.)

Among the labels in KResultLabel one may have certain language constants,

such as true, 0, 1, etc., but also labels that correspond to non-constant terms,

for example λ . ; indeed, in some λ-calculi, λ-abstractions λx.e (or λ . (x, e)

in AST form), are values (or finished computations).

There is yet another category of labels that turns out to be useful in semantic

definitions, namely hybrid labels, which are intended to “hold data”, i.e., take

lists of K results into a K result:

KResult ::= KHybridLabel(List [K])

KHybridLabel ::= (one per construct that does not reduce

once its arguments are reduced)

For example, the “list” label , above should be declared hybrid, since we want

, (t1, t2, ..., tn) to be considered evaluated in the semantics whenever each

ti is evaluated. On the other hand, labels like + are obviously not hybrid.

In fact, hybrid labels are rather rare. It may also be worth noting that, unlike

the result labels, the hybrid labels are more of a convenience than a necessity.

Indeed, one can always introduce a new result label for any label intended to be

hybrid, e.g. ,result , together with a rule replacing the label with its result

counterpart whenever its arguments become results, e.g., “ , (t1, t2, ..., tn) ⇁

,result (t1, t2, ..., tn) when t1, t2, ..., tn ∈ KResult” (a structural rule, see Section

4.2.3). However, this would be inconvenient in many cases.

We take the liberty to write language or calculus syntax either in AST

form, like in λ . (x, e), if then else (b, s1, s2), and skip(), or in mixfix

form, like in λx.e, if b then s1 else s2, and skip. For example, in Figure 4.1

we preferred to write the rule for addition as i1 + i2 → i1 +Int i2 instead of

+ (i1(), i2())→ (i1 +Int i2)(). In our Maude implementation of K described

in Chapter 7, thanks to Maude’s builtin support for mixfix notation and parsing

capabilities, we actually write programs using the mixfix notation. Even though

theoretically unnecessary, this is actually very convenient in practice, because it

makes language definitions more readable and, consequently, less error-prone.

Additionally, programs in the defined languages can be regarded as terms the way

they are, without any intermediate AST representation. In other implementations

of K, one may need to use an explicit parser or to get used to reading syntax

in AST representation. Either way, from here on we assume that programs, or

fragments of programs, parse as computations in K.

The second construct scheme for K allows one to sequentialize computational

tasks. Intuitively, k1 y k2 says “process k1 then k2”. How this is used and what

105



(if true then · else·) y while false do·
a1 y �+ a2

a2 y a1 +�
a3 y (a1 + a2) +�
a3 y (a1 y �+ a2) +�
by if� then s1 else s2

by if� then (sy while b do s) else ·

Figure 4.5: Examples of K computations

is the exact meaning of “process” is left open and depends upon the particular

definition. For example, in a concrete semantic language definition it can mean

“evaluate k1 then k2”, while in a type inferencer definition it can mean “type

and accumulate type constraints in k1 then do the same for k2”, etc. Figure 4.5

shows examples of computations making use of the Listy[K] structure of K (we

use parentheses for disambiguation). The “·” in the first and last computations

in Figure 4.5 is the unit of K (given by Listy[K]). Note that y-separated lists

of computations can be nested. Most importantly note that, unlike in evaluation

contexts, � is not a “hole” in K, but rather part of a KLabel ; the KLabels

involving � in Figure 4.5 are “ + �”, “� + ”, and “if � then else ”. The

� carries the “plug here” intuition; e.g., one may think of “a1 y � + a2” as

“process a1, then plug its result in the hole in � + a2”. The user of K is not

expected to declare these special labels. We assume them whenever needed. In

our implementation of K in Maude [159], all these are generated automatically

as constants of sort KLabel after a simple analysis of the language syntax.

Freezers To distinguish the labels containing � in their name from the labels

that encode the syntax of the language under consideration, we call the former

freezers. The role of the freezers is therefore to store the enclosing computations

for future processing. One can freeze computations at will in K, using freezers

like the ones above, or even by defining new freezers. In complex K definitions,

one may need many computation freezers, making definitions look heavy and

hard to read if one makes poor choices for freezer names. Therefore, we adopt

the following freezer naming convention, respected by all the freezers above:

If a computation can be seen as c[k, x1, . . . , xn] for a multicontext c

and a freezer is needed to freeze everything except k, then its name is

“c[�, , . . . , ]”.

Additionally, to increase readability, we take the freedom to generalize the

adopted mixfix notation in K and “plug” the remaining computations in the

freezer, that is, we write c[�, k1, . . . , kn] instead of c[�, , . . . , ](k1, . . . , kn). For

instance, if @ is some binary operation and if, for some reason, in contexts of

the form (e1@e2)@(e3@e4) one wishes to freeze e1, e3 and e4 (in order to, e.g.,

process e2), then, when there is no confusion, one may write (e1@�)@(e3@e4)

106



instead of (( @�)@( @ ))(e1, e3, e4). This convention is particularly useful when

one wants to follow a reduction semantics with evaluation contexts style in K,

because one can mechanically associate such a freezer to each context-defining

production. For example, the freezer ( @�)@( @ ) above would be associated

to a production of the form “Cxt ::= (Exp@Cxt)@(Exp@Exp)”.

4.2.3 K Rules: Computational and Structural

Q: How are the K rules different from conventional rewrite rules?

A: The K framework builds upon K rewriting; how the K rewrit-

ing rules differ from standard rules is detailed in Chapter 6.

Q: What do I lose if I think of K rules as sugared variants of

standard rules?

A: Not much if you are not interested in true concurrency.

Q: Does that mean that I can execute K definitions on any rewrite

engine?

A: Yes. However, it is desirable to use a rewrite engine with

support at least for associative matching. In fact, our current

implementation of K described in Chapter 7 does so.

Q/A

Computational rules

p[l1
r1

, l2
r2

, . . . , ln
rn

]

Structural rules

p[l1
r1

, l2
r2

, . . . , ln
rn

]

Figure 4.6: K rules

The K framework builds upon K rewriting. K rules can be split into compu-

tational and structural. From here on, we distinguish them as shown in Figure

4.6. They both consist of a local context, or pattern, p, with some of its subterms

underlined and rewritten to corresponding subterms underneath the line. The

idea is that the underlined subterms represent the “read-write” part of the rule,

while the operations in p which are not underlined represent the “read-only”

part of the rule and can be shared by concurrent rule instances. The difference

between computational and structural rules is that rewrite steps using the latter

do not count as computational steps, their role being to rearrange the structure of

the term so that computational rules can apply. There are no rigid requirements

on when a K semantic rule should be computational versus structural. While in

most cases the distinction between the two is natural, there are situations where

one needs to subjectively choose one or the other; for example, we chose the rule

for variable declarations in the IMP semantics in Figure 4.1 to be structural,

but some language designers may prefer it to be computational.

107



a1 + a2 
 a1 y �+ a2

a1 + a2 
 a2 y a1 +�

Figure 4.7: Rules for + strict

Recall from Section 4.1.1 that we prefer to use the conventional rewrite

rule notations “l → r” and “l ⇁ r” for computational and structural K rules,

respectively, when p = � (that is, when there is only one read-write part, the

entire pattern, and no read-only part). There is not much to say here about K
rules besides what has already been said in Section 4.1. The will be formally

defined and discussed at length in Chapter 6. We would only like to elaborate a bit

further on the heating/cooling rules and their corresponding strictness attributes.

Heating/Cooling Structural Rules

Q: What is the role of the heating/cooling rules?

A: These are K’s mechanism to define evaluation strategies of

language constructs. They allow you to decompose fragments of

programs into sequences of smaller computations, and to compose

smaller computations back into fragments of programs.

Q: Do I need to define such heating/cooling rules myself?

A: Most likely no. It usually suffices to define strictness attributes,

as discussed below; these are equivalent to defining evaluation

contexts. Strictness attributes serve as a notational convenience

for defining obvious heating/cooling structural rules.

Q/A

After defining the desired language syntax so that programs or fragments

of programs become terms of sort K, called computations, the very first step

towards giving a K semantics is to define the evaluation strategies or strictness of

the various language constructs by means of heating/cooling rules, or more conve-

niently, by means of the special attributes described shortly. The heating/cooling

rules allow us to regard computations many different, but completely equivalent

ways. For example, “a1 + a2” in Imp may be regarded also as “a1 y � + a2”,

with the intuition “schedule a1 for processing and freeze a2 in freezer �+ ”, but

also as “a2 y a1 +�” (recall from Section 4.1.1 that, in Imp, addition is intended

to be non-deterministic). As discussed in Section 4.2.2, freezers are nothing but

special labels whose role is to store computations for future processing.

Heating/cooling structural rules tell how to “pass in front” of the computation

fragments of the program that need to be processed, and also how to “plug their

results back” once processed. In most language definitions, all such rules can

be extracted automatically from K strictness operator attributes as explained

below; Figure 4.1 shows several examples of strictness attributes. For example,

108



the strict attribute of + is equivalent to the two heating/cooling pairs of K
rules in Figure 4.7 (a1 and a2 range over computations in K). The symbol “
”

is borrowed from the chemical abstract machine (Cham) [15], as a shorthand

for combinations of a heating rule (“⇀”) and a cooling rule (“↽”). Indeed, one

can think of the first rule as follows: to process a1 + a2, let us first “heat” a1,

applying the rule from left to right; once a1 is processed (using other rules in

the semantics) producing some result, place that result back into context via a

“cooling” step, applying the rule from right to left. These heating/cooling rules

can be applied at any moment and in any direction, since they are regarded not

as computational steps but as structural rearrangements. For example, one can

use the heating/cooling rules for “ + ” to pick and pass in front either a1 or

a2, then rewrite it one step only using semantic rules (defined shortly), then

plug it back into the sum, then pick and pass in front either a1 or a2 again and

rewrite it one step only, and so on, thus obtaining the desired non-deterministic

operational semantics of + .

The general idea to define a certain evaluation context, say c[�, N1, . . . , Nn],

where N1, . . . , Nn are the various syntactic categories involved (or non-terminals

in the CFG of the language), is to define a KLabel freezer c[�, , . . . , ] like

discussed in Section 4.2.2, together with a heating/cooling rule pair

c[k, k1, . . . , kn]
 k y c[�, k1, . . . , kn].

One should be aware that in K “�” is nothing but a symbol that we prefer to

use as part of label names. In particular, “�” is not a computation (recall that

in reduction semantics with evaluation contexts “�” is a special context, called a

“hole”). For example, a hasty reader may think that K’s approach to strictness

is unsound, because one can “prove” wrong correspondences as follows:

a1 + a2⇀a1 y �+ a2 (by the first rule above applied left-to-right)

⇀a1 y a2 y �+�(by the second rule above applied left-to-right)

⇁a1 y a2 +� (by the first rule above applied right-to-left)

⇁a2 + a1 (by the second rule above applied right-to-left)

What is wrong in the above “proof” is that one cannot apply the second rule in

the second step above, because �+ a2 is nothing but a convenient way to write

the frozen computation �+ (a2). One may say that there is no problem with

the above, because + is intended to be commutative anyway; unfortunately,

the same could be proved for any non-deterministic construct, for example for

a division operation, “/”, if that was to be included in our language. Since

the heating/cooling rules are thought of as structural rearrangements, so that

computational steps take place modulo them, then it would certainly be wrong to

have both “a1/a2” and “a2/a1” in the same computational class. One of K’s most

subtle technical aspects, which fortunately is transparent to users, is to find the

right (i.e., as weak as possible) restrictions on the applications of heating/cooling

109



x ∗ (y + 2)
xy (� ∗ (y + 2))
xy (� ∗ (y y (�+ 2)))
xy (� ∗ (2 y (y +�)))
(y + 2) y (x ∗�)
y y (�+ 2) y (x ∗�)
2 y (y +�) y (x ∗�)
x ∗ (y y (�+ 2))
x ∗ (2 y (y +�))

Figure 4.8: Computational class

a1 <= a2 
 a1 y � <= a2

r1 <= a2 
 a2 y r1 <=�

Figure 4.9: Rules for <= seqstrict

equations, so that each computational class contains no more than one fragment of

program. The idea is to only allow heating and/or cooling of operator arguments

that are proper syntactic computations (i.e., terms over the original syntax, i.e.,

different from “·” and containing no “y”). With that, for example, Figure 4.8

shows the computational class of the expression x ∗ (y + 2) in the context of a

language definition with non-deterministically strict binary + and ∗. Note that

there is only one syntactic computation in the computation class above, namely

the original expression itself. This is a crucial desired property of K.

4.2.4 Strict and Hybrid Attributes

In K definitions, one typically defines zero, one, or more heating/cooling rules

per language construct, depending on its intended evaluation/processing strategy.

These rules tend to be straightforward and boring to write, so in K we prefer a

higher-level and more compact and intuitive approach: we annotate the language

syntax with strictness attributes. A language construct annotated as strict , such

as for example the “ + ” in Figure 4.1, is automatically associated a heating/-

cooling pair of rules as above for each of its subexpressions. If an operator is

intended to be strict in only some of its arguments, then the positions of the strict

arguments are listed as arguments of the strict attribute. For example, note that

the strictness attribute of if then else in Figure 4.1 is strict(1); that means

that a heating/cooling equation is added only for the first subexpression of the con-

ditional, namely the rule pair “if b then s1 else s2 
 by if� then s1 else s2”.

The two pairs of heating/cooling rules corresponding to the strictness attribute

strict of + above did not enforce any particular order in which the two

subexpressions were processed. It is often the case that one wants a deterministic

order in which the strict arguments of a language construct are processed,

typically from left to right. Such an example is the relational operator <= in

Figure 4.1, which was declared with the strictness attribute seqstrict , saying that

110



its subexpressions are processed deterministically, from left to right. The attribute

seqstrict requires the definition of the syntactic category of result computations

KResult , as discussed in Section 4.2.2, and it can be desugared automatically as

follows: generate a heating/cooling pair of rules for each argument like in the

case of strict , but requiring that all its previous arguments are in KResult . For

example, the seqstrict attribute of <= desugars into the rules in Figure 4.9

(a1, a2 ∈ K and r1 ∈ KResult). Like the strict attribute, seqstrict can also take

a list of numbers as argument and then the heating/cooling rules are generated

so that the corresponding arguments are processed in that order.

The strictness attributes also apply to labels taking an arbitrary number

of arguments. For example, an expression-list construct , can be declared

strict, meaning that all the expressions appearing in the list need to evaluate

whenever the expression-list is asked to evaluate. The general desugaring rules

of strictness can be best given in terms of K label representations. For example,

a strict attribute associated to label ∈ KLabel is syntactic sugar for rules like

the ones below (kl1, kl2 ∈ List[K], k ∈ K, r ∈ KResult):

label(kl1, k, kl2)
 k y label( ,�, )(klist(kl1), klist(kl2))

r y label( ,�, )(klist(kl1), klist(kl2))
 label(kl1, r, kl2)

where label( ,�, ) and klist are labels. This way, the lists kl1 and kl2 are

unambiguously frozen until k is reduced to a result. For seqstrict, replace

kl1 ∈ List[K] by rl1 ∈ List[KResult ] above.

Our most general strictness declaration in K, also supported by our current

implementation described in Chapter 7, is to declare a certain syntactic context

(a derived term) strict in a certain position designated by a special marker �.

For example, in the REF module of the K definition of Agent in Section 4.3, we

declare the context “*� = ”, with the meaning that the assignment statement

applied to a pointer needs to first evaluate the pointer expression before other

semantic rules can apply.

Language constructs can also be annotated with the hybrid attribute, to

indicate that their corresponding label is hybrid (see Section 4.2.2).

4.2.5 Context Transformation

We next introduce one of the most advanced feature of K, the context trans-

formation, which gives K an additional degree of modularity. The process of

context transformation is concerned with automatically modifying existing K
rules according to the cell structure defined by the desired configuration of a tar-

get language. The benefit of context transformation is that it allows us to define

semantic rules more abstractly, without worrying about the particular details

of the concrete final language configuration. This way, it implicitly enhances

the modularity and reuse of language definitions: existing rules do not need to

change as the configuration of the languages changes to accommodate additional

111



language features, and language features defined generically once and for all can

be reused across different languages with different configuration structures.

Defining a configuration (see Section 4.2.1) is a necessary step in order to make

use of K’s context transformation. Assuming that the various cell-labels forming

the configuration are distinct, then one can use the structure of the configuration

to automatically transform abstract rules, i.e., ones that do not obey the intended

cell-structure of the configuration, into concrete ones that are well-formed within

the current configuration structure. The context transformation process can be

thought of as being applied statically on all rules, before the K-system is executed.

Consider, for example, the K semantic rule for print in Imp++ (see Fig-

ure 4.2):

〈print v
skip

···〉k 〈··· ·
v

〉out

This rule captures the semantics of the output statement in the most abstract

and compact possible way: if “printV ” is the next computational task (where V

is a value), then append V to the end of the 〈〉out buffer and evaluate the print

statement to the unit for statements. This rule matched the configuration struc-

ture of Imp++, because the Imp++ configuration structure was very simple: a top

level cell containing all the other cells inside as simple, non-nested cells. Consider

now defining a more complex language, like the Agent language in Section 4.3

whose configuration is shown in Figure 4.4. The particular cell arrangement

in the Agent configuration makes the rule above directly inapplicable; to be

precise, even though the rule context still parses as a CellContents-term, it will

never match/apply when used in the context of the Agent configuration.

Context transformation is about automatic adaptation of K rules like above

to new configurations. Indeed, note that there is only one way to bring the cells

〈〉k and 〈〉out mentioned in the rule above together: to wrap them with the cells

above them declared in the Agent configuration until a common cell contents

is reached, namely to transform the rule into the following one:

〈··· 〈··· 〈··· 〈printV
skip

···〉k ···〉thread ···〉control ···〉agent 〈··· 〈··· ·
V

〉out ···〉I/O

Context transformation can be defined as the process of customizing the paths

to the various cells used in a rule according to the configuration of the target

language. As part of this customization process, variables are used for the

remaining parts of the introduced cells, so that other rule instances concerned

with those parts of the cells can apply concurrently with the transformed rule.

112



The Locality Principle

The rule above was rather simple, in that there was no confusion on how to

complete the paths to the referred cells. Consider instead a general-purpose

K rule for pointer dereferencing:

〈*N
V

···〉k 〈··· N 7→ V ···〉mem

This says that if dereferencing of location N is the next computational task and

if value V is stored at location N , then *N rewrites to V . The configuration of

Agent considers the cells 〈〉k and 〈〉mem at different levels in the structure, so

a context transformation operation is necessary to adapt this rule to Agent’s

concrete configuration. However, without care, there are two ways to do it:

〈··· 〈··· 〈*N
V

···〉k ···〉thread ···〉control 〈··· N 7→ V ···〉mem, or

〈··· 〈··· 〈··· 〈*N
V

···〉k ···〉thread ···〉control ···〉agent 〈··· 〈··· N 7→ V ···〉mem ···〉agent.

The first rule above says that the thread containing the dereferencing and the

store are part of the same agent, while the second rule says that they are in

different agents (why we are allowed to multiply the agent cells is explained

shortly). Even though we obviously meant the first one, both these rules make

sense according to the configuration of Agent.

To avoid such conflicts, context transformation relies on the locality principle:

rules are transformed in a way that makes them as local as possible, or, in other

words, in a way that the resulting rule matches as deeply as possible in the

concrete configuration. Thus, the locality principle rules out the second rule

transformation above, since it is less local than the former.

If, for some reason (which makes no sense for Agent) one means a non-local

transformation of a rule context, then one should add more cell-structure to the

abstract rule for disambiguation. For example, if one really meant the second

context transformation of the dereferencing rule above, then one should have

written the abstract rule, for example, as follows:

〈··· 〈* N
V

···〉k ···〉agent 〈··· N 7→ V ···〉mem

Now there is only one way to transform it to fit the configuration of Agent,

namely like in the second Agent-concrete rule above. Indeed, the 〈〉mem cell can

only be within an 〈〉agent cell and the 〈〉k cell inside the declared 〈〉agent cell can

only be inside an intermediate 〈〉thread cell, which must reside in a 〈〉control cell.

Context transformation applies at all levels in the rule context.

113



The Cell-Cloning Principle

There are K rules in which one wants to refer to two or more cells having the

same label. An artificial example was shown above, where more than one 〈〉agent

cell was needed. A more natural rule involving two cells with the same label

would be one for thread communication or synchronization, in which the two

threads are directly involved in the said action. For example, consider adding a

rendezvous synchronization mechanism to Imp++ whose intended semantics is

the following: a thread whose next computational task is a rendezvous barrier

statement “rendezvous v” blocks until another thread also reaches an identical

“rendezvous v” statement, and, in that case, both threads unblock and con-

tinue their execution. The following K rule captures this desired behavior of

rendezvous synchronization:

〈rendezvous v
skip

···〉k 〈rendezvous v
skip

···〉k

Since this K rule captures the essence of the intended rendezvous synchroniza-

tion, we would like to reuse it unchanged in language definitions which are more

complex than Imp++, such as the Agent language in Section 4.3. Unfortunately,

this rule will never match/apply as is on Agent configurations, because two 〈〉k
cells can never appear next to each other. A context transformation operation is

therefore necessary, but it is not immediately clear how the rule context should

be changed. The cell-cloning principle applies when abstract rules refer to two

or more cells with the same name, and it states that context transformation

should be consistent with the cell cloning, or multiplicity, information provided

as part of the configuration definition; this can be done using starred labels, as

explained in Section 4.2.1. Note that, for example, the Agent configuration in

Figure 4.4 declares both the agent and the thread cells clonable. Thus, using

the cell-cloning principle in combination with the locality principle, the abstract

rule above can be transformed into the following Agent-concrete rule:

〈··· 〈rendezvous v
skip

···〉k ···〉thread 〈··· 〈rendezvous v
skip

···〉k ···〉thread

The cell-cloning principle can therefore only be applied when one defines

a configuration for one’s language and, moreover, when one also provides the

desired cell-cloning information (by means of starred labels). However, in our

experience with defining languages in K, it is actually quite useful to spend the

time and add the cell-cloning information to one’s configuration; one not only

gets the convenience and modularity that comes with context transformation

for free, but also a better insight on how one’s language configurations look

when programs are executed and thus, implicitly, a better understanding of

one’s language semantics.

114



Context Transformation with Default Values.

When creating a new agent, or spawning a new thread, a new cell for that

agent/thread must be created, together with all the structure of nested cells

below it. Moreover, all leaf cells need to be initialized with appropriate values.

However, while the structure of the newly created cell can be quite complex,

only a few cells are initialized with non-default values. Also, having to specify

the entire cell makes the rule depend on a particular configuration, and thus

non-modular: if the designer decides to add a new cell or to re-organize existing

cells, the rule would have to be updated. To address all these issues, we allow

partially specified configurations to appear in the replacement part of a K rule,

and context-transform them by adding all missing cells and initializing the leaf

ones with their default values. The default values can either be given for each

sort or for each cell once and for all; in our K-Maude tool presented in Chapter 7,

for example, we place them inside each cell when we define the configuration.

The rule of agent creation can then be written as (“ ” variables are used in the

replacement part to indicate that it must be context-transformed):


〈··· 〈newAgent S

N2

···〉k 〈N1〉me ···〉agent 〈 N2

N2 +Int 1

〉nextAgent

·
〈··· 〈S〉k〈N2〉me 〈N1〉parent ···〉agent

〈··· ·
N2

···〉world




Upon applying the context transformation, the 〈〉agent cell is completed to:

〈
〈〈〈S〉k 〈·〉holds 〉thread〉control 〈·〉mem 〈0〉nextLoc

〈·〉busy 〈N2〉me 〈N1〉parent

〉

agent

Next section shows the K technique at work by defining Agent, a highly

non-trivial concurrent programming language.

4.3 The Agent Language

This section gives the K semantic definition of Agent, a non-trivial experi-

mental programming language aimed at challenging existing or future language

definitional frameworks. All language constructs of Agent can be found in

existing languages, possibly in a more general form and possibly using a different

syntax. None of Agent’s features are artificially crafted and the language, as

a whole, is plausible and powerful.

The rationale for choosing features that already exist in popular languages is to

avoid criticism, from proponents of frameworks that cannot handle the proposed

features, that those features are useless, and thus do not deserve attention. Our

standpoint is that the very fact that a feature exists in a mainstream language

is sufficient evidence that the feature is useful, so an ideal semantic framework

should unarguably support it. While language designers may chose not to include

such a feature in their languages, a language-design framework designer aiming

115



at an ideal framework has no choice and should support it. Agent’s features,

and particularly their combination, have been chosen to capture the essence of

a certain category of conventional language concepts; if a semantic framework

cannot handle a certain Agent feature then that framework cannot handle a

potentially wide range of desirable features.

The language starts with arithmetic expressions, then gradually grows in

complexity by adding: functions; recursion; call with current continuation

and abrupt termination; statements; input/output; multithreading with shared

memory and synchronization; and agents with synchronous and asynchronous

communication, and with broadcasting and barriers. To stress the independence

among language features, as well as the modularity induced by the K framework,

we introduce each feature in its separate module, as they were developed in

the K-Maude tool. The modules are displayed using the LATEX code produced

by the tool, but massaging pagination to avoid wasting space. Being solely

interested in defining the semantics here, and not in parsing, we use a single

syntactic category, K to stand for the AST.

4.3.1 Generic Expression Features

Expressions. The arithmetic and boolean expressions used in Agent are

defined in a module EXP similarly to the expressions used in IMP, except

that they all share the same syntactic category K. EXP includes integers and

booleans as primary values, and allows arithmetic expressions built from them

using operators like addition, multiplication and division, as well as comparison

operators and logical connectives. All operators are strict and act on values

as their corresponding builtin operators.

Module EXP

imports K+PL-INT

KResult ::= Bool | Int

K ::= K + K [strict]

| K * K [strict]

| K / K [strict]

| K ≤ K [seqstrict]

| K == K [strict]

| not K [strict]

| K and K [strict(1)]

K rules:

I1 + I2 ⇒ I1 +Int I2

I1 * I2 ⇒ I1 *Int I2

I1 / I2 ⇒ I1 /Int I2

when I2 =/=Bool 0

I1 ≤ I2 ⇒ I1 ≤Int I2

V1 == V2⇒V1 ==Bool V2

not T ⇒ notBool T

true and E ⇒ E

false and E ⇒ false
end module

Conditional. The conditional construct is strict in its first argument, expecting

it to be evaluated to a boolean value, and then chooses one of the branches

based on that value.

116



Module IF

imports K+PL-BOOL

KResult ::= Bool

K ::= if K then K else K [strict(1)]

K rules:

if true then E else ⇒ E

if false then else E ⇒ E

end module

4.3.2 Functional Features

Call-by-value λ-calculus. λ-abstraction and the (free) variables are results,

and the application construct is strict in both arguments (call-by-value). β-

reduction is only applied at the top of the computation, to inhibit reductions

inside λ-abstractions:

Module LAMBDA

imports SUBSTITUTION

K ::= λId .K

| K K [strict]

KResult ::= Id | λX .E

K rules:

〈 λX .E E ′

E [ E ′ / X ]

···〉k

end module

No initial configuration is necessary in the above because the cell 〈〉k is already

defined in the module K, which is imported by SUBSTITUTION.

Fixpoint recursion. Agent allows recursion through the standard fix-point

constructor ‘µ . ’, whose semantics is given as a by-need unrolling when it

reaches the top of computation.

Module MU

imports SUBSTITUTION

K ::= µId .K

K rules:

〈 µX .E

E [ µX .E / X ]

···〉k

end module

4.3.3 Control Features

Call with current continuation. The CALLCC module extends module

LAMBDA (as it relies on the application construct) with a strict ‘callcc ’

construct. The argument of callcc is expected to evaluate to a function to which

the current continuation is passed as a value wrapped by ‘cc( )’. If that value

117



becomes the first argument of an application construct, then second argument

of the application is passed to the original continuation.

Module CALLCC

imports LAMBDA

K ::= callcc K [strict]

KResult ::= cc(K )

K rules:

〈callcc V

V cc(K )

y K 〉k

〈cc(K ) V y
V y K

〉k

end module

Abrupt termination. Although callcc allows the encoding of most control-

intensive constructs, including halt, we include a definition of halt not depending

on any of the existing features.

Module HALT

imports K

K ::= halt K [strict]

K rules:

〈halt V y
V

〉k

end module

4.3.4 Imperative Features

Sequential composition. Sequential composition is achieved through the

construct ‘ ; ’ and its unit value ‘skip’. The semantics of ‘ ; ’ is that it

evaluates the first argument, and then it discards its value, leaving the second

argument to be evaluated. Note that we allow the first argument to evaluate to

any value, and thus allow any expression to be used as a statement.

Module SEQ

imports K

K ::= K ; K [strict(1)]

KResult ::= skip

K rules:

V ; S ⇀ S

end module

Input/Output. As input and output transcend the computation structure,

we need to specify the structure of the configuration required to give semantics

to these constructs. The ‘read’ expression evaluates to the first integer extracted

from the list in the 〈〉input cell, while the ‘print ’ statement evaluates its argument,

and then it appends it to the list in the 〈〉output cell.

Module IO

118



imports PL-INT+SEQ

K ::= Int

| read
| print K [strict]

initial configuration:〈
·K
〉

k

〈
·List

〉
in〈

·List
〉

out

K rules:

〈read
I

···〉k 〈I
·
···〉in

〈print V

skip

···〉k 〈··· ·
V

〉out

end module

Loop statement. Although loops could be easily simulated using recursion,

we here give it a direct (imperative) semantics, by unrolling it when on-top

of the computation.

Module WHILE

imports IF+SEQ

K ::= while K do K

K rules:

〈 while E do S

if E then S ; while E do S else skip

···〉k

end module

Memory. To be able to write meaningful sequential programs we introduce

memory. However, to keep in tone with our functional flavor, we prefer references

instead of variable declarations. For that, we require that the configuration

contains a 〈〉mem cell containing a map (initially empty) of locations (naturals)

to values, and a 〈〉nextLoc cell containing the next available location (initially

0). The ‘ref ’ expression evaluates its argument, and then it allocates it in

the memory at the next available location, evaluating itself to that location.

‘* ’ evaluates its argument and then dereferences it to the value it maps to in

the memory. ‘ := ’ expects a dereferencing expression as its first argument,

and updates the value in the memory mapped to by it with the value of the

second argument. The evaluation of the location in the first argument is ensured

through a context declaration.

Module REF

imports SEQ

K ::= Nat

| ref K [strict]

| * K [strict]

| K := K [strict(2)]

initial configuration:

119



〈
·K
〉

k

〈
·Map

〉
mem

〈
0
〉

nextLoc

K rules:

context: * � :=

〈ref V

N

···〉k 〈··· ·
N 7→ V

···〉mem 〈 N

sNat N

〉nextLoc

〈* N

V

···〉k 〈··· N 7→ V ···〉mem

〈* N := V

skip

···〉k 〈··· N 7→
V

···〉mem

end module

4.3.5 Multithreading Features

Let us now define a generic multi-threading module. Note that this module

is independent of the previous ones; the only module required is SEQ, as we

want our multi-threading statements to evaluate to ‘skip’. As we need to

allow multiple execution threads synchronized using locks, our multi-threading

minimal configuration is written to reflect that: the 〈〉thread cell has multiplicity

“zero-or-more” (indicated by the ∗ suffix) and must contain a computation 〈〉k
cell and a 〈〉holds cell to account for the locks held; besides the multiple threads,

the system must also contain a 〈〉busy cell containing the acquired but not yet

released locks. The semantics of locks is that any value can act as a lock, and

that locks are re-entrant (this is why the 〈〉holds cell contains a map from values

to naturals). The ‘spawn ’ statement creates a new thread containing the given

argument as its initial computation and having default initial values for other

potential cells within thread (e.g., the 〈〉holds cell is initialized with the empty

map, as specified by the configuration). When the computation of a thread is

reduced to a value, the thread is dissolved and its resources are freed. Lock

acquire is defined through two rules, depending whether the lock is already held

by the thread (in which case its counter is increased), or it is available (in which

case it is added to the 〈〉busy cell and mapped to 0 in the 〈〉holds cell). The rules

for lock release mirror those for lock acquiring. Finally, ‘rendezvous ’ evaluates

its argument and then blocks until another thread requires a rendez-vous on

the same value; then, the two threads advance together.

Module THREADS

imports PL-NAT+SEQ

K ::= Nat

| spawn K

| acquire K [strict]

| release K [strict]

| rendezvous K [strict]

120



initial configuration:〈〈
·K
〉

k

〈
·Map

〉
holds

〉
thread∗

〈
·Set

〉
busy

K rules:

〈··· 〈spawn S

skip

···〉k ···〉thread ·
〈··· 〈S 〉k ···〉thread

〈··· 〈V 〉k 〈Holds〉holds ···〉thread

·
〈 Busy

Busy -Set keys Holds

〉busy

〈acquire V

skip

···〉k 〈··· ·
V 7→ 0

···〉holds 〈Busy ·
V

〉busy

when notBool V in Busy

〈acquire V

skip

···〉k 〈··· V 7→ N

sNat N

···〉holds

〈release V

skip

···〉k 〈··· V 7→ sNat N

N

···〉holds

〈release V

skip

···〉k 〈··· V 7→ 0

·
···〉holds 〈··· V

·
···〉busy

〈rendezvous V

skip

···〉k 〈rendezvous V

skip

···〉k

end module

4.3.6 Communicating Agents

The AGENTS module allows dynamic creation and termination of agents. Agents

are self-aware and creator-aware, and communicate by means of asynchronous

and synchronous message-send commands, by targeted and non-targeted receive

expressions, and by broadcasting and global barriers. Given the complexity of

interaction we want to achieve, the configuration required to give their semantics

must contain several new cells. First, each agent is contained in an 〈〉agent cell,

and contains at least a 〈〉control cell with a 〈〉k cell within it, and 〈〉me and 〈〉parent

cells providing identification information. The reason for the 〈〉control cell is that

we want to allow the control mechanism of a thread to be more complex, while

still being able to completely stop an agent if needed. Additional cells are:

〈〉nextAgent—a counter for the next available agent, 〈〉world—a set containing the

agents currently in the system, 〈〉barrier and 〈〉waiting—containing the current status

of the global barrier, and the agents waiting at it, respectively, and 〈〉msgs which

contains a bag of messages, each wrapped into a 〈〉msg cell and containing cells

describing the sender (〈〉from), the set of recipients (〈〉to), and the message itself

(〈〉body). Since this module introduces substantially more language constructs

than the preceding ones, we next explain the rules inline within the definition.

Module AGENTS

imports PL-INT+SEQ

121



K ::= Int | Bool

| newAgent K | haltAgent
| me | parent
| receive | receiveFrom K [strict]

| send K to K [strict] | sendSynch K to K [strict]

| barrier | broadcast K [strict]

initial configuration:

〈

〈〈
0
〉

me

〈
-Int 1

〉
parent

〈〈
·K
〉

k

〉
control

〉

agent∗〈
1
〉

nextAgent

〈
0
〉

world

〈
true

〉
barrier

〈
·Set

〉
waiting〈〈〈

·K
〉

from

〈
·Set

〉
to

〈
·K
〉

body

〉
message∗

〉

messages

〉

The ‘newAgent ’ expression creates a new agent, setting as its non-default

values the computation cell (initialized with the given argument), the 〈〉me cell

(initialized as the next available agent id, which is incremented), and the 〈〉parent

cell (initialized as the id of the creating agent); additionally, the new agent id is

registered in 〈〉world and is returned as the value of ‘newAgent ’.



〈··· 〈newAgent S

N2

···〉k 〈N1 〉me ···〉agent 〈··· ·
N2

···〉world

·
〈··· 〈N2 〉me 〈N1 〉parent 〈S 〉k ···〉agent

〈 N2

sNat N2

〉nextAgent




When the control of an agent becomes empty, the agent is dissolved and un-

registered from the 〈〉world cell; hence ‘haltAgent’ only needs to empty the

contents of the 〈〉control cell.

〈··· 〈·〉control 〈N 〉me ···〉agent

·
〈··· N

·
···〉world

〈··· 〈haltAgent ···〉k ···〉control ⇒ 〈·〉control

‘me’ and ‘parent’ have the straightforward semantics, yielding the contents of

the 〈〉me and 〈〉parent cells of the enclosing agent:

〈me
N

···〉k 〈N 〉me 〈parent
N

···〉k 〈N 〉parent

An agent can send any results (including agent ids) to other agents, provided it

knows their identity. To model asynchronous communication, 〈〉msg cells hold

the sender of the message, the intended set of receivers, and a message body:

〈N1 〉me 〈send V to N2

skip

···〉k ·
〈〈N1 〉from 〈N2 〉to 〈V 〉body〉message

An agent can request to receive a message from a certain agent, or from any

agent, waiting until that happens. Upon receiving, the agent’s id is removed

from the 〈〉to cell of the message:

〈N 〉me 〈receive
V

···〉k 〈··· 〈··· N

·
···〉to 〈V 〉body ···〉message

122



〈〈N2 〉from 〈··· N1

·
···〉to 〈V 〉body〉message 〈N1 〉me 〈receiveFrom N2

V

···〉k

A message can also be broadcast to all agents in the 〈〉world cell:

〈N 〉me 〈broadcast V

skip

···〉k 〈W 〉world ·
〈〈N 〉from 〈W 〉to 〈V 〉body〉message

Once a message has no receivers, it can be removed:

〈··· 〈·〉to ···〉message ⇀ ·

Agents can also communicate synchronously if the sender chooses so, in which

case the sender and the receiver need to be matched together for the exchange

to occur:



〈··· 〈N1 〉me 〈sendSynch V to N2

skip

···〉k ···〉agent

〈··· 〈N2 〉me 〈receiveFrom N1

V

···〉k ···〉agent




〈sendSynch V to N2

skip

···〉k 〈··· 〈N2 〉me 〈receive
V

···〉k ···〉agent

Agent supports global synchronization by means of barriers. When an agent

reaches a barrier and the barrier is on, the agent adds itself to the 〈〉waiting cell:

〈N 〉me 〈barrier ···〉k 〈true〉barrier 〈W ·
N

〉waiting

When all agents in 〈〉world are waiting, the barrier is lifted:

〈true
false

〉barrier 〈W 〉waiting 〈W 〉world

when W =/=Bool ·

Then, agents unregister from the 〈〉waiting cell and proceed:

〈N 〉me 〈barrier
skip

···〉k 〈false〉barrier 〈··· N

·
···〉waiting

Once all the agents proceeded, the barrier is reseted to true:

〈false
true

〉barrier 〈·〉waiting

end module

The existence of a read-only pattern on which rule instances can overlap,

allows for example, that two agents send or receive messages simultaneously,

while accessing the same 〈〉msgs cell, including the case of multiple agents si-

multaneously reading the same broadcast message and removing themselves

from the receivers set.

