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Abstract

Domain decomposition for regular meshes on parallel computers has traditionally

been performed by attempting to exactly partition the work among the available

processors (now cores). However, these strategies often do not consider the inherent

system noise which can hinder MPI application scalability to emerging peta-scale

machines with 10000+ nodes. In this work, we suggest a solution that uses a tunable

hybrid static/dynamic scheduling strategy that can be incorporated into current

MPI implementations of mesh codes. By applying this strategy to a 3D jacobi

algorithm, we achieve performance gains of at least 16% for 64 SMP nodes.
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1 Introduction

Much literature has emphasized effective decomposition strategies for good paral-

lelism across nodes of a cluster. Recent work with hybrid programming models for

clusters of SMPs has often focused on determining the best split of threads and pro-

cesses, and the shape of the domains used by each thread[1, 2]. In fact, these static

decompositions are often auto-tuned for specific architectures to achieve reasonable

performance gains.

However, the fundamental problem is that this “static scheduling” assumes that

the user’s program has total access to all of the cores all of the time; these static

decomposition strategies cannot be tuned easily to adapt in real-time to system

noise (particularly due to OS jitter). The occassional use of the processor cores, by

OS processes, runtime helper threads, or similar background processes, introduce

noise that makes such static partitioning inefficient on a large number of nodes.

For applications running on a single node, the general system noise is small though

noticeable. Yet, for next-generation peta-scale machines, improving mesh compu-

tations to handle such system noise is a high priority. Current operating systems

running on nodes of high-performance clusters of SMPs have been designed to min-

imally interfere with these computationally intensive applications running on SMP

nodes[3], but the small performance variations due to system noise can still poten-

tially impact scalability of an MPI application for a cluster on the order of 10,000

nodes. Indeed, to eliminate the effects of process migration, the use of approaches

such as binding compute threads/processes to cores, just before running the appli-

cation, is advocated[3]. However, this only provides a solution for migration and

1



neglects overhead due to other types of system noise.

In this work, we illuminate how the occassional use of the processor cores by OS

processes, runtime helper threads, or similar background processes, introduce noise

that makes such static schedules inefficient. In order to performance tune these

codes with system noise in mind, we propose a solution which involves a partially

dynamic scheduling strategy of work. Our solution uses ideas from task stealing

and work queues to dynamically schedule tasklets. In this way, our MPI mesh codes

work with the operating system running on an SMP node, rather than in isolation

from it.

The remainder of this work is organized as follows. Chapter 2 formulates the ba-

sic problem of the regular mesh code. Chapter 3.1 introduces our dynamic scheduling

strategy as implemented on a single node using pthreads. Chapter 3.2 demonstrates

the competitive performance of our strategy. In chapter 3.3, we systematically per-

formance tuning our dynamic scheduling strategy, with particular consideration for

task granularity and dequeue overhead. Chapter 3.4 adds in MPI communication

and evaluates scalability of our approach. Chapter 4 discusses related work. Chap-

ter 5 concludes and discusses future work.
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2 Problem Statement

Our model problem is an exemplar of regular mesh code. For simplicity, we will

call it a Jacobi algorithm, as the work that we perform in our model problem is the

Jacobi relaxation iteration in solving a Poisson problem. However, the data and

computational pattern are similar for both regular mesh codes (both implicit and

explicit) and for algorithms that attempt to evenly divide work among processor

cores (such as most sparse matrix-vector multiply implementations).

Many MPI implmentations of regular mesh codes traditionally have a prede-

fined domain decomposition, as can be seen in many libraries and microbenchmark

suites[4]. This optimal decomposition is necessary to reduce communication over-

head, minimize cache misses, and ensure data locality. In this work, we consider a

slab decomposition of a 3-dimensional block implemented in MPI/pthreads hybrid

model, an increasingly popular model for taking advantage of clusters of SMPs.

We use a problem size and dimension that can highlight many of the issues

we see in real-world applications with mesh computations implemented in MPI:

specifically, we use a 3D block with dimensions 64 × 512 × 64 on each node for a

fixed 1000 iterations. For our 7-point stencil computation, this generates a total of

1.6 GFLOPS per node.

With this problem size, we can ensure that computations are done out-of-cache so

that it is just enough to excercise the full memory hierarchy. The block is partitioned

into vertical slabs across processes along the X dimension. Each vertical slab is

further partitioned into horizontal slabs across threads along the Y dimension. Each

vertical slab contains a static section(top) and a dynamic section(bottom). The slab
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Figure 2.1: The basic slab domain decomposition for the 3D Poisson problem,where
each MPI process gets one slab. Note that we use a vertical slab decomposition
across the X dimension for the MPI processes.

domain decomposition across processes is shown in figure 2.1, while the full hybrid

process-thread domain decomposition is shown in figure 2.2. Our specific strategy of

partitioning each vertical slab into a static portion and a dynamic portion is shown

in figure 2.3.

We use this decomposition strategy because of its simplicity to implement and

tune different parameters in our search space. A MPI border exchange communica-

tion occurs between left and right borders of blocks of each process across the YZ

planes. The border exchange operation uses MPI Isend and MPI Irecv pair, along

with an MPI Waitall. We mitigate the issue of first-touch as noted in [5] by doing

parallel memory allocation during the initialization of our mesh.