123



4.3.7 Reflective Features

In this section we identify a common pattern in defining reflective features,

that of an AST visitor, and we show how it can be instantiated for both code

generation and for the generic substitution module used in the Agent definition.

Generic AST Visitor. The AST visitor pattern defined below provides a

mechanism which allows the visiting of a computation structure while looking for

nodes containing specified labels and applying other labels to the subtrees rooted

in them, which potentially implies (or not) additional processing done to those

subtrees. To do that, “boxed constructors” are created for the constructors of the

computation (double comma, all labels, curved arrow), to stand for visited parts of

the computation. In addition to maintaining the visited status, these constructors

are strict, with the purpose of bringing their subcomputations out for visiting.

Module K-VISITOR

imports K-WRAPPERS+K

K ::= apply KLabel to Set in List{K}
| KyK [strict]

| K ,,K [strict]

| unbox (K ) [strict]

KResult ::= List{K}
KLabel ::= KLabel

K rules:

apply A to Labels Label in Label ( Kl ) ⇀ A ( Label ( Kl ) )

apply A to Labels in Label ( Kl )⇀ Label ( apply A to Labels in Kl )

when notBool Label in Labels

apply A to Labels in · ⇀ ·
apply A to Labels in K1 y K2 ⇀ apply A to Labels in K1y

apply A to Labels in K2

when K1 =/=Bool · andBool K2 =/=Bool ·
apply A to Labels in ·List{K} ⇀ ·List{K}
apply A to Labels in K1 ,, NeKl ⇀ apply A to Labels in K1 ,,

apply A to Labels in NeKl

context: Label ( ,, � ,, )

unbox (K ) ⇀ K

Label ( Kl ) ⇀ Label ( Kl )

Kl ,,Kl ′ ⇀ Kl ,, Kl ′

K1 yK2 ⇀ K1 y K2

end module

124



Generic substitution. The module below defines a generic binding construct

“x.E” which specifies that variable x is bound in expression E, and thus does not

commit to a single binding operations, allowing it to be used in combination with

any binding operation such as λ and µ. This binding construct is accompanied

by a substitution construct which is aware of it, in the sense of avoiding variable

capturing during substitution.

To define the substitution, we use the AST visitor pattern defined above to

visit the term in which the substitution needs to be made, looking for either the

variable to be replaced, or for the binding construct, and applying to them a

label which encodes the substitution. If the variable to be replaced is reached,

then it is substituted by the “boxed” version of the term to replace it. If the

binding construct is reached, then first the bound variable is substituted by

a fresh variable, to avoid variable capturing, then the original substitution is

applied recursively on the substituted term.

Module SUBSTITUTION

imports K-VISITOR+PL-INT+PL-ID

K ::= Id | Nat

| Id .K

| K [ K / Id ]

| K [K /Id ]

| eval(K )[K /Id ] [strict(1)]

KLabel ::= [K /Id ]

Id ::= idNat

initial configuration:

〈·K 〉k 〈0〉nextId

K rules:

〈 K ′ [ K / Y ]

unbox (K ′[K /Y ])

···〉k

macro: K ′[K /Y ] = apply [K /Y ] to . getKLabel(Y ) in K ′

[K /Y ] ( Y ) ⇀ K

〈 [K /Y ] ( X .K ′ )

. ( idN ,,eval(K
′[idN /X ])[K /Y ] )

···〉k 〈 N

sNat N

〉nextId

eval(K ′)[K /Y ] ⇀ K ′[K /Y ]

end module

Code generation. Once the visitor pattern has been extracted, the code

generation definition becomes relatively simple, focusing only on the relevant

parts of the quote/unquote mechanism.

Module QUOTE-UNQUOTE

imports PL-NAT+K-VISITOR

125



K ::= quote K

| unquote K

| lift K [strict]

| eval K [strict]

| quote(K ,Nat)

KLabel ::= quoteNat

K rules:

〈 quote K

quote(K , 0)

···〉k

macro: quote(K ,N ) = apply quoteN to quote unquote in K

quoteN ( quote K ) ⇒ quote ( quote(K , sNat N ) )

quote0 ( unquote K ) ⇒ K

quotesNat N ( unquote K ) ⇒ unquote ( quote(K ,N ) )

lift V ⇒ V

eval K ⇒ K

end module

There are two important aspects of code generation. One aspect is that code

quoting and unquoting can be nested, and an unquoted code can be evaluated

only if it is guarded by as many unquote constructs as quote ones; to achieve

this we need to maintain a counter for the depth of quotation –we prefer to do

it as part of a special K label. The other aspect is that the generated code may

need to be eventually evaluated; however, this is very simple using our AST

visitor pattern, as we can simply view code as being wrapped by the visited box.

Initially, a quoted expression starts at the quoting level 0, and uses the

visitor pattern to visit all K constructors, looking for the quote/unquote labels,

which need to increment/decrement the counter. If the quoting level is 0 and

an unquote (K) expression is encountered, then K is released for evaluation;

its evaluation will indeed take place, because the visited labels were all defined

strict. Each computation rooted in a visited label eventually evaluates to a

visited fragment; finally the resulting visited fragment is “unboxed” once every

node has been visited.

4.3.8 Putting Them All Together

The main module of the language, named AGENT loads all modules defined so

far, and defines a running configuration consistent with previous configurations

(i.e., extending the transitive closure of the subcell relation).

Module AGENT

imports EXP+IF+LAMBDA+MU+CALLCC

imports HALT+SEQ+IO+REF+WHILE+THREADS+AGENTS

Bag ::= run( K , List )

126



macro: run( K , L ) = 〈··· 〈K 〉k 〈L〉in ···〉T
initial configuration:

〈

〈〈〈〈·K
〉

k

〈
0
〉

nextId

〈
·Map

〉
holds

〉
thread∗

〉
control

〈
·Set

〉
busy〈

·Map
〉

mem

〈
0
〉

nextLoc

〈
0
〉

me

〈
−Int 1

〉
parent

〉

agent∗〈
1
〉

nextAgent

〈
0
〉

world

〈
true

〉
barrier

〈
·Set

〉
waiting〈〈〈

·K
〉

from

〈
·Set

〉
to

〈
·K
〉

body

〉
message∗

〉

messages〈〈
·List

〉
in

〈
·List

〉
out

〉
I/O

〉

T
end module

For example, the 〈〉control cell of an agent contains here a pool of threads, each

with its own 〈〉k cell, instead of just one 〈〉k cell. However, thanks to context

abstraction provided by K (Section 4.2.5), this does not affect the applicability

of the already defined rules.

Since this is the final module of the Agent definition, we also define a

‘run( , )’ macro, which given an initial computation and input list sets

the contents of the 〈〉k cell and the 〈〉in cell with the provided values in the

initial configuration of the system.

4.4 Discussion

We believe that the overview of the K framework presented in this chapter as well

as the examples accompanying it bring enough evidence that the K is a by now

a mature, versatile, and powerful framework for modularly defining (concurrent)

programming languages. Nevertheless, there are some questions which are not

fully addressed in this chapter. Among them, there are the following:

• What can we do with a language definition once we have managed to define

it in K?

• We have claimed that K definitions offer a high degree of concurrency; but

how much concurrency is there really available for K definitions?

• What does it take to obtain an implementation of the K framework?

In the remainder of the dissertation we will try to give additional evidence on

the usefulness of K definitions beyond their ability to express program languages

semantics in a formal setting, we will describe the tool support available for

writing and using K definitions, and present further development regarding the

amount of concurrency which can be captured through the K framework.

127



Chapter 5

From Language Definitions
to (Runtime) Analysis Tools

The rewriting logic representation of K definitions gives them access to the

arsenal of generic tools for rewriting logic available through the Maude rewrite

engine [34]: state space exploration, LTL model checking, inductive theorem

proving, and so on. This collection of analysis tools is by itself enough to provide

more information about the behaviors of a program than one would get by

simply testing the program using an interpreter or a compiler for that language.

Nevertheless, the effort of defining the semantics pays back in more than just

one way: by relatively few alterations to the definition, one can use the same

generic tools to obtain type checkers and type inferencers [52], static policy

checking tools [81, 78], runtime verification tools [149], and even Hoare-like

program verification tools [141].

The purpose of this chapter is to offer a glimpse on the process of turning def-

initions into testing and analysis tools. One instance of this process has already

been presented in Section 4.1.3 where, by simply interpreting the dynamic seman-

tics for Imp++ into an abstract domain, we obtained (relatively mechanically) a

type checker for the language. In this chapter we argue that K definitions can be

used to test and analyze the executions of programs written in real-life languages

either directly or by transforming the definitions into runtime analysis tools.

To stress the “real-life” aspect, we choose as our running example a subset of

the C programming language, named KernelC, which is completely defined in

Section 5.1. In Section 5.2 we show how this definition can be easily turned into

a runtime verification tool for strong memory safety [149]. Section 5.3 presents

a simple, sequentially consistent, definition for KernelCC, an extension of

KernelC with thread creation and synchronization constructs, and shows how

this definition can be adjusted for (1) checking whether the executions of a

program are datarace free; or (2) instrumenting the execution to obtain traces for

applying predictive runtime analysis techniques. Section 5.4 defines an alternative

semantics for KernelCC based on a relaxed memory model inspired from the

x86-TSO memory model [128] and shows that the differences between this model

and the sequential consistent one can be tested using the available tools.

128



5.1 KernelC: A C-like Language

The running example for this chapter is KernelC, a non-trivial subset of the

C language (including memory allocation and pointer arithmetic), which is

defined in this section, and then adapted in the following sections (with relatively

minimal effort) to obtain testing and runtime analysis tools for programs written

in this language, as well as in KernelCC, an extension of KernelC with

concurrency constructs.

5.1.1 Syntax

KernelC allows writing C programs with addition and subtraction, increment,

assignment, basic comparison operators and logical connectives, ternary if, basic

input/output library functions, expression statements, statement composition

and blocks, conditional, while loop, function declaration and invocations, variable

declarations, memory allocation, freeing, and dereferencing (including array

dereferencing). We additionally allow #include directives, which make our

programs fully specified by including the standard library headers, and thus

compilable and executable with a C compiler.The module below presents the

syntax of KernelC:

Module KERNELC-SYNTAX

imports PL-ID+PL-INT

Exp ::= Int | PointerId | DeclId

| Exp + Exp [strict] | Exp - Exp [strict] | Exp ++

| Exp = Exp [strict(2)]

| Exp == Exp [strict] | Exp != Exp [strict] | Exp <= Exp [strict]

| ! Exp | Exp && Exp | Exp || Exp | Exp ? Exp : Exp

| printf("%d;", Exp ) [strict] | scanf("%d", & Exp )

| Id ( List{Exp} ) [strict(2)] | Id ()

| (int*)malloc( Exp *sizeof(int)) [strict] | free( Exp ) [strict]

| NULL | * Exp [strict] | Exp [ Exp ] | scanf("%d", Exp ) [strict]

PointerId ::= Id | * PointerId [strict]

DeclId ::= int Exp | void PointerId

Stmt ::= Exp ; [strict] | {} | { StmtList }

| if( Exp ) Stmt | if( Exp ) Stmt else Stmt [strict(1)]

| while( Exp ) Stmt

| DeclId List{DeclId} { StmtList }

| DeclId List{DeclId} { StmtList return Exp ;}

| #include< StmtList >

Id ::= main

StmtList ::= Stmt | StmtList StmtList

Pgm ::= StmtList

end module

129



int ∗ arrRead() {
int n;
scanf(”%d”,&n);
int ∗ a = (int ∗)malloc((n+1)∗sizeof(int));
int i = 0;
while (i != n) {

scanf(”%d”,a+i);
i++;
}
a[n]=0;
return a;
}

void arrPrint(int ∗a) {
while (∗ a) {

printf (”%d;”,∗ a++);
}

}

void arrCpy(int ∗ a, int ∗ b) {
while (∗a++=∗b++) {}

}

int arrLen(int ∗ a) {
int l = 0;
while(∗ a++) l++;
return l;

}

Figure 5.1: array.h: a library for manipulating null-terminated arrays

Restrictions. To keep things simple, we only allow int and void as a basic

types. Moreover, we only allow the reference operator for the scanf function,

which basically means that one cannot get the address for local variables (for

heap allocated variables the address is returned automatically by the allocation

function). Also, to avoid dealing with control, as it is not particularly relevant

in the context of runtime verification, we only allow return statements at the

end of a function body.

While in this chapter we use KernelC, the results that we present, including

the extensions (such as the memory safety, or the extension with threads), can

be applied to the full C language. Ellison and Roşu [51] present a comprehensive

K definition of the C language following the C99 standard [85] and are already

applying our extensions.

How expressive is KernelC? Although comprising only a limited subset

of C, KernelC is nevertheless quite expressive. The above defined syntax and

the preprocessing lexer for K-Maude allows us to write library functions like

those in Figure 5.1 and implementations of algorithms like that in Figure 5.2,

which make extensive use of allocated memory and pointer arithmetic. Moreover,

these programs abide to the C syntax, and can be successfully compiled using

a standard C compiler (we have used gcc).

Figure 5.1 presents a collections of functions for creating, displaying, copying,

and getting the length of null-terminated arrays of integers, that is, arrays meant

to hold non-zero integers, whose end is signaled by a zero element. Functions

arrCpy and arrLen are similar to the C library functions strcpy and strlen.

The function quickSort in Figure 5.2 is an implementation of the Quicksort

algorithm [82], which, in addition to sorting in place, makes direct use of

pointers instead of indexes.

130



void quickSort(int ∗b, int ∗e) {
int t ;
if (! (e <= b + 1)) {
int p = ∗b; int ∗l = b+1; int ∗r = e;
while ( l+1<= r) {

if (∗ l <= p) {
l = l + 1;
} else {

r = r − 1;
t=∗l;∗l=∗r;∗r=t;
}
}
l = l − 1;
t=∗l;∗l=∗b;∗b=t;
quickSort(b, l );quickSort(r,e );
}
}

Figure 5.2: qsort.h: A C implementation of the Quicksort algorithm

The semantics of KernelC presented in next section allows programs using

the functions above to be executed, traced, and debugged.

5.1.2 Semantics of KernelC

Before we define the execution rules for KernelC constructs, let us perform

some simplifications. In essence, in the module presented below we express

some syntactic constructs in terms of others and we remove information about

types, identifying all types with int.

Module KERNELC-DESUGARED-SYNTAX

imports KERNELC-SYNTAX

macro: ! E = E ? 0 : 1

macro: E1 && E2 = E1 ? E2 : 0

macro: E1 || E2 = E1 ? 1 : E2

macro: if( E ) St = if( E ) St else {}

macro: NULL = 0

macro: I () = I ( () )

macro: DeclId(DeclIds) { Sts } = DeclId(DeclIds) { Sts return 0 ;}

macro: void PointerId = int PointerId

macro: int * PointerId = int PointerId

macro: int * PointerId = E = int PointerId = E

macro: #include< Stmts > = Stmts

macro: E1 [ E2 ] = * (E1 + E2 )

macro: scanf("%d", & * E )=scanf("%d", E )

macro: int X = E ;= int X ; X = E ;

end module

131



The above module simplified the syntax of our language, reducing the number

of constructs which need to be semantically defined. The module below presents

a complete semantics for “desugared” KernelC. Assuming the reader is already

familiar with the language definitions presented in Chapter 4, this definition

should be pretty easy to read. Therefore, let us only describe the structure of

the configuration and some design choices.

The top level of the configuration can hold the 〈〉T cell, containing the

state of the execution, or the 〈〉result cell, which should be set to the output

of the program once its execution completes successfully. Inside the 〈〉T cell,

one can find the computation cell 〈〉k, the local environment 〈〉env (mapping

local variables to their values) the set of functions 〈〉funs structured as a map

indexed by function name, the input (〈〉in) and output (〈〉out) cells, heap allocated

memory 〈〉mem as a mapping from locations to values, and a counter cell 〈〉next

used to generate fresh locations.

One important design choice is that we have decided to clearly distinguish

between the heap allocated memory which is kept in the 〈〉mem cell and the local

variables memory which is kept in the 〈〉env cell as a direct map from variables

to values. Due to this choice, it is impossible to obtain the address of a variable,

and this is enforced by the non-existence of the reference operator in KernelC;

in fact, the C reference operator “&” only appears syntactically as a variant of

the scanf function, to allow reading local variables from the input list. Another

simplifying design decision was to not deal with scoping. The semantic rules

presented below assume that once a variable is declared, it is visible for the

remainder of the enclosing function execution, and therefore there should not be

duplicated declarations of the same variable during the execution of the function.

Another important design decision we took was about the granularity of

computation steps. We deliberately made all rules structural except for the

rules which read/write dynamically allocated memory. This basically means

that in the associated transition system we will only have a transition when

an access to the 〈〉mem cell is performed; one could think about the other

transitions as being “silent”.

Module KERNELC-SEMANTICS

imports PL-CONVERSION+K+KERNELC-DESUGARED-SYNTAX

KResult ::= List{Val}
K ::= List{Exp} | List{PointerId} | List{DeclId} | StmtList | Pgm | String

| restore( Map )

Exp ::= Val

Val ::= Int

List{K} ::= Nat .. Nat

initial configuration:〈
〈·K 〉k 〈·Map〉env 〈·Map〉funs

〈·List〉in 〈""〉out 〈·Map〉mem 〈·Map〉ptr 〈1〉next

〉

T

〈""〉result

132



K rules:

I1 == I2 ⇀ Bool2Int( I1 ==Int I2 )

I1 != I2 ⇀ Bool2Int( I1 !=Int I2 )

I1 + I2 ⇀ I1 +Int I2

I1 - I2 ⇀ I1 -Int I2

I1 <= I2 ⇀ Bool2Int( I1 ≤Int I2 )

? : ⇀ if( ) else

if( I ) else St ⇀ St when I ==Int 0

if( I ) St else ⇀ St when notBool I ==Int 0

V ; ⇀ ·
〈X
V

···〉k 〈··· X 7→ V ···〉env

〈X ++

I

···〉k 〈··· X 7→ I

I +Int 1

···〉env

〈X = V

V

···〉k 〈··· X 7→
V

···〉env

〈 while( E ) St

if( E ) { St while( E ) St } else {}

···〉k

〈printf("%d;", I )

void

···〉k 〈 S

S +String Int2String( I ) +String "; "

〉out

〈scanf("%d", N )

void

···〉k 〈··· N 7→
I

···〉mem 〈I
·
···〉in

〈scanf("%d", & X )

void

···〉k 〈··· X 7→
I

···〉env 〈I
·
···〉in

{ Sts } ⇀ Sts

{} ⇀ ·
St Sts ⇀ St y Sts

〈* N

V

···〉k 〈··· N 7→ V ···〉mem

context: (* �) ++

〈(* N ) ++

I

···〉k 〈··· N 7→ I

I +Int 1

···〉mem

context: * � =

〈* N = V

V

···〉k 〈··· N 7→
V

···〉mem

〈int X (Xl){Sts return E ;}
·

···〉k 〈··· ·
X 7→ int X (Xl){Sts return E ;}

···〉funs



〈 X ( Vl )

Sts y E y restore (Env)

···〉k 〈 Env

eraseKLabel (int , Xl) 7→ Vl

〉env

〈··· X 7→ int X Xl { Sts return E ;} ···〉funs




〈int X

0

···〉k 〈··· ·
X 7→ 0

···〉env

133



#include<stdio.h>
#include<stdlib.h>
#include<array.h>

int main() {
int ∗ x = arrRead(); arrPrint(x);
int ∗ y = arrRead(); arrPrint(y);
arrCpy(x,y);
arrPrint(x); arrPrint(y);
free (x); free (y);
return 0;
}

(a)

#include<stdio.h>
#include<stdlib.h>
#include<qsort.h>
#include<array.h>

int main() {
int ∗ a = arrRead();
quickSort(a,a+arrLen(a));
arrPrint(a);
free (a);
return 0;
}

(b)

Figure 5.3: Programs testing the (a) arrCpy and the (b) quickSort functions

〈V y restore( Env )

·
···〉k 〈

Env

〉env




〈(int*)malloc( N *sizeof(int))

N ′
···〉k 〈··· ·

N ′ 7→ N

···〉ptr

〈··· ·
N ′ .. N +Nat N ′ 7→ 0

···〉mem 〈 N ′

N +Nat N ′
〉next




〈free( N )

void

···〉k 〈··· N 7→ N ′

·
···〉ptr 〈 Mem

Mem [⊥ / N .. N +Nat N ′ ]

〉mem

N1 .. N1 ⇀ ·List{K}
N1 .. N ⇀ N , N1 .. N -Int 1 when N >Int N1

end module

Test Setup. The semantics presented above allows us to execute programs

written in KernelC. To test our functions for zero-terminated arrays and

the Quicksort implementation, we can write programs like those in Figure 5.3

and test cases for them, and run them either using gcc, or our own definition.

For the arrCpy test, we have selected three test cases: when the string to

be copied is empty, when it is shorter than the first string, and when it is

longer than the first string. Between these three, only the last one is memory

unsafe. However, the program compiled through gcc shows no observable error

for any of them. The reason for that is that gcc pads allocated blocks with

non-allocated space, and since the buffer overflow is small enough, it does not

override other allocated memory.

We can here observe the first benefit of our definition, as our definition

actually detects a problem with the third test case. This happens because our

näıve allocation semantics allocates blocks in order and without padding, and

thus the overflow of the copy command actually overrides the beginning of the

second array. However, this kind of error would have been detected by any

interpreter of the language taking a similar approach to memory allocation.

134



Moreover, this is not really helpful; the buffer overflow was allowed to occur,

and, although producing observable effects (by compromising existing data), this

could be hard to trace for more complex programs. Next section shows how one

can easily modify the semantics presented above to obtain a runtime verification

tool for memory safety, which will precisely identify the source of our problem.

5.2 Runtime Verification of Memory Safety

Informally, memory safety means that the program cannot access a memory loca-

tion which it shouldn’t (e.g., exceeding arrays boundaries, addressing unallocated

or freed memory, and so on).

One of the main sources of C’s non-determinism comes from the under-

specification of C’s memory allocator, which implements the malloc and free

functions. The C language specification guarantees that a call to malloc( n )

will, if it succeeds, return a pointer to a region of n contiguous and previously

unallocated locations (if it does not succeed, it will return NULL). These locations

now become allocated. When these locations are no longer needed, the pointer,

which was returned from a malloc call, is passed to free which deallocates the

memory. The C language specification provides no guarantees except for that

malloc returns unallocated locations; free might deallocate the memory or not.

Therefore, either our choice of allocating new locations in order in the

definition above, or gcc’s choice of padding the allocated buffers is correct and

in fact any implementation which ensures non-overlapping of allocated and

not-yet-released memory blocks is acceptable. This under-specification could be

captured in our K definition by replacing the rule for malloc with the rule:


〈(int*)malloc( N *sizeof(int))

N ′
···〉k 〈··· ·

N ′ 7→ N

···〉ptr

〈σ ·
N ′ .. N +Nat N ′ 7→ 0

〉mem




when Domσ ∩ {N ′, . . . , N ′ +N} = ∅
With this small modification, a KernelC program is memory-safe iff it

cannot get stuck when its initial state is rewritten using this modified definition,

i.e., it cannot be rewritten to a normal form whose computation cell is not

well-terminated. However, the underspecification of this definition makes it

non-analyzable, as infinitely many choices are now available each time one tries

to apply the memory allocation rule.

A simple fix to this problem is to handle pointer allocation symbolically.

That is, whenever memory is allocated, the base pointer will be a fresh symbolic

positive number. This approach brings at least three benefits: (1) the allocated

blocks are always guaranteed to be distinct; (2) they are also completely isolated,

and thus overflow is impossible; and (3) except testing for equality or disequality,

pointer comparison only makes sense between addresses belonging to the same

block (as for them we can simplify the symbolic base pointer). To ensure that our

135



executions are even safer than that, we additionally use a special computation

constant undef (which is not a value) to be mapped to the uninitialized variables

and memory locations. Not being a value, the undef constant has the property

that it cannot be read, as our read rules only read values from the store,

but can be overwritten, as our assign rules use an anonymous variable for

the preexistent value.

To achieve all these benefits, the following alterations are sufficient for our

symbolic definition:

• Extend the specification of natural numbers to include symbolic non-zero

natural numbers, e.g., by a construct

NzNat ::= symNzNat Nat

and define reduction rules to handle basic arithmetic and comparison

operations on terms involving symbolic naturals, by basically simplifying

the symbolic variables whenever possible.

• Add to the computation sort a constant undef, which is a proper (i.e.,

not a result) computation, to stand for uninitialized variables/memory

locations:

K ::= undef

• Update the rule for declaring a variable to set its initial value to undef:

〈int X

0

···〉k 〈··· ·
X 7→ undef

···〉env

• Finally, update the malloc rule to use the counter from the 〈〉next cell to

generate a symbolic pointer and to initialize the allocated memory to

undef.


〈(int*)malloc( N *sizeof(int))

SymN

···〉k 〈··· ·
SymN 7→ N

···〉ptr

〈··· ·
SymN .. N +Nat SymN 7→ undef

···〉mem 〈 N ′

N ′ +Nat 1

〉next




when SymN = symNzNat N ′

Let us call the definition obtained this way SafeKernelC. Unlike the

underspecified version of the definition above, this definition is precisely specified

and deterministic, and thus can be used to execute programs (although pointers

are handled symbolically). We define strong memory safety for KernelC

programs as the property of executing to completion under the SafeKernelC

definition. Following a similar argument to the one presented in the paper

introducing strong memory safety [149], one can prove that: (1) strong memory

safety guarantees memory safety; and (2) monitoring SafeKernelC executions

yields a sound procedure for runtime verification of KernelC memory safety.

The above result would be vacuous if most executions would get stuck because

of not knowing how to manipulate symbolic pointers. However, this is not the

136



case: SafeKernelC can successfully execute and analyze programs like those

presented in the sections above. In particular it was able to completely execute

the Quicksort test for any attempted input, and thus show that its execution

is memory safe (for those inputs). Moreover, the arrCpy testing program only

gets stuck for the test case which overflows, and it does so in the attempt of

writing a location past the allocated memory, clearly identifying the problem. As

these programs are making intensive use of pointer arithmetic and comparison,

it is fair to say that this approach should work for a large class of C programs.

We actually conjecture that this approach can be successfully applied to any

C programs writable using the KernelC syntax which are abiding to the

specifications of the C standard [85, 70], i.e., not reading uninitialized data,

using only basic (addition/subtraction) pointer arithmetic, and comparing only

pointers having the same base.

Note that our semantics also handles “free” and detects the common C bugs

such as “double free” or accessing deallocated memory. Our rules effectively

remove the memory mappings of freed memory locations, and thus further

attempts to free those locations again or to access the freed memory lead to

stuck configurations.

5.3 Runtime Verification of Concurrent

Programs

In this section we propose KernelCC, a simple extension of KernelC with

threads and synchronization constructs, together with a sequentially consistent

semantics for it. We then show how this definition can be easily transformed

into tools for analyzing and observing program executions. First such transfor-

mation allows checking program executions for datarace freeness. The second

can be used to obtain traces which can be later analyzed by offline analysis

tools, such as ones based on the happens-before relation or generic sequential

consistency assumptions [95].

5.3.1 Extending KernelC with Concurrency Constructs

The proposed extension of KernelC with concurrency is very simple: we add a

new construct for thread creation, spawn, which is supposed to call a function in

a new thread, and which returns the id of the thread created. This id can be used

by the join construct to wait for the corresponding thread to terminate. Lock

acquire and release can be performed on any value (to keep things simple

and avoid introducing an additional lock declaration construct). All constructs

except for spawn take arbitrary expressions as input and are declared strict.

Exp ::= spawn Exp | join( Exp ) [strict]

| acquire( Exp ) [strict] | release( Exp ) [strict]

137



We can now make the Quicksort implementation concurrent in KernelCC,

by changing the line containing the two recursive invocations of the sorting

function into two spawning constructs for the same invocations:

spawn(quickSort(b,l)); spawn(quickSort(r,e));

The semantics for KernelCC presented in this section does not need to

modify any rules. We simply extend the syntax of the language with the

introduced constructs, and we reorganize the configuration by adding some

additional cells to manage multiple threads and their synchronization.

The new configuration is the following:

initial configuration:〈〈〈〈·K
〉

k

〈
·Map

〉
env

〈
0
〉

id

〉
thread∗

〉
threads

〈
·Map

〉
locks

〈
·Set

〉
cthreads〈

·Map
〉

funs

〈
·List

〉
in

〈
""
〉

out

〈
·Map

〉
mem

〈
·Map

〉
ptr

〈
0
〉

next

〉

T

〈
""
〉

result

The configuration of KernelCC adds to that of KernelC a 〈〉threads cell

inside the top cell 〈〉T containing potentially zero or more 〈〉thread cells, which

group the existing computation cell 〈〉k and the environment of local variable

declarations 〈〉env with a new cell 〈〉id to hold the identifier for the thread. Also

inside the top cell 〈〉T we add a 〈〉locks cell to map each busy lock to the thread

holding it, and a 〈〉cthreads cell to keep the set of identifiers of the completed

threads (used in giving semantics to the join construct). Because declared

variables are separated from the allocated memory, and since one cannot take

the reference of a declared variable, the only shared memory in KernelC is

that which is dynamically allocated. This is a simplifying assumption which also

avoids the need for synchronization for local variables, as one is always certain

that the local memory is private to the thread.

To keep things looking more natural, and since we can afford design decisions,

we allow the spawn construct to take just one argument, which is expected to be

a function invocation; however, we do not declare spawn strict, and use a context

to specify that the arguments need to be evaluated before the thread is spawned:

context: spawn ( � )

Once the arguments have been evaluated, a new thread is generated to contain

the function invocation as its computation. To be able to identify the threads

(mainly for the join construct) the value of the 〈〉next counter is used as an

identifier for the newly spawned thread and is also returned to the parent thread

as the result of the spawning construct.

〈spawn X ( Vl )

N

···〉k 〈 N

N +Nat 1

〉next ·
〈··· 〈X ( Vl )〉k 〈N 〉id ···〉thread

Once a thread execution is completed, it is dissolved, and its id is added to the

set of completed threads, to be used in giving semantics to the join construct.

138



The semantics of the join construct is that it is dissolved only when the value

of its argument is among the completed thread ids.

〈··· 〈V 〉k 〈N 〉id ···〉thread

·
〈··· ·

N

···〉cthreads

〈join( N )

void

···〉k 〈··· N ···〉cthreads

The semantics of lock acquire and release is different than that from the

previously defined languages. The reason for this difference is that we choose

not to allow locks to be reentrant, and thus can afford a simpler semantics for

them. The acquire/release semantics is that we allow the program to lock on

any natural number (although in programs we only lock on existing memory

locations), and we keep a map 〈〉locks mapping each lock to the thread holding it.

〈acquire( N )

void

···〉k 〈N ′〉id 〈Locks ·
N 7→ N ′

〉locks

when notBool N in domain (Locks)

〈release( N )

void

···〉k 〈N ′〉id 〈··· N 7→ N ′

·
···〉locks

We will next talk about analyzing executions obtained using this concur-

rent semantics to check program executions for concurrency problems, namely

dataraces and deadlocks.

5.3.2 Searching for Dataraces

We here follow a rather obvious definition of dataraces, namely a datarace

can be observed iff during the execution of the program there is a moment

in which two threads can take as the next execution step transitions which

accesses the same memory location, and at least one of the two accesses is

attempting to update the location.

Although we could express this property as an assertion on states and then

use Maude’s model checker to check whether every possible execution of the

program (for a given input) is datarace free, we here take a simpler approach

by defining the race condition within K and then directly using the exploration

capabilities of Maude to search for a datarace. If one is found, a configuration

exhibiting the race is produced; if not, then the program is proven datarace

free (for the given input). To do that, we add two new cells as alternatives

to existing cells, 〈〉race as an alternative to the 〈〉k cell and 〈〉raceDetected as an

alternative to the top cell 〈〉T, together with two rules capturing the write-write,

and write-read dataraces, respectively:

〈* N = E ···〉
k

race

〈* N = E ′ ···〉
k

race

〈* N = E ···〉
k

race

〈* N ···〉
k

race

139



These two structural rules ensure that any further computation is stopped

for the two threads identified to be in a race, and eases their recognition in the

configuration exhibiting the race. In addition to that, we add another structural

rule which changes the top computation itself once a race is detected, so we can

easily identify an entire configuration exhibiting a race.

〈··· 〈K 〉race ···〉
T

raceDetected

Dataraces in Quicksort. With nothing more than the addition of these

rules we can now test whether a direct execution of our concurrent version

of Quicksort, call it pConcQuickSort yields any observable dataraces for a

given input, here abstracted by pQuickSort.in. To do that, we can use the

following Maude command upon loading the compiled version of our K-Maude

definition of KernelCC:

rewrite run(’pConcQuickSort, pQuickSort.in) .

It turns out that by simply executing the program we can observe a datarace.

However, when analyzing it, we observe that the datarace is not caused by

the concurrent sorting procedure itself; instead, it occurs between the sorting

procedure and the main thread, which is not prevented from outputting the

array before all sorting threads have completed. To address this issue, we can

attempt to join the threads before outputting the array by replacing the line for

spawning the two recursive calls to quickSort by the following lines:

int t1 = spawn(quickSort(b,l));

int t2 = spawn(quickSort(r,e));

join(t1); join(t2);

When re-executing the thus modified program, no race is observed. We can

now check for datarace freeness, by using the Maude command:

search[1] run(’pConcQuickSort, pQuickSort.in)

⇒∗ 〈 raceDetected 〉 B:Bag 〈/ raceDetected 〉 .

which asks Maude to check for a configuration observed during the execution

in which the top cell is raceDetected. As desired, this search command finds

no solution, which guarantees that the program is datarace free for the given

input. While this is not a proof of the general datarace freeness of the program,

one can use a technique like this in conjunction with test generation tools to

increase confidence in the datarace freeness, or even to prove datarace freeness

given a sufficient coverage criteria.

Dataraces and Deadlocks. Let us here present an additional example, illus-

trating how one can detect dataraces, attempt to fix them, and then re-check the

program for dataraces, but also for deadlocks which could have been introduced

by the attempted fix. The following Banking example is a C implementation of a

140



int ∗newAccount(int m) {
int ∗a=(int ∗)malloc(1∗sizeof(int));
∗a=m;
return a;
}

void deposit(int ∗a, int m) {
acquire(a);
∗a=∗a+m;
release(a);
}

int balance(int ∗a) {
acquire(a);
int b=∗a;
release(a);
return b;
}

void withdraw(int ∗a, int m) {
acquire(a);
if (m <= ∗a) {
∗a=∗a−m;
}
release(a);
}

void transfer(int ∗a, int ∗b, int m) {
acquire(a);
if (m <= ∗a) {
∗a=∗a−m;
∗b=∗b+m;
}
release(a);
}

account.h

#include<stdio.h>
#include<stdlib.h>
#include<account.h>

void run(int ∗a, int ∗b) {
deposit(a,300);
withdraw(a,100);
transfer (a,b,100);

}

int main() {
int ∗one = newAccount(100);
int ∗two = newAccount(20);
printf (”%d;”, balance(one));
printf (”%d;”, balance(two));
int t1 = spawn(run(one, two));
int t2 = spawn(run(two, one));
join(t1); join(t2);
printf (”%d;”, balance(one));
printf (”%d;”, balance(two));
return 0;
}

pAccountDriver.c

Figure 5.4: The account “class” and a concurrent test driver for it.

Java class exhibiting a concurrent bug pattern [54]. The class attempts to define

an account and some basic operations on it: creation, deposit, balance, withdraw,

and transfer to another account. Figure 5.4 presents our C implementation of it,

which encodes the objects as locations holding the amount of money available

and the methods of the class as functions taking the receiver object’s location as

their first argument. Additionally, similarly to Java, we model the synchronized

attribute of the methods by locking on the location of the receiver object at the

beginning of the function and unlocking it before the return.

Similarly to the concurrent Quicksort implementation, we can check the

execution of the test driver for dataraces. Asking the tool to simply execute the

test driver directly (i.e., to rewrite the initial configuration of program until it

reaches a final state, without exploring the non-determinism) reveals no datarace.

However, the search reveals a datarace instantaneously on account “two” between

its read in the deposit function and its write in transfer.

141



Upon analyzing the counter-example configuration, one can extract as a reason

for it the fact that the access to account b in the transfer function is not

synchronized. A simple-minded fix for this problem is to additionally lock on the

b account in the transfer function. Upon applying this fix we can verify that

the test driver became indeed datarace free. However, this came at the expense

of introducing a deadlock, which we can actually detect by either formalizing

deadlock in the model checker, or by directly searching for final configurations

which are not topped in the result cell, using the Maude command:

search[1] run(’pAccountDriver.c) ⇒ ! 〈 T 〉 B:Bag 〈/ T 〉 .

which detects a deadlock between the two calls to transfer.

By following Dijkstra’s [43] solution to deadlock avoidance, we can ensure

datarace freeness while avoiding deadlocks. The way to achieve that is by always

acquiring resources in the same order in any thread. In our concrete example,

this can be done by replacing the transfer function with the following one:

void transfer(int ∗a, int ∗b, int m) {
if (!( a <= b)) {
acquire(a); acquire(b);

} else {
acquire(b); acquire(a);

}
if (m <= ∗a) {
∗a = ∗a−m;

∗b = ∗b+m;

}
release(b); release(a);

}

Using this new implementation of the transfer function we can now effectively

check that our test driver is both datarace and deadlock free. However, although

this might work in most real implementations of C (extended with a similar kind

of concurrency), this approach is not completely “conformant” according to the

C standard, as the program attempts to compare two unrelated pointers; this

can also be captured by our strong memory safety approach: if replacing the

base KernelC definition with SafeKernelC, the execution would get stuck

when attempting to compare the two pointers.

5.3.3 Monitoring Executions

Although model checking (or completely exploring) all possible executions of

a program for a given input is indeed desirable when one wants to guarantee

datarace freeness, this can become prohibitively expensive. Runtime analysis

techniques can again help in alleviating this problem by instrumenting the

program to produce traces of its execution, and then, by using that execution

142



to infer other executions, including ones that might exhibit a bug (although

the original execution did not). We follow here the approach of predictive

runtime analysis [157, 158, 30, 32, 162], and show how one can use monitoring

to collect a trace containing all events required to replay the execution or to

obtain a causal model for it.

To enable monitoring of executions, no existing rule needs to be changed. All we

need to do is to extend the configuration with some additional cells representing

the monitoring infrastructure and then to provide additional structural rules

for updating the monitor.

We exemplify this approach below by adding monitoring infrastructure for

observing store accesses and synchronizing events in KernelC executions. For

the monitoring infrastructure, we only need to add two cells to the configuration:

a cell 〈〉event representing a flag defaulting to false, signaling whether an event-

generating construct is about to be executed, which must be added to the

〈〉thread cell, and and a cell 〈〉events, initially empty, holding the list of generated

events, which must be added to the top cell 〈〉T. Moreover, we need additional

constructors for each type of event (read/write/spawn/acquire/release), or pre-

event (read/spawn) we want to monitor:

K ::= PreEvent | Event

Event ::= write( Nat : Nat ← Int ) | read( Nat : Nat 7→ Int )

| spwn( Nat : Nat ) | acq( Nat : Nat ) | rel( Nat : Nat )

PreEvent ::= rea( Nat : Nat ) | spw( Nat )

Given this setup, the rules for generating the events are generated after

the following pattern. When an recordable action is about to be executed, a

structural rule inserts the (pre-)event in the computation after the construct

which would generate it, and it sets the event flag to true to mark that the

event generation was enabled and thus avoid multiple events being generated

for the same action. Then, after the action takes place, another structural rule

adds the event to the list of events, while resetting the flag. Since for read and

spawn we have only limited information before the action takes place, a pre-event

is scheduled, and then transformed into an event with another structural rule

once the rule completes.

〈* N = V y ·
write( T : N ← V )

···〉k 〈T 〉id 〈false
true

〉event

〈* N y ·
rea( T : N )

···〉k 〈T 〉id 〈false
true

〉event

〈V y rea( T : N )

read( T : N 7→ V )

···〉k

〈spawn E y ·
spw( T )

···〉k 〈T 〉id 〈false
true

〉event

〈N y spw( T )

spwn( T : N )

···〉k

143



〈acquire( N ) y ·
acq( T : N )

···〉k 〈T 〉id 〈false
true

〉event

〈release( N ) y ·
rel( T : N )

···〉k 〈T 〉id 〈false
true

〉event

Once the action was consumed and the pre-event was completed to an event,

the generated event is recorded into the trace:

〈 : Val y Event

·
···〉k 〈true

false

〉event 〈··· ·
Event

〉trace

An important prerequisite of this monitoring approach is that all monitorable

actions must be computational rules, to ensure that the structural rules for

scheduling the events apply before the actual events are generated.

5.4 A Relaxed Memory Model for KernelCC

Before we conclude, let us show how one can give another memory model seman-

tics for the concurrent version of KernelC, and to use the available analysis tools

to compare it against the sequentially consistent version of KernelCC defined

in Section 5.3. We base this semantics on the x86-TSO memory model [128],

regarding threads as processors, and local variables as registers.

The x86-TSO memory model specification associates to each process (in our

case thread) a write buffer, which collects the local updates of memory variables,

and defines the semantics of memory access and synchronization by taking into

account these buffers. Therefore, the rules for all involved language constructs

need to be changed in our K definition; nevertheless, nothing else except them

and the configuration needs to be altered.

Two more cells need to be added to the 〈〉thread cell: a 〈〉buffer cell holding the

queue of buffered writes, and a 〈〉blocked cell containing a flag signaling whether the

thread is blocked in waiting for a lock. Moreover, we add a list item constructor

bwrite to represent a buffered write, that takes as parameters a location and a

value; and we define a locations function which retrieves the set of locations

from a list of buffered writes:

ListItem ::= bwrite( Nat , Val )

Set ::= locations (List)

locations (·) ⇀ ·
locations (bwrite( N , V ) Mem) ⇀ N locations (Mem)

In what follows we present the K rules specifying the new relaxed memory

model semantics for concurrent KernelC preceded by their natural language

description taken verbatim from Owens et al. [128]:

1. p can read v from memory at address a if p is not blocked, has no buffered

writes to a, and the memory does contain v at a;

〈* N

V

···〉k 〈Mem〉buffer 〈··· N 7→ V ···〉mem

144



when notBool N in locations (Mem)

2. p can read v from its write buffer for address a if p is not blocked and has

v as the newest write to a in its buffer;

〈* N

V

···〉k 〈··· bwrite( N , V ) Mem〉buffer

when notBool N in locations (Mem)

3. p can read the stored value v from its register r at any time;

Since we view local variables as our registers, and since the rule is un-

constrained, the existing rule for reading / writing local variables stays

unchanged.

4. p can write v to its write buffer for address a at any time;

〈* N = V

V

···〉k 〈··· ·
bwrite( N , V )

〉buffer

Additionally, in KernelCC we need to define the rules for incrementing

values at memory locations, which, similarly to regular reads, have two

flavors: depending on whether the location is or is not in the appropriate

write buffer:

〈* N ++

I

···〉k 〈··· bwrite( N , I ) Mem ·
bwrite( N , I +Int 1 )

〉buffer

when notBool N in domain (Mem)

〈* N ++

I

···〉k 〈Mem ·
bwrite( N , I +Int 1 )

〉buffer 〈··· N 7→ I ···〉mem

when notBool N in domain (Mem)

5. if p is not blocked, it can silently dequeue the oldest write from its write

buffer to memory;

〈false〉blocked 〈bwrite( N , V )

·
···〉buffer 〈··· N 7→

V

···〉mem

6. p can write value v to one of its registers r at any time;

Same as for item 3, the existing rule needs not be changed.

7. if p’s write buffer is empty, it can execute an MFENCE (so an MFENCE

cannot proceed until all writes have been dequeued, modelling buffer

flushing); LFENCE and SFENCE can occur at any time, making them

no-ops;

We here assume that thread synchronization constructs, such as creation,

termination, and join are all generating MFENCE operations:

〈spawn X ( Vl )

N

···〉k 〈 N

N +Int 1

〉next 〈·〉buffer ·
〈··· 〈X ( Vl )〉k 〈N 〉id ···〉thread

145



〈··· 〈V 〉k 〈N 〉id 〈·〉buffer ···〉thread

·
〈··· ·

N

···〉cthreads

〈join( N )

0

···〉k 〈·〉buffer 〈··· N ···〉cthreads

8. if the lock is not held, and p’s write buffer is empty, it can begin a LOCK’d

instruction;

〈acquire( N )

void

···〉k 〈N ′〉id 〈·〉buffer 〈Locks ·
N 7→ N ′

〉locks

when notBool N in keys Locks

9. if p holds the lock, and its write buffer is empty, it can end a LOCK’d

instruction.

〈release( N )

void

···〉k 〈N ′〉id 〈·〉buffer 〈··· N 7→ N ′

·
···〉locks

Two additional structural rules are used to update the flag of the 〈〉blocked cell:

〈acquire( N ) ···〉k 〈false
true

〉blocked 〈··· N 7→ ···〉locks

〈acquire( N ) ···〉k 〈true
false

〉blocked 〈Locks〉locks

when notBool N in keys Locks

The first rule says that the thread becomes blocked if it tries to acquire

a lock which is already held, while the second rule unblocks the thread once

the lock is released.

Thus, with precisely one rule for concurrency construct and without altering

unrelated language constructs, we have defined a concurrent semantics for

KernelC with a relaxed memory model.

Using this semantics, we can test, for example, that programs relying on busy-

waiting synchronization are not portable from sequentially consistent memory

models to relaxed memory models. Consider the KernelC specification of

Peterson’s software solution for mutual exclusion [132] presented in Figure 5.5.

The presented implementation uses a function with three parameters, flag,

turn, and t. flag is a (dynamically allocated) array, turn points to an integer

in memory, and t is used as a thread identifier. To mark the critical sections,

we are printing -1 and -2 for the beginning of critical section and 1 and 2 for the

end of critical section for the threads identified by 0 and 1, respectively.

Using the previous (sequentially consistent) definition of concurrency for

KernelC, one can verify that mutual exclusion is ensured by loading the

K-Maude compiled definition and asking Maude to search for all final states

obtainable upon running the program. Only two such states are obtained, with

a total search space of 68 states, containing "-1;1;-2;2;" and "-2;2;-1;1;"

in the 〈〉result cell, respectively, effectively showing that the statements in the

two critical sections cannot be interleaved.

146



#include <stdio.h>
#include <stdlib.h>

void peterson(int ∗flag, int ∗turn, int t) {
flag [t ] = 1;
∗turn = 1−t;
while (flag[1−t] && ∗turn == 1−t) {}
printf (”%d;”,−1 − t);
printf (”%d;”, 1 + t);
flag [ t ] = 0;

}

int main() {
int∗ flag= (int ∗)malloc(2∗sizeof(int));
flag [0]= 0; flag [1]= 0 ;
int ∗turn= (int ∗)malloc(1∗sizeof(int));
int t1= spawn(peterson(flag, turn, 0));
int t2= spawn(peterson(flag, turn, 1));
join(t1); join(t2);
return 0;
}

Figure 5.5: An implementation of Peterson’s algorithm in KernelC.

However, when exploring the executions of the same program in the relaxed

memory model definition of concurrent KernelC, mutual exclusion is not

ensured: indeed Maude finds 6 solutions to the same task, with a total search

space of 439 states, showing that the sequences -1,1 and -2,2 can be interleaved

in every possible way. We can now ask Maude to show us the sequence of

rewrites required to reach the state where the result cell holds "-1;-2;2;1;",

for example. When analyzing this paths we can observe the following potential

order of rule applications:

1. Schedule and then commit the initialization of the flag array (spawn needs

an empty buffer to proceed);

2. Spawn both threads, in order, which also leads to silently scheduling the

first two writes of each thread (in order), without committing them, as

scheduling can happen at any time when it is enabled, being modeled as a

structural rule;

3. Since it has no pending updates on the flag corresponding to the other

thread, the first thread can read it from the memory and, being 0, can exit

the busy wait loop;

4. Similarly, the second thread can read the value of first thread’s flag from

the memory, which is still 0, as the buffers are not required to be emptied,

and then can exit the busy wait loop;

5. Both threads are now in the mutual exclusion zone which should not have

been possible.

147



One can try to fix this problem by changing the order between the tests in

the function’s conditional statement. However, this “fix” does not help either

(although it increases the search space to 471 states), as both of the threads

can still avoid committing the buffered writes by using the value of turn from

the local buffer and then reading the value of the flag from the shared memory.

A real solution would require some kind of synchronization mechanism such as

the use of MFENCE instructions to “flush” the write buffers and thus obtain an

execution similar to the sequentially consistent ones.

Thus, by applying a simple, generic, and already available rewriting logic

tool on our K definitions we have shown that the relaxed memory model for

KernelCC defined in this section cannot be relied on for achieving mutual

exclusion for programs which achieve that under the sequential consistency

assumptions of the definition in Section 5.3.

5.5 Discussion

We have shown how K definitions of programming languages can be turned (with

negligible effort) into runtime analysis tools for testing and analyzing executions

of both sequential and concurrent programs, under different memory models.

Moreover, having different semantics (e.g., different memory models) of the

same language formalized in the same framework opens the door for analyzing

the relationship between definitions of languages and for proving meta-theorems

about them. One such example for K definitions was achieved by Ellison [50],

who proves type soundness as a relation between the dynamic semantics and

the typing semantics of a language, exploiting the fact that the rules of the two

definitions are essentially the same, although their semantic domain changes.

In the same vein, one could take advantage of the direct correspondence

between the rules of the sequentially consistent model defined in Section 5.3

and those of the relaxed model defined in Section 5.4 to prove that, under

datarace freeness assumptions, the relaxed memory model cannot produce more

behaviors than the sequentially consistent one. Similar to the on-paper proof,

the idea would be to show that in any possible execution under the relaxed

model, accesses to the same variable must satisfy the sequential consistency re-

quirement, because conflicting accesses to the same location need to be separated

by synchronization constructs, which require the write buffers to be emptied.

Achieving similar results and studying how their proof can be mechanized seems

like an interesting line of research.

We do not claim here that the tools one obtains almost for free within the K
framework completely eliminate the need of writing dedicated analysis tools in

“real”programming languages. At least, not yet. Nevertheless, we strongly believe

that the K framework can be viewed like a workbench for rapidly prototyping and

experimenting with such analysis tools. Moreover, we believe that compilation

148



techniques could be used to generate (more) competitive analysis tools directly

from K definitions.

One could indeed argue that the techniques we have applied here to derive

analysis tools can be virtually applied to other programming languages defi-

nitional frameworks, as well. While not attempting to completely refute this

claim, we rather claim that, even if it is possible, it would be rather difficult and

it would require additional infrastructure to be built, which might obscure the

interesting parts. Indeed, we believe K to be better fit for this approach for at

least three reasons: (1) the representation of computations in continuation-like

structures, which allows having the redex always at the top of the computation

cell; (2) the easiness of K in dealing with concurrency, as, for example, the

ability to match two redexes (from two different threads) simultaneously, which

is needed, for example, to allow an elegant definition for detecting dataraces;

and (3) the context transformers, which allow one to focus only on the relevant

parts of the configuration.

In this chapter we have only focused on runtime analysis of programs using K
definitions. Nevertheless, definitions of languages in the K framework can also

be used to derive other types of verification and analysis tools: type checkers and

inferencers, policy checkers, and even verifiers based on an axiomatics semantics-

like approach. These are related research topics within the larger K and RLS

context, and we will not detail them in this dissertation; the relevant related

work is presented in Section 8.1.

149



Chapter 6

A Concurrent Semantics for
K Rewriting

Given the intrinsic potential for concurrency of rewriting logic, and of rewriting in

general, it is natural to attempt (and succeed in) defining concurrent programming

languages using rewriting. However, a question arising in this context is whether

the framework is generous enough to be able to offer the amount of concurrency

desired by the language designer. Noticing an apparent lack of concurrency

related to the concurrent access to resources for the direct representation of K in

rewriting logic, the research presented in this chapter defines a faithful concurrent

semantics for K which captures the intended concurrency specified by the K
rules. This semantics is obtained by speculating the resemblance between K rules

and a graph rewriting rules, and by adapting classical concurrency results from

the algebraic theory of graph rewriting [45, 39, 47]. As graph rewriting itself

can be captured within rewriting logic, this new K semantics induces another

representation of K into rewriting logic, which, although not directly executable,

faithfully captures the intended concurrency of K rules.

The Quest for More Concurrency

The easiest way to represent K within rewriting logic is to transform K rules into

rewrite rules by simply ignoring their precise identification of what is changed

by the rule and what not. This representation has the great advantage that

nothing else (terms, configurations) needs to change. Additionally, if taking

an interleaving concurrency point of view, as the implementation of rewriting

logic into the Maude rewrite engine [34] (and, consequently, our K-Maude

implementation of K) does, then there is no observable difference w.r.t. the

obtained transition system. What is lost in this translation though is the amount

of concurrency available in one execution step.

Consider rewriting the term h(f(a), 0, 1) using the following canonical term

rewrite system, where h is a ternary operation, g is binary, f is unary, 0, 1,

a, b are constants, and x, y are variables:

(1) h(x, y, 1)⇒ h(g(x, x), y, 0)

(2) h(x, 0, y)⇒ h(x, 1, y)

(3) a⇒ b

(4) f(x)⇒ x

150



The term h(f(a), 0, 1) has a unique normal form, h(g(b, b), 1, 0), which can

be reached in a minimum of 4 rewrite steps, e.g., h(f(a), 0, 1) ⇒ h(a, 0, 1) ⇒
h(b, 0, 1) ⇒ h(b, 1, 1) ⇒ h(g(b, b), 1, 0). In spite of the fact that all four rule

instances above overlap on the term h(f(a), 0, 1), the concurrent semantics for

K rewriting can achieve the same result in one concurrent rewrite step for an

appropriate set of K rules corresponding to the rewrite rules above. We are

not aware of any other existing term rewriting approach which can be used to

rewrite h(f(a), 0, 1) to h(g(b, b), 1, 0) in one concurrent step.

Let us first discuss intuitively how and why the four rules above can apply

concurrently on h(f(a), 0, 1). First, note that rule (1) modifies the first and the

third arguments of h regardless of the second argument, while rule (2) modifies

the second argument of h regardless of its first and third arguments. Therefore,

rules (1) and (2) can share (without changing it) the top operator h and yield

complementary changes on the original term, so they can safely apply their

changes in parallel on term h(f(a), 0, 1). Moreover, note that none of these rules

needs to know that x is specifically bound or points to f(a), or what happens

with f(a) during their application. Therefore, we can rewrite the f(a) that x

points to in parallel with the application of rules (1) and (2). Using a similar

argument, rules (3) and (4) can apply in parallel on f(a) to rewrite it to b.

Thus, rules (1), (2), (3) and (4) can in principle apply in one parallel rewrite

step on h(f(a), 0, 1) and produce h(g(b, b), 1, 0).

One can formalize the above intuition by using the particular form of the K
rules. K rules add an additional layer to the standard rewrite rules, by explicitly

mentioning what part of the matched term is rewritten and what part is left

unchanged. This is achieved by underlining the parts to be rewritten (read-write),

and writing the changes underneath the line. For example, the rewrite rules

(1) and (2) above become the following K rules:

(1) h( x

g(x, x)

, , 1

0

) (2) h( , 0

1

, )

The parts of the term which are not underlined are shared (read-only). Variables

which are not reused in a rule (i.e., occur only once) play a purely structural

role; they are called “anonymous variables” and are often replaced by a generic

“ ” variable (each occurrence of “ ” stands for a distinct variable, like in Pro-

log). Conventional rewrite rules are special K rules, where the entire term gets

rewritten; the standard notation l ⇒ r is then allowed as syntactic sugar. In

fact, the ASCII notation for K rules in K-Maude [159], our implementation

of K onto Maude [34], conservatively extends the the representation of stan-

dard rewrite rules in Maude; for example, the K-rule (1) above is written as

h(x=>g(x,x),_,1=>0) in K-Maude.

Two or more K rules can apply concurrently if and only if the instances of

their read/write parts do not directly overlap and a special acyclicity condition

151



(explained below) holds. By direct overlapping we mean overlapping of the actual

operation symbols specified by the rules, not including the variables; overlapping

below the matching instances of rule variables is proved safe and thus allowed. For

example, rules (1) and (2) above can apply concurrently, because the read/write

parts of each are matched “below” the match of the variables of the other.

The example above was deliberately artificial, to explain the problem that

we are attempting to solve and its subtleties using a minimal setting. Given its

simplicity, it will be used as a running example in the remainder of this chapter.

But, to emphasize that the kind of concurrency allowed by K rules is indeed

desirable when defining programming languages, let us now recast the problem

above in the world of programming language definitions.

Multi-threaded concurrency. Consider the following K rules for accessing

the state: 〈∗l
i

···〉k 〈··· l 7→ i ···〉state and 〈∗l = i

i

···〉k 〈··· l 7→
i

···〉state. Assum-

ing an initial configuration (used to give context to the K rules) of the form

〈〈〈〈·K〉k 〈·Map〉env〉thread∗〉threads 〈·Map〉state〈0〉next〉T,

and directly transforming the rules above into rewrite rules, we obtain the

following two rules:

〈ts〈t〈∗l y k〉k〉thread〉threads 〈σ l 7→ i〉state

→ 〈ts〈t〈iy k〉k〉thread〉threads 〈σ l 7→ i〉state,

and 〈ts〈t〈∗l = i′ y k〉k〉thread〉threads 〈σ l 7→ i〉state

→ 〈ts〈t〈i′ y k〉k〉thread〉threads 〈σ l 7→ i′〉state.

The 〈〉k cell is a unary operation 〈 〉k that holds a y-separated list of tasks (i.e.,

y is associative and has identity “·”). The 〈〉env and 〈〉state cells hold maps, i.e.

a sets of bindings of names to locations, and of locations to values, respectively,

constructed with the associative and commutative (AC) concatenation operation

“ ”, having identity “·”. The concatenation operation “ ” used to put cells

together is also an AC operator with identity “·”. x, k, σ, t, ts, i, and i′ are

variables, l standing for a location in the state, k for the rest of the computation,

σ for the remainder of the state, t for the remainder of the thread, ts for the

other threads, and i, i′ for integers.

Consider a system containing only these rules, and choose the (ground) term

to be rewritten to be

〈
〈
〈〈∗1〉k 〈·〉env〉thread 〈〈∗1〉k 〈·〉env〉thread

〈〈∗2 = 3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 2〉state

〉

T

,

This configuration specifies two threads whose tasks are to read the value at

location 1 in the state, and a thread updating the value at location 2. Intuitively,

152



all threads could advance simultaneously: the first two by reading the value of

at location 1 (since it is shared), and the third by updating the value at location

2 (since location 2 is independent of location 1). However, this is impossible

to achieve directly in standard rewriting because “the same object cannot be

shared by two simultaneous rewrites” [104].

One reason is that traditional matching modulo axioms requires that the

term be rearranged to fit the pattern, and thus it limits concurrency where

sharing is allowed: there is no way to re-arrange the term so that any two of

the rule instances match simultaneously. To address that, we propose a special

treatment for matching operators governed by axioms (Section 6.2.3). Another,

more fundamental reason, is that the top set constructor operation and the state

itself need to be shared for the rules to apply. The K rules address this issue by

distinguishing the read-only part of a rule pattern, which can be shared, and

by making the change local to the exact position in which the update must be

applied. Thus, the read-only part of a K rule can be regarded as an interface

connecting the parts to be rewritten with each other and within the term which

is being rewritten. This resembles a similar concept of interfaces in the algebraic

approach to graph rewriting [47]. Sections 6.3 and 6.4 use this resemblance in

giving semantics to K rewriting by representing K rules as graph rewrite rules

and terms as (term-)graphs to take advantage of the concurrency results with

interface sharing available for graph rewriting.

Meseguer [104] proposes a different solution to this problem in the context of a

rewriting logic specification of concurrent objects, with the help of “emulsifying”

equations which “magically” create multiple copies and arrange the configuration

such that concurrent access is possible. This specification takes advantage of

the special structure of concurrent objects, namely that all of them live in

the same multi-set configuration at the top of the term to be rewritten, and

thus creating multiple copies of an objects is easy achievable by generic rules.

Although this approach might not be easily extended for general terms, which

would allow a direct capturing of the semantics of K concurrent rewriting,

it is generic enough to capture the concurrency of formalisms such as graph

rewriting given an appropriate representation of graphs as multisets of concurrent

objects [104]. In Section 6.5 we sketch how this solution could be used to capture

the concurrency of K rules into rewriting logic in two steps: first, represent K
rules as graph rewriting rules, then represent graph rewriting rules as rewrite

rules (with sharing) on concurrent objects.

On seriallizability. While allowing more concurrency in one step for our

K definitions, it is highly desirable that this concurrency does not introduce

additional behaviors, unintended by the specification. This property allows,

for example, to rely on the direct representation of K in rewriting logic for

proving properties about program executions—if the concurrency in one step is

153



serializable, then any transition of the concurrent semantics can be simulated

by one or several sequential steps.

However, unrestricted concurrency migh lead to unserializability. Consider,

for example, the term f(g(a), h(b)) to be rewritten using the following two K
rules (f , g, h, a, and b, are operation symbols, while x and y are variables):

f(g(a

x

), x) f(y, h(b

y

))

A blind concurrent application of these two rules on f(g(a), h(b)) would yield

the term f(g(h(b)), h(g(a))). However, this concurrent rewrite step is non-

serializable, since there is no way to order the application of the two rules on

f(g(a), h(b)) to obtain f(g(h(b)), h(g(a))).

For the reasons specified above, we choose not to allow unserializable rewriting

for K and give an acyclicity criterion that ensures it. Informally, we have a cyclic

relationship which prevents the two rules from being applied concurrently on

f(g(a), h(b)): a gets rewritten to h(b), then b gets rewritten to g(a), and so on.

The acyclicity condition was initially unexpected; its necessity appeared while

proving the serializability of K concurrent rewriting (Theorem 6).

The main idea in formalizing the K concurrent rewriting is to lift the problem to

a problem of graph rewriting, then use graph rewriting to perform the concurrent

step, and then recover a term, i.e. the result of the concurrent rewrite step,

from the resulting graph. While lifting term rewriting to graph rewriting is

not a new idea (several existing works, labeled as term-graph-rewriting, are

discussed in Section 2.3), previous efforts focused on term-graph rewriting for

efficiency reasons, to avoid repeating rewrites on identical subterms of the term

to rewrite. Our main purpose for reducing the problem to graph rewriting is to

“borrow concurrency” from a domain where concurrency with sharing of resources

has been extensively researched. Unfortunately, due to the desired capability

of K rules to explicitly state what is shared and to allow concurrent rewrites

under variables, conventional notions of term graph representations could not

be used unchanged in the lifting process. Also, as already mentioned, a novel

and unexpected acyclicity condition was necessary in order to show that the

resulting graph can be reinterpreted as a term and the obtained parallel graph

rewriting, when reinterpreted as K rewriting, is sound, complete and serializable

for conventional term rewriting (Theorems 6 and 7).

The remainder of this chapter is structured as follows. In Section 6.1 we

discuss several additional examples, such as concurrent sorting, concurrent

Dijkstra’s all shortest paths, and an executable variant of π-calculus, whose

potential for concurrency are largely increased by the K concurrent rewriting.

Section 6.2 formalizes K rules and intuitively describes the desirable semantics

for K concurrent rewriting. Section 6.3 lifts the problem to the world of graph

rewriting, extending an existing term-graph rewriting approach to faithfully

154



capture K rewriting. Section 6.4 defines the K concurrent rewriting relation

on terms and shows that is is serializable and correct w.r.t. standard term

rewriting. Section 6.5 sketches a novel representation of K into rewriting logic

which, although non-executable, faithfully captures the amount of concurrency

obtainable in one step by K definitions. Finally, Section 6.6 discusses some

current limitations and ways in which those could be addressed.

6.1 Motivating Examples

All examples in this chapter are produced using the LATEX generator of the K-

Maude tool (see Chapter 7) which converts the unidimensional ASCII notation

into an easier to visualize bidimensional mathematical notation. We did, though,

manually adjust the generated LATEX a little for pagination purposes. Also,

all the examples available on the K-Maude tool website [88], including those

discussed here, use the substitution defined using the reflective capabilities

of K (see Section 4.3.7); the examples in this chapter importing a module

SUBSTITUTION have been adjusted to use a custom substitution instead

of the generic one.

Concurrent sorting. The following K-Maude module sorts a list of integers.

The imported builtin PL-INT module defines the syntactic category (or sort)

Int as well as operations on integers, such as >Int . The module K is imported by

almost all definitions; it defines the syntactic category K , which should include

all syntax (note the simple production “K ::= Int”), and provides common

semantic infrastructure such as lists, sets, maps, cells, etc.:

Module SORT imports PL-INT+K

K ::= Int

initial configuration:

〈·List〉sortme

K rules:

〈··· x

y

y

x

···〉sortme when x >Int y

end module

The module SORT above contains only one K-rule, which states that any

two unordered elements in the list cell can be swapped. The advantage of

using K rewriting here, as opposed to conventional term rewriting modulo

associativity, is that multiple instances of this rule can apply concurrently, even

ones whose two elements are interleaved. Let us show how one can use this

rule to sort the list 3, 8, 5, 7, 4, 1, 2, 6 in three concurrent steps. We will mark

how the numbers pair in the matching process by annotating the underline

with indexed variables corresponding to each match. In the first concurrent

step, the matching phase could mark for rewriting all positions, obtaining e.g.

155



G. Ros, u and T.F. S, erbănut,ă / Journal of Logic and Algebraic Programming 00 (2010) 1–50 23

!"#$%&'(∞
2

!!)*+,-./00

3
""

3 ##

4 $$
2 %%

!"#$%&'(∞ 1 ## !"#$%&'(∞ !!"#$%&'(∞ 1

""!"#$%&'(∞ 1

&&

)*+,-./03
2

'')*+,-./00

3
((!!!!!!! 3 ##

4 $$
2 ))""

""
""

" )*+,-./03
1 ## !"#$%&'(∞ !!"#$%&'(∞ 1

"")*+,-./02 1

**

)*+,-./03
2

'')*+,-./00

3
((!!!!!!! 3 ##

4 $$
2 ++##

##
##

# )*+,-./03
1 ## )*+,-./04 !)*+,-./03 1

,,)*+,-./02 1

--$$$$$$$

(0) (1) (2)

Figure 4: Concurrent Dijkstra derivation in 3 steps

Example: Dijkstra’s Algorithm in K. Consider a graph defined by means of a sort Node containing
node names defined as constants and a sort Edge constructed with the following operator: _

_−→
_ : Node × Nat × Node. Let 〈_〉graph be a constructor wrapping a set of edges, and 〈_〉shortest be a
constructor wrapping a map from nodes to Nat∞, that is natural numbers plus infinity. Assuming
the initial term contains the set of nodes specifying the graph in the graph cell, and a map mapping
each node to ∞ in the shortest cell, except for a special node, say a, which is mapped to 0, the
following K rule suffices to compute all shortest paths from a to the other nodes of the graph.

〈· · · x '→ cx · · · y '→ cy

t + cx

· · · 〉shortest 〈· · · x
t−→ y · · · 〉graph, when t + cx < cy

Since shortest holds a map, which has the set semantics, matching this rule is equivalent with
matching any of the following two rules using only the list semantics:

〈· · · x '→ cx · · · y '→ cy

t + cx

· · · 〉shortest 〈· · · x
t−→ y · · · 〉graph, when t + cx < cy

〈· · · y '→ cy

t + cx

· · · x '→ cx · · · 〉shortest 〈· · · x
t−→ y · · · 〉graph, when t + cx < cy

The graphical representation of a run of this algorithm is presented in Figure 4. Initially
all graph edges are dotted while the nodes contain the initial minimal costs. As the algorithm
proceeds, costs in the nodes are updated and the edges considered are depicted with full lines.

5. The K Technique

Q: What are these Question/Answer boxes in this section?
A: Each subsection in this section introduces an important component of the K
technique, such as configurations, computations, or semantic rules. Each Q/A
box captures the essence of the corresponding subsection from a user perspective.
They will ease the understanding of how the various components fit together.

Q/A

Like term rewriting and rewriting logic, the K concurrent rewrite abstract machine (Kram)
discussed in Section 4 can be used in various ways in various applications; in other words, the

Figure 6.1: Dijkstra’s all shortest paths derivation in two concurrent steps

(3
x1
, (8

x2
, (5

x3
, (7

x4
, (4

y3
, (1

y1
, (2

y2
, (6

y4
. Upon applying the concurrent step,

the list becomes 1, 2, 4, 6, 5, 3, 8, 7. In the second step, the matching phase can

yield 1, 2, (4
x1
, 6, 5, (3

y1
, (8

x2
, (7

y2
, inducing a second concurrent rewrite step,

to 1, 2, 3, 6, 5, 4, 7, 8. Finally, there is only one possible rule instance left for

matching, 1, 2, 3, (6
x
, 5, (4

y
, 7, 8, producing the sorted list.

Concurrent Dijkstra. The following module gives a one-rule K specification

for solving Dijkstra’s all-shortest path problem:

Module DIJKSTRA

imports PL-ID+NAT-INF

K ::= Id

SetItem ::= Edge

Edge ::= Id
Nat−−→ Id

initial configuration:

〈graph〉white·Set 〈shortest〉white·Map

K rules:

〈··· x1
w−→ x2 ···〉graph 〈··· x1 7→ c1 x2 7→ c2

c1 +Nat w

···〉shortest

when c1 +Nat w <Nat c2

end module

The module PL-ID introduces identifiers as constants of sort Id, and NAT-

INF introduces natural numbers with infinity. A graph is represented as a set of

weighted edges x1
w−→ x2, saying that there is an edge from x1 to x2 of cost w. All

shortest paths are represented as a mapping, which is a set of bindings xi 7→ ci;

each such binding states that the shortest path from the root to node xi is ci.

The initial term to rewrite should contain the graph in the 〈〉graph cell, and a

map mapping each node to ∞ in the 〈〉shortest cell, except for the root node node,

say a, which is mapped to 0. The rule above matches an edge x1
w−→ x2 in the

graph, so that the current shortest path to x2 is larger than the shortest path

to x1 plus w; if that is the case, the cost of the shortest path to x2 is updated.

We are only interested in the costs of the shortest paths here, not the shortest

paths themselves. Those are easy to compute as well (e.g., storing x1 next to

the new cost of x2), but we do not do it here. Note that everything is shared

156



by the rule, except for the part it changes, the cost of x2. Thus, many rules

instances can apply in parallel, as far as they do not write the same shortest

path costs. The graphical representation of a two-concurrent-step run of this

system is presented in Figure 6.1. Initially all graph edges are dotted while the

nodes contain the initial minimal costs. As the rewriting proceeds, costs in the

nodes are updated and the edges considered are depicted with full lines.

By Theorem 7, the concurrent rewrite steps produced by the K system above

are serializable, so standard term rewriting analysis techniques can apply. For

example, the corresponding term rewrite system terminates (the sum of the non-

infinity shortest path costs decreases with the application of each rewrite rule)

and is confluent (its critical pairs are joinable), so it admits unique normal forms.

The normal forms give the shortest path costs, because any path computation

can be mimicked with applications of the rule above. This may be one of the

simplest implementations and proofs of correctness for Dijkstra’s algorithm.

Executable π-calculus. The K-Maude module below contains a K definition

for a simple executable variant of the π-calculus.

Module EXECUTABLE-PI imports SUBSTITUTION

Proc ::= !Proc

| Action.Proc

| 〈Bag[〈Bag[Proc]〉sum]〉par

Action ::= Id〈Id〉
| Id(Id)

K rules:

〈 C 〈X 〉.P
P

〉sum 〈 C (Y ).Q

Q [ X / Y ]

〉sum

〈 C 〈X 〉.P
P

〉sum 〈
·

!C (Y ).Q〉sum ·
〈Q [ X / Y ]〉sum

〈R 〈Q (νX )P〉sum〉par ⇀ (νY )〈R 〈Q P [ Y / X ]〉sum〉par

when Y is fresh

〈〈P〉par〉sum ⇀ P

end module

The syntax defined above is quite similar to the original syntax of the π-

calculus [115]. However, similar to the approach using Cham [20], to enhance the

parallel communication inside processes, we use bags to represent the choice oper-

ator (the 〈〉sum cell) and the parallel composition (the 〈〉par cell). Thus, processes

are represented as controlled nested cells: a 〈〉par cell holds a bag of 〈〉sum cells,

each containing a bag of processes to be chosen amongst. This convention does

not alter the expressivity, since any of the cells could contain only one element.

It is standard to assume guarded choice; we do it, too: each process in a 〈〉sum

cell must start with an action. The 0 process is represented by 〈〈·〉sum〉par. For

executability, we follow Pict [135] and only allow replication for input expressions.

According to [135], this does not limit the formal power of the calculus.

157



The K system above only contains four K rules. The first two are for commu-

nication: the first is standard (note that the non-communicating processes are

discarded from the two 〈〉sum cells), while the second defines replication triggered

by input. The third rule defines scope extrusion by pushing the ν binder up.

The fourth and final rule “releases” a bag of parallel-composed processes once

they have reached the top of a sum cell.

6.2 K Rewriting: Intuitive Semantics

In this section we formally define K rules and K systems and intuitively describe

how applications of K rules can be combined concurrently.

6.2.1 K Rules and K Systems

K rules describe how a term can be transformed into another term by altering

some of its parts. They share the idea of match-and-replace of standard term

rewriting; however, each K-rule identifies a read-only pattern, the local context

of the rule. This pattern is used to glue together read-write patterns, that

is, subparts to be rewritten. Moreover, through its variables, it also provides

information which can be used and shared by the read-write patterns. To some

extent, the read-only pattern plays here the same role played by interfaces

in graph rewriting [44].

To focus on the core of concurrent rewriting, in this section only we make the

following three simplifying assumptions: (1) all K rules are unconditional; (2)

all K rules are left linear; and (3) there are no lists, sets, bags, or maps involved.

K rules are typically unconditional and, when conditional, they have only very

simple conditions anyway, which can be regarded as side conditions (as opposed

to premises) that can be checked within their mathematical domain, without

recursively invoking the K rewriting. Also, (2) can be reduced to (1) by checking

that two terms are equal; only syntactic equality is considered in K rules (as

opposed to provability), which again can be checked easily without recursively

invoking K rewriting. (3) is the most subtle, because it may seem that one needs

to extend K to work “modulo” list or multiset axioms. However, that is not

the case, because working modulo such axioms actually inhibits concurrency:

indeed, having to restructure the term to rewrite in order for the rule to match

is not only expensive, but may also be in conflict with other rules attempting to

concurrently apply. In Section 6.2.3 we show how, by dynamically changing the

rules during the matching process instead of the term to be rewritten, one can

achieve the same effect of matching modulo axioms without altering the term to

be rewritten. Thus, we believe that our simplifying assumptions are acceptable.

A signature Σ is a pair (S,F ) where S is a set of sorts and F is a set of

operations f : w → s, where f is an operation symbol, w ∈ S∗ is its arity, and

s ∈ S is its result sort. If w is the empty word ε then f is a constant. TΣ

158



is the universe of (ground) terms over Σ and TΣ(X ) is that of Σ-terms with

variables from the S-sorted set X.

Given term t ∈ TΣ(X ), let vars(t) be the variables from X appearing in t. Given

an ordered set of variables,W = {�1, . . . ,�n}, named context variables, or holes,

a W-context over Σ(X ) (assume that X ∩W = ∅) is a term C ∈ TΣ(X ∪W)

in which each variable in W occurs once.

The instantiation of a W-context C with an n-tuple t = (t1, . . . , tn), written

C[t] or C[t1, . . . , tn], is the term C[t1/�1, . . . , tn/�n]. One can regard t as a

substitution t :W → TΣ(X), defined by t(�i) = ti, in which case C[t] = t(C).

Definition 1. A K-rule ρ : (∀X ) k[ L⇒ R ] over a signature Σ = (S, F ) is a

tuple (X , k, L,R), where:

• X is an S-sorted set, called the variables of the rule ρ;

• k is a W-context over Σ(X ), called the rule pattern, where W are the

holes of k; k can be thought of as the “read-only” part or the “local” context

of ρ;

• L,R :W → TΣ(X ) associate to each hole in W the original term and its

replacement term, respectively; L, R can be thought of as the “read/write”

part of ρ.

We may write (∀X ) k[ l1

r1

, . . . , ln

rn

] instead of (∀X ) k[ L ⇒ R ] whenever

W = {�1, · · · ,�n} and L(�i) = li and R(�i) = ri; this way, the holes are

implicit and need not be mentioned.

A set of K rules is called a K-system.

The variables in W are only used to formally identify the positions in k

where rewriting takes place; in practice we typically use the compact notation

above, that is, underline the to-be-rewritten subterms in place and write their

replacement underneath. When the set of variables X is clear, it can be omitted.

Let us discuss how this definition captures the visual intuition by formally

describing the rules from our running example form the beginning of this chap-

ter. For each of the four rules, the corresponding elements of a K-rule are

described in below:

1 2 3 4

X {x, y} {x} ∅ {x}
W {�1,�2} {�} {�} {�}
p h(�1, y,�2) h(x,�, y) � �
L �1 7→ x ; �2 7→ 1 � 7→ 0 � 7→ a � 7→ f(x)

R �1 7→ g(x, x) ; �2 7→ 0 � 7→ 1 � 7→ b � 7→ x

159



6.2.2 Relation to Rewrite Rules

Here we analyze the relationship between rewrite rules and K rules, showing

that the latter are a conservative extension of the former. Consider the two

mappings defined below:

R2K ((∀X ) l→ r) = (∀X ) l

r

K2R((∀X ) k[ L

R

]) = (∀X ) L(k)→ R(k)

R2K associates to each rewrite rule a K rule quantified by the same variables,

having as the read-only pattern just a hole � which is mapped by L and R to the

left-hand-side and right-hand-side of the rewrite rule, respectively. Conversely,

K2R associates to each K-rule a rewrite rule by forgetting the additional infor-

mation contained by the K rule and flattening it by applying L and R to the

read-only pattern to obtain the lhs and the rhs of the rewrite rule, respectively.

K rules faithfully capture conventional rewrite rules, since K2R(R2K (%)) = %

for any rewrite rule %. Note, however, that the opposite does not hold, that

is, K rules are strictly more informative than their corresponding rewrite rules,

because the latter lose their“locality”of the changes; in particular, it is impossible

to recover the K rule from the obtained rewrite rule, because it is not always

straightforward to determine what should be shared and what not.

Given a K-rule ρ : (∀X ) k[ L ⇒ R ], its associated 0-sharing K-rule is ρ0 =

R2K (K2R(ρ)) : (∀X ) �[ L(k)

R(k)

], that is a rule specifying the same transformation

but without sharing anything. A K rule is proper if its read-only pattern

k is a proper term.

How much to share Another possible transformation from rewrite rules to

K rules is one that would enforce maximal data-sharing. Let us formally define

such a transformation, say R2Kmax. Given a rewrite rule % : (∀X ) l → r, the

maximally sharing K rule associated to % is R2Kmax(%) = (∀X ) k[ L

R

] satisfying

that K2R(R2Kmax(%)) = %, and that, for any other K rule ρ′ : (∀X ) k′[ L′

R′
] such

that K2R(ρ′) = %, k′ is a specialization of k, that is, there exists a substitution

θ : vars(k) → TΣ(X ∪ vars(k′)) such that k′ = θ(k).

It might seem that maximal sharing is always desirable; however maximal

sharing does not always model the intended behavior. Consider the rewrite rule

a ∗ → b ∗, where a, b, and ∗ are constants of sort s and “ : ss → s” is an

associative and commutative (AC) operation composing elements of sort s. If

the desired behavior is that ∗ is a catalyst allowing the transformation from a

to b to happen, and therefore we want it to be potentially read by other rules,

160



then the corresponding K rule is a

b

∗; as seen shortly, such a rule allows a term

a a ∗ to rewrite in one concurrent step to b b ∗. However, if ∗ is to be regarded

as a token ensuring mutual exclusion, then the corresponding K rule is a ∗
b ∗

; as

seen shortly, such rules cannot be applied concurrently on a a ∗, requiring, due

to the overlapping of the token “∗”, two interleaved steps.

The remainder of this section gives a theoretical account of the K rewriting

method, arguing that the read-only information contained in K rules can be

used to enhance the potential of parallelism of rewriting.

6.2.3 Matching K Rules

One could give a straightforward definition for what it means for a K rule to

match a term: one K rule matches a term if and only if its corresponding

rewrite rule matches it:

Definition 2. A K rule ρ : (∀X ) k[ L

R

] matches a Σ-term t using context C

and substitution θ if and only if its corresponding rewrite rule K2R(ρ) matches

term t using the same context C and substitution θ, that is, if t = C[θ(L(k))].

Hence, when analyzed in isolation, a K rule is no more special than its

corresponding rewrite rule. Only when trying to apply rules in parallel we can

observe the benefits of the K rules.

As seen in Chapter 4, the K framework employs lists, sets, bags, and maps to

give semantics. Moreover, it is precisely the bag structure of the configuration

that allows K to give truly concurrent semantics to languages as seen in most

of the examples presented in this dissertation. However, concurrent matching

modulo (ACU) axioms in the presence of sharing appears to be a rather difficult

problem. Recall the motivating example from the beginning of this chapter, in

which we attempted to concurrently read and write in the state. The structure

of K rules introduced above, explicitly representing read-only parts of the rules,

allows multiple rules to overlap on the 〈〉store cell at the same time. However,

the problem of matching multiple rules simultaneously still remains, because

the traditional treatment of matching modulo axioms requires the term to be

rearranged (using the axioms) to conform to the rule, and thus it makes unclear

what does it mean for multiple rules to actually match at the same time. The

remainder part of this subsection shows how concurrency can be enhanced by

handling matching modulo (ACU) axioms differently.

The main idea is to think of the matching process as changing the rule to fit

the term rather than changing the term to fit the rule; in that sense, rewrite

rules become rule schemata. Our goal is to modify the rule to match a concrete

representation of the term. The reason for requiring adjustments to the rule

161



is that while the term is concrete, and, for example, each list constructor has

only two arguments, the rule is specified modulo axioms.

Assume a generic K rule ρ : (∀X ) k[ L

R

]. In what follows we describe a sequence

of steps, which, if applied in order, generate all concrete instances of ρ needed to

replace matching modulo (ACU) axioms by plain term matching. Before going

into more technical details, let us briefly describe each step. First step deals

with the unit axiom, generating additional rules to account for variables being

matched to the unit of an operation. Second step prepares the terrain for dealing

with associativity; each variable which could stand for a term topped in an

associative operation is replaced by an arbitrary number of variables separated

by that operation. In step 3 we deal with commutativity, by generating rule

instances for all permutations of arguments of commutative operations. Finally,

in step 4, we deal with the associativity axiom, properly parenthesizing all parts

of the rule containing associative operations. Note that, although both steps

2 and 4 deal with associativity, steps 3 needs to be inserted between them to

generate all permutations needed for the AC operations.

This generative process of generating all matching instances for rules serves

only for a theoretical purpose, as it actually generates an infinite number of

concrete rule instances. In a practical implementation of these ideas, we expect

that the rule schema would dynamically be adjusted in the process of matching,

creating concrete rule instances by-need; additionally, an implementation using

graph rewriting might choose appropriate representations for lists and sets which

would allow matching inside without having to specify the list/set context.

1. Resolving Unit We assume that the concrete terms to be matched are

always kept in normal form w.r.t. the unit axioms, that is, the unit † of an

operation ? cannot appear as an argument of that operation. This can be obtained

by either reducing the term after each rewriting step, or by reducing it only

once at the beginning, and ensuring that the rewrite steps preserve this property.

Assuming this, to address matching modulo unit it is sufficient then that for each

variable x of the same sort as † appearing as an argument of operation ?, say

in a subterm ?(x, p), we generate an additional rule in which ?(x, p) is replaced

by p (and similarly if x is the second argument of ?). Moreover, if x appears

at the top of a replacement term R(�), then R(�) must be † in the additional

generated rule. As a matching example, for the pattern 〈σ l 7→ i〉state we need to

generate an additional pattern 〈l 7→ i〉state since σ could match ·, the unit of .

2. Multiplying associative variables For simplicity, we assume that each

sort has at most one associative operator defined on it; our definitions satisfy

that—in fact, besides the K sort, which itself is a list, all other sorts with

associative operators allowed by K are lists, bags, sets, and maps. Moreover, we

will assume that all rules topped in an associative operator ? of sort S have by

162



default two (or only one if ? is also commutative) anonymous variables of sort S

at the top of the rule, one on each side of the read-only pattern, to account for

the fact that the rule may match in a context. The associativity will be resolved

in two steps. The first step, described here, is that for each rule containing a

variable xss of a sort S constructed with an associative operator ? and for

each natural number n ≥ 2, a rule in which xs is replaced by xs1 ? xs2 ? · · · ? xsn

(where xsi is a fresh variable for each i) must be added to the existing rules.

Continuing our example above, the matching pattern instances associated to

〈σ l 7→ i〉state would now be (including the one from desugaring the unit axiom):

〈l 7→ i〉state, 〈σ l 7→ i〉state, 〈σ1 σ2 l 7→ i〉state, and so on.

3. Resolving Commutativity For each occurrence of a subterm ?(t1, t2)

in a rule, with ? being commutative, add (if it doesn’t already exist) a rule in

which ?(t1, t2) is replaced by ?(t2, t1), effectively generating all permutations

for terms built with AC operators. The patterns above are enriched to the

following patterns: 〈l 7→ i〉state, 〈σ l 7→ i〉state, 〈l 7→ i σ〉state, 〈σ1 σ2 l 7→ i〉state,

〈σ1 l 7→ i σ2〉state, 〈l 7→ i σ1 σ2〉state (and the ones equivalent to them modulo

renamings of the fresh variables), and so on.

Next step is only needed if associative operators are handled as ordinary binary

operations when representing the term. If, for example, associative operations

are represented as operations with a variable number of arguments this step

may be skipped. However, we here prefer to keep this step in order to preserve

the algebraic structure of the terms.

4. Resolving Associativity For each rule containing subterms of the form t1?

t2?· · ·?tn where ? is an associative operator, generate rules containing all possible

ways to put parentheses so that each occurrence of ? has only two arguments.

Note that matching terms containing subterms built from new variables using

only ? these rules need not be considered, as they will be equivalent with rules

containing just one new variable instead of that subterm. Keeping this in mind,

the following patterns are the final concrete patterns associated to the ones

presented above: 〈l 7→ i〉state, 〈σ l 7→ i〉state, 〈l 7→ i σ〉state, 〈σ1 (σ2 l 7→ i)〉state,

〈(σ1 l 7→ i) σ2〉state, 〈σ1 (l 7→ i σ2)〉state, and 〈(l 7→ i σ1) σ2〉state, and so on.

Note that, since now parts of the original variables might be grouped together

with other parts of the matching pattern, parenthesizing makes virtually impos-

sible to rewrite those variables, or even associative operators, unless the entire

list is being rewritten. Therefore, we require that for each sort S containing an

associative operation ?, and any variable xs of sort S, whenever ? or xs appears

at top in a term to be replaced, i.e., t = L[�], � must not be an argument of

? in the read-only pattern p. The restriction concerning xs may indeed inhibit

parallelism when rewriting list variables. However, this situation does not seem

to be very common in practice; in particular, it does not appear in any of our

current definitions using K. This restriction concerning ? can be satisfied in two

163



ways. The first one is to push the hole � up in the term as long as ? operations

are on top of it, and thus inhibit the parallelism. The second, is to push the hole

down, by moving ? into the pattern, and splitting � into two new holes, requiring

L to map them to the two arguments of ?, and updating R accordingly (including

the possibility that R maps one of the holes to ·, while the other to R(�)).

Example: Matching the state read/write rules Let us now show that

interpreting K rules as rule schemata as described above allows multiple con-

current matching instances “modulo” associativity and commutativity. Recall

the two rules defining store access for the Imp++ language, now with context

transformations being applied on them, and naming the variables:

ρr : 〈ts〈t〈∗l
i

y k〉k〉thread〉threads 〈σ l 7→ i〉state

and ρw : 〈ts〈t〈∗l = i′
i′

y k〉k〉thread〉threads 〈σ l 7→ i

i′
〉state

Recall also the ground termed to be matched, this time parenthesized:

〈
〈

(〈〈∗1〉k 〈·〉env〉thread 〈〈∗1〉k 〈·〉env〉thread)

〈〈∗2 = 3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 2〉state

〉

T

,

Then, the three concretizations of the 2 schema rules above which can match

this term are:

ρr,1 : 〈(〈〈∗l
i

〉k t1〉thread ts1)ts2〉threads 〈l 7→ i σ〉state

ρr,2 : 〈(ts1 〈〈∗l
i

〉k t1〉thread)ts2〉threads 〈l 7→ i σ〉state

ρw,1 : 〈ts1 〈〈∗l = i′

i

〉k t1〉thread〉threads 〈σ l 7→ i

i′
〉state

6.2.4 K Concurrent Rewriting—Intuition

In Section 6.2.1 we claimed that K rules can achieve more locality than usual

rewrite-rules. Indeed, by allowing rules to share their read-only pattern, parallel

rewriting using K rules can capture more concurrent computations than directly

achievable by applying rewriting logic deduction using the rewrite rules obtained

by ignoring the sharing of information. In this section we intuitively describe

how a term is matched by multiple rules, and indicate how all of the matched

rules can be applied concurrently. We will formalize this intuitive description

through an embedding in graph rewriting in Section 6.3.

As described above, the intuition in a K rule (∀X ) k[ L

R

] is that k represents a

read-only pattern, which can be shared with other rules, while the terms given by

164



L should be regarded as read-write, because no two rules should simultaneously

modify the same part, and no rule should read it while another rule writes it.

We next give a visual intuition for combining multiple instances of K rules.

Assume that the term to be rewritten is initially uncolored (or black), that is,

all its positions are available to all rules. Whenever a K rule matches, it colors

the matched part of the term using two colors, green for the read-only pattern,

which can be shared, and red for the read-write parts, so that they would not

be touched by any other rule. When combining multiple matches concurrently,

the following natural coloring policies apply:

1. Uncolored, or black, can be colored in any color by any K rule;

2. No rule is allowed to color (green or red) a position which is already red;

3. Once a position is green, it cannot be colored in red by any K rule.

In short, “red cannot be repainted and green can only be repainted green.”

The first policy says that unconstrained parts of the term can be safely

matched, in order to be rewritten, by any K rule. The second policy says that a

part of a term which is being written by some rule cannot be read or written

by any other rule. Finally, the third policy says that a part of a term that is

being read by some rule can be read but not written by other rules.

Analyzing this coloring through the resemblance between K rules and graph-

rewriting rules, one can notice that the policy imposed by the above coloring

rules is in direct correspondence with the notion of parallel independence [44]

of rules applications in graph rewriting, in the sense that the rule instances are

allowed to overlap on their patterns, but not on anything else.

Let us conclude this section by showing how we can finally achieve the goal of

concurrently advancing all threads from the motivating example at the beginning

of this section. To do that, we use the coloring policies described above to

combine the concrete matching rules associated to rule schemata ρr and ρw from

the end of previous subsection. Let us start with the original term

〈
〈

(〈〈∗1〉k 〈·〉env〉thread 〈〈∗1〉k 〈·〉env〉thread)

〈〈∗2 = 3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 2〉state

〉

T

,

and let us match rule ρr,2 first, yielding the coloring:

〈
〈

(〈〈∗1〉k 〈·〉env〉thread 〈〈∗1〉k 〈·〉env〉thread)

〈〈∗2 = 3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 2〉state

〉

T

,

165



Rule ρr,1 also matches since the colors are consistent, and colors the first con-

tinuation cell in green and the a inside it in red:

〈
〈

(〈〈∗1〉k 〈·〉env〉thread 〈〈∗1〉k 〈·〉env〉thread)

〈〈∗2 = 3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 2〉state

〉

T

,

Finally, rule ρw,1 can also match without conflicts:

〈
〈

(〈〈∗1〉k 〈·〉env〉thread 〈〈∗1〉k 〈·〉env〉thread)

〈〈∗2 = 3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 2〉state

〉

T

,

Since all matches succeeded, we can apply all three rules simultaneously, ob-

taining the term

〈
〈

(〈〈1〉k 〈·〉env〉thread 〈〈1〉k 〈·〉env〉thread)

〈〈3〉k 〈·〉env〉thread

〉

threads

〈1 7→ 1 2 7→ 3〉state

〉

T

,

In the subsequent sections we formalize this intuition of K term rewriting

through an embedding into graph rewriting theory. The reasons for our choice

are: (1) (term) graph rewriting [12, 68, 138] was shown to be sound and complete

for term rewriting, which we want to preserve for K rewriting; (2) the intuition

that the pattern k of a K-rule is meant to be “shared” with competing concurrent

rule instances is conceptually captured by the notion of interface graphs of

graph rewrite rules in the DPO (double-pushout) algebraic approach to graph

rewriting [44, 39]; and (3) the results in the DPO theory of graph rewriting

showing that if graph rule instances only overlap on the interface graphs, then

they can be concurrently applied and the obtained rewrite step is serializable [45,

93, 69], which precisely matches the intuition for K rewriting described above.

6.3 K Graph Rewriting

Although the theory of graph rewriting has early on shown the potential for

parallelism with sharing of context, the existing term-graph rewriting approaches

aim at efficiency: rewrite common subterms only once. More specifically, they do

not attempt to use the context-sharing information for enhancing the potential

for concurrency, as we want to do in K rewriting. Consequently, the one-step

concurrency achieved by current term-graph rewriting approaches is no better

than that of standard rewriting, or even worse if we consider that subterm

sharing can inhibit behaviors.

As our interests fall at the convergence of term-graph rewriting (for being sound

and complete w.r.t. term rewriting) and the DPO approach to graph rewriting

166



L K R L K R

s

h

x:s y:int int

1

s

x:s y:int int

1

s

h

s y:int int

0g

intx:s

1

s

a

s s

b

L K R L K R
s

h

x:s y:intint

0

s

x:s y:intint

0

s

h

x:s y:intint

1

int

0

s

h

x:s

s

x:s

x:s

l r

l r

l r

l r

(1): h(x, y, 1)→ h(g(x, x), y, 0)

(2): h(x, 0, y)→ h(x, 1, y)

(3): a→ b

(4): f(x)→ x

G C H

s

h

s int int

f 0 1

s

a

s

s int int

0 1

s

s

h

s int int

0g 0

ints

1b

l∗ r∗
h(f(a), 0, 1)

(1)+(3)+(4)
≡≡≡≡≡≡≡≡≡� h(g(b, b), 0, 0)

Figure 6.2: Jungle representations for the rewrite rules corresponding to K rules
(1)–(4) from the motivating example and a possible concurrent step.

167



(for concurrency with sharing of context), the subsequent graph embedding

of K rewriting can be seen as an extension (enhancing the concurrency, while

conserving soundness and completeness) of the jungle hypergraph rewriting [68,

38] incarnation of term-graph rewriting.

In what follows, we assume that the notions regarding graph rewriting and

jungle evaluation, as presented in Sections 2.2 and 2.3 are known. For example,

Figure 6.2 presents the jungle rules representing the rewrite rules (1)-(4) from

our running example.

K graph rewriting uses the same mechanisms and intuitions of jungle rewriting,

but relaxes the definitions of both graph jungles and graph evaluation rules to

increase the potential for concurrency in the case of context sharing.

The relaxation at the level of rules is that, similarly to the original definition

of jungle rules [68], instead of practically removing the entire left-hand-side of an

evaluation rule during the evaluation step (by sectioning the root of L from the

rest in K), K graph rewrite rules allow more of the local context (precisely, the

k part of a K rule) to be preserved by a rule, and thus potentially allow other

rules to share it for parallel rewriting. However, departing from the definition of

jungle rules, we relax the requirement that the order between the nodes of K

and variables of R should be the same as in L, to allow rules such as reading

or writing the value of a variable from a store.

K term-graphs are closely related to the graph jungles—they actually coincide

for ground terms. The difference is that the K term-graph representation

allows certain variables (the anonymous and the pattern-hole variables) to be

omitted from the graph. By reducing the number of nodes that need to be

shared (i.e., by not forcing these variable nodes to be shared in the interface

graph), this “partiality” allows terms at those positions to be concurrently

rewritten by other rules.

6.3.1 K Term-Graphs

The top-half of Figure 6.3 shows the K term-graphs involved in the graph

representations of the K rules (1)–(4) of our running example. For example the

representation of variable x can be observed as the (singleton) graph R for rule (4),

the constants a and b as graphs L and R from rule (3), and the term f(x) as graph

L in rule (4); all these K term-graphs are also graph jungles. The bottom-half of

Figure 6.3 shows the K term-graphs involved in the graph transformation which

uses all four rules combined to rewrite the graph representation of h(f(a), 0, 1)

(graph G) to one that can be used to retrieve h(g(b, b), 1, 0) (graph H).

The novel aspect of our representation is that, unlike the graph jungles, the K
term-graphs are partial: they do not require each operation node to have outward

edges for all sorts in its arity. This partiality plays a key role in “abstracting

away” the anonymous variables and the holes of the pattern. For example, the

number of outward edges specified for the nodes labeled with h have all possible

168



values between 3 (its normal arity) in graphs G and H, to 0, e.g., in graph K

for rule (1). This flexibility is crucial for enhancing concurrency; only through

it rules (1) and (2) can apply in parallel, as it allows the outward edge of h

labeled with 1 to be rewritten by rule (1), while h is still shared with rule

(2). This is achieved by relaxing the 1.(ii) property of Proposition 1 to allow

partially specified operations. For self-containedness reasons, we write the entire

definition, but follow the same structure as in Proposition 1.

Definition 3. Given a signature Σ = (S, F ), a K Σ-term-graph is a graph G

over labels (S ∪ F, {ε} ∪Nat) satisfying the following:

0. G is bipartite, partitions given by nodes with labels in S—sort nodes—,

and F—operation nodes—;

1. every operation node labeled by f : s1 · · · sn → s is

(i) the target of exactly one edge, labeled with 0 and having its source

labeled with s, and

(ii) the source of at most n edges having distinct labels in {1, · · · , n},
such that lv(target(e)) = sle(e) for each such edge e;

2. every sort node has at most one outward edge; and

3. G is acyclic.

Let KGraphΣ denote the full subcategory of Graph(S ∪ F, {ε} ∪ Nat) having

K Σ-term-graphs as objects.

Note that any graph jungle is a K term-graph. In the sequel, for notational

simplicity K term-graphs will be referred to as just term-graphs. Therefore, most

of the definitions from graph jungles can be easily extended for term-graphs.

Given a set of anonymous variables A ⊆ X, an A-anonymizing variable-

collapsed tree representing of a term t 6∈ A with variables from X is obtained

from a variable-collapsed tree representing t by removing the variable nodes

corresponding to variables in A and their adjacent edges.

The root nodes of a term-graph G, ROOTG are no different than for graph jun-

gles; however, V ARG now only captures the non-anonymous variables. To capture

all variables, we need to additionally identify partially specified operation nodes.

Open, and variable nodes. Let G be a term-graph over Σ = (S,F ). The

set OPENG of open (or incomplete) operation nodes of G, consists of the

operation nodes whose outward edges are incompletely specified. Formally,

OPENG = {v ∈ lv−1(S) | |s−1(v)| < arity(lv(v))}. The set of term variables

of G, TV ARSG consists from the variables of G and the positions of the un-

specified outward edges for open operation nodes (which stand for anonymous

variables). Formally, TV ARSG = V ARG ∪ {xv,i | v ∈ OPENG, 1 ≤ i ≤
arity(lv(v)) ∧ i 6∈ le(source−1(v))}.

169



L K R L K R L K R L K R

s

h

x:s
1

int

3

1

s

h

x:s int

1

s

h

s
1

g

int

3

0

x:s int

1

1 2

s

h

int
2

0

s

h

int

0

s

h

int
2

1

int

0

s

a

s s

b

s

f

x:s
1

s

x:s

x:s

l r l r l r l r

(1): h( x
g(x, x)

, y, 1
0
) (2): h(x, 0

1
, y) (3): a

b
(4): f(x)

x

G C H

s

h

s

1

f

int
2

0

int

3

1

s
1

a

s

h

s

f

int

s

int

0

int

1

s

h

s

1

g

int
2

1

int

3

0

int

0

int

1

s

b

1 2

l∗ r∗
h(f(a), 0, 1)

(1)+(2)+(3)+(4)
≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b, b), 1, 0)

Figure 6.3: Graph representations for the K rules (1)–(4) from the motivating
example and their concurrent application.

170



To account for the anonymous variables, the definition of term changes as

follows:

termG(vs) =





vs, if vs ∈ V ARG
σ(t1, . . . , tn), if {ve} = target(source−1(vs)),

le(ve) = σ : s1 . . . sn → s, and

ti = subtermG(ve, i) for any 1 ≤ i ≤ n

where subtermG is defined by on pairs of operation nodes with integers by

subtermG(ve, i) =

{
xve,i, if xve,i ∈ TV ARSG

termG(target(e)), if source(e) = ve and le(e) = i

6.3.2 From K Rules to Graph Rewrite Rules

As we want K graph rewriting to be a conservative extension of graph jungle

evaluation, every 0-sharing K rule (∀X ) �[ left

right

] is encoded as the graph jungle

evaluation rule corresponding to the rewrite rule left → right—see, for example

the encodings of rules (3) and (4) in Figure 6.3. However, if the local context

k is non-empty, then the rule is encoded so that the variable-collapsed tree

representing k would not be modified by the rule. To be more precise, instead of

obtaining K by removing the outgoing edge from the root of L, we will instead

only remove the edges connecting the hole variables to their parent operations.

Moreover, to further increase concurrency, the variables which appear in the

read only pattern k but not in the left substitution are anonymized.

Let us discuss the representation of the K-rule (1) in Figure 6.3, namely

h( x

g(x, x)

, y, 1

0

). The left-hand-side is represented as a {y}-anonymized variable

collapsed tree representing h(x, y, 1); variable y is anonymized as only appearing

in the pattern k. The interface K is obtained from L by severing (through the

removal of edges labeled by 1 and 3) the part of L representing the read-only

pattern h(�1, y,�2) (which is the {y,�1,�2}-anonymized variable collapsed tree

representing h(�1, y,�2)) from the parts of L representing the left substitution

(namely, x and 1). Thus, the l morphism from K to L is clearly an inclusion. R is

obtained by taking the disjoint union between K and the variable-collapsed trees

corresponding to terms g(x, x) and 0 given by the right substitution, identifying

the variables, and ”gluing” them to the part representing the read-only pattern

through edges from operation node h labeled 1 and 3, respectively. Similarly as

for the l morphism, the morphism r can also be chosen to be an inclusion.

The graph rules in Figure 6.3 are obtained using the definition below. To

avoid clutter, we do not depict node or edge names (except for variables). Also,

the actual morphisms are not drawn (they are either inclusions or obvious

collapsing morphisms).

171



Definition 4. Let ρ :(∀X ) k[ L⇒ R ] be a K rewrite rule.

If ρ is 0-sharing, then the K graph rewrite rules representing ρ coincide with

the graph evaluation rules corresponding to the rewrite rule associated to ρ.

Otherwise, a K graph rewrite rule representing ρ is a graph rewrite rule

(Lρ
lρ←− Kρ

rρ−→ Rρ) such that:

Lρ is a A-anonymized variable collapsed tree representation of L(k), where

A = vars(k) \ vars(L) are the anonymous variables of ρ;

Kρ. Let K0 be the subgraph of Lρ which is a A-anonymized variable collapsed

tree representing k; then Kρ = (VKρ , EKρ) is given by VKρ = VLρ and

EKρ = ELρ \ {e ∈ ELρ | source(e) ∈ VK0
and target(e) 6∈ VK0

}. lρ is the

inclusion morphism.

Rρ Let R0 be an A-anonymized variable collapsed tree representation of R(k)

containing K0 as a subgraph. Then Rρ is obtained as the pushout between

the inclusions of K0 ∪ V ARR0
into Kρ and R0, respectively.

The nodes from K0 will be called pattern nodes.

Note that the edges removed from Lρ to obtain Kρ are those whose target

corresponds to the hole variables of k.

Similarly to the graph jungle rules, the (basic) K graph rules defined above

ensure that the gluing conditions are satisfied for any matching morphism. For the

remainder of this section, let us fix G to be a term-graph, ρi : (Li
li←− Ki

ri−→ Ri),

i = 1, n to be K graph-rewrite rules, and mi : Li → G to be parallel independent

matches. Let ρ : (L
l←− K

r−→ R) be the composed rule of (ρi)i=1,n, and let

m : L → G be the composition of the individual matches. It follows that m

satisfies the gluing conditions for ρ, and thus (ρ,m) can be applied as a graph

transformation. Let us now provide a concrete construction for the derivation of

(ρ,m) in Graph which will be used in proving the subsequent results.

The pushout complement object of m and l can be defined in Graph as

C = G \ m(L \ K) where the difference is taken component-wise. That C

is a graph is ensured by the gluing conditions. The standard construction

of the pushout object H is to factor the disjoint union of C and R through

the equivalence induced by the pushout morphism m : K → C and r. We

do this directly, by taking preference for elements in C, and thus choosing

representatives from m(K) and by choosing as representatives variables for the

equivalence classes induced by the parts of r belonging to collapsing rules.

Let us now state some facts given by the structure of K graph rewrite rules.

Let root i identify the root of Li in L. Since the lhs cannot be a variable, it

follows that Li has at least one edge and one operation node. Ki is a subgraph

of Li and li is the inclusion morphism; moreover Ki contains all nodes of Li.

We have that ROOTL = {root i | i = 1, n}. Let now J be the set of indexes of

collapsing rules. In the following, let i range over {1, . . . , n} and let j range over J .

We define H, together with r∗ : C → H and m∗ : R → H, as follows:

172



• VH = (VC \ {m(rootj) | j ∈ J}) ] (VR \ VK)

• r∗V (v) =

{
v,if v 6= m(rootj),

r∗V (m(r(rootj))),if v = m(rootj),

• m∗V (v) =

{
v,if v 6∈ VK

r∗V (mV (v)),otherwise

• EH = EC ] (ER \ EK)

• r∗E(e) = e and m∗E(e) =

{
e,if e 6∈ EK

mE(e),otherwise

• sourceH(e) =

{
r∗(sourceC(e)),if e ∈ EC
m∗V (sourceR(e)),if e ∈ ER \ EK

• targetH(e) =

{
r∗V (targetC(e)),if e ∈ EC
m∗V (targetR(e)),if e ∈ ER \ EK

Note that r∗V is recursively defined. However, it is well defined, because G is

acyclic and, since rV (rootj) ∈ V ARLj , it must be that G�mV (rV (rootj)) is a strict

subgraph of G�mV (rootj), implying that the recursion should end because both G

and J are finite. It can be easily verified that (H, r∗,m∗) is a pushout of (m, r).

Suppose G is a K graph representation of term t, i.e., that ROOTG = {rootG},
G = G�rootG , and termG(rootG) = t. When applying a (composed, or not) K
graph rewrite rule to graph G, rootG must be preserved in the context C, because

K contains all nodes of L. Therefore, let us define the top of the obtained graph

H as being rootH = r∗(rootG). Note that rootH might not be equal to rootG,

because rootG could be identified with a variable node by a collapsing rule;

moreover, rootH might not be the only element of ROOTH , because of the

potential “junk” left by the application of the rule. Nevertheless, the term

termH(rootH) would be the one to which termG(rootG) was rewritten.

6.3.3 Applying K Rules as Graph Rules

To show that KGraphΣ admits similar constructions for (composed) K graph-

rewrite rules as Graph, that is, that the graphs described above are in fact

term-graphs, we need to strengthen the constraints on the matching morphisms.

Indeed, without further constraints, applying K graph rules on term-graphs

can produce cyclic graphs. Take for example, the graph G in Figure 6.4(a), rep-

resenting the term f(h(b), h(b)). Upon applying the K graph rule corresponding

to f(x

a

, h(b

x

)), we obtain a cyclic graph depicted as graph H in Figure 6.4(b).

One could validly argue that this problem arose because graph G was not a tree;

however, the example, depicted in Figure 6.4(b), shows that it is possible that

after applying a composed K graph-rewrite rule on a completely non-collapsed

term-graph using a match whose components satisfy the parallel independence

173



property, the graph obtained (we are guaranteed to obtain one) may not be a

term-graph. Consider K rules f(g(a

x

), x) and f(y, h(b

y

)) discussed at the beginning

of this chapter, together with the term to rewrite f(g(a), h(b)). Upon formalizing

terms as term-graphs and K rules as K graph rewrite rules, the result of applying

the composed K graph rewrite rule on the graph representing f(g(a), h(b)) is the

graph H in Figure 6.4(b), which has a cycle and thus it is not a term-graph.

The reason for the cycle being introduced in both examples from Figure 6.4 is

that the matches overlap, allowing variable nodes to precede operation nodes in

the path order of G, while r reorders the mapping of the variables to create a

cycle. In jungle rewriting [68] this issue is prevented by imposing a statically

checkable condition on the rules, namely that the path relation between the

nodes preserved from L should not be changed by R. Formally, we say that

a rule ρ : (L
l←− K

r−→ R) is cycle free if whenever v ≺R x with v ∈ VK and

x ∈ V ARL ∩ VK , it must be that v ≺L x. This condition is sufficient to prevent

the introduction of cycles; however, we find it rather strong in our programming

language context—in particular, this condition would disallow rules like the one

for reading the value of a variable from the store. In what follows, we give a

(semantical) condition on the matching morphism m rather than the rule which

is sufficient to avoid the introduction of cycles.

Given a (composed) term-graph rewrite rule ρ : (L
l←− K

r−→ R), r induces on K

a (partial) replacement order ≺r= r−1(≺R), i.e., v1 ≺r v2 in K iff r(v1) ≺R r(v2)

(there is a path from r(v1) to r(v2) in R). Moreover, given match m of p into G,

m induces on K a (partial) matching order ≺m= l−1(m−1(≺G)), i.e., v1 ≺r v2

in K iff m(v1) ≺G m(v1) (l is an inclusion). Although both these (partial)

orders are strict, their combination is not guaranteed to remain strict. We say

that the match m is cycle free w.r.t. p if the transitive closure of ≺m ∪ ≺r
is also a strict (partial) order.

Proposition 6. (1) If any matching morphism for a K graph rewriting rule ρ

is cycle free, then ρ is a jungle graph rewriting rule. (2) If ρ is a K graph rule,

G is a term-graph, G
(ρ,m)
===⇒ H, and m is cycle free w.r.t. ρ, then H is acyclic.

Proof. Let ρ : (L
l←− K r−→ R) be a K graph rewriting rule.

(1) Suppose that there exist v ∈ VK and x ∈ V ARL such that v ≺R x and

v 6≺L x. Let then G be the graph obtained from L by adding an edge e such

that source(e) = x and target(e) = v. G is still acyclic, because L is acyclic and

because v 6≺L x. Let m : L→ G be the inclusion morphism. We have that m is

not cycle free, since v ≺R x implies that v ≺r x and x ≺G v implies that x ≺m v,

contradiction.

(2) Proof by contradiction. Assume that H is not acyclic, and let e0, . . . , en

be a sequence of edges in H exhibiting a cycle. Let then eα0
, . . . , eαm be a

subsequence of the above sequence with the property that all its elements are

edges in C and that the blocks of edges between them (including the one starting

174



L K R G C H

s

f

s
2

h

x:s

1

s
1

b

s

f

x:s s
2

h

s

b

s

f

s
1

a

s
2

h

x:s
1

s

b

s

f

s

h

s
1

b

1 2

s

f

x:s

h

s

b

2

s

f

s
1

a

s
2

h

s

b

1

l r

(1): f(x
a
, h(b

x
))

l∗ r∗
f(h(b), h(b))⇒???

(a)

L K R L K R

s

f

s
1

g

x:s

2

s
1

a

s

f

x:s

2

s
1

g

s

a

s

f

x:s

2

s
1

g

s

a

1

s

f

s
2

h

y:s

1

s
1

b

s

f

y:s

1

s
2

h

s

b

s

f

y:s

1

s
2

h

s

b

1

l r l r

(1): f(g(a
x

), x) (2): f(y, h(b
y
))

G C H

s

f

s

1

g

s

2

h

s
1

a

s
1

b

s

f

m(y):s

1

g

m(x):s

2

h

s

b

s

a

s

f

s

1

g

s

2

h

s

b

s

a

1
1

l∗ r∗
f(g(a), h(b))

(1)+(2)
====⇒???

(b)

Figure 6.4: K graph rewriting can introduce cycles: (a) on a term-graph with
sharing; (b) using parallel reductions.

175



L K R L K R

s

f

s

1

g

x:s

2

s
1

a

s

f

x:s

2

s

1

g

s

a

s

f

x:s

2

s

1

g

s

a

1

s

h

y:s
1

s

y:s

s

b

y:s

l r l r

(1): f(g(a
x

), x) (2): h(y)
b

G C H

s

f

s

1

g

s

2

h

s
1

a

1

s

f

m(y):s

1

g

m(x):s

2

s

a

s

f

s

1

g

s

2

b

s

a

1

l∗ r∗
f(g(a), h(g(a)))

(1)+(2)
====⇒ f(g(b), b)

Figure 6.5: Non-cycle-free match producing non-cycling result

at eαm and wrapping over to eα0
are alternating between C and R \K. Then, if

the edges between eαi and eαi+1
are all in C, it must be that both source(eαi)

and target(eαi+1
) are in VK , and moreover, that source(eαi) ≺m target(eαi+1

).

Similarly, if the edges between eαi and eαi+1 are in R \K, then both target(eαi)

and source(eαi+1) are in VK (which we already knew from the previous sentence)

and that target(eαi) ≺r source(eαi+1). But this precisely implies that m is not

cycle free, contradiction.

One might be tempted to think that if a morphism is not cycle free, then the

resulting graph is bound to be cyclic. However, this is not the case, because

when applying a composed rule, the composing rules not involved in the cyclicity

condition might break the cycle, and thus produce a valid term-graph, as exhibited

by the example in Figure 6.5. The graph to be rewritten is a representation of

term f(g(a), h(g(a))) in which the two occurrences of the subterm g(a) have been

identified. The match of the composed rule (1) + (2) is not cycle-free because of

rule (1). Moreover, if we would only apply rule (1), its application would lead

to a cycle. However, when applying both rules together, the cycle is broken,

and the resulting graph is indeed corresponding to the term f(g(b), b) which

can be obtained from the original term by regular term rewriting. Nevertheless,

if the original graph is a tree, then cycle freeness of the matching morphism

characterizes acyclicity of the resulting graph.

176



Proposition 7. Let G be a tree term-graph.

1. If ρ is a simple K graph rule and m is a match for ρ into G, then m is

cycle free.

2. If ρ is a composed K graph rule and G
(ρ,m)
===⇒ H, then H is acyclic iff m is

cycle free w.r.t. ρ.

Proof. Observation 1: Since G is a tree, v1 ≺G v and v2 ≺G v implies that either

v1 ≺G v2 or v2 ≺G v1.

Observation 2: Assuming m is not cycle free, since both ≺m and ≺r are acyclic,

it must be that the cycle is obtained by an alternating sequence v1 ≺r x1 ≺m
v2 . . . ≺r xn−1 ≺m vn = v1, where xi is a variable node and vi is a pattern node

for all 1 ≤ i < n.

(1) Let us show that is impossible to have x ≺m v where x is a variable node

and v is a pattern node, whence m must be cycle free. Indeed, x ≺m v means

that m(x) ≺G m(v), which would lead to x ≺L v (since m(L) is a subtree of G),

which is not possible, as x is a leaf in L.

(2) We only need to prove that if m is not cycle-free, then H has cycles,

as the converse was proven in the general case by Proposition 6. Assume m

is not cycle free, and consider a minimal sequence exhibiting a cycle as in

Observation 2. We want to show that this sequence is also valid if we replace

≺m with ≺m= m−1(≺C), which would necessarily lead to a cycle in H, as H is

obtained as the pushout between C and R identifying K. We again reason by

contradiction and assume that this is not the case, that is, there exists 1 ≤ i < n

such that xi ≺m vi+1 but xi 6≺m vi+1. However, this can only happen if an edge

between m(xi) and m(vi+1) in G is removed by another rule. Therefore, there

must exist a pattern node v and a variable node x such that xi ≺m v, v ≺L x,

x ≺m vi+1, and v 6≺K x. From vi+1 ≺r xi+1 we deduce that vi+1 ≺r xi+1

are part of the same rule, and therefore there must be some v′ ∈ K such that

v′ ≺L vi+1 and v′ ≺L xi+1. Using Observation 1, m(v) ≺G m(x) ≺G m(vi+1)

and m(v′) ≺G m(vi+1) implies that either m(v) ≺G m(v′) or m(v′) ≺G m(v).

Using the parallel independence condition we deduce that m(v) ≺G m(v′), whence

xi ≺m v ≺m v′ ≺m xi+1 ≺m vi+2. However, xi ≺m vi+2 is in contradiction with

our original assumption that the cycle was minimal.

Next result shows that, under cycle-freeness conditions, KGraphΣ is closed

under (parallel) derivations using K graph rewrite rules.

Theorem 6. Let G, (ρi)i=1,n, (mi)i=1,n, ρ, m, C, and H be defined as above.

If m is cycle-free w.r.t. p then the following hold:

(Parallel) Derivation: G
ρ,m

======⇒
KGraphΣ

H;

Serialization: There exist (Gi)i=0,n such that G0 = G, Gn = H, and

Gi−1
ρi

======⇒
KGraphΣ

Gi for each 1 ≤ i ≤ n.

177



Proof. From the parallel independence condition, there exists a derivation G
ρ,m
==⇒

H in Graph, and, H must be acyclic (Proposition 6). To prove the Derivation

claim we only need to show that the graphs produced by the derivation, C and

H, are indeed term-graphs.

Assuming that we have proved the Derivation claim, we can use the serial-

izability result for the category of graphs iteratively, the first step being the

following: From G
p1+···+pn,m
========⇒ H we deduce that G

p1+···+pn−1,m
′

==========⇒ H ′
pn
=⇒ H,

where m′ is the composition of (mi)i=1,n−1; however, by the derivation claim,

H ′ is also a term-graph, and, therefore, we can iterate to obtain the serialization

result in KGraphΣ.

To prove the derivation part of the theorem, we only need to show that the

graphs C and H defined above are term-graphs. First, let us show that C is a

term-graph. Conditions (0)—C is bipartite, (1.ii) at most n consistently labeled

outward edges for each operation node, (2)—at most one outward edge for each

sort node, and (3)—C is acyclic are obviously satisfied, since we only remove

nodes and edges. For (1.i) we only need to notice that whenever e ∈ EL \EK
such that source(e) is a sort node then target(e) ∈ VL \ VK since it is the

root operation node corresponding to a 0-sharing rule. Let l∗ : C → G and

m : K → C be the morphisms completing the pushout diagram. We have that

l∗ is an inclusion and m is the restriction and co-restriction of m to K and C,

respectively.

Let us now additionally verify that H is a term-graph.

(0)—H is bipartite. This is ensured by the fact that R is bipartite and r

only identifies nodes of the same kind.

(1.i)—each operation node has exactly one inward edge. Proof by con-

tradiction. Suppose there exists distinct edges e, e′ in EH such that targetH(e) =

targetH(e) and it is an operation node. Since >i and rV (>i) are sort nodes,

we can assume, as above that e ∈ EC , e′ ∈ ER \ EK , targetR(e′) ∈ VK , and

targetC(e) = mV (targetR(e′)). However, e′ ∈ ER \ EK , targetR(e′) ∈ VK , and

targetR(e′) operation node constitute a contradiction with the fact that R sat-

isfies (1.i), since there should be another edge in EK with the same target as

e′.

(1.ii)—each operation node’s outward edges are consistent. Since both

C and R are term-graphs, the labels of outward edges of operation sorts, as well

as the labels of their targets must be consistent in H. To complete our proof we

only need to additionally show that no duplicates are introduced by the merging.

Proof by contradiction. Suppose there exists distinct edges e and e′ in EH , such

that sourceH(e) = sourceH(e′) is an operation node, and leH(e) = leH(e′). Then

we can assume that e′ ∈ EC , e ∈ ER \ EK , and sourceR(e) ∈ VK , inducing

that sourceC(e′) = mV (sourceR(e)). From e ∈ ER \ EK and sourceR(e) ∈ VK

178



we infer that there exists i such that e ∈ ERi \ EKi and sRi(e) ∈ VK is an

operation node. Therefore, xsourceRi (e),leRi (e)
cannot be a (term) variable of

Ri, and therefore, it cannot be a term variable of Li, as well. Moreover, since

sourceRi(e) ∈ VK , it must be that sourceRi(e) ∈ VLi , and hence there exists

ei ∈ ELi such that sourceLi(ei) = sourceRi(e) and leLi(ei) = leRi(e). But this

implies that ei ∈ ELi \ EKi , which contradicts with the fact that e′ ∈ EC (since

e′ has the same source and label).

(2)—each sort node has at most one outward edge. Proof by contradic-

tion. Suppose there exist distinct edges e and e′ in EH such that sourceH(e) =

sourceH(e′) = v, and v is a sort node. We can then suppose (without loss

of generality) that e ∈ EC and e′ ∈ ER \ EK . Then sourceR(e′) ∈ VK and

v = sourceH(e) = sourceC(E) = mV (sourceR(e′)). Reusing a previous argument,

from sourcer(e
′) ∈ VK , e′ ∈ ER \ EK and sourceR(e′) sort node we deduce that

sourceR(r′) ∈ ROOTL. Therefore, there exists i such that e′ ∈ ERi \EKi and

sourceRi(e
′) = >i. However, this implies that source−1

C (mV (sourceRi(e
′))) = ∅,

which contradicts with e ∈ EC .

(3)—H is acyclic. This is ensured by the hypothesis that m is cycle-free

w.r.t. p.

6.4 K Rewriting—Semantics

Theorem 6 allows us to capture the serializable fragment of K concurrent rewriting

as the relation ≡� defined below:

Definition 5. Let t be a Σ-term and let ρ1, · · · , ρn be K rules (not neces-

sarily distinct). Then t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′ iff there is a term-graph H such that

G
K2G(ρ1)+···+K2G(ρn)
===============⇒

KGraphΣ

H and termH(>H) = t′, where G is the tree term-

graph representing t. We say that t ≡� t′ iff there is a (composed) K-rule ρ such

that t
ρ
≡� t′.

We next show that the K concurrent rewriting above is a conservative extension

of the standard term rewriting relation.

6.4.1 Soundness and Completeness w.r.t. Term

Rewriting

We can give a straightforward definition for what it means for a K-rule to match

a term: one K-rule ρ : (∀X ) k[ L ⇒ R ] matches a term t using context C

and substitution θ iff its corresponding rewrite rule K2R(ρ) : (∀X)L(k)→ R(k)

matches t using the same C and θ, that is, iff t = C[θ(L(k))]. This conforms

to the intuition that, when applied sequentially, K rules behave exactly as their

corresponding rewrite rules. We next show that the rewrite relation induced

179



L K R G C H

s

f

s
1

h

x:s

2

s
1

a

s

f

s
1

h

x:s

2

s

a

s

f

s
1

h

x:s

2

s
1

b

s

a

s

f

s

h

s
1

a

1 2

s

f

x:s

h

s

a

1 2

s

f

s

h

s
1

b

s

a

1 2

l r

(1): f(h(a
b
), x)

l∗ r∗
f(h(a), h(a))⇒ f(h(b), h(b))???

Figure 6.6: Subterm sharing might lead to unsound K graph rewriting.

by K rules indeed captures the standard term rewrite relation. We will do

that by reducing rewriting using K graph rules to rewriting using 0-sharing K
graph rules, which, as we previously mentioned is actually an instance of jungle

evaluation in the graph world. Then, we can use the soundness and completeness

of jungle evaluation w.r.t. term rewriting to obtain that K term rewriting is

sound and complete w.r.t regular term rewriting.

However, it turns out that, although preserving the term-graph structure

(under cycle-freeness assumptions, K rewriting on graphs might not be sound

w.r.t. term rewriting in the presence of subterm sharing. Consider the example in

Figure 6.6. We want to apply rule f(h(a

b

), x), corresponding to the regular rewrite

rule f(h(a), x) → f(h(b), x), to the term f(h(a), h(a)). If we would represent

f(h(a), h(a)) as a tree, then the K graph rewriting step would be sound, leading

to a graph depicting f(h(b), h(a)); however, if we decide to collapse the tree

representing h(a) then we obtain f(h(b), h(b)), as depicted in Figure 6.6 which

cannot be obtained through regular rewriting. The reason for this unsound

rewriting is that part of the read-only patten of the rule is shared. To overcome

this, we will restrict the read-only pattern of the rule to only match against

a tree in the graph to be rewritten. We say that a match m : L → G of a K
graph rewrite rule ρ : (L

l←− K
r−→ R) is safe if m(K�rootL) is a tree in G, that

is, if indegreeG(mV (v)) = 1 for any v ∈ VK�rootL \ {rootL}. Note that, if G is

a tree then all matching morphism on G are safe.

Proposition 8. Let ρ be a proper K rewrite rule, let ρ0 be its associated 0-

sharing K rewrite rule, and let m be a cycle free safe matching morphism for

K2G(ρ) in G. Let H be such that G
K2G(ρ),m
======⇒
KGraphΣ

H, and let H ′ be such that

G
K2G(ρ0),m
=======⇒
KGraphΣ

H ′. Then for any v ∈ ROOTG, termH(v) = termH(v).

180



Proof. First, cycle freeness ensures the existence of H; moreover, any 0-sharing

K-rule generates the graph representation of a jungle evaluation rule, and thus

the existence of H ′ is ensured.

Second, since ρ is proper, neither ρ nor ρ0 is collapsing, and therefore

ROOTG ⊆ ROOTH and ROOTG ⊆ ROOTH′ , so the final claim is also defined.

Let K2G(ρ) : (Lρ
lρ←− Kρ

rρ−→ Rρ) and K2G(ρ0) : (Lρ
lρ0←−− Kρ0

rρ0−−→ Rρ0)

be the complete descriptions of K2G(ρ) and K2G(ρ0), and let C, C ′ be the

corresponding context graphs obtained in the process of applying the rules to G.

We have that C = G \m(Lρ \Kρ), whence VC = VG and EC = EG \ {m(e�i) |
e�i ∈ ELρ , target(e�i) corresponds to �i ∈ W}. Also C ′ = G \m(Lρ \Kρ0),

whence VC′ = VG \mV (v0) and EC′ = EG \ (source−1(v0)∪ target−1(v0)), where

v0 = target(source−1(rootLρ)).

H ′ is obtained by “gluing” on C ′ Rρ0 \ Kρ0 , that is the variable collapsed

tree representation of R(k) in which the root and the variable nodes have been

removed. This gluing is done by setting the source of the topmost edge to be

mV (rootL) and the target of any edge whose target is variable node x in Rρ0 to

be mV (x).

H is obtained by “gluing” on C Rρ \Kρ, that is the variable collapsed tree

representation of {R(Hole) | � ∈ W} in which the variable nodes have been

removed, and an edge e′�i for each �i has been added having as target the node

representing the root of R(�i). The gluing is done by setting the target of any

edge whose target is variable node x in Rρ to be mV (x) and by setting the source

of e′�i to be sourceG(e�i).

We can define a morphism f : H → H ′, as follows: For C \ m(K0) it is

the identity: fV (v) = vifv ∈ VC \ m(VLρ) = VG \ m(VLρ). fE(e) = eife ∈
EC \ m(ELρ) = EG \ m(ELρ). For the root of Lρ and for its variables, it

is also the identity: fV (m(rootLρ)) = m(rootLρ); fV (m(x)) = m(x). Now,

for K0 = Kρ �rootLρ , it yields the copy of K0 in R: fV (mV (v)) = v for any

v ∈ VKρ�rootLρ , v 6= rootLρ and fV (mV (e)) = e for any e ∈ EKρ�rootLρ . Finally, the

mapping Rρ \Kρ it is already determined by the mapping of the elements coming

from K0, ad basically says that the variable collapsed trees corresponding to

R(�i) are mapped to their corresponding (variable collapsed) subtrees coming

from Rρ0 .

It is relatively easy to verify that f is an injective morphism. Moreover

the nodes and edges which are not in its image are part of the graph m(K0)

(excluding rootL and the topmost operation node as well as its adjacent edges),

which, by being required to be a tree in G, has no incoming edge, and thus

is not part of H ′ = H ′�ROOTG . Hence, the restriction and co-restriction of f

to H = H�ROOTG and H ′, respectively, is a bijection, and, therefore for any

v ∈ ROOTG, H�v is isomorphic with H ′�v, whence termH(v) = termH′(v).

Since the K graph representation of a term t without anonymous variables

is a graph jungle representing the same term, and since the K term-graph

181



representation of a 0-sharing K rewrite rule is a graph jungle rule representing

the rewrite rule associated to it, we can use the soundness and completeness of

jungle rewriting w.r.t. standard term rewriting [68, 38] to prove the sequential

soundness and completeness of K graph rewriting w.r.t. standard term rewriting,

and, by combining that with Theorem 6, to prove the serializability result for

K concurrent rewriting.

Theorem 7. Let ρ, ρ1, . . . , ρn be K rules. The following hold:

Completeness: If t
K2R(ρ)
====⇒ t′ then t

ρ
≡� t′.

Soundness: If t
ρ
≡� t′ then t

K2R(ρ)∗
=====⇒ t′.

Serializability: If t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′, then there exists a sequence of terms t0, · · · , tn,

such that t0 = t, tn = t′, and ti−1

ρ∗i
≡� ti.

Proof. Let G be the tree term-graph representation of t.

Completeness. From the completeness of jungle evaluation, we infer that

there exists H such that G
m,K2G(ρ0)
=======⇒ H and termH(m∗(rootG)) = t′. Since G

is a tree, m must be both cycle-free and safe for K2G(ρ). From Proposition 8

we then infer that G
m,K2G(ρ)
======⇒ H ′ and that termH′(m

∗(rootG)) = t′, whence

t
ρ
≡� t′.

Soundness. From t
ρ
≡� t′ it follows that there exists a rewrite sequence

G
m,K2G(ρ)
======⇒ H ′ such that termH′(m

∗(rootG)) = t′. Again, since G is a tree, m

must be both cycle free and safe, whence, by Proposition 8, G
m,K2G(ρ0)
=======⇒ H

such that termH(m∗(rootG)) = t′, and by the soundness of jungle evaluation,

t
K2R(ρ)∗
=====⇒ t′.

Serializability. t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′ implies that G

K2G(ρ1)+...+K2G(ρn)
===============⇒ H such that

termH(m∗(rootG)) = t′. Applying Theorem 6, we deduce that there exist

G0, G1, . . . , Gn such that G0 = G, Gn = H, and Gi−1K2G(ρ1)Gi. Since G is

a tree and all rules satisfy the parallel independence property, we can deduce

that the matching morphism for each of the steps is safe, and thus also cycle

free. Therefore we can for each step apply Proposition 8, and the the soundness

of jungle evaluation w.r.t. rewriting, to obtain the desired answer.

Therefore, K concurrent rewriting is sound and complete for term rewriting,

while providing a higher degree of concurrency in one step than existing ap-

proaches, be them either through term-graph rewriting or through term rewriting.

182



6.5 Capturing K Rewriting within Rewriting

Logic

As previously mentioned, the direct representation of K into rewriting logic

(by replacing K rules with their corresponding rewrite rules), loses part of

the concurrency intended for K definitions. However, at a theoretical level,

rewriting logic can capture the read-only sharing of resources by using equational

abstraction to create multiple copies of the resources being shared [104]. Starting

from the theory of concurrent objects and their representation in rewriting

logic proposed by Meseguer [104], in this section we sketch a formalization of K
graph rewriting into rewriting logic which (although non-executable) captures

the concurrency of K rewriting.

To do so, we first define graphs as a theory, then identify term-graphs as being

graphs over special labels (defined by the signature) and containing a special

node identified as root. To formalize the relation between terms and graphs,

we also define a theory for terms, as well as back and forth transformations

between terms and term graphs. Finally, we show how K graph rewrite rules

can be represented as rewrite rules over concurrent objects and their read-only

copies. To avoid getting into intricate technical details, we here only consider

the fragment of K graph rewriting obtained by removing collapsing rules, as

these amount to non-injective graph transformations, requiring nodes from the

original graph to be identified, which would add an additional layer of complexity

to the representation.

Concurrent objects and emulsifying axioms. We will base our encoding

of graphs within rewriting on the specification of concurrent objects in rewriting

logic [104]. Below is the syntax for concurrent objects, as existent in Maude [34]:

mod CONFIGURATION is

sorts Attribute AttributeSet .

sorts Oid Cid Object Msg Configuration .

subsorts Attribute < AttributeSet .

subsorts Object Msg <Configuration .

op none : → AttributeSet .

op , : AttributeSet AttributeSet → AttributeSet [assoc comm id: none] .

op 〈 : | 〉 : Oid Cid AttributeSet → Object .

op none : → Configuration .

op : Configuration Configuration → Configuration [assoc comm id: none] .

endm

In this specification, objects are viewed as floating in a multi-set “molecule

soup”, in which they can re-arrange themselves to be matched by the rules. To

address the problem of concurrent read access to objects, Meseguer [104] proposes

that “emulsifying axioms” be used to create multiple (potentially unbounded)

read only copies of an object. The original object is transformed into a read-only

183



copies generator, which generates copies while increasing a counter to ensure that,

in order to recover the original object, all copies must be packed back into the

generator. The (non-executable) axioms for emulsification are presented below:

mod EMULATING−READ−ONLY−OBJECTS is including CONFIGURATION .

protecting NAT .

op { : | | } : Oid Cid AttributeSet Nat → Object .

op [ : | ] : Oid Cid AttributeSet → Object .

var O : Oid . var C : Cid . var AS : AttributeSet . var N : Nat .

eq 〈 O : C | AS 〉= { O : C | AS | 0 } .

eq { O : C | AS | N } = { O : C | AS | s(N) } [ O : C | AS ] .

endm

Standard rewriting modulo the concurrency enhancing axioms presented above

can now be used to effectively capture concurrent rewriting of objects in which ob-

jects which are only read can be shared by different instances of the rewrite rules,

by rewriting the rules to use the syntax of read-only object to specify which objects

are read, but kept unchanged by the rule. Take, for example,the rewrite rule

rl 〈 O : C | active : false 〉 〈 O : Visitor | none 〉
⇒ 〈 O : C | active : true 〉 〈 O : Visitor | none 〉

in which an object of a Visitor class is used to activate objects of the C class.

If this rule is applied to an initial multiset containing

〈 o1 : C | active : false 〉 〈 o2 : C | active : false 〉 〈 o3 : Visitor | none 〉,

it will need two steps to activate both objects. However, by transforming the

rule above (to make the sharing of the Visitor object explicit) into

rl 〈 O : C | active : false 〉 [O : Visitor | none]

⇒ 〈 O : C | active : true 〉 [O : Visitor | none]

and using rewriting modulo the concurrency enhancing axioms specified above

(in addition to the multiset axioms), all objects can now be activated in one

rewriting step, by using the axioms to heat and cool the state, as follows:

〈 o1 : C | active : false 〉 〈 o2 : C | active : false 〉 〈 o3 : Visitor | none 〉
= 〈 o1 : C | active : false 〉 〈 o2 : C | active : false 〉
{o3 : Visitor | none | 0}

= 〈 o1 : C | active : false 〉 〈 o2 : C | active : false 〉
{ o3 : Visitor | none | 1} [o3 : Visitor | none]

= 〈 o1 : C | active : false 〉 〈 o2 : C | active : false 〉
{o3 : Visitor | none | 2} [o3 : Visitor | none] [o3 : Visitor | none]

= (〈 o1 : C | active : false 〉 [o3 : Visitor | none])

(〈 o2 : C | active : false 〉 [o3 : Visitor | none]) {o3 : Visitor | none | 2}
⇒ (〈 o1 : C | active : true 〉 [o3 : Visitor | none])

(〈 o2 : C | active : true 〉 [o3 : Visitor | none]) {o3 : Visitor | none | 2}
= 〈 o1 : C | active : true 〉 〈 o2 : C | active : true 〉
{ o3 : Visitor | none | 2 } [o3 : Visitor | none] [o3 : Visitor | none]

= 〈 o1 : C | active : true 〉 〈 o2 : C | active : true 〉

184



{o3 : Visitor | none | 1} [o3 : Visitor | none]

= 〈 o1 : C | active : true 〉 〈 o2 : C | active : true 〉
{o3 : Visitor | none | 0}

= 〈 o1 : C | active : true 〉 〈 o2 : C | active : true 〉 〈 o3 : Visitor | none 〉

In the following encoding of term graphs and graph rewriting rules we will

do precisely that, encoding the part of the graph belonging to the interface

graph using read-only constructs for its objects.

Terms and term graphs. Upon analyzing multiple possible representations

for graphs as algebraic structures, we have chosen to represent graphs as collec-

tions of objects belonging to two classes: Node and Edge. Nodes have only one

attribute, their label, while edges have three attributes: source, target, and label.

mod GRAPH is including CONFIGURATION .

sorts NodeId EdgeId .

sorts NodeLabel EdgeLabel Label .

subsorts NodeId EdgeId < Oid .

subsorts NodeLabel EdgeLabel <Label .

ops Node Edge : → Cid .

ops source: target : : NodeId → Attribute .

op label: : Label → Attribute .

endm

To represent terms (and term graphs) we introduce the following descrip-

tion of signatures:

fmod SIGNATURE is

sorts Sort Operation SortList .

subsort Sort < SortList .

op sort : Operation → Sort .

op none : → SortList .

op x : SortList SortList → SortList [assoc id : none] .

op arity : Operation → SortList .

endfm

Within this frame, we represent proper terms as either constants (i.e., op-

eration symbols), or applications of operation symbols to other terms. We

additionally identify two types of variables, normal and anonymous, which are

terms, but not proper ones.

fmod TERM is including SIGNATURE .

sorts Variable ProperTerm Term TermList NeTermList .

subsort Operation < ProperTerm < Term < NeTermList < TermList .

subsort Variable < Term .

op Any : → Term .

op empty : → TermList .

185



op , : TermList TermList → TermList [assoc id : empty] .

op , : NeTermList TermList →NeTermList [ditto] .

op , : TermList NeTermList →NeTermList [ditto] .

op ( ) : Operation NeTermList →ProperTerm .

op sort : Variable → Sort .

endfm

A loose semantics for term graphs is obtained from the graph specification

above by customizing node labels to be either operations or sorts and the edge

labels to be natural numbers. Moreover, a term graph needs to have its root

node distinguished among the others. For this, we will use a special message root.

mod TERM−GRAPH is including SIGNATURE . extending GRAPH .

protecting NAT .

subsorts Operation Sort < NodeLabel .

subsort Nat < EdgeLabel .

op root : NodeId → Msg .

endm

Relating terms and term graphs. To formalize the correspondence between

terms and their graph representation, we define two transformations, one from

terms to graphs, and another one from graphs to terms.

The terms-to-graphs transformation follows the intuitive description of repre-

senting terms as graphs we used in the previous sections, which is the same as one

introduced in Chapter 2. We choose to use sequences of integers (representing

positions in the terms) as identifiers for both node and edge objects, while

variables are identified as themselves. Also, to simplify the presentation we allow

two objects to have the same identifier as long as they belong to different classes.

mod TERM−TO−GRAPH is including TERM . including TERM−GRAPH .

protecting LIST{Int} .

subsort List{Int} < NodeId EdgeId .

subsort Variable < NodeId .

op term2graph : Term →Configuration .

eq term2graph(T) = t2g(T,0) root(0) .

op t2g : Term NodeId →Configuration .

eq t2g(O,V 0) = 〈V 0 : Node | label : sort(O) 〉
〈 V : Node | label : O 〉
〈 V 0 : Edge | source: (V 0), target : V 〉 .

eq t2g(Var, N) = 〈Var : Node | label : sort(Var) 〉 .

eq t2g( ‘( ‘)( O,NeTl),(V 0)) = t2g(O,(V 0)) t2gL(NeTl, (V 1)) .

186



op t2gL : NeTermList NodeId →Configuration .

eq t2gL((T,NeTl),V N) = t2gL(T,V N) t2gL(NeTl,V s(N)) .

eq t2gL(T, V N)

= 〈 (V N) : Edge | source: V, target : (V N 0), label : N 〉 t2g(T,(V N 0)) .

eq t2gL(Var, V N)

= 〈 (V N) : Edge | source: V, target : Var, label : N 〉 t2g(Var, 0) .

eq t2gL(Any, V N) = none .

var T : Term . var NeTl : NeTermList . var V : List{Int} . var N : Nat .

var O : Operation . var S : Sort .

endm

For example, by evaluating the term2graph function defined in the above

module on the term to be rewritten from our running example, h(f(a), 0, 1),

whose graph representation is

s

h

s
1

f

int
2

0

int

3

1

s
1

a

we obtain the following concurrent objects representation of the graph:

root(0)

〈 0 : Node | label : s 〉 〈 0 : Edge | source : 0,target : nil 〉
〈 nil : Node | label : h 〉
〈 1 0 : Node | label : s 〉 〈 1 0 : Edge | source: 1 0,target : 1 〉
〈 1 : Node | label : f 〉 〈 1 : Edge | source: nil , target : 1 0, label : 1 〉
〈 2 0 : Node | label : int 〉 〈 2 0 : Edge | source: 2 0,target : 2 〉
〈 2 : Node | label : 0 〉 〈 2 : Edge | source: nil , target : 2 0, label : 2 〉
〈 3 0 : Node | label : int 〉 〈 3 0 : Edge | source: 3 0,target : 3 〉
〈 3 : Node | label : 1 〉 〈 3 : Edge | source: nil , target : 3 0, label : 3 〉
〈 1 1 0 : Node | label : s 〉 〈 1 1 0 : Edge | source: 1 1 0,target : 1 1 〉
〈 1 1 : Node | label : a 〉 〈 1 1 : Edge | source: 1,target : 1 1 0, label : 1 〉

To transform a (ground) term-graph into its corresponding term, all we need to

do is to start with its root, which is specified by the root message, and to follow

the links and their specified positions until we arrive at terminal nodes (which

are constants). The module below defines such a transformation in Maude.

mod GRAPH−TO−TERM is including TERM . including TERM−GRAPH .

op graph2term : Configuration → Term .

eq graph2term(root(V0) G) = g2t(root(V0) G, V0) .

op g2t : Configuration NodeId → Term .

eq g2t(G 〈V0 : Node | label : S 〉 〈 V : Node | label : O 〉

187



〈 E : Edge | source: V0, target: V 〉, V0)

= g2tHelp(G 〈V0 : Node | label : S 〉 〈 V : Node | label : O 〉
〈 E : Edge | source: V0, target: V 〉,V,O, arity(O)) .

op g2tHelp : Configuration NodeId Operation SortList → TermList .

eq g2tHelp(G, V, O, none) = O .

eq g2tHelp(G, V, O, S x Sl) = ‘( ‘)( O,g2tL(G,V,S x Sl, 1)) .

op g2tL : Configuration NodeId SortList Nat → TermList .

eq g2tL(G, V, none, N) = empty .

eq g2tL(〈 E : Edge | source: V, target : V0, label : N 〉
〈 V0 : Node | label : S 〉 G,V,S x Sl,N)

= g2t(〈 E : Edge | source: V, target : V0, label : N 〉
〈 V0 : Node | label : S 〉 G, V0),

g2tL(〈 E : Edge | source: V, target : V0, label : N 〉
〈 V0 : Node | label : S 〉 G,V, Sl,s(N)) .

var G : Configuration . var V V0 : NodeId . var S : Sort .

var O : Operation . var Sl : SortList . var N : Nat . var E : EdgeId .

endm

Representing K rules. Let us intuitively describe here how K rules can be

encoded as rewrite rules on concurrent objects representing graphs by encod-

ing rules (1)–(3) from our running example. Recall the three rules and their

graph representation:

L K R L K R L K R

s

h

x:s
1

int

3

1

s

h

x:s int

1

s

h

s
1

g

int

3

0

x:s int

1

1 2

s

h

int
2

0

s

h

int

0

s

h

int
2

1

int

0

s

a

s s

b

l r l r l r

(1): h( x

g(x, x)

, y, 1

0

) (2): h(x, 0

1

, y) (3): a

b

A K rule is represented by encoding its graph representation (L←↩ K ↪→ R)

as a rewrite rule. To do that, we represent L and R as the left-hand-side l and

the right-hand-side r of a rewrite rule l→ r, respectively, as explained next. Let

k be the term obtained from representing K as a multiset of objects specifying

nodes and edges, where identifiers of objects are chosen to be distinct variables,

and all objects are specified using their read-only variant. For example, for

rule (1) above, k may look as follows:

[V0 : Node | label: s] [V : Node | label: h]

188



[V3 : Node | label: 1] [V10 : Node | label: s] [V30 : Node | label: int]

[E0 : Edge | source: V0, target: V ] [E30 : Edge | source: V30, target: V3]

Then the set of concurrent objects l representing L can be obtained by adding

to k the concurrent objects representation of the nodes and edges which are in

L but not in K, again using distinct variables as their id. For rule (1) above,

l can be obtained by adding the following objects to k:

〈 E1 : Edge | source: V , target: V10, label: 1 〉
〈 E3 : Edge | source: V , target: V30, label: 3 〉

To generate r we have to add to k the concurrent objects representation of

nodes and edges which are in R but not in K. However, while using fresh

variables as identifiers worked for the other concurrent objects appearing in

the rule, and was even necessary as they are supposed to match existing nodes,

this approach does not work anymore for the new objects introduced by R.

Nevertheless, there is an easy solution for this [104]. Given the nature of K rules,

there are always edges (and sometimes even nodes) which must be removed by

the rule application. As their identifier will disappear, we can use it in generating

identifiers for the objects introduced by R. Based on our choice to use lists of

natural numbers encoding positions in the original term as identifiers for nodes,

let us now show how the new identifiers can be obtained from them. For each

hole � ∈ W, let r0
� = term2graph(R(�)), where R(�) is the replacement term

for � in the K rule. If the K rule is a zero-sharing rule, then we obtain r from

r0
� by removing the root message and replacing its top sort node object with

the top sort node object of L (and updating the unique edge having it as a

source to reflect that) followed by prefixing all remaining identifiers with X -1,

where X is the variable standing for the identifier of the top operation node of

L (which is deleted by the rule), and −1 is used as a separator (as it is not a

natural number); an exception from this rule are the nodes representing variables

which are replaced with the corresponding nodes from l, while links to them are

updated to point to the new nodes. For example, rule (3) can be represented as:

rl [V0 : Node | label: s] 〈 V : Node | label: a 〉
〈 E0 : Edge | source: V0, target: V 〉

⇒ [V0 : Node | label: s] 〈 V −1 : Node | label: b 〉
〈 V −1 0 : Edge | source: V0, target: V −1 〉

If the K rule is proper, then for each hole � of its pattern let

〈 X� : Edge | from: X, to: Y , label: N 〉}

be the edge corresponding to � in l that must be deleted by the rule. Then

r� is obtained from r0
� by removing the root message, prefixing all identifiers

with X� − 1, and adding the object

〈 X� −1 : Edge | from: X to: X� −1, label: N 〉

189



representing the edge which must replace the deleted one; again, as an exception

from this rule, variables are handled as described above. Then r is obtained

by simply concatenating k with all instances of r�. For example, rule (1)

can be represented by

rl [V0 : Node | label: s] [V : Node | label: h]

[V3 : Node | label: 1] [V10 : Node | label: s] [V30 : Node | label: int]

[E0 : Edge | source: V0, target: V ] [E30 : Edge | source: V30, target: V3]

〈 E1 : Edge | source: V , target: V10, label: 1 〉
〈 E3 : Edge | source: V , target: V30, label: 3 〉

⇒ [V0 : Node | label: s] [V : Node | label: h]

[V3 : Node | label: 1] [V10 : Node | label: s] [V30 : Node | label: int]

[E0 : Edge | source: V0, target: V ] [E30 : Edge | source: V30, target: V3]

〈 E1 −1 : Edge | source: V , target: E1 −1 0, label: 1 〉
〈 E1 − 1 0 : Node | label: s 〉 〈 E1 −1 : Node | label: g 〉
〈 E1 −1 0 : Edge | source: E1 −1 0, target: E1 −1 〉
〈 E1 −1 1 : Edge | source: E1 −1, target: V10, label: 1 〉
〈 E1 −1 2 : Edge | source: E1 −1, target: V10, label: 2 〉
〈 E3 −1 : Edge | source: V , target: E3 −1 0, label: 3 〉
〈 E3 −1 0 : Node | label: int 〉 〈 E3 −1 : Node | label: 1 〉
〈 E3 −1 0 : Edge | source: E3 −1 0, target: E3 −1 〉

Given a K system R, let RWLGraph(R) be its embedding into rewriting

logic following the approach sketched above. Based on the results proved in

the sections above relating K rewriting to graph rewriting, and on the results

showing how the concurrency of graph rewriting can be captured in rewriting

logic [104], we claim the following (without proof):

Conjecture 1. The following are equivalent:

1. t ≡�R t′ in one concurrent K step;

2. term2graph(t)⇒RWLGraph(R) G in one concurrent step such that

graph2term(G) = t′.

Applying the rules in parallel. To help exploring the amount of concurrency

available in one K rewriting step, we have implemented a prototype based on the

representation of terms and rules specified above. However, as the emulsifying

axioms are not executable, we altered the rules so we can achieve the desired

result on a different path. In essence, what we did was to change rules’ behavior

so that they saturate the configuration. That is, the L graph is expressed

normally, without marking the parts from K as read only, while the R graph

copies the parts from K unchanged, but turns all newly introduced objects into

a saturated form (we use the same syntax as for read-only versions of objects)

which, consequently, cannot be matched by subsequent rules. Additionally, we

190



add another rule which can arbitrarily choose to saturate any object. In this

new encoding, rule (3) is expressed as

rl 〈 V0 : Node | label: s 〉
〈 V : Node | label: a 〉 〈 E0 : Edge | source: V0, target: V 〉

⇒ 〈 V0 : Node | label: s 〉
[V −1 : Node | label: b] [V −1 0 : Edge | source: V0, target: V −1]

while the saturation rule is

rl 〈 Oid : Cid | AS 〉 ⇒ [Oid : Cid | AS] .

where Oid, Cid, and AS are variables of the corresponding sorts.

Let us call the rewrite system obtained from R by applying these transfor-

mations MaudeGraph(R). We make an additional claim completing the one

above (again, without proof):

Conjecture 2. The following are equivalent:

1. t ≡�R t′ in one concurrent K step;

2. term2graph(t) ⇒+ G, and graph2term(unsaturate(G)) = t′, where the

unsaturate function turns all saturated objects into unsaturated ones.

Hence, assuming the acyclicity condition is satisfied, the normal forms of the

graph representation of a term t obtained by rewriting using MaudeGraph(R) are

precisely the saturated versions of the graph representation of terms obtainable

from t in one step of concurrent rewriting. When rewriting the term above

using the graph rules, and then recovering the term from the graph, we can

obtain the following 7 possibilities of advancing in one step: h(g(f(b), f(b)), 1, 0),

h(g(f(a), f(a)), 1, 0), h(g(f(b), f(b)), 0, 0), h(g(f(a), f(a)), 0, 0), h(f(b), 1, 1),

h(f(a), 1, 1), and h(f(b), 0, 1), yielding two more terms, i.e., h(g(f(b), f(b)), 1, 0),

and h(g(f(a), f(a)), 1, 0) in addition to those which could be obtainable through

sideways and nested parallel applications of the corresponding rewrite rules.

6.6 Discussion

We have shown how the desired concurrency for K rewriting can be formalized

and captured precisely through an embedding into graph rewriting. Moreover,

we have proven that the concurrent rewriting relation is serializable and sound

w.r.t. standard rewriting, implying that execution of K systems can be stuttering

simulated by the regular rewrite systems obtained by flattening them. This

result ensures that the K-Maude tool (described in the next chapter) which

implements K on top of the Maude rewrite engine can be safely and soundly

used to execute and analyze executions of K definitions, as long as one does not

try to prove properties using the next operator of LTL, or similar constructs.

Finally, we have sketched how K concurrent rewriting can itself be captured

theoretically and explored practically using rewriting logic.

191



To conclude this chapter, we identify here some of the current limitations

of the approach presented above and describe potential future work aimed

at addressing them.

Cycle freeness. Although we have found a sufficient condition to obtain

sound and serializable concurrent executions, the condition obtained is rather

semantical, and might be non-trivial to check. However, as we already pointed

out, it seems that all of the rule combinations in our current definitions would

generate cycle free executions. An interesting research problem not addressed

here is finding generic enough syntactic conditions which would guarantee that

cycle freeness is satisfied for all possible combinations of matches.

Obtaining unserializability. This chapter only discussed the serializable

fragment of K, which, although it provides more concurrency in one step, does

not introduce more behaviors in the transitive closure of the transition relation.

However, further research is needed to understand whether having unserializable

executions is desirable in certain cases, and what would be the way to model it

within K rewriting. For example, one way of obtaining unserializable executions

would be through the use of side-conditions, assuming that the constraints

imposed by the side conditions are only validating the matching process and pose

no restriction on the rewriting semantics. In this spirit, one could allow rules

like “f(a

b

, x) when x = c” and “f(x, c

d

) when x = a” to concurrently apply on

f(a, c) to obtain f(b, d) which would not be obtainable through normal rewriting.

However, such a treatment would require that rules with side conditions are not

merely rule schemata, as they could add yet another layer to the rules, namely

what part of the matching pattern is “freed” by the rule.

Appropriate graph representations for lists and sets. Graphs are free

from the constraints of terms of having a specific order between the arguments

of an operator; that is why, for example, we had to encode the positions of

arguments as labels on edges. For this reason, graphs seem to be the perfect

environment for representing associative and commutative (AC) constructs such

as sets, bags, and maps: have one node standing for the AC constructor and

then link each subgraph representing an element of the set/bag/map to the

constructor node through an unlabeled edge. This representation would make

matching modulo AC much easier and direct. One could also imagine similar

representations for lists. It would be interesting to study the relation between

term graphs enriched with structures like these and the terms modulo AC they

abstract, and whether the use of such structures would allow representing K
rules directly (without adapting them in order to match) as graph rewrite rules,

while still maintaining the same rewriting relation on terms modulo AC.

192



Direct semantics for K rewriting. The concurrent semantics we have ob-

tained for K models the desired intuition, which was easier to capture through

graph rewriting due to the existing similar concurrency results available for graph

rewriting. Furthermore, this chapter can be seen as a contribution to the field of

term-graph rewriting in general, by introducing sharing to the rules. However,

there are some limitations imposed by this semantics through embedding into

graph rewriting, including going back and forth between terms and graphs, and

problems with modeling non-left-linearity of the rules. Therefore a concurrent

semantics for K directly using terms, variables, and substitutions, as the one

of rewriting logic, remains a desirable goal.

193



Chapter 7

K-Maude—A Rewriting
Logic Implementation of
the K Framework

K modules

Maude Modules

Meta-data annotated
Maude Modules

Executable
Maude Modules

LATEX

K core

K-Maude
interface

Intermediate
representation

Figure 7.1: K-Maude overview. Grayed arrows correspond to translating tools.

The K technique has been manually (without automated tool support) used in

the context of rewriting logic and Maude for more than five years, for teaching

programming language and program verification courses as well as for several

research projects. Such of K in Maude turned our to be verbose and error prone,

because Maude is a general purpose rewrite engine not specifically optimized for

programming languages. Thus, the idea of developing a K specialized layer on

top of Maude came naturally. The resulting integrated toolkit is called K-Maude

and is the subject of this chapter.

As rewriting logic relies on the Maude language and rewrite engine to be

able to write, execute, and analyze rewrite theories, the K Framework relies

on the K-Maude tool for writing, executing and analyzing K definitions of

programming languages and analysis tools. The K-Maude language is an ASCII

representation of the K mathematical language and K-Maude definitions are

translated into Maude rewrite theories for execution and analysis purposes, or

in LATEX definitions for inclusions in research papers and presentations. Most

K definitions presented in this dissertation were generated by massaging the

LATEX output of the K-Maude tool.

Figure 7.1 shows the architecture of K-Maude. The gray arrows represent

translators implemented as part of the toolkit. The K core contains the ingredients

of the K technique, that are handy in most language definitions, such as ones for

defining computations, configurations, environments, stores, etc. The K-Maude

interface is what the user typically sees: besides usual Maude modules (K-Maude

fully extends Maude), one can also include K-Maude files (with extension .k)

containing modules using the K specialized notation.

194



A first component of K-Maude translates K modules to Maude modules. The

resulting Maude modules encode K-specific features as meta-data attributes

and serve as an intermediate representation of K-Maude definitions. Since this

representation is just an artifact of using Maude, we will refrain from describing

it and we will identify it with the K module it stands for. This intermediate

representation can be further translated to different back-ends. We provide two

such translators, one to executable/analyzable Maude and one to LATEX. The

former yields actual executable language definitions in Maude which can serve

as interpreters for the defined languages or as a basis for formal analysis.

The K-Maude to LATEX translator is meant to serve for documentation purposes.

Indeed, we believe that K can be used by ordinary language designers as a formal

notation for rigorously specifying the semantics of their languages, the same way

context-free grammars are used for formally specifying syntax, so a user-friendly

LATEX notation may be preferred.

The remainder of this chapter is organized as follows. Section 7.1 briefly

introduces the ASCII notation for the K definitional framework. Section 7.2

gives a user perspective of K-Maude, both w.r.t. its built-in features and how it

can be used. Section 7.3 describes how K-Maude is translated to Maude, so that

language designers can execute and formally analyze their K language definitions

using Maude, and Section 7.4 describes how K-Maude is translated to LATEX, so

that language designers can visualize their language definitions.

7.1 Writing K in ASCII

As the K framework [146, 143] was discussed at length in Chapter 4, we will

here only briefly recall its features, while focusing on their current representation

in the K-Maude tool.

The idea underlying language semantics in K is to represent the program

configuration as a “nested soup” structure, which contains the context needed

for the computation, with elements of the context represented as multisets or

lists each wrapped inside a corresponding cell; a cell may also contain other cells.

Objects wrapped by cells generally include standard items such as environments,

stores, etc, as well as items specific to the given semantics. Mathematically,

cells are written using the notation 〈. . . 〉env; here ‘env’ denotes the cell label

and ‘. . . ’ will represent the contents of the cell. When written in ASCII, such

as in K-Maude, we prefer to use the XML-like notation 〈env〉 ... 〈/env〉. One

regularly used cell, labeled by ‘k’, represents the current computations structure

of sort K, or simply the computation, which is a y-separated list of tasks,

such as t1 y t2 y . . . y tn. Another, labeled by >, represents the entire

configuration structure.

Figure 7.2 presents the definition of Imp++, a concurrent imperative language

using the K framework, as written in the K-Maude extension of Maude. The

definition bares a resemblance to the general Maude module syntax, but, in

195



kmod IMPPP−SYNTAX is
2 including PL−INT + PL−ID

syntax AExp ::= Int | Id
4 | AExp + AExp

[gather(E e) prec 33 strict ]
6 | AExp / AExp

[gather(E e) prec 31 strict ]
8 | ++ Id [prec 0]

| read
10 syntax BExp ::= Bool

| AExp <= AExp
12 [prec 37 latex ”{#1}\leq{#2}”

seqstrict]
14 | not BExp [prec 53 strict]

| BExp and BExp
16 [gather(E e) prec 55 strict (1)]

syntax Stmt ::= { }
18 | AExp ; [prec 90 strict ]

| Stmt Stmt [prec 100 gather(e E)]
20 | Id = AExp ;

[prec 80 gather (e E) strict (2)]
22 | if BExp then Stmt else Stmt

[strict (1)]
24 | while BExp do Stmt

| print AExp ; [strict]
26 | spawn Stmt [prec 90]

| haltThread ;
28 | var Id ; [prec 2]

| { Stmt } [gather(&)]
30 endkm

32 kmod IMPPP−CONFIGURATION is
including IMPPP−SYNTAX + K

34 syntax K ::= AExp | BExp | Stmt
syntax KResult ::= Bool | Int

36 configuration
〈T〉

38 〈threads〉〈thread∗〉
〈k〉 .K〈/k〉 〈env〉.Map〈/env〉

40 〈/thread∗〉〈/threads〉
〈 store 〉 .Map〈/store〉

42 〈nextLoc〉0〈/nextLoc〉
〈 in〉 .List〈/in〉 〈out〉 .List〈/out〉

44 〈/T〉
endkm

46 kmod IMPPP−SEMANTICS is
including IMPPP−CONFIGURATION

48 rule 〈k〉X:Id ⇒ I : Int〈 /k〉
〈env 〉X &→N:Nat〈 /env〉

50 〈 store 〉N &→ I〈 /store 〉
rule I1: Int + I2:Int ⇒ I1 +Int I2

52 rule I1 / I2 ⇒ I1 /Int I2 if I2 ! =Int 0
rule 〈k〉++ X ⇒ I +Int 1〈 /k〉

54 〈env 〉X &→N〈 /env〉
〈 store 〉N &→(I ⇒ I +Int 1)〈 /store 〉

56 rule 〈k〉read ⇒ I〈 /k〉
〈 in〉ListItem(I) ⇒ . 〈 /in〉

58 rule I1 <= I2 ⇒ I1 <=Int I2
rule not T:Bool ⇒ notBoolT

60 rule true and B:BExp ⇒B
rule false and ⇒ false

62 rule {} ⇒ . rule I ; ⇒ .
rule S1:Stmt S2:Stmt ⇒ S1 ! S2

64 rule 〈k〉X = I ; ⇒ . 〈 /k〉
〈env 〉X &→N〈 /env〉

66 〈 store 〉N &→( ⇒ I)〈 /store 〉
rule if true then S1 else ⇒ S1

68 rule if false then else S2 ⇒ S2
rule 〈k〉while B do S:Stmt ⇒

70 if B then S while B do S else {}〈 /k〉
rule 〈k〉print I ; ⇒ . 〈 /k〉

72 〈out 〉 . ⇒ ListItem(I)〈/out〉
rule 〈k〉spawn S ⇒ . 〈 /k〉

74 〈env〉Env:Map〈/env〉
(. ⇒ 〈thread 〉

76 〈k〉S〈/k〉
〈env〉Env〈/env〉

78 〈 /thread〉)
rule 〈thread 〉〈k〉 .K〈/k〉 〈 /thread〉⇒ .

80 rule 〈k〉haltThread ; ! ⇒ . 〈/k〉
rule 〈k〉var X ; ⇒ . 〈 /k〉

82 〈env〉Env ⇒ Env[N / X]〈/env〉
〈 store 〉 . ⇒ N &→ 0〈 /store 〉

84 〈nextLoc〉N ⇒ N +Nat 1〈/nextLoc〉
rule 〈k〉{S} ⇒ S ! env(Env)〈 /k〉

86 〈env〉Env〈/env〉
syntax K ::= env ( Map )

88 rule env( ) ! env(Env) ⇒ env(Env)
rule 〈k〉env(Env) ⇒ . 〈 /k〉

90 〈env〉 ⇒ Env〈/env〉
endkm

Figure 7.1: Full definition of Imp++ in K-Maude

148

Figure 7.2: Full definition of Imp++ in K-Maude

196



addition to Maude syntax, it uses several K specific constructs which will be

detailed in the sequel. Although the definition is written using pure ASCII in the

K-Maude tool, we have replaced some of the ASCII symbols with mathematical

symbols when typesetting, to improve readability. That is, we have replaced,

here, and everywhere else in this chapter where code is presented the following:

the mapping construct ‘|−>’ by ‘7→’, the K arrow ‘∼>’ by ‘y’, the operation

definition keyword ‘−>’ by ‘→’, and the rewrititng construct ‘=>’ by ‘⇒’.

Although not enforced by the K-Maude tool, the Imp++ presented below is

divided into three modules: syntax, configuration, and semantics. To point out

that, although they bear similarities to Maude modules, the K modules are quite

different, we introduce them by the special keyword kmod is endkm. The left

column presents the syntax of Imp++ (lines 1–31) and the default configuration of

a running program (lines 33–46), while the right column presents the executable

semantics of Imp++. Let us start describing Imp++ from its configuration

module (lines 33–46). Imp++’s computations consist of expressions(arithmetic

and booelan), and statements (line 35). Among them, Boolean and integers

are distinguished as results, that is, finished computations (line 36). Execution

wise, Imp++ is an environment-based multi-threaded language (lines 39–41);

The ∗ postfixed to the name of the thread cell indicates its multiplicity. All

threads are grouped in a threads cell and share a common store (line 42), as

well as an input and an output stream (line 44). The entire configuration is

contained in a top cell T.

An particularly important (in the context of programming language definitions)

extension of Maude employed by K-Maude is the ability to use the Backus-

Naur Form (BNF) of declaring syntax, introduced by the syntax keyword,

in addition to the algebraic mix-fix operation declaration syntax provided by

Maude. Although this syntax is equivalent with the algebraic one using sort

for non-terminals and subsorts and mixfix operations for productions, and

in fact it currently is simply syntactic sugar for that, we believe that it is

more appealing for people already familiar with BNF from parsing/compiling

programming languages.

Arithmetic expressions are constructed from variables and integers with addi-

tion and division (lines 2–7, 49–53), but additionally include variable increment

(lines 8, 54–56), to exhibit side effects, and external input (lines 9,57–58). Boolean

expressions (lines 10–16, 59–62) are constructed from comparing arithmetic ex-

pressions, with conjunction and negation as connectives. Statements consists

of standard constructs as the empty statement, the expression statement, se-

quential composition, assignment, conditional, and loop (lines 17–24, 63–71),

to which were added the following: output (lines 25, 72–73), thread creation

and dissolution (lines 26, 74–80), abrupt thread termination (lines 27, 81), as

well as local variable declarations and blocks (lines 28–29, 82–91). To exhibit

features of K-Maude not shown by the Imp++ definition, we will also discuss

features from the Agent definition presented in Section 4.3.

197



Due to K’s own use of the ‘.’ symbol (for generic unit), we do not use ‘.’ as

terminator in K modules, as mandatory in Maude modules; instead, we rely

on reserved keywords such as including, syntax, configuration, context,

and rule, to disambiguate declarations. The special BNF syntax declarations

described above can be annotated with Maude operator attributes to ease

disambiguation (such as precedence and gathering), or to specify semantic

attributes (such as associativity). However, in addition to Maude’s attributes,

K specific attributes can be added, such as strict, which is used to specify

that (certain) arguments of a language construct need to be evaluated first

(and their effects on the global state be propagated) before giving semantics

to the construct itself.

K Rewrite Rules

A K definition consists of two types of sentences: structural rules (often reversible,

like equations) and computational rules (typically non-reversible).

Structural rules carry no computational meaning; instead, borrowing a con-

cept from Chams, structural rules can heat and cool computations. When a

computation is heated, it breaks into smaller pieces, exposing subexpressions

of more complex expressions for evaluation. Cooling reverses this process, re-

assembling the (potentially modified) pieces into a computation with the same

“shape”. The following are examples of structural rules:

a1 + a2 
 a2 y a1 +�
a1 + a2 
 a1 y �+ a2

if b then s1 else s2 
 byif � then s1 else s2

Language syntax is completely abstract in K, in the sense that each language

construct is a ‘KLabel’ which is applied to other computations, i.e., terms of sort

K; for convenience, and also supported by the K-Maude tool, we continue to use

the mix-fix notation for syntax, like above. Unlike in evaluation contexts, � is not

a “hole”, but rather part of a KLabel, carrying the obvious “plug” intuition; e.g.,

the KLabels involving � above are ‘�+ ’, ‘ +�’, and ‘if � then else ’.

Many structural rules can be automatically generated by annotating constructs

in the language syntax with ‘strict’ attributes: a ‘strict’ attribute generates the

appropriate structural rules for each strict argument. If an operator is intended

to be strict in only some of its arguments, then the positions of the strict

arguments are listed as arguments of the ‘strict’ attribute; for example, the first

two equations above directly correspond to the attribute ‘strict’ for addition in

Imp++ (line 5), i.e., strict in all arguments, while the last one corresponds to

strict(1) attribute used for the Imp++ conditional (line 24). One can also define

evaluation contexts in K, by indicating the “hole” where evaluation should take

198



place; for example, assuming an extension of Imp++ with pointers and a C-like

dereferencing operator ∗ (like the Agent definition presented in Section 4.3), a

context declaration ‘context ∗ [HOLE] = ;’ says that the argument of ∗ needs

to be evaluated before the assignment can be defined.

Computational rules represent actual steps of computation. However, to

account for the differences between K rules and regular rewrite rules, we chose

to introduce K rules with the rule keyword, even when they have the form of

regular rewrite rules, e.g., the rules for addition and conditional (line 52, and

lines 68–69, respectively). rule can also be used to express structural rules, by

adding the structural attribute to the end of the rule.

In-place rewriting. In addition to regular rewrite rules, of the form

‘rule l ⇒ r’, K allows one to also write rules using the following contex-

tual notation:

C[t1

t′1

, t2

t′2

, ..., tn

t′n

]

which says that in (multi-)context C (that is a term with multiple, ordered holes),

each pattern ti rewrites to t′i for each i ∈ {1, ..., n}. An n-hole context could

formally be described as a term over the set of variables {�i}1≤i≤n containing

exactly one occurrence of each variable �i. An instantiation of an n-context

C with terms t1, . . . , tn, written C[t1, . . . , tn] is obtained by applying on C the

substitution yielding ti for each �i.
One motivation for in-place rewriting rules is that they allow for a more

compact and less error-prone representation for rules matching large configura-

tions but effecting only small changes. Another motivation is that the context

C can be concurrently shared by various rules, which can apply concurrently

provided that none of them changes C (C is “read only”). If one ignores this

concurrency aspect, then one can translate each K contextual rule into a rule

C[t1, t2, ..., tn] → C[t′1, t
′
2, ..., t

′
n]; this is precisely what K-Maude does. In K-

Maude, the mathematical in-place rewriting l
r is injected in-place as ‘l ⇒ r’.

By default, the in-place rewriting construct ‘ ⇒ ’ is greedy; parenthesis can be

used for disambiguation purposes (see, e.g., lines 56, and 76–79).

Anonymous variables. Another advantage emerging from the single-term

representation of rules induced by in-place rewriting is that, variables occurring

only once in the rule can now be “anonymized”, that is, replaced by the anony-

mous variable symbol ‘ ’, since they are only used for matching purposes. This is

especially true in the case of matching inside cells, of which we usually use/replace

only one object in a rule, but we need to match the contents of the entire cell. A

special notation for cells is used to help the intuition that the cells might be“open”

199



at one end, or both. For example, in the rule for reading a variable from the

store (lines 49–51), one can either use 〈k〉X ⇒ I〈 /k〉 or 〈k〉(X ⇒ I) y 〈/k〉
to specify that X is to be matched and replaced at the beginning of computa-

tion, and use either 〈env 〉X 7→N〈 /env〉 or 〈env〉 X 7→N 〈/env〉 to specify that

X 7→N is to be matched in the middle of the environment; also, one can use

either 〈out 〉 . ⇒ ListItem(I)〈/out〉 or 〈out〉 (. ⇒ ListItem(I))〈/out〉 to add

an integer to the end of the output list (line 73). One could think of this notation

as having the following intuition: 〈〉 is a membrane delimiter, which can carry

inside attributes such as name (e.g., ‘out’), visual information specifying that a

membrane is closing the cell (‘/’), as well as information specifying whether a

part of the cell (the left, the right, or both) is subsumed by the pattern (‘ ’).

Therefore one can read the “tag” 〈 /k〉 as: the membrane closing the k cell while

subsuming the final part of the cell. By convention we will always attach ‘/’ to

the name of the cell, and ‘ ’ to the membrane wall closest to the cell contents.

As previously mentioned, the unit elements for the List, Set, Map, and even

K sorts is ‘.’; however, since cells are not typed, whenever disambiguation is

needed, one can postfix the name of the sort to the ‘.’; e.g., the initial values

in the configuration term (lines 37–45), or the empty computation ‘.K’ used in

the rule for dissolving a thread (line 80). The preprocessor transform them to

the right constants used in the Maude represenation. Also, the preprocessor

allows one to avoid variable declarations by declaring variables inline in the rules,

using the Maude syntax, e.g., I : Int. However, once a variable was declared

inline, subsequent apparitions of the variable need not be sorted anymore, as

they would assume the alread declared sort.

The notation used by the K-Maude tool is a one dimensional ASCII rendition

of the K mathematical notation presented in Chapter 4. For example, the K
mathematical rendering of the Imp++ assignment rule (lines 65–67) is:

〈X = I;

·
〉k 〈 X 7→ N 〉env 〈 N 7→

I

〉store

The above rule says that if the assignment X = I is the first computational task,

and if X is at location N in the environment, then replace whatever is at location

N in the store by I and discard the assignment. Note that in the mathematical

notation the membranes wrapping the cells, e.g., 〈env 〉 〈 /env〉 are replaced by

“thinner” membranes, e.g., 〈 〉env, but still maintain all relevant information.

7.2 K-Maude Interface

For the purpose of this chapter, K can be regarded as a notational layer on top

of rewriting logic, specialized and optimized for writing definitions of complex

programming languages and models. Since our aim for K-Maude is to fully

support rewriting logic and Maude, we implemented it as an extension of Maude.

200



Consequently, one is free to use or not the K notation when writing language

definitions. An extreme approach, which could be convenient for existing Maude

users who want to gradually get exposed to K, is to only include the provided

K-Maude core and then follow the K language definitional technique but use

plain Maude, the same way one can give SOS or other semantic definitions using

plain Maude, as depicted in Chapter 3. This section presents the ingredients

of both the K technique and the specific K notation used by the K-Maude tool.

However, we will insist more on notation here, and refer the interested reader

to the specific sections from Chapter 4 discussing in depth the corresponding

concepts within the K technique.

7.2.1 K-Maude Core

The core syntax of K-Maude can be found in file ‘k-prelude.maude’, module

K-TECHNIQUE. It starts by providing means to build computations, as sequences

of abstract syntax trees, as well as distinguishing among them the result com-

putations. Then it defines lists, bags, sets, and maps, as sorts and a way to

inject computations as their elements. Finally, the core provides minimal sup-

port for describing configurations as “nested soups” of cells, along with two

default cell names, ‘k’ and ‘T’.

Basic K syntax.

A computation is a term of a specific sort K, and is defined as a list of tasks

with identity ‘.’ and constructor ‘ y ’ as well as a way of building structured

computations by applying labels (one per language construct, and additional,

as needed) on top of lists of computations:

op y : K K → K [prec 100 assoc id : .] .

op ( ) : KLabel List{K} → K [prec 0 gather(& &)] .

In K-Maude, the sort List{K} is built from K using ‘ ,, ’ as a constructor (to

allow user to use the single ‘,’ in definitions) and ‘. List{K}’ as unit (to disam-

biguate from the unit of computations). Finished computations are distinguished

to allow for a computational treatment of strictness rules. Sort KResult, is

meant to describe results, or computations which need no further evaluation,

and sort List{KResult} is the subsort of ListK built only from results. We

additionally introduce KResultLabel and KHybridLabel, as subsorts of KLabel,

together with their corresponding application constructors:

op ( ) : KResultLabel List{K} →KResult [ditto ] .

op ( ) : KHybridLabel List{KResult} →KResult [ditto ] .

The distinction between the two is that, while the first encapsulates the entire

list of computations below into a result, the second is “hybrid”, that is, it only

becomes a result when all the computations it “wraps” become results.

201



Lists, bags, sets, and maps.

K-Maude provides generic sorts List, Set, Bag and Map, constructed from their

corresponding element sorts ListItem, SetItem, BagItem and MapItem, with

construtor ‘ ’ and having unit ‘.’. Moreover, the following injections of K into

the elemnt sorts are provided: ListItem, SetItem, BagItem, and ‘ 7→ ’ (to inject

a pair of K’s into MapItem).

Labelled Cells.

The configuration is defined as a structured “soup” of cells. Therefore, we use

the already defined sort Bag to hold such a collection of cells. Having a unique

sort for cells makes cell nesting easy; a cell holding other cells simply needs

to take a Bag as an argument. To declare a cell, one only needs to specify

its label, as a ‘CellLabel’.

sort CellLabel .

op 〈 〉 〈/ 〉 : CellLabel K CellLabel → BagItem [prec 0] .

op 〈 〉 〈/ 〉 : CellLabel List CellLabel → BagItem [prec 0] .

op 〈 〉 〈/ 〉 : CellLabel Bag CellLabel → BagItem [prec 0] .

op 〈 〉 〈/ 〉 : CellLabel Set CellLabel → BagItem [prec 0] .

op 〈 〉 〈/ 〉 : CellLabel Map CellLabel → BagItem [prec 0] .

ops k T : → CellLabel .

K-Maude currently allows five kind of cells, i.e., containing either a compu-

tation, a list, a bag, a set, or a map. The syntax for the cells is defined as

that of an XML element, with an opening, and closing tag, which must match

(i.e., the CellLabels must be equal).

7.2.2 K-Maude Specific Modules

The K-Maude modules are introduced by a specific keyword kmod is endkm,

to distinguish them from usual Maude modules; however, this is purely a syntactic

sugar, as the internal representation of a K module in Maude would be a proper

system module. A script, external to Maude, is used to preprocess the K
modules into a form which can be parsed by Maude, for example by a adding

the terminator ‘.’ at the end of declarations, by changing kmod into ‘mod’ and

endkm into ‘endm’, and by wrapping specific K attributes in ‘metadata’ strings.

7.2.3 Language Syntax and Annotations

As already mentioned, the syntax of the language is defined using BNF rules;

however, the preprocessor transforms each such BNF rule to a Maude declara-

tion of a mix-fix algebraic operation, following the equivalence between CFG

202



grammars and mix-fix algebraic signatures. For example, the algebraic opera-

tion associated to the BNF rule for conditional (line 22) is translated into the

operation declaration op if then else : BExp Stmt Stmt →Stmt.

Syntax Attributes.

In addition to the existing operation declaration attributes provided by Maude,

K-Maude introduces several new attributes:

– strict specifies what arguments need to be evaluated before evaluating the

language construct itself. For example, the ‘strict(2)’ attribute of the assignment

declaration in Imp++ (line 22), states that the semantic rule for assignment

can assume that the second argument is evaluated.

– seqstrict is similar, but also states the evaluation sequence of the arguments.

– hybrid specifies that the language construct would become a value once all

its arguments have been fully evaluated.

7.2.4 Defining the Program Configuration

Currently, the program configuration is specified by providing a term which

should stand for the initial configuration, introduced by the configuration

keyword. The cell labels present in the configuration are then inferred and

declared as CellLabel constants by the preprocessing tool. Moreover, to keep

closer to the XML notation we do not write spaces around the cell labels; these

are also added by the preprocessing tool.

Specifying the structure of the configuration serves not only for documenting

purposes, but has consequences in both modularity and compactness of defini-

tions, since the semantics rules need to mention only the context required for

them to apply, as detailed in next section.

7.2.5 Defining Language Semantics

K-specific semantics constructs which are supported by K-Maude are contexts,

and (structural or computational) rules. Contexts can be though of as evaluation

contexts, specifying the order of evaluation, while K rules provide notational

shortcuts to make definitions more compact.

Context Strictness.

K-contexts are usually used for specifying strictness constraints which depend on

a context rather than on a single construct. For example, the context strictness

declaration ‘context ∗ [HOLE] = ’ (see the Agent definition in Section 4.3)

specifies the evaluation to an L-value of a pointer in the assignment construct,

allowing the rule for pointer-assignment to assume it has a value in place of

the first argument (the hole); the fact that it would also have a value instead

of the second argument was specified by the strictness annotation for ‘ = ’.

203



Actually, all strictness annotations are turned by the tool into context strictness

ones during the compilation process, before the actual heating and cooling

equations are being generated.

K Rules.

K rules are introduced by the rule keyword, and basically describe a special

pattern term enriched with syntax for expressing the K-specific features described

below. There are two flavors, structural and computational, distinguished

by adding the attribute structural to the former. The intuition is that the

structural rules prepare the program state for a computational step. Therefore,

the K-Maude tool translates the former to equations and the latter to rules.

In-place rewriting. A K rule is a term which should contain at least one

occurrence of the T1 ⇒ T2 construct, which is used as a textual representation

for the K visual replacement pattern: T1
T2 . For example, the increment rule of

Imp++ (lines 54–56) contains two non-trivial in-place replacements, while also

sharing quite a bit of the context: if the construct ‘++ X’ is found on top of the

computation, and the environment contains the mapping of X to a location N ,

and the store maps N to an integer I, then ‘++ X’ is locally replaced by the

value associated to I + 1, and I is locally replaced by I + 1 in the store. The

‘ ⇒ ’ arrow is greedy, i.e., it will expand to the nearest enclosing boundaries.

Therefore, one might sometimes need to use parenthesis to clearly fix those

boundaries for parsing reasons, e.g., changing the value at a location in the store

in line 56, but also semantic reasons, e.g., new thread creation in lines 76–79.

Anonymous variables. Specified by ‘ ’, anonymous variables can be used

to replace all variables whose name is not needed in the match-and-replace

process. For example, the Imp++ ‘haltThread’ rule (line 81) uses an anony-

mous variable to abstract the remainder of the computation, since it will be

discarded by the rule.

Cell comprehension. K-Maude allows partial specification of the contents of

a cell, by adding ‘ ’ as an attribute inside the membrane delimiter ‘〈〉’ on the

side of the cell which should be abstracted away. For example, the Imp++ rule

for output (lines 72–73), saying that the integer argument of a ‘print’ statement

is appended to the contents of the ‘output’ cell, abstracts away both the rest of

the computation, and the existing output list, as not being changed by the rule.

Context Abstraction and Context Transformation.

The main reason for specifying the structure of the configuration is that one does

not need to mention the full context required for the application of a rule, but

only the parts which are relevant. Within a rigid configuration structure in which

204



the path to each cell is unambiguous, it becomes straight-forward to infer what

context needs to be added to a rule to adapt it to the running configuration. A

simple instance of using context abstraction is the Imp++ assignment rule (lines

65–67). The rule for assignment should be the same in any definition containing

an environment and a store. Although in our definition the store is not at the

same level with the computation and the environment, we can still use this rule in

the specification, because it can be easily inferred which store the rule refers to.

The following rule could be used to define a rendez-vous synchronization

construct as follows:

rule 〈k〉 rv i ⇒ . 〈 /k〉 〈k〉 rv i ⇒ . 〈 /k〉 .

Note that, although the two computation cells need to be in two different threads,

there is no danger of confusion, since the multiplicity of the ‘k’ cell is one, so

the only way to make sense of this rule is to have each computation in its own

thread, since the multiplicity of the ‘thread’ cell may vary.

Default contexts. Another aspect of the context abstraction with impact on

modularity is filling the context with default values on the right-hand-side of

an (in-place) rewriting pattern. One such example is the Imp++ rule for thread

creation (lines 74–79). Note that we have specified the thread cell as being

incomplete in both sides. This is used as a notation to specify that the thread

cell is incompletely specified, and thus it should be context-transformed, filling

all gaps with default values. For this specific configuration, this notation was

not necessary, but this allows for modular changes of configuration when adding

cells having constant initial values when a thread is started, such as a function

call stack or a set of locks hold by the thread.

It is arguable that context abstraction could have undesirable effects on badly

written specifications. However, due to its deterministic nature, we believe it to

be rather useful and intuitive. Besides saving the need for providing additional

context (which could get quite large and tedious to write), and thus providing

brevity to specification, it also enables reusing, since now a rule specifies only the

minimal needed context. Moreover, K-Maude desugars K rules to pure rewriting

logic rules and equations, so one could always inspect the resulting rules to ensure

no unexpected behaviors are introduced when resolving the context abstraction.

Rewrite Rules.

One can additionally use regular rewrite rules and equations when giving seman-

tics to the language constructs. The K-specific syntactic conventions presented

above also apply to them; e.g., one can use ‘ ’ as an anonymous variable in

the left-hand-side of a rule, and even context abstraction in the right-hand-side,

which is useful, for example, to set up the initial configuration when starting

the execution of a program.

205



7.3 From K-Maude to Maude

This section describes the technical part of the K-Maude tool. As the semantics

of the K framework itself is given using rewriting logic, it comes natural that the

executable semantics of K, as given by the K-Maude tool, is given by reduction

to pure Maude (executable) rewrite theories. That is, each of the K-specific

features is transformed into its rewriting logic representation.

Syntax.

As mentioned in Sec. 7.2.3, the K-Maude interface allows the definition of syntax

as an algebraic signature, using subsorting and mixfix operations to emulate CFG

grammar descriptions. This allows the programs to look more natural, but also,

more important, it improves the readiness of the semantic rules. Nevertheless, as

previously mentioned, the K framework takes a fairly abstract view on syntax,

that is, a tree built as labels applied to (possibly empty) lists of subtrees. To

achieve that, the K-Maude tool transforms all syntax into labels. With syntax

being just labels and with the distinction between value (of sort KResult) and

non-value computations, the strictness attributes are easily desugared as heating

only on non-value computations and cooling only on values.

Semantics.

The semantic part of a K definition is gradually transformed into an executable

Maude module as follows: First, the configuration term is used to resolve context

abstraction. Next, cell comprehension is resolved by adding anonymous variables,

which, in their turn are replaced with proper (fresh) variables of the right sort.

Then, K rules are transformed into rewriting logic equations and rules, by

resolving the in-place rewriting. Finally, all computation terms (including the

test programs specified by the user) are transformed into ASTs.

Besides the original preprocessor, which wraps the K definitions so that they

can be recognized and parsed by Maude, all syntax and semantic transformations

are entirely defined within Maude, taking advantage of its reflective capabilities

and of the predefined Maude modules used to represent and transform meta-

terms and meta-modules. In the sequel we present some highlights of the

process described above.

7.3.1 From Syntax to K Syntax and K Representation

When specifying the syntax we want to take advantage of the full power of

specification, to obtain a syntax as close as possible to the desired language syntax,

which also makes the semantics rules look more natural and easy to read. To do

that, and to reduce parsing conflicts, we allow specification features as multiple

sorts, mixfix operators, and so on. However, we want to keep computations to a

minimal structure to facilitate easy and generic traversal functions, which are

206



crucial for advanced reflective features such as code generation (see, e.g., the

Agent defintion 4.3). To achieve this, the K-Maude tool automatically generates

the labels for the abstract (running) syntax from the input (user) syntax.

Abstract Syntax.

The K running syntax only consists of K labels, as defined in the core syntax of

computations presented above. Since the semantic rules mix the syntax with

semantics-specific contructs, and use them in contexts where computations are

required, the user has to subsort all syntactic categories to computation sorts

K and KResult, depending on whether they represent proper computations or

values, respectively. The tool uses this information to generate the appropriate

labels, i.e., constants of the ‘KLabel’ or the ‘KResultLabel’ sorts, for each

operation symbol. For example, for the conditional construct, its corresponding

K label declaration is ‘op ’ if then else : → KLabel’ To avoid label symbol

conflicts, the K label symbols are generated by simply quoting the identifier

used to declare the mixfix syntactic construct.

Handling Data Types.

There are certain sorts, such as integers, booleans, and identifiers, which need

to be handled in a special way, to be able to identify them when giving the

semantics. To address that, we allow certain sorts to be identified as builtins at

the user level, by introducing a new computation sort Builtins and subsorting

all such sorts to it. These sorts will be injected into labels in an appropriate

manner, following the subsorting chain to either KResult or K. For example,

integers are injected into KResultLabel as ‘op Int : Int → KResultLabel’,

since they are subsorted to KResult, while identifiers are injected to KLabel

through ‘op Id : Id → KLabel’.

Translating Terms.

The constant labels and constant injections defined above are used to completely

replace the original syntax. For example, the program fragment

if a <= 2 then a = 2; else {}

would be translated to:

’if then else(’ <= (Id a(.List{K}),,Int 2(.List{K})),,
’ = ;(Id a(.List{K}),,Int 2(.List{K })),,’‘{‘}(. List{K}))

7.3.2 Strictness

Strictness declarations provided as attributes to operator declarations are trans-

lated into K contexts declarations, one for each position in which the operation

should be strict. Then, each context is transformed into two equations: one

207



which pulls the strict argument (represented by the hole) out of the context

for evaluation, and another one which, once the argument becomes a value,

plugs it back into its original context.

Strict Operator Attributes.

For each position declared as strict for an operation, a context declaration is gener-

ated, containing a hole. For example, the strict(2) declaration for the assignment

operation in Imp++ (line 22) would generate the following context declaration:

context ’ = ;(K1:K,,[HOLE]), while the seqstrict declaration for <= is

desugared into two context declarations, context ’ <= ([HOLE],,K1:K) and

context ’ <= (K1:KResult,,[HOLE]). Sequential strictness in esured by requir-

ing the first argument of the last context above to be an evaluated computation.

Strict Contexts.

Although we could identify proper computations by a side condition testing

that they are not of sort KResult, we prefer to introduce a new category of

computations, KProper, with the intuition that KProper and KResult form a

partition of the K sort. Since all computations are built by applying labels on

other lists of computation, we therefore also introduce the sort KProperLabel,

and change all existing label definitions such that any K label which is not a

result label will be a proper label. For example, the label associated to the

conditional would now have KProperLabel as its resulting sort; the same holds

for the ‘Id ’ injection. Having KProper computations, the strict contexts are

desugared as follows: two equations are generated for each context, one for

pulling out the proper computation for evaluation and the other for plugging

in the result computation. For the assignment operation declared strict in the

second argument, the generated equations are:

eq 〈 k 〉 K1:K = Kcxt:KProper yRest:K 〈/ k 〉
= 〈 k 〉 Kcxt:KProper y freezer (”’ = ;(K1:K,,‘[HOLE‘]:K)”)(

freezeVar(”K1:K”)(K1:K)) yRest:K 〈/ k 〉 .

eq 〈 k 〉 Kcxt:KResult y freezer (”’ = ;(K1:K,,‘[HOLE‘]:K)”)(

freezeVar(”K1:K”)(K1:K)) yRest:K 〈/ k 〉 .

= 〈 k 〉 K1:K = Kcxt:KResult yRest:K 〈/ k 〉

These equations apply only at the top of the continuation, because they should

only affect the current evaluation redex. Again, as a way to generate unique

and meaningful identifiers, we have chosen to have a generic wrapper freezer

which takes the printed form of an entire context, represented as a string, and

returns a K label. Moreover, all the variable arguments are wrapped by a

label obtained from appling the special freezeVar constructor over the string

representation of the variable name. This serves not only to easily identify

variables visually, but also to prevent variable contents from mixing in the case

of variables of sort List{K}.

208



7.3.3 K Semantics

This section describes and exemplifies the process of translating the K semantic

constructs to Maude constructs, obtaining an executable definition as a result.

Applying Context Transformers.

Although K-Maude allows the specification to omit the configuration context

(for modularity and compactness purposes), this context needs to be filled in

by the tool as a first step towards obtaining a runnable definition. To do that,

we use the tree associated to the configuration declaration and iteratively

match the cells having the maximal level in the tree, and to wrap them (if not

already wrapped) by their corresponding parent cell in the configuration tree,

and then continue. Let us present how the context transformers algorithm works

on the examples discussed in Sec. 7.2.5.

The assignment rule. For this rule, the ‘k’ and ‘env’ cells are the deepest

in the configuration tree; they both are subcells of the ‘thread’ cell. Since the

‘store’ cell corresponds to a higher level in the configuration tree, the ‘k’ and

‘env’ cells are wrapped by a ‘thread’ cell in the first iteration of the algorithm:

rule 〈thread 〉 〈k〉 X = I ; ⇒ . 〈 /k〉 〈env 〉 X 7→N 〈 /env〉 〈 /thread〉
〈 store 〉 N 7→ ( ⇒ I) 〈 /store 〉

However, the ‘store’ cell is still higher in the configuration than the ‘thread’ cell,

so the ‘thread’ cell itself needs to be wrapped by the ‘threads’ cell:

rule 〈threads 〉 〈thread 〉 〈k〉 X = I ; ⇒ . 〈 /k〉 〈env 〉 X 7→N 〈 /env〉
〈/ thread〉 〈/ threads〉 〈 store 〉 N 7→ ( ⇒ I) 〈 /store 〉

The levels of the cells in the new term correspond to their levels in the config-

uration term; therefore the algorithm concludes successfully.

The rendez-vous rule. rule 〈k〉 rv I ⇒ . 〈 /k〉 〈k〉 rv I ⇒ . 〈 /k〉
Although the two computations are here at the same level, their multiplicity

does not correspond to the one declared in the configuration term. Therefore

the context transformers will wrap each of them in their container ‘thread’ cell:

rule 〈thread 〉 〈k〉 rv I ⇒ . 〈 /k〉 〈 /thread〉
〈thread 〉 〈k〉 rv I ⇒ . 〈 /k〉 〈 /thread〉

Since the thread cell has variable multiplicity, the process is complete.

Default cell values. Consider a simple ‘run’ construct, which given the

program to be run and a list of input values creates an initial configuration

for running the program with the given input. As only the k cell and the in

cell would have non-default values in the initial configuration, we can write the

rule for initiating the computation as:

209



rule run(P,L) ⇒ 〈T 〉 〈k〉 P 〈/k〉 〈 in〉 L 〈/in〉 〈 T〉

Since an incomplete cell appears in the right-hand-side, it will be replaced by the

corresponding default configuration (sub)term in which the user-specified cells

substitute their corresponding cell in the configuration. Moreover, a cell havein

multiplicity zero or more is only included if one of its sub-cells was specified by

the user. For our example, the generated rule would be:

rule run(P,L) ⇒ 〈T〉
〈threads〉 〈thread〉 〈k〉 P 〈/k〉 〈env〉.Map〈/env〉 〈/thread〉〈/threads〉
〈 store 〉 .Map〈/store〉 〈nextLoc〉0〈/nextLoc〉 〈in〉 L 〈/in〉 〈out〉 .List〈/out〉
〈/T〉

Resolving Variables.

Once the context transformers have been applied (taking advantage of the cell

comprehension feature), the next step towards obtaining a standard rewriting

theory is to resolve cell comprehension and anonymous variables by replacing

them with variables of the right sort. To do that, the K definition is traversed,

and each term is recursively visited. The visitor uses contextual information to

infer the constructor and the variables needed to resolve cell comprehension, and

then it uses the full signature to resolve the anonymous variables. For example,

the assignment rule presented above will look as follows after this step:

rule 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag

〈k〉 (X = I ; ⇒ .) y ?3:K 〈/k〉 〈env〉 ?4:Map X 7→N 〈/env〉
〈/thread〉 〈/threads〉 〈 store 〉 ?5:Map N 7→(?6:Int ⇒ I) 〈/store 〉

Note that although set comprehension uses ellipses on both sides of the cell, we

only need one variable, since the constructor is associative and commutative.

The names for the replacement variables start with ‘?’ and have appended

numbers for disambiguation.

Resolving In-place Rewriting.

Transforming K rules into rewrite rules and equations becomes relatively sim-

ple upon the completion of the previous steps. The two terms l and r of

the rewrite rule (l ⇒ r) or equation (l = r), corresponding to the K rule

C[ l1 ⇒ r1 ,..., ln ⇒ rn ], can be inferred as being l = C[l1 ,..., ln ], and

r = C[r1 ,..., rn]. This inference process is defined by building the two terms

l and r together while traversing the K rules. If the rule has the structural

attribute, then it would be transformed into an equation; otherwise, into a

rewrite rule. At the completion of this step, the assignment rule is:

rl 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag

〈k〉 X = I ; y ?3:K 〈/k〉 〈env〉 ?4:Map X 7→N 〈/env〉
〈/thread〉 〈/threads〉 〈 store 〉 ?5:Map N 7→?6:Int 〈/store 〉

⇒ 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag

210



〈k〉 . y ?3:K 〈/k〉 〈env〉 ?4:Map X 7→N 〈/env〉
〈/thread〉 〈/threads〉 〈 store 〉 ?5:Map N 7→I 〈/store 〉

Reduction to the K Abstract Syntax.

After all previos transformation have applied, the rule is transformed to the AST

form. Additionally, this step reduces the compositions of constructors with their

identities (due to the use of · in rules) which were introduced at the previous

step. The final running version of the assignment rule would thus be:

rl 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag

〈k〉 ’ = ;(Id X(.List{K}),,Int I (.List{K})) y ?3:K 〈/k〉
〈env〉 ?4:Map Id X(.List{K}) 7→Int N(.List{K}) 〈/env〉
〈/thread〉 〈/threads〉
〈 store 〉 ?5:Map Int N(.List{K}) 7→Int ?6:Int (.List{K}) 〈/store〉

⇒ 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag

〈k〉 ?3:K 〈/k〉 〈env〉 ?4:Map Id X(.List{K}) 7→Int N(.List{K}) 〈/env〉
〈/thread〉 〈/threads〉
〈 store 〉 ?5:Map Int N(.List{K}) 7→Int I (.List{K})) 〈/store〉

7.4 From K-Maude to LATEX

To facilitate the visualization, undestanding, and debugging of K definitions,

as well as their inclusion in research papers and presentations, K-Maude allows

for annotations (as special attributes) specifying how various constructs should

be represented in LATEX, and provides a tool (written in Maude, as well) which

automatically generates a LATEX document from a provided K-Maude definition.

The LATEX-specific attributes (currently only renameTo) are wrapped in the

latex attribute. For example, the following environment cell definition requires

that ‘〈=’ be typeset as ‘≤’.

op <= : AExp AExp →BExp [latex(renameTo \ensuremath\leq )]

Typesetting Styles.

The LATEX generated from K modules is fully configurable, as each specific part

of a definition is enclosed in LATEX macros. The compilation script then takes the

output produced by Maude and includes a style file in the preamble, containing

definitions for all the macros. Moreover, it allows for the used to provide its

own style file which is loaded after the main one, and can customize part of the

macros. K-Maude currently provides two such main styles, differing only in the

way they typeset cells. One of them typesets rules using only the mathematical

K notation, producing rules as the one at the end of Sec. 7.1, or the ones in

Chapters 4 and 6. The other, used in Chapter 1 and presented below, employs a

more graphical notation for cells, and it is thus better for visualizing definitions.

211



Formatted Output.

Sort, subsort, and operation declarations obtained after desugaring the origi-

nal BNF notation are converted back to their equivalent BNF notation. For

example, the Imp++ syntax for arithmetic expressions (lines 11–22) is auto-

matically typeset to:

AExp ::= Int | Id

| AExp + AExp [strict]

| AExp / AExp [strict]

| ++ Id

| read
K cells are represented using the tikz package as rectangles with rounded

sides and with the cell label attached to the top. Completely specified cells have

both sides rounded. Incomplete cells, on either side, have the corresponding side

“jagged”. For example, the Imp++ assignment rule (lines 39–41) is typesetted as:

X = I ;

.

k

X 7→ N

env
N 7→

I

store

The configuration configuration term for Imp++ (lines 38–45) is typesetted to:

.K

k

.Map

env

thread*

threads

.Map

store

0

nextLoc

.List

in

.List

out

T

To ensure that the definition is typsetted in the order it was written in, and that

the cells inside a rule are typesetted in order specified by the user, we use modified

versions of the K-TECHNIQUE module and of the Maude META-MODULE module

for the K to LATEX transformation. More precisely, both modules are altered by

removing all commutativity attributes. This basically means that, for the purpose

of this transformation, bags and sets of (meta-) rules, equations, membership

axioms, operation declarations, subsorts, and sorts, are all regarded as lists.

7.5 Discussion

The current K-Maude implementation is reasonably stable and is successfully

used in teaching Programming Languages Design at UIUC and in Ias, i, Romania.

212



Nevertheless, there is still plenty of place for improvement in areas such as

module system support, compilation of definitions, interface and error messages,

or the possibility of exploring all behaviors for non-deterministic/concurrent

executions. A more detailed exposition of the future work proposed for the

K-Maude tool can be found in Section 9.2.

213



Chapter 8

Related Work

In this chapter we review the research literature which is closest to the material

presented in the dissertation. In the sections below we will focus on three main

areas of research which we believe to be mostly related to our topic.

First we will review the existing efforts within the rewriting logic semantics

project, with a special emphasis on the work based on the K framework and

technique in Section 8.1. Then, we will review the major existing techniques

and frameworks for programming language design in Section 8.2. Finally, we

conclude with some related rewriting-based formalisms in Section 8.3.

8.1 Rewriting Logic Semantics

RLS is a collective international project. Through the efforts of various re-

searchers, there is by now a substantial body of work demonstrating the useful-

ness of this approach [21, 174, 170, 168, 106, 173, 31, 147, 175, 58, 57, 87, 22,

108, 109, 27, 26, 55, 35, 153, 3, 166, 40, 152, 91, 80, 61, 6, 56, 7]. A first snapshot

of the RLS project was given in [109], and a second in [111]. In particular,

a substantial body of experience in giving programming language definitions,

and using those definitions both for execution and for analysis purposes has

already been gathered. For example, Java 1.4 (see also [29] for a complete

formal semantics) and the JVM (see [58, 56]) have been specified in Maude

this way, with the Maude rewriting logic semantics being used as the basis

of Java and JVM program analysis tools that for some examples outperform

well-known Java analysis tools [58, 57]. A semantics of a Caml-like language

with threads was discussed in detail in [109], and a modular rewriting logic

semantics of a subset of CML has been given in [27] using the Maude MSOS

tool [28]. Other language case studies, all specified in Maude, include BC [22],

CCS [174, 22], CIAO [166], Creol [87], ELOTOS [173], MSR [25, 169], PLAN

[168, 166], the ABEL hardware description language [91], SILF [80], FUN [143],

Orc [6, 7], and the π-calculus [170].

K Related Work

Although introduced relatively recently, K has already generated a consistent

body of research projects and publications. Even from its incipient stages, K

214



aimed at scalability: to define and analyze real life programming languages.

For example, a comprehensive definition of Java 1.4 in Maude was specified

following the K technique and used to derive a state-of-art competitive model-

checker for Java [57]. More recently, the same definition was adapted and

used to verify security-related properties for Java programs [4, 5]. Besides

analyzing Java programs, the K technique was also used to define a complete

static semantics for C which can support checking pluggable domain specific

policies, such as units of measurement [81], which can be used to analyze real C

programs. Additionally, [149] uses K to define a symbolic semantics for pointer

allocation in a C-like language, aiming at runtime-verifying memory safety. A

K semantic definition of C is given in [51], one for Scheme R5RS in [100], and

one for the Beta language in [79].

There are also several tools and techniques based on K. For example, Chapter 7

describes the K-Maude prototype, a Maude implementation of the K framework

which fully supports the K definitional style as portrayed here. A module system

for K aiming at maximizing modularity and code-reuse is discussed in [77]. The

potential for efficient executability of K definitions has been first empirically

noted in [80]. An experimental object-oriented programming language is defined

using K in [76, 74, 75], together with several formal analyses and optimizations

based on it. The K framework is compared in [161] with P-systems [131] and

shown that it can be systematically used to define, execute and analyze a large

body of P-systems. Matching logic is a new axiomatic semantics extending the

benefits of both Hoare logic and separation logics, which fundamentally relies on

the K framework [145, 148]. As shown in [52], K can also be effectively used to

define type inferencers and prove their soundness w.r.t. the language semantics.

8.2 Approaches to Programming Language

Design

As K builds upon the existing operational semantics techniques and frameworks,

we here summarize the observations from Chapter 3, insisting on the relationship

these techniques have with K.

8.2.1 Structural Operational Semantics (SOS)

Frameworks

We here discuss the most common SOS approaches, namely big-step and small-

step SOS, their modular variant MSOS, and reduction semantics with eval-

uation contexts.

Big-Step SOS Introduced as natural semantics [89], also named relational/e-

valuation semantics [116], big-step semantics is “the most denotational” of the

operational semantics. One can view big-step definitions as definitions of relations

215



interpreting each language construct in an appropriate domain. Determinis-

tic (or functional) big-step operational semantics can be easily and efficiently

interpreted/implemented. It is particularly useful for defining type systems.

Limitations: Due to its monolithic, single-step evaluation, it is hard to debug

or trace big-step semantic definitions. If the program is wrong, no information

is given about where the failure occurred. Divergence is not observable in the

evaluation relation. It may be hard or impossible to model concurrent features.

It is not modular, e.g., to add side effects to expressions, one must redefine the

rules to allow expressions to evaluate to pairs (value-store). It is inconvenient

(and non-modular) to define complex control statements.

Relationship to K: The transitive closure of the K rewrite relation can be seen

as a big-step relation.

Small-step SOS Introduced by Plotkin [136], also called transition (or reduc-

tion) semantics, small-step semantics captures the notion of one computational

step. Therefore, it stops at errors, pointing them out. It is easy to trace and

debug. It gives interleaving semantics for concurrency.

Limitations: Like big-step, it is non-modular. It does not give a“true concurrency”

semantics: one has to choose a certain interleaving (no two rules can be applied

on the same term at the same time), mainly because reduction is forced to

occur only at the top. It is still hard to deal with control — one has to add

corner cases (additional rules) to each statement to propagate control changing

information. Each small step traverses the entire program to find the next redex;

since the size of the program may grow unbounded (e.g., through loop/fixed-point

unrolling), each small step may take unbounded resources in the worst case,

making it difficult to interpret efficiently.

Relationship to K: K’s rewriting is small-step in spirit; however, K rewrite

rules can apply anywhere and concurrently, while SOS transitions only apply

at the top of the term, interleaved.

Modular SOS (MSOS) Mosses [122, 123] introduced MSOS to deal with the

non-modularity of existing SOS styles. The MSOS solution involves moving the

non-syntactic state components into the labels on transitions, plus a discipline

of only selecting needed attributes from the states.

Limitations: Being inherently an SOS, MSOS can still only define interleaving

semantics to concurrent languages. While the use of labels gives MSOS the

ability to modularly deal with some forms of control, such as abrupt termination,

at our knowledge it still cannot support the definition of arbitrarily complex

control-intensive features such call/cc. Also, MSOS is driven by the structure of

the syntax and appears to have no escape mechanism to reflectively traverse,

mark, modify and/or store arbitrary syntax in labels, which makes it hard or

impossible to modularly define language constructs for code generation (e.g.,

quote/unquote/eval —see Section 4.3).

216



Relationship to K: Both MSOS and K make use of labeled information to achieve

modularity. MSOS uses labels as record fields on the transition relation, while

K uses labels as cell names in the configuration. In both MSOS and K one can

use the labels in semantic rules only to refer to configuration items of interest,

which is crucial for modularity. MSOS’ labels have an additional role, to yield

labeled transition systems, while K’s cell names are not intended to be used for

that. One can label K rules as we did with the rules ρr and ρw in Section 6.2,

and, in principle, one can incorporate in K the same complex rule labeling of

rewrite logic [103]. However, we have not done that. So far, we used additional

cells in the configuration to represent/store the emitted signals.

Reduction semantics with evaluation contexts Introduced by Felleisen

and colleagues (see, e.g., [180]), the evaluation contexts style improves over

small-step SOS in two ways: (1) it gives a more compact semantics to context-

sensitive reduction, by using parsing (rather than small-step SOS rules) to find

the next redex; and (2) it provides the possibility to also modify the context in

which a reduction occurs, making it much easier to deal with control-intensive

features, in particular to define constructs like call/cc. Additionally, one can

also incorporate the configuration as part of the evaluation context, and thus

have full access to semantic information “by need”.

Limitations: It still only allows “interleaving semantics” for concurrency. It

is too “rigid to syntax”, in that it is hard or impossible to define semantics

in which values are more than plain syntax; for example, one cannot give a

syntactic semantics to a functional language based on closures for functions

(instead of substitution), because one needs special, non-syntactic means to

handle and recover environments (as we do in K, see Section 4.3). Although

context-sensitive rewriting might seem to be easily implementable by rewriting,

in fact one has to perform an amount of “parsing” polynomial (linear best

case, quadratic worst-case) in the size of the program for each computational

step.However, one might obtain efficient implementations for restricted forms of

context-reduction definitions by applying refocusing techniques [41].

Relationship to K: Both reduction semantics and K make use of evaluation

contexts and can store or modify them. Reduction semantics “splits/plugs”

syntax into contexts, while K “heats/cools” syntax into computations. The

former is achieved by an implicit “advanced” parsing of syntax into a context

and a redex,while the latter is achieved using rewrite rules.

The Chemical Abstract Machine (Cham) Berry and Boudol [15] intro-

duced Cham to give language semantics within the Gamma model [10], a multiset-

rewriting model of computation. The Cham views a distributed state as a

“solution” where “molecules” float, and understands concurrent transitions as

“reactions” that can occur simultaneously in many points of the solution.

217



Limitations: While chemistry as a model of computation sounds attractive,

technically speaking the Cham is in fact a restricted case of rewriting logic [103].

Moreover, some of the chemical “intuitions”, such as the airlock operation which

imposes a particular chemical “discipline” to access molecules inside a solution,

inhibit the potential for the now well-understood and efficient matching and

rewriting modulo associativity and commutativity. In fact, to our knowledge,

there is no competitive implementation of the Cham. Although this solution-

molecule paradigm seems to work for languages with simple state structure, it is

not clear how one could represent the state for complex languages with threads,

locks, environments, etc. Finally, Chams provide no mechanism to freeze the

current molecular structure as a “value”, and then to store or retrieve it, as we

would need in order to to define language features like call/cc. It would therefore

seem hard to define complex control-intensive language features in Cham.

Relationship to K: Like the Cham, K also organizes the configuration of the

program or system as a potentially nested structure of molecules (called cells

and potentially labeled in K). Like in Cham, the configuration is also rewritten

until it “stabilizes”. Unlike in Cham, the K rules can match and write inside and

across multiple cells in one parallel step. Also, unlike in Cham (and in rewriting

logic), K rewrite rules can apply concurrently even in cases when they overlap.

8.2.2 Other Approaches

Algebraic denotational semantics. This approach, (see [179, 66, 23, 121]

for early papers and [64, 172] for two more recent books), is a special case of

RLS, namely, the case in which the rewrite theory RL defining language L is an

equational theory. While algebraic semantics shares a number of advantages with

RLS, its main limitation is that it is well-suited for giving semantics to determin-

istic languages, but not well-suited for concurrent language definitions. At the

model-theoretic level, initial algebra semantics, pioneered by Joseph Goguen, is

the preferred approach (see, for example, [66, 64]), but other approaches, based

on loose semantics or on final algebras, are also possible.

Higher-order approaches. The most classic higher-order approach,

although not exactly operational, is denotational semantics [155, 156, 154, 120].

Denotational semantics has some similarities with its first-order algebraic cousin

mentioned above, since both are based on semantic equations. Two differences

are: (i) the use of first-order equations in the algebraic case versus the higher-

order ones in traditional denotational semantics; and (ii) the kinds of models

used in each case. A related class of higher-order approaches uses higher-order

functional languages or higher-order theorem provers to give operational seman-

tics to programming languages. Without trying to be comprehensive, we can

mention, for example, the use of Scheme in [60], the use of ML in [134], and

the use of Common LISP within the ACL2 prover in [92]. There is also a body

218



of work on using monads [117, 178, 96] to implement language interpreters in

higher-order functional languages; the monadic approach has better modularity

characteristics than standard SOS. A third class of higher-order approaches

are based on the use of higher-order abstract syntax (HOAS) [133, 71] and

higher-order logical frameworks, such as LF [71] or λ-Prolog [124], to encode

programming languages as formal logical systems. For a good example of recent

work in this direction see [113] and references there.

Logic-programming-based approaches. Going back to the Centaur pro-

ject [18, 37], logic programming has been used as a framework for SOS language

definitions. Note that λ-Prolog [124] belongs both in this category and in

the higher-order one. For a recent textbook giving logic-programming-based

language definitions, see [164].

Abstract state machines. Abstract State Machine (ASM) [67] can encode

any computation and have a rigorous semantics, so any programming language

can be defined as an ASM and thus implicitly be given a semantics. Both

big- and small-step ASM semantics have been investigated. The semantics

of various programming languages, including, for example, Java [165], has

been given using ASMs.

8.3 Other Rewriting Frameworks

We here discuss some rewriting approaches which have been used or have the

potential to be used for programming language semantics.

Graph Rewriting Graph rewriting [44] extends the intuitions of term rewrit-

ing to arbitrary graphs, by developing a match-and-apply mechanism which

can work directly on graphs.

Limitations: Graph rewriting is rather complex and, although it has been used to

model (mostly concurrent) languages and systems [9], with a few notable recent

exceptions [90, 139], most such definitions remained at the purely theoretical level.

Part of the reason could be the notorious difficulty of graph rewriting in dealing

with structure copying and equality testing, operations which are crucial for

programming language semantics and relatively easy to provide in term rewriting

systems. Finally, in spite of decades of research, to our knowledge there are still

no graph rewriting engines comparable in performance to term rewrite engines.

Nevertheless, graph rewriting has received increased attention recently as a

means to formalize and analyze modeling languages such as UML [63], to which

it can be easier related through the graph-like structure of UML specifications.

Relationship to K: The K rules, like those in graph-rewriting, have both read-

only components, which could be shared among rule instances to maximize

concurrency, and read-write components.

219



P-Systems Păun’s membrane systems (or P-systems) [131] are computing

devices abstracted from the structure and the functioning of the living cell. In

classical transition P-systems, the main ingredients of such a system are the mem-

brane structure, in the compartments of which multisets of symbol-objects evolve

according to given evolution rules. The rules are localized, associated with the

membranes and they are used in a nondeterministic maximally parallel manner.

Limitations: When looked at from a programming language semantics perspec-

tive, the P-systems have a series of limitations that have been addressed in K,

such as: (1) lack of structure for non-membrane terms, which are plain constants;

and (2) strict membrane locality (even stricter than in the Cham), which allows

a very limited kind of rules (symport/antiport [130]) to match and rewrite within

multiple membranes at the same time. Regarding (1), programming languages

often handle complex data-structures or make use of complex semantic struc-

tures, such as environments mapping variables to values, or closures holding code

as well as environments, etc., which would be hard or impossible to properly

encode using just constants. Regarding (2), strict membrane locality would

require one to write many low-level rules and introduce and implement by local

rules artificial “cross-membrane communication protocols”. For example, the

semantics of variable lookup involves acquiring the location of the variable from

the environment cell (which holds a map), then the value at that location in

the store cell (which holds another map), and finally the rewrite of the variable

in the code cell into that value. All these require the introduction of encoding

constants and rules in several membranes and many computation steps.

Relationship to K: K-systems share with P-systems the ideas of cell structures

and the aim to maximize concurrency; for example the read-only parts of a K
rule play a similar role to promotors/inhibitors [19] from P-systems. However,

K rules can span across multiple cells at a time, and the objects contained in

a cell can have a rich algebraic structure (as opposed to being constants, as in

P-systems). An in-depth comparison between the two formalisms, showing how

one can use K to model P-systems can be found in [161].

There are several other biology-inspired computational frameworks, such as

the Calculus of Looping Sequences [11] and MGS [62], which share with K
the aims for concurrency and use one form or another of rewriting as their

evolution mechanism.

220



Chapter 9

Conclusions

The purpose of this dissertation is to show that definitions of programming

languages are not just on-paper theoretical endeavors only accessible to the

well-trained mathematician, but that instead they can be quite practical and

accessible to most programming language enthusiasts.

By practical we mean both that one can define real (and thus complex)

languages, with emphasis on control and concurrency features, which are known

to be problematic to define. Moreover, the definitions obtained do not only

serve as a documentation of the language and as a way to understand it better,

but also they can be used directly, or slightly adapted, to execute, debug, and

analyze programs written in those languages.

All these are made possible by choosing rewriting as a paradigm of computation

and rewriting logic as a paradigm of modeling transition systems, following the

ideas put forward in the rewriting logic semantics project [110, 111], which led

to the development of K, a specialized programming language design framework

based on rewriting.

To convince ourselves that the RLS project is well founded, we started by

showing how RLS can be used as a logical framework for operational semantics

definitions of programming languages. In particular, by showing in detail how it

can faithfully capture big-step and small-step SOS, MSOS, context reduction,

continuation-based semantics, and the Cham, we hope to have illustrated what

might be called its ecumenical character; that is, its flexible support for a wide

range of definitional styles, without forcing or pre-imposing any given style.

It is precisely this flexibility which makes RLS useful as a way of exploring new

definitional styles; however, flexibility comes at the price of being over qualified

for the task of defining languages, in the sense of not committing or advancing any

style in particular. The development of the K framework was motivated by the

quest for the best definitional framework within RLS. The K semantic framework,

consisting of a general-purpose concurrent rewriting approach together with a

definitional technique specialized for concurrent programming languages and

systems, brings together the advantages of the existing language definitional

frameworks while avoiding their limitations. In spite of its youth, the K framework

already proved practical as it was used with relatively little effort (in comparison

with similar attempts within other frameworks) to define complex languages like

221



Java, Scheme, Verilog, or C, and to use those definitions for analyzing programs

written in those languages. We believe that all the above make K a strong

candidate for the next generation of language definitional frameworks.

To show that one can actually make these definitions useful, we have chosen

from the areas to which K was applied (static semantics, type soundness, model

checking, program verification) the area of runtime verification, demonstrating

how, through relatively minor alterations or extensions, one can turn K definitions

in runtime verification tools for memory safety, datarace detection, or monitoring.

On a more theoretical note, although initially introduced as a mere simplifying

notation, K rules actually provide valuable information about parts of the term

which only need to be read for the a rule to apply. Deepening this intuition,

we envisioned a concurrent semantics for K which would allow parallelism with

sharing of data in addition to the sideways and nested parallelism already available

for term rewriting. The concurrent semantics of K presented in Chapter 6

formalizes these intuitions by exploiting the connections between K rules and

graph rewriting rules. Although the potential for concurrent rewriting is increased

by identifying parts of a rule which can be shared with other rules, this may also

lead to inconsistencies if not used properly. Nevertheless, we showed that, under

reasonable conditions, the K concurrent semantics is actually sound, complete,

and serializable w.r.t. term rewriting.

The success of a programming language definitional framework, and especially

of an operational one which concretely describes the execution of the programs,

is largely depending on the available tool support to allow actual execution,

exploration and analysis of executions of programs in the defined language.

Although the K technique has been used on top of the Maude rewrite engine

since its early development stages, its direct use in Maude proved to be sometimes

difficult and verbose, leading to modularity and copy-pasting errors. To this aim,

K-Maude was introduced as an implementation of the K language definitional

framework in Maude, which allows for an almost zero representational distance

between on-paper K definitions, and their textual representations. The K-

Maude interface comes as an extension of Maude, allowing users to define a

language using K modules with specific K syntax in addition to the existing

Maude modules. The K-specific modules extend the Maude module syntax with

constructs aimed at simplifying the language definition task by abstracting away

irrelevant details. This multi-layered abstractions allow for concise language

definitions with a high potential for reusing language features. K-Maude defines

several meta-transformations which gradually translate K modules into either

executable Maude modules, to obtain interpreters and analysis tools, or into

LATEX, to obtain formal language semantics documentation.

We believe all the material presented in this dissertation and summarized

above brings enough evidence that rewriting, and in particular the K framework,

is a natural environment to formally define the semantics of real-life (concurrent)

programming languages and to test and analyze programs written in those

222



languages. Nevertheless, although we believe K to be reasonably stable by now,

there is still place for improvements at both theoretical and tool support level.

9.1 Future Work—Theory

Regarding the theoretical contributions to the K framework, we point below two

directions of further research which we believe to be most relevant.

Deepening K’s concurrent semantics. The concurrency semantics for K
presented in this dissertation sets the ground for additional interesting research

questions. One of them is related to serializability: would it make sense to have

unserializable executions, and if so, how should they look like and how could

they be captured, as the graph rewriting approach seems unable to cope with

them directly. In particular, we are interested in exploring the relation between

side-conditions, concurrency, and unserializability.

Relating K with other frameworks. Although K was developed on the

shoulders of the existing operational frameworks, further study is required to

determine precise relations with these formalisms. Moreover, we are inter-

ested in exploring the possibility of relating K with powerful theorem proving

frameworks like Isabelle [125], PVS [129], or Coq [13], to allow proving prop-

erties about the language itself, not only about the executions of programs

written in that language.

9.2 Future Work—Tool Support

Although quite expressive and powerful already, the K-Maude tool is still work

in progress. We list below some areas of future work relevant to the K-Maude

tool in particular and to implementations of the K framework in general.

Modularization. The current implementation, although quite modular, has

still limited support for modularization, being only partially able to make use of

Maude’s module system. A desirable fix in this direction would be to develop

a programming language specific module system for K in the K-Maude tool,

following the proposal in [77, 73].

Interface&Error Support. K-Maude kept improving in key aspects regard-

ing interface (including most recently the addition of the BNF layer and a better

lexer in the pre-processor stage), but there is still work to be done. Specifi-

cally, error reporting is an aspect which still requires attention. Although the

current architecture of the tool splits the transformation from K specifications

to executable Maude definitions in multiple small stages, and thus it allows to

easily identify in which stage of the compilation an error occurred, and although

223



specific checks are performed to catch early common specification mistakes, it is

sometimes hard to concretely isolate a fault. The main reason for this is that our

compilation stages are written in a functional-like style and, since Maude does

not have a global state, one has to propagate errors until the top, much like in a

SOS definition of a programming language. And, similar to them, this makes

the addition of error reporting tedious and error-prone. One possible solution

would be to rewrite K-Maude in a K like style. Another would be to analyze the

”core dumps”, i.e., stuck compilation terms for the source of the errors.

True Concurrency. Currently, K-Maude simply translates K rules into Maude

rules and equations, and therefore the additional potential for concurrency

information brought by the K rules (proposed in Section 6.2 and developed in

Chapter 6) is lost; moreover, Maude itself applies only one rewrite step at a

time, so one cannot directly visualize even the amount of concurrency allowed

in one step by RWL. It would be beneficial to develop an exploration mode

for the tool which would allow one to precisely see the amount of concurrency

achievable in one K concurrent step.

Compilation. The K-Maude implementation is very effective in providing for

free an execution and debugging environment for testing the definitions, as well

as an execution analysis platform containing a model checker and an inductive

theorem prover. However, it would be beneficial to target other languages, either

programming languages with limited support for rewriting but with increased

performance w.r.t. execution time (such as Haskell and OCaml), as well as

dedicated theorem provers (as Isabelle an Coq). This goal of compiling K
definitions has accompanied the development of the tool since its inception (see,

e.g., [80]), and the initial steps towards automatically compiling K definitions

in OCaml [84] seem promising.

224



Bibliography

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy. Explicit substitutions. In POPL ’90: Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 31–46, New York, NY, USA, 1990. ACM Press. doi:
10.1145/96709.96712.

[2] Gul A. Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based
specification language for probabilistic object systems. In 3rd Workshop
on Quantitative Aspects of Programming Languages (QAPL 05), volume
153(2) of Electronic Notes in Theoretical Computer Science, pages 213–239,
2006. doi: 10.1016/j.entcs.2005.10.040.

[3] Wolfgang Ahrendt, Andreas Roth, and Ralf Sasse. Automatic validation of
transformation rules for java verification against a rewriting semantics. In
Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, 12th International Conference, LPAR
2005, Montego Bay, Jamaica, December 2-6, 2005, Proceedings, volume
3835 of Lecture Notes in Computer Science, pages 412–426. Springer, 2005.
doi: 10.1007/11591191 29.

[4] Mauricio Alba-Castro, Maŕıa Alpuente, and Santiago Escobar. Automatic
certification of Java source code in rewriting logic. In Stefan Leue and
Pedro Merino, editors, FMICS, volume 4916 of Lecture Notes in Computer
Science, pages 200–217. Springer, 2007. ISBN 978-3-540-79706-7. doi:
10.1007/978-3-540-79707-4 15.

[5] Mauricio Alba-Castro, Maŕıa Alpuente, Santiago Escobar, Pedro Ojeda,
and Daniel Romero. A tool for automated certification of Java source
code in Maude. In Proceedings of the Eighth Spanish Conference on
Programming and Computer Languages (PROLE 2008), volume 248 of
Electronic Notes in Theoretical Computer Science, pages 19–29, 2009. doi:
10.1016/j.entcs.2009.07.056.

[6] Musab AlTurki. A rewriting logic approach to the semantics of Orc.
Master’s thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, December 2005.

[7] Musab AlTurki and José Meseguer. Real-time rewriting semantics of Orc.
In Michael Leuschel and Andreas Podelski, editors, Proceedings of the
9th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, July 14-16, 2007, Wroclaw, Poland, pages
131–142. ACM Press, 2007. ISBN 978-1-59593-769-8. doi: 10.1145/1273920.
1273938.

225



[8] Irina Mariuca Asavoae and Mihail Asavoae. Collecting semantics under
predicate abstraction in the k framework. In Ölveczky [126], pages 123–139.
ISBN 978-3-642-16309-8. doi: 10.1007/978-3-642-16310-4 9.

[9] Paolo Baldan, Fabio Gadducci, and Ugo Montanari. Modelling calculi
with name mobility using graphs with equivalences. In TERMGRAPH’06,
volume 176(1) of Electronic Notes in Theoretical Computer Science, pages
85–97, 2007. doi: 10.1016/j.entcs.2006.10.028.

[10] Jean-Pierre Banâtre and Daniel Le Métayer. The GAMMA model and
its discipline of programming. Science of Computer Programming, 15(1):
55–77, 1990. doi: 10.1016/0167-6423(90)90044-E.

[11] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and Angelo
Troina. A calculus of looping sequences for modelling microbiological
systems. Fundamenta Informaticae, 72(1–3):21–35, 2006.

[12] Hendrik Pieter Barendregt, Marko C. J. D. van Eekelen, John R. W.
Glauert, Richard Kennaway, Marinus J. Plasmeijer, and M. Ronan
Sleep. Term graph rewriting. In PARLE’87, volume 259 of Lec-
ture Notes in Computer Science, pages 141–158. Springer, 1987. doi:
10.1007/3-540-17945-3 8.

[13] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez,
H. Herbelin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Säıbi,
and B. Werner. The Coq proof assistant reference manual – version 7.4.
2003. URL http://coq.inria.fr/doc/main.html.

[14] Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne, and Jocelyne
Rouyer-Degli. λ-ν, a calculus of explicit substitutions which preserves
strong normalisation. The Journal of Functional Programming, 6(5):699–
722, 1996. doi: 10.1017/S0956796800001945.

[15] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theo-
retical Computer Science, 96(1):217–248, 1992. doi: 10.1145/96709.96717.

[16] Peter Borovanský, Horatiu Cirstea, Hubert Dubois, Claude Kirchner,
Hélène Kirchner, Pierre-Etienne Moreau, Christophe Ringeissen, and Mar-
ian Vittek. ELAN V 3.4 User Manual. LORIA, Nancy (France), fourth
edition, January 2000.

[17] Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Pierre-Etienne
Moreau. ELAN from a rewriting logic point of view. Theoretical Computer
Science, 285(2):155–185, 2002. doi: 10.1016/S0304-3975(01)00358-9.

[18] Patrick Borras, Dominique Clément, Th. Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and V. Pascual. CENTAUR: The system. In Software
Development Environments (SDE), pages 14–24, 1988. doi: 10.1145/64137.
65005.

[19] Paolo Bottoni, Carlos Mart́ın-Vide, Gheorghe Păun, and Grzegorz Rozen-
berg. Membrane systems with promoters/inhibitors. Acta Informatica, 38
(10):695–720, 2002. doi: 10.1007/s00236-002-0090-7.

[20] Gérard Boudol. Some chemical abstract machines. In REX School/Symp.,
volume 803 of Lecture Notes in Computer Science, pages 92–123. Springer,
1993. doi: 10.1007/3-540-58043-3 18.

226

http://coq.inria.fr/doc/main.html


[21] Christiano Braga. Rewriting Logic as a Semantic Framework for Mod-
ular Structural Operational Semantics. PhD thesis, Departamento de
Informática, Pontificia Universidade Católica de Rio de Janeiro, Brasil,
2001.

[22] Christiano Braga and José Meseguer. Modular rewriting semantics in
practice. In Proceedings of the Fifth International Workshop on Rewriting
Logic and Its Applications (WRLA 2004), volume 117 of Electronic Notes
in Theoretical Computer Science, pages 393–416. Elsevier, 2005. doi:
10.1016/j.entcs.2004.06.019.

[23] Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic
definition of programming languages. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9(1):54–99, 1987. doi: 10.1145/9758.
10501.

[24] Roberto Bruni and José Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science, 360(1-3):386–414, 2006.
doi: 10.1016/j.tcs.2006.04.012.

[25] Iliano Cervesato and Mark-Oliver Stehr. Representing the MSR cryp-
toprotocol specification language in an extension of rewriting logic with
dependent types. In P. Degano, editor, Proceedings of the Fifth Interna-
tional Workshop on Rewriting Logic and Its Applications (WRLA 2004),
volume 117 of Electronic Notes in Theoretical Computer Science, pages
183–207. Elsevier, 2005. doi: 10.1016/j.entcs.2004.06.023.

[26] Fabricio Chalub. An implementation of Modular SOS in Maude. Master’s
thesis, Universidade Federal Fluminense, May 2005. URL http://www.ic.

uff.br/~frosario/dissertation.pdf.

[27] Fabricio Chalub and Christiano Braga. A modular rewriting semantics for
CML. The Journal of Universal Computer Science, 10(7):789–807, 2004.
doi: 10.3217/jucs-010-07-0789.

[28] Fabricio Chalub and Christiano Braga. Maude MSOS tool. In Grit
Denker and Carolyn Talcott, editors, Proceedings of the Sixth International
Workshop on Rewriting Logic and its Applications (WRLA 2006), volume
176(4) of Electronic Notes in Theoretical Computer Science, pages 133–146.
Elsevier, 2007. doi: 10.1016/j.entcs.2007.06.012.

[29] Feng Chen and Grigore Ros,u. Rewriting Logic Semantics of Java 1.4, 2004.
URL http://fsl.cs.uiuc.edu/java.

[30] Feng Chen and Grigore Ros,u. Parametric and sliced causality. In Computer
Aided Verification (CAV’07), volume 4590 of Lecture Notes in Computer
Science, pages 240–253, 2007. doi: 10.1007/978-3-540-73368-3 27.

[31] Feng Chen, Grigore Ros,u, and Ram Prasad Venkatesan. Rule-based
analysis of dimensional safety. In Robert Nieuwenhuis, editor, Rewriting
Techniques and Applications, 14th International Conference, RTA 2003,
Valencia, Spain, June 9-11, 2003, Proceedings, volume 2706 of Lecture
Notes in Computer Science, pages 197–207. Springer, 2003. doi: 10.1007/
3-540-44881-0 15.

227

http://www.ic.uff.br/~frosario/dissertation.pdf
http://www.ic.uff.br/~frosario/dissertation.pdf
http://fsl.cs.uiuc.edu/java


[32] Feng Chen, Traian Florin S, erbănut, ă, and Grigore Ros,u. jPredictor: a
predictive runtime analysis tool for Java. In ICSE ’08: Proceedings of the
30th international conference on Software engineering, pages 221–230, New
York, NY, USA, 2008. ACM. doi: 10.1145/1368088.1368119.

[33] M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a
tutorial. Journal of Universal Computer Science, 12(11):1618–1650, 2006.
doi: 10.3217/jucs-012-11-1618.

[34] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and
C. Talcott. All About Maude, A High-Performance Logical Framework,
volume 4350 of Lecture Notes in Computer Science. Springer, 2007. doi:
10.1007/978-3-540-71999-1.

[35] Manuel Clavel and Juan Santa-Cruz. ASIP + ITP: A verification tool based
on algebraic semantics. In PROLE 2005: V Jornadas sobre Programación
y Lenguajes, pages 149–158. Thomson, 2005.

[36] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Jose F. Quesada. Maude: specification
and programming in rewriting logic. Theoretical Computer Science, 285
(2):187–243, 2002. doi: 10.1016/S0304-3975(01)00359-0.

[37] Dominique Clément, Joëlle Despeyroux, Laurent Hascoet, and Gilles Kahn.
Natural semantics on the computer. In Kazuhiru Fuchi and Maurice Nivat,
editors, Proceedings of the France-Japan AI and CS Symposium, pages
49–89. ICOT, Japan, 1986. Also, Information Processing Society of Japan,
Technical Memorandum PL-86-6 and Rapport de recherche #0416, INRIA.

[38] Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle
rewriting for term-rewriting systems and logic programming. Theoretical
Computer Science, 109(1&2):7–48, 1993. doi: 10.1016/0304-3975(93)
90063-Y.

[39] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko
Heckel, and Michael Löwe. Algebraic approaches to graph transformation:
Basic concepts and double pushout approach. In Handbook of graph
grammars and computing by graph transformations, volume 1, pages 163–
246. World Scientific, 1997.

[40] Marcelo d’Amorim and Grigore Ros,u. An equational specification for the
Scheme language. The Journal of Universal Computer Science, 11(7):
1327–1348, 2005. doi: 10.3217/jucs-011-07-1327. Selected papers from the
9th Brazilian Symposium on Programming Languages (SBLP’05). Also
Technical Report No. UIUCDCS-R-2005-2567, April 2005.

[41] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. RS
RS-04-26, BRICS, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, November 2004. This report supersedes BRICS
report RS-02-04. A preliminary version appears in the informal proceedings
of the Second International Workshop on Rule-Based Programming, RULE
2001, Electronic Notes in Theoretical Computer Science, Vol. 59.4.

[42] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. The Lan-
guage, Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification, volume 6 of AMAST Series in Computing. World Scientific,
1998.

228



[43] Edsger W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM, 8(9):569, 1965. doi: 10.1145/365559.365617.

[44] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars (a
survey). In Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors,
Graph-Grammars and Their Application to Computer Science and Biology,
volume 73 of Lecture Notes in Computer Science, pages 1–69. Springer,
1978. ISBN 3-540-09525-X.

[45] Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipulations
in multidimensional information structures. In MFCS’76, volume 45 of
Lecture Notes in Computer Science, pages 284–293. Springer, 1976. doi:
10.1007/3-540-07854-1 188.

[46] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-
grammars: An algebraic approach. In FOCS, pages 167–180. IEEE, 1973.
doi: 10.1109/SWAT.1973.11.

[47] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of algebraic graph transformation. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[48] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude
LTL model checker and its implementation. In Proc. 10th International
SPIN Workshop (10th SPIN), Lecture Notes in Computer Science, pages
230–234. Springer, 2003. doi: 10.1007/3-540-44829-2 16.

[49] Steven Eker, Narcis Mart́ı-Oliet, Josè Meseguer, and Albert Verdejo.
Deduction, strategies, and rewriting. In T. Boy de la Tour M. Archer
and C. Muñoz, editors, Proceedings of the 6th International Workshop on
Strategies in Automated Deduction (STRATEGIES 2006), volume 174(11)
of Electronic Notes in Theoretical Computer Science, pages 3–25. Elsevier,
2007. doi: 10.1016/j.entcs.2006.03.017.

[50] Chucky Ellison. A rewriting logic approach to defining type systems.
Master’s thesis, University of Illinos at Urbana Champaign, 2008.

[51] Chucky Ellison and Grigore Roşu. A formal semantics of C with applica-
tions. Technical Report http://hdl.handle.net/2142/17414, University
of Illinois, November 2010. URL http://fsl.cs.uiuc.edu/index.php/

A_Formal_Semantics_of_C_with_Applications.

[52] Chucky Ellison, Traian Florin S, erbănut, ă, and Grigore Ros,u. A rewriting
logic approach to type inference. In Recent Trends in Algebraic Devel-
opment Techniques — 19th International Workshop, WADT 2008, Pisa,
Italy, June 13-16, 2008, Revised Selected Papers, volume 5486 of Lec-
ture Notes in Computer Science, pages 135–151. Springer, 2009. doi:
10.1007/978-3-642-03429-9 10.

[53] David Espinosa. Semantic Lego. PhD thesis, Columbia University, 1995.

[54] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and
how to test them. In IPDPS, page 286. IEEE Computer Society, 2003.
ISBN 0-7695-1926-1. doi: 10.1109/IPDPS.2003.1213511.

229

http://hdl.handle.net/2142/17414
http://fsl.cs.uiuc.edu/index.php/A_Formal_Semantics_of_C_with_Applications
http://fsl.cs.uiuc.edu/index.php/A_Formal_Semantics_of_C_with_Applications


[55] A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics
of programming languages. In Grit Denker and Carolyn Talcott, editors,
Proceedings of the Sixth International Workshop on Rewriting Logic and
its Applications (WRLA 2006), volume 176(4) of Electronic Notes in
Theoretical Computer Science, pages 61–78. Elsevier, 2007. doi: 10.1016/j.
entcs.2007.06.008.

[56] Azadeh Farzan. Static and dynamic formal analysis of concurrent systems
and languages: a semantics-based approach. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 2007.

[57] Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Ros,u. Formal
analysis of Java programs in JavaFAN. In Rajeev Alur and Doron Peled,
editors, Computer Aided Verification, 16th International Conference, CAV
2004, Boston, MA, USA, July 13-17, 2004, Proceedings, volume 3114 of
Lecture Notes in Computer Science, pages 501–505. Springer, 2004. doi:
10.1016/j.entcs.2007.06.008.

[58] Azadeh Farzan, José Meseguer, and Grigore Ros,u. Formal JVM code
analysis in JavaFAN. In Charles Rattray, Savi Maharaj, and Carron
Shankland, editors, Algebraic Methodology and Software Technology, 10th
International Conference, AMAST 2004, Stirling, Scotland, UK, July 12-
16, 2004, Proceedings, volume 3116 of Lecture Notes in Computer Science,
pages 132–147. Springer, 2004. doi: 10.1007/978-3-540-27815-3 14.

[59] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-
machine, and the lambda-calculus. In 3rd Working Conference on the
Formal Description of Programming Concepts, pages 193–219, Ebberup,
Denmark, August 1986.

[60] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. MIT Press, Cambridge, MA, 2nd edition,
2001. ISBN 0-262-06217-8. URL http://www.cs.indiana.edu/eopl/.

[61] A. Garrido, J. Meseguer, and R. Johnson. Algebraic semantics of the C pre-
processor and correctness of its refactorings. Technical Report UIUCDCS-
R-2006-2688, Department of Computer Science, University of Illinois at
Urbana-Champaign, February 2006.

[62] Jean-Louis Giavitto and Olivier Michel. MGS: a rule-based programming
language for complex objects and collections. In Mark van den Brand and
Rakesh Verma, editors, RULE’01, volume 59(4) of Electronic Notes in
Theoretical Computer Science, pages 286–304. Elsevier Science Publishers,
2001. doi: 10.1016/S1571-0661(04)00293-2.

[63] Martin Gogolla, Paul Ziemann, and Sabine Kuske. Towards an integrated
graph based semantics for UML. In GT’02, volume 72(3) of Electronic
Notes in Theoretical Computer Science, pages 160–175, 2003. doi: 10.1007/
s10270-008-0101-4.

[64] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Imperative
Programs. MIT Press, 1996.

[65] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and
Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen, editor,
Applications of Algebraic Specification using OBJ. Cambridge, 1993.

230

http://www.cs.indiana.edu/eopl/


[66] Joseph A. Goguen and Kamran Parsaye-Ghomi. Algebraic denotational
semantics using parameterized abstract modules. In Josep D́ıaz and Isidro
Ramos, editors, Formalization of Programming Concepts, International
Colloquium, Peniscola, Spain, April 19-25, 1981, Proceedings, volume 107
of Lecture Notes in Computer Science, pages 292–309. Springer, 1981. doi:
10.1007/3-540-10699-5 106.

[67] Yuri Gurevich. Evolving algebras 1993: Lipari Guide. In Egon Börger,
editor, Specification and Validation Methods, pages 9–37. Oxford University
Press, 1994.

[68] Annegret Habel, Hans-Jörg Kreowski, and Detlef Plump. Jungle evaluation.
In ADT’87, volume 332 of Lecture Notes in Computer Science, pages 92–
112. Springer, 1987. doi: 10.1007/3-540-50325-0 5.

[69] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph
transformation revisited. Mathematical Structures in Computer Science,
11(5):637–688, 2001. doi: 10.1017/S0960129501003425.

[70] Samuel P. Harbison and Guy L. Steele. C: A Reference Manual (5th
Edition). Prentice Hall, 2002.

[71] Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143–184, 1993. doi: 10.1145/
138027.138060.

[72] Klaus Havelund and Thomas Pressburger. Model checking Java pro-
grams using Java PathFinder. STTT, 2(4):366–381, 2000. doi: 10.1007/
s100090050043.

[73] Mark Hills. A Modular Rewriting Approach to Language Design, Evolution
and Analysis. PhD thesis, University of Illinois at Urbana-Champaign,
2009. URL http://hdl.handle.net/2142/14600.

[74] Mark Hills and Grigore Ros,u. KOOL: An application of rewriting logic to
language prototyping and analysis. In Franz Baader, editor, RTA, volume
4533 of Lecture Notes in Computer Science, pages 246–256. Springer, 2007.
ISBN 978-3-540-73447-5. doi: 10.1007/978-3-540-73449-9 19.

[75] Mark Hills and Grigore Ros,u. On formal analysis of OO languages using
rewriting logic: Designing for performance. In Proceedings of the 9th IFIP
International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’07), volume 4468 of Lecture Notes in Computer
Science, pages 107–121. Springer, 2007. doi: 10.1007/978-3-540-72952-5 7.
also appeared as Technical Report UIUCDCS-R-2007-2809, January 2007.

[76] Mark Hills and Grigore Ros,u. A rewriting approach to the design and
evolution of object-oriented languages. In OOPSLA ’07: Companion to
the 22nd ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, pages 827–828, New York, NY, USA,
2007. ACM. doi: 10.1145/1297846.1297908.

[77] Mark Hills and Grigore Ros,u. Towards a module system for K. In Andrea
Corradini and Ugo Montanari, editors, WADT, volume 5486 of Lecture
Notes in Computer Science, pages 187–205. Springer, 2008. ISBN 978-3-
642-03428-2. doi: 10.1007/978-3-642-03429-9 13.

231

http://hdl.handle.net/2142/14600


[78] Mark Hills and Grigore Rosu. A rewriting logic semantics approach to mod-
ular program analysis. In Christopher Lynch, editor, Proceedings of the 21st
International Conference on Rewriting Techniques and Applications, vol-
ume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages
151–160, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. ISBN 978-3-939897-18-7. doi: 10.4230/LIPIcs.RTA.2010.151.

[79] Mark Hills, T. Barış Aktemur, and Grigore Ros,u. An executable semantic
definition of the Beta language using rewriting logic. Technical Report
UIUCDCS-R-2005-2650, Department of Computer Science, University of
Illinois at Urbana-Champaign, 2005.

[80] Mark Hills, Traian Florin S, erbănut, ă, and Grigore Ros,u. A rewrite frame-
work for language definitions and for generation of efficient interpreters.
In Grit Denker and Carolyn Talcott, editors, Proceedings of the 6th Inter-
national Workshop on Rewriting Logic and its Applications (WRLA’06),
volume 176(4) of Electronic Notes in Theoretical Computer Science, pages
215–231. Elsevier Science, July 2007. doi: 10.1016/j.entcs.2007.06.017. also
appeared as Technical Report UIUCDCS-R-2005-2667, December 2005.

[81] Mark Hills, Feng Chen, and Grigore Ros,u. A rewriting logic approach to
static checking of units of measurement in C. In Proceedings of the 9th
International Workshop on Rule-Based Programming (RULE’08), volume
To Appear of Electronic Notes in Theoretical Computer Science. Elsevier,
2008.

[82] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–15, 1962.

[83] Berthold Hoffmann and Detlef Plump. Implementing term rewriting by
jungle evaluation. ITA, 25:445–472, 1991.

[84] Michael Ilseman, Chucky Ellison, and Grigore Rosu. On compiling rewriting
logic language definitions into competitive interpreters. Technical report,
University of Illinos at Urbana Champaign, 2010.

[85] ISO/IEC JTC 1, SC 22, WG 14. Rationale for international standard—
programming languages—C. Technical Report 5.10, International Organi-
zation for Standardization, April 2003.

[86] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:201x: Programming
languages—C. Committee draft, International Organization for Standard-
ization, August 2008.

[87] Einar Broch Johnsen, Olaf Owe, and Eyvind W. Axelsen. A run-time
environment for concurrent objects with asynchronous method calls. In
N. Mart́ı-Oliet, editor, Proceedings of the Fifth International Workshop
on Rewriting Logic and its Applications (WRLA 2004), volume 117 of
Electronic Notes in Theoretical Computer Science, pages 375–392. Elsevier,
2005. doi: 10.1016/j.entcs.2004.06.012.

[88] K. The K Framework, 2010. URL http://k-framework.googlecode.com.

[89] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-
Naquet, and Martin Wirsing, editors, STACS 87, 4th Annual Symposium
on Theoretical Aspects of Computer Science, Passau, Germany, February
19-21, 1987, Proceedings, volume 247 of Lecture Notes in Computer Science,
pages 22–39. Springer, 1987. doi: 10.1007/BFb0039592.

232

http://k-framework.googlecode.com


[90] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. Defining object-
oriented execution semantics using graph transformations. In Roberto
Gorrieri and Heike Wehrheim, editors, FMOODS, volume 4037 of Lecture
Notes in Computer Science, pages 186–201. Springer, 2006. ISBN 3-540-
34893-X. doi: 10.1007/11768869 15.

[91] M. Katelman and J. Meseguer. A rewriting semantics for ABEL with ap-
plications to hardware/software co-design and analysis. In Grit Denker and
Carolyn Talcott, editors, Proceedings of the Sixth International Workshop
on Rewriting Logic and its Applications (WRLA 2006), volume 176(4) of
Electronic Notes in Theoretical Computer Science, pages 47–60. Elsevier,
2007. doi: 10.1016/j.entcs.2007.06.007.

[92] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Press, 2000.

[93] Hans-Jörg Kreowski. Transformations of derivation sequences in graph
grammars. In FCT’77, pages 275–286, 1977. doi: 10.1007/3-540-08442-8
94.

[94] Masahito Kurihara and Azuma Ohuchi. Modularity in noncopying term
rewriting. Theoretical Computer Science, 152(1):139–169, 1995. doi:
10.1016/0304-3975(94)00248-3.

[95] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. Transactions on Computers, 28(9):690–
691, 1979. ISSN 0018-9340. doi: 10.1109/TC.1979.1675439.

[96] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and mod-
ular interpreters. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 333–
343, New York, NY, USA, 1995. ACM Press. doi: 10.1145/199448.199528.

[97] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 378–391, New
York, NY, USA, 2005. ACM. doi: 10.1145/1040305.1040336.

[98] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic: roadmap and
bibliography. Theoretical Computer Science, 285(2):121–154, 2002. doi:
10.1016/S0304-3975(01)00357-7.

[99] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and
semantic framework. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, 2nd. Edition, pages 1–87. Kluwer Academic Publishers,
2002. First published as SRI Tech. Report SRI-CSL-93-05, August 1993.

[100] Patrick Meredith, Mark Hills, and Grigore Ros,u. An executable rewriting
logic semantics of k-scheme. In Danny Dube, editor, Proceedings of the
2007 Workshop on Scheme and Functional Programming (SCHEME’07),
Technical Report DIUL-RT-0701, pages 91–103. Laval University, 2007.

[101] Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grigore
Roşu. A formal executable semantics of Verilog. In Eighth ACM/IEEE In-
ternational Conference on Formal Methods and Models for Codesign (MEM-
OCODE’10), pages 179–188. IEEE, 2010. doi: doi:10.1109/MEMCOD.
2010.555863.

233



[102] José Meseguer. Rewriting as a unified model of concurrency. In Jos
C. M. Baeten and Jan Willem Klop, editors, CONCUR’90, volume 458 of
Lecture Notes in Computer Science, pages 384–400. Springer, 1990. ISBN
3-540-53048-7. doi: 10.1007/BFb0039072.

[103] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96(1):73–155, 1992. doi:
10.1016/0304-3975(92)90182-F.

[104] José Meseguer. Rewriting logic as a semantic framework for concurrency:
a progress report. In Ugo Montanari and Vladimiro Sassone, editors,
CONCUR’96, volume 1119 of Lecture Notes in Computer Science, pages
331–372. Springer, 1996. ISBN 3-540-61604-7. doi: 10.1007/3-540-61604-7
64.

[105] José Meseguer. Membership algebra as a logical framework for equa-
tional specification. In Francesco Parisi-Presicce, editor, Recent Trends
in Algebraic Development Techniques, 12th International Workshop,
WADT’97, Tarquinia, Italy, June 1997, Selected Papers, volume 1376
of Lecture Notes in Computer Science, pages 18–61. Springer, 1997. doi:
10.1007/3-540-64299-4 26.

[106] José Meseguer. Software specification and verification in rewriting logic. In
M. Broy and M. Pizka, editors, Models, Algebras, and Logic of Engineering
Software, NATO Advanced Study Institute, Marktoberdorf, Germany, July
30 – August 11, 2002, pages 133–193. IOS Press, 2003.

[107] José Meseguer. A rewriting logic sampler. In Dang Van Hung and Mar-
tin Wirsing, editors, Theoretical Aspects of Computing - ICTAC 2005,
Second International Colloquium, Hanoi, Vietnam, October 17-21, 2005,
Proceedings, volume 3722 of Lecture Notes in Computer Science, pages
1–28. Springer, 2005. doi: 10.1007/11560647 1.

[108] José Meseguer and Christiano Braga. Modular rewriting semantics of
programming languages. In Charles Rattray, Savi Maharaj, and Carron
Shankland, editors, Algebraic Methodology and Software Technology, 10th
International Conference, AMAST 2004, Stirling, Scotland, UK, July 12-
16, 2004, Proceedings, volume 3116 of Lecture Notes in Computer Science,
pages 364–378. Springer, 2004. doi: 10.1007/978-3-540-27815-3 29.

[109] José Meseguer and Grigore Ros,u. Rewriting logic semantics: From language
specifications to formal analysis tools. In David A. Basin and Michaël
Rusinowitch, editors, Automated Reasoning - Second International Joint
Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings,
volume 3097 of Lecture Notes in Computer Science, pages 1–44. Springer,
2004. doi: 10.1007/978-3-540-25984-8 1.

[110] José Meseguer and Grigore Ros,u. The rewriting logic semantics project. In
Proceedings of the Second Workshop on Structural Operational Semantics
(SOS 2005), volume 156(1) of Electronic Notes in Theoretical Computer
Science, pages 27–56. Elsevier, 2006. doi: 10.1016/j.entcs.2005.10.027.

[111] José Meseguer and Grigore Ros,u. The rewriting logic semantics project.
Theoretical Computer Science, 373(3):213–237, 2007. doi: 10.1016/j.tcs.
2006.12.018.

234



[112] José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Equational
abstractions. Theoretical Computer Science, 403(2-3):239–264, 2008. doi:
10.1016/j.tcs.2008.04.040.

[113] Dale Miller. Representing and reasoning with operational semantics. In
Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning,
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA,
August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer
Science, pages 4–20. Springer, 2006. doi: 10.1007/11814771 3.

[114] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992. doi: 10.1007/BFb0032030.

[115] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes. Information and Computation, 100(1):1–77, 1992. doi: 10.1016/
0890-5401(92)90008-4.

[116] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The
Definition of Standard ML (Revised). MIT Press, Cambridge, MA, USA,
1997.

[117] E. Moggi. An abstract view of programming languages. Technical Re-
port ECS-LFCS-90-113, Edinburgh University, Department of Computer
Science, June 1989.

[118] Eugenio Moggi. A modular approach to denotational semantics. In David H.
Pitt, Pierre-Louis Curien, Samson Abramsky, Andrew M. Pitts, Axel
Poigné, and David E. Rydeheard, editors, Category Theory and Computer
Science, volume 530 of Lecture Notes in Computer Science, pages 138–139.
Springer, 1991. ISBN 3-540-54495-X. doi: 10.1007/BFb0013462.

[119] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[120] P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, Chapter 11. North-Holland, 1990.

[121] Peter D. Mosses. Unified algebras and action semantics. In Burkhard
Monien and Robert Cori, editors, STACS 89, 6th Annual Symposium on
Theoretical Aspects of Computer Science, Paderborn, FRG, February 16-
18, 1989, Proceedings, volume 349 of Lecture Notes in Computer Science,
pages 17–35. Springer, 1989. doi: 10.1007/BFb0028970.

[122] Peter D. Mosses. Pragmatics of modular SOS. In Hélène Kirchner and
Christophe Ringeissen, editors, Algebraic Methodology and Software Tech-
nology, 9th International Conference, AMAST 2002, Saint-Gilles-les-Bains,
Reunion Island, France, September 9-13, 2002, Proceedings, volume 2422
of Lecture Notes in Computer Science, pages 21–40. Springer, 2002. doi:
10.1007/3-540-45719-4 3.

[123] Peter D. Mosses. Modular structural operational semantics. Journal of
Logic and Algebraic Programming, 60-61:195–228, 2004. doi: 10.1016/j.
jlap.2004.03.008.

235



[124] Gopalan Nadathur and Dale Miller. An overview of Lambda-PROLOG.
In Kenneth A. Bowen Robert A. Kowalski, editor, Logic Programming,
Proceedings of the Fifth International Conference and Symposium, Seattle,
Washington, August 15-19, 1988, Proceedings, pages 810–827. MIT Press,
1988.

[125] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial
2283.

[126] Peter Csaba Ölveczky, editor. Rewriting Logic and Its Applications -
8th International Workshop, WRLA 2010, Held as a Satellite Event of
ETAPS 2010, Paphos, Cyprus, March 20-21, 2010, Revised Selected Papers,
volume 6381 of Lecture Notes in Computer Science, 2010. Springer. ISBN
978-3-642-16309-8. doi: 10.1007/978-3-642-16310-4.

[127] Peter Csaba Ölveczky and José Meseguer. Real-Time Maude 2.1. In
N. Mart́ı-Oliet, editor, Proceedings of the Fifth International Workshop
on Rewriting Logic and its Applications (WRLA 2004), volume 117 of
Electronic Notes in Theoretical Computer Science, pages 285–314. Elsevier,
2005. doi: 10.1016/j.entcs.2004.06.015.

[128] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-tso. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes in
Computer Science, pages 391–407. Springer, 2009. ISBN 978-3-642-03358-2.
doi: 10.1007/978-3-642-03359-9 27.

[129] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International,
Menlo Park, CA, September 1999.

[130] Andrei Păun and Gheorghe Păun. The power of communication: P systems
with symport/antiport. New Generation Computing, 20(3):295–305, 2002.
ISSN 0288-3635. doi: 10.1007/BF03037362.

[131] Gheorghe Păun. Computing with membranes. Journal of Computer and
System Sciences, 61:108–143, 2000. doi: 10.1006/jcss.1999.1693.

[132] G. L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115–116, 1981. ISSN 0020-0190.

[133] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI
’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 199–208, New York, NY, USA,
1988. ACM Press. doi: 10.1145/53990.54010.

[134] B. Pierce. Types and Programming Languages. MIT Press, 2002.

[135] B. C. Pierce and D. N. Turner. Pict: A programming language based on
the pi calculus. In Proof, Language and Interaction: Essays in Honour of
Robin Milner. MIT Press, 2000.

[136] Gordon D. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60-61:17–139, 2004. doi: 10.1016/j.
jlap.2004.05.001. Original version: University of Aarhus Technical Report
DAIMI FN-19, 1981.

236



[137] Detlef Plump. Hypergraph rewriting: critical pairs and undecidability of
confluence. In Term graph rewriting: theory and practice, pages 201–213.
John Wiley and Sons Ltd., Chichester, UK, 1993. ISBN 0-471-93567-0.

[138] Detlef Plump. Term graph rewriting. In Handbook of graph grammars and
computing by graph transformation, volume 2, pages 3–61. World Scientific,
1999.

[139] Arend Rensink and Eduardo Zambon. A type graph model for java
programs. In David Lee, Antónia Lopes, and Arnd Poetzsch-Heffter,
editors, FMOODS/FORTE, volume 5522 of Lecture Notes in Computer
Science, pages 237–242. Springer, 2009. ISBN 978-3-642-02137-4. doi:
10.1007/978-3-642-02138-1 18.

[140] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3-4):233–248, 1993. doi: 10.1007/BF01019459.

[141] Grigore Roşu, Chucky Ellison, and Wolfram Schulte. Matching logic: An
alternative to Hoare/Floyd logic. In Thirteenth International Conference
on Algebraic Methodology And Software Technology (AMAST ’10). LNCS,
2010. to appear.

[142] Grigore Ros,u. CS322, Fall 2003 - Programming Language Design: Lecture
Notes. Technical Report UIUCDCS-R-2003-2897, University of Illinos at
Urbana Champaign, December 2003. Lecture notes of a course taught at
UIUC.

[143] Grigore Ros,u. K: A rewriting-based framework for computations – pre-
liminary version. Technical Report Department of Computer Science
UIUCDCS-R-2007-2926 and College of Engineering UILU-ENG-2007-1827,
University of Illinois at Urbana-Champaign, 2007.

[144] Grigore Ros,u. Programming languages—a rewriting approach—. draft.
URL http://fsl.cs.uiuc.edu/pub/pl.pdf.

[145] Grigore Ros,u and Wolfram Schulte. Matching logic — extended report.
Technical Report Department of Computer Science UIUCDCS-R-2009-
3026, University of Illinois at Urbana-Champaign, January 2009.

[146] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic
framework. Journal of Logic and Algebraic Programming, 79(6):397–434,
2010. doi: 10.1016/j.jlap.2010.03.012.

[147] Grigore Ros,u, Ram Prasad Venkatesan, Jon Whittle, and Laurentiu
Leustean. Certifying optimality of state estimation programs. In Warren
A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verification, 15th
International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003,
Proceedings, volume 2725 of Lecture Notes in Computer Science, pages
301–314. Springer, 2003. doi: 10.1007/978-3-540-45069-6 30.

[148] Grigore Ros,u, Chucky Ellison, and Wolfram Schulte. From rewriting logic
executable semantics to matching logic program verification. Technical
report, University of Illinois, July 2009. URL http://hdl.handle.net/

2142/13159.

237

http://fsl.cs.uiuc.edu/pub/pl.pdf
http://hdl.handle.net/2142/13159
http://hdl.handle.net/2142/13159


[149] Grigore Ros,u, Wolfram Schulte, and Traian Florin S, erbănut, ă. Runtime
verification of C memory safety. In Runtime Verification (RV’09), volume
5779 of Lecture Notes in Computer Science, pages 132–152, 2009. doi:
10.1007/978-3-642-04694-0 10.

[150] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 6(3-4):289–360,
1993. doi: 10.1007/BF01019462.

[151] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom
Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The
semantics of x86-cc multiprocessor machine code. In Zhong Shao and
Benjamin C. Pierce, editors, POPL, pages 379–391. ACM, 2009. ISBN
978-1-60558-379-2. doi: 10.1145/1480881.1480929.

[152] Ralf Sasse and José Meseguer. Java+ITP: A verification tool based on
Hoare logic and algebraic semantics. In Grit Denker and Carolyn L. Talcott,
editors, Proceedings of the 6th International Workshop on Rewriting Logic
and its Applications (WRLA 2006), volume 176(4) of Electronic Notes in
Theoretical Computer Science, pages 29–46, 2007. doi: 10.1016/j.entcs.
2007.06.006.

[153] Ralph Sasse. Taclets vs. rewriting logic – relating semantics of Java.
Master’s thesis, Fakultät für Informatik, Universität Karlsruhe, Germany,
May 2005. Technical Report in Computing Science No. 2005-16.

[154] David A. Schmidt. Denotational Semantics – A Methodology for Language
Development. Allyn and Bacon, Boston, MA, 1986.

[155] Dana Scott. Outline of a mathematical theory of computation. In Pro-
ceedings, Fourth Annual Princeton Conference on Information Sciences
and Systems, pages 169–176. Princeton University, 1970. Also appeared as
Technical Monograph PRG 2, Oxford University, Programming Research
Group.

[156] Dana Scott and Christopher Strachey. Toward a mathematical semantics
for computer languages. In Microwave Research Institute Symposia Series,
Vol. 21: Proc. Symp. on Computers and Automata. Polytechnical Institute
of Brooklyn, 1971.

[157] Koushik Sen, Grigore Ros,u, and Gul Agha. Runtime safety analysis of
multithreaded programs. In FSE, pages 337–346, 2003. doi: 10.1145/
940071.940116.

[158] Koushik Sen, Grigore Ros,u, and Gul Agha. Detecting errors in multi-
threaded programs by generalized predictive analysis. In Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS’05),
volume 3535 of Lecture Notes in Computer Science, pages 211–226, 2005.
doi: 10.1007/11494881 14.

[159] Traian Florin S, erbănut, ă and Grigore Rosu. K-Maude: A rewriting based
tool for semantics of programming languages. In Ölveczky [126], pages
104–122. ISBN 978-3-642-16309-8. doi: 10.1007/978-3-642-16310-4 8.

[160] Traian Florin S, erbănut, ă, Grigore Ros,u, and José Meseguer. A rewriting
logic approach to operational semantics. Information and Computation,
207:305–340, 2009. doi: 10.1016/j.ic.2008.03.026.

238



[161] Traian Florin S, erbănut, ă, Gheorghe Stefanescu, and Grigore Ros,u. Defining
and executing P systems with structured data in K. In David W. Corne,
Pierluigi Frisco, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa,
editors, Workshop on Membrane Computing (WMC’08), volume 5391 of
Lecture Notes in Computer Science, pages 374–393. Springer, 2009. ISBN
978-3-540-95884-0. doi: 10.1007/978-3-540-95885-7 26.

[162] Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu. Maximal causal
models for sequentially consistent multithreaded systems. Technical report,
University of Illinois, 2010. URL http://hdl.handle.net/2142/17336.

[163] Jaroslav Ševč́ık and David Aspinall. On validity of program transformations
in the Java memory model. In Jan Vitek, editor, ECOOP, volume 5142 of
Lecture Notes in Computer Science, pages 27–51. Springer, 2008. ISBN
978-3-540-70591-8. doi: 10.1007/978-3-540-70592-5 3.

[164] Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of
Programming Languages. Addison-Wesley, 1995.

[165] Robert F. Stärk, Joachim Schmid, and Egon Börger. Java and the Java
Virtual Machine: Definition, Verification, Validation. Springer, 2001.

[166] M.-O. Stehr and C. L. Talcott. Practical techniques for language design
and prototyping. In J. L. Fiadeiro, U. Montanari, and M. Wirsing, editors,
Abstracts Collection of the Dagstuhl Seminar 05081 on Foundations of
Global Computing. February 20 – 25, 2005. Schloss Dagstuhl, Wadern,
Germany, 2005.

[167] Mark-Oliver Stehr. CINNI - a generic calculus of explicit substitutions and
its application to λ-, σ- and π- calculi. In K. Futatsugi, editor, Proceedings of
the Third International Workshop on Rewriting Logic and its Applications
(WRLA 2000), volume 36 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2000. doi: 10.1016/S1571-0661(05)80125-2.

[168] Mark-Oliver Stehr and Carolyn L. Talcott. Plan in Maude: Specifying an
active network programming language. In F. Gadducci and U. Montanari,
editors, Proceedings of the Forth International Workshop on Rewriting
Logic and its Applications (WRLA 2002), volume 71 of Electronic Notes
in Theoretical Computer Science, pages 240–260. Elsevier, 2002. doi:
10.1016/S1571-0661(05)82538-1.

[169] Mark-Oliver Stehr, Iliano Cervesato, and Stefan Reich. An execution
environment for the MSR cryptoprotocol specification language. 2004.
URL http://formal.cs.uiuc.edu/stehr/msr.html.

[170] Prasanna Thati, Koushik Sen, and Narciso Mart́ı-Oliet. An executable
specification of asynchronous Pi-Calculus semantics and may testing in
Maude 2.0. In F. Gadducci and U. Montanari, editors, Proceedings of
the Forth International Workshop on Rewriting Logic and its Applications
(WRLA 2002), volume 71 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2002. doi: 10.1016/S1571-0661(05)82539-3.

[171] Mark van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier. Com-
piling language definitions: the ASF+SDF compiler. ACM Transactions
on Programming Languages and Systems (TOPLAS), 24(4):334–368, 2002.
doi: 10.1145/567097.567099.

239

http://hdl.handle.net/2142/17336
http://formal.cs.uiuc.edu/stehr/msr.html


[172] A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An
Algebraic Specification Approach. World Scientific, 1996.

[173] A. Verdejo. Maude como marco semántico ejecutable. PhD thesis, Facultad
de Informática, Universidad Complutense, Madrid, Spain, 2003.

[174] Alberto Verdejo and Narciso Mart́ı-Oliet. Implementing CCS in Maude
2. In F. Gadducci and U. Montanari, editors, Proceedings of the Forth
International Workshop on Rewriting Logic and its Applications (WRLA
2002), volume 71 of Electronic Notes in Theoretical Computer Science.
Elsevier, 2002. doi: 10.1016/S1571-0661(05)82540-X.

[175] Alberto Verdejo and Narciso Mart́ı-Oliet. Executable structural operational
semantics in Maude. Journal of Logic and Algebraic Programming, 67(1-2):
226–293, 2006. doi: 10.1016/j.jlap.2005.09.008.

[176] Patrick Viry. Equational rules for rewriting logic. Theoretical Computer
Science, 285(2):487–517, 2002. doi: 10.1016/S0304-3975(01)00366-8.

[177] Eelco Visser. Program transformation with Stratego/XT: Rules, strate-
gies, tools, and systems in Stratego/XT 0.9. In Christian Lengauer,
Don S. Batory, Charles Consel, and Martin Odersky, editors, Domain-
Specific Program Generation, International Seminar, Dagstuhl Castle,
Germany, March 23-28, 2003, Revised Papers, volume 3016 of Lec-
ture Notes in Computer Science, pages 216–238. Springer, 2003. doi:
10.1007/978-3-540-25935-0 13.

[178] Philip Wadler. The essence of functional programming. In POPL ’92:
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 1–14, New York, NY, USA, 1992. ACM
Press. doi: 10.1145/143165.143169.

[179] Mitchell Wand. First-order identities as a defining language. Acta Infor-
matica, 14:337–357, 1980. doi: 10.1007/BF00286491.

[180] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38–94, 1994. doi:
10.1006/inco.1994.1093.

[181] Yong Xiao, Zena M. Ariola, and Michel Mauny. From syntactic theories to
interpreters: A specification language and its compilation. The Computing
Research Repository (CoRR), cs.PL/0009030, September 2000.

240


	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 A Rewriting Logic Approach to Operational Semantics
	Chapter 4 An Overview of the K Semantic Framework
	Chapter 5 From Language Definitions to (Runtime) Analysis Tools
	Chapter 6 A Concurrent Semantics for K Rewriting
	Chapter 7 K-Maude—A Rewriting Logic Implementation of the K Framework
	Chapter 8 Related Work
	Chapter 9 Conclusions
	Bibliography