For such regular mesh computations, the communication between processes, even

in an explicit mesh sweep, provides a synchronization between the processes. Any

load imbalance between the processes can be amplified, even when using a good (but
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Figure 2.2: Each of the t threads within a process gets a partition of the slab. The
threads within a process partition the slab along the Y dimension.

Figure 2.3: The vertical slabs belonging to a process are partitioned into a static
portion and dynamic portion. Here, r is a ratio representing the amount of work
(shown in red) that is to be done using dynamic scheduling.
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static) domain decomposition strategy. If even 1% of nodes are affected by system

interference during one iteration of a computationally intensive MPI application on

a cluster with 1000s of nodes, several nodes will be affected by noise during each

iteration. Our solution to this problem is to use a partially dynamic scheduling

strategy, and is presented in the section that follows.
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3 Performance Tuning
Experimentation

3.1 Performance Tuning Technique

The technique for supporting dynamic scheduling of computation was implemented

with a queue that was shared among threads. Each element of the shared queue (we

refer to it as a tasklet) contains the specification of what work the thread executing

this tasklet is responsible for, and a flag indicating whether the tasklet has been

completed by a thread. In order to preserve locality (so that in repeated computa-

tions the same threads can get the same work), we also maintain an additional tag

specifying the last thread that ran this tasklet. In the execution of each iteration

of the Jacobi algorithm, there are 3 distinct phases: MPI communication, stati-

cally scheduled computation, and dynamically scheduled computation. In phase 1,

thread 0 does the MPI communication for border exchange. During this time, all

other threads must wait at a thread barrier. In phase 2, a thread does all work that

is statically allocated to it. Once a thread completes its statically allocated work

it immediately moves to phase 3, where it starts pulling the next available tasklet

from the queue shared among other threads, until the queue is empty. As in the

completely static scheduled case, after threads have finished computation, they will

need to wait at a barrier before continuing to the next iteration. The percentage

of dynamic work, granularity/number of tasklets, and number of queues for a node,

is specified as parameter. Through our experimental studies of tuning our dynamic

scheduling strategy, we pose the following questions:

1. Does partially dynamic scheduling improve performance for mesh computa-
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tions that have traditionally been completely statically

2. What is the tasklet granularity we need to use for maintaining load balance

of tasklets across threads?

3. In using such a technique, how can we decrease the overheads of synchroniza-

tion of the work queues used for dynamic scheduling?

4. What is the impact of the technique for scaling to many nodes?

In the sections that follow, we first demonstrate the benefits of partial dynamic

scheduling on one node in 3.2. Section 3.3 describes the effect of task granularity.

Section 3.4 examines the impact on MPI runs with multiple nodes. Our experiments

were conducted on a system with Power575 SMP nodes with 16 cores per node, and

the operating system was IBM AIX. We assign a compute thread to each core,

ensuring that the node is fully subscribed (ignoring the 2-way SMT available on

these nodes as there are only 16 sets of functional units). If any OS or runtime

threads need to run, they must take time away from one of our computational

threads.

3.2 Reducing Impact of OS Jitter: Dynamic vs

Static Scheduling

As mentioned above, threads first complete all static work assigned to it. Once

a thread completes this stage, it moves to the dynamic phase, where it dequeues

tasklets from the task queue. In the context of the stencil computation experimen-

tation we do, each thread is assigned a horizontal slab from the static region at

compile time. After a thread fully completes its statically allocated slab, it com-

pletes as many tasklets of the dynamic region as it can. The number of tasklets is a
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user-specified parameter. To explore the impact of using dynamic scheduling with

locality preference, we enumerate 4 separate cases, based on the dynamic scheduling

strategy.

1. 0% dynamic: Slabs are evenly partitioned, with each thread being assigned

one slab. All slabs are assigned to threads at compile-time.

2. 100% dynamic + no locality: All slabs are dynamically assigned to threads

via a queue.

3. 100% dynamic + locality: Same as 2, except that when a thread tries to

dequeue a tasklet, it first searches for tasklets that it last executed in a previous

jacobi iteration.

4. 50% static, 50% dynamic + locality: Each thread first does its static section,

and then immediately starts pulling tasklets from the shared work queue.

This approach is motivated by a desire to reduce overhead in managing the

assignment of tasks to cores.

For the cases involving dynamic scheduling, we initially assume the number of

tasklets to be 32, and that all threads within an MPI process share one work queue.

We preset the number of iterations to be 1000 (rather than using convergence cri-

teria) to allow us to more easily verify our results. In our experiments, we choose

1000 iterations as this adequately captures the periodicity of the jitter induced by

the system services during a trial[3]. Figure 3.1 below shows the average perfor-

mance we obtained over 40 trials for each of these cases. From the figure, we can

see that the 50% dynamic scheduling gives significant performance benefits over the

traditional static scheduling scheduling case. Using static scheduling, the average

execution time we measure was about 7.00 seconds of wall-clock time. We make note

that of the 40 trials we did, we obtained 6 lucky runs where the best performance
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Figure 3.1: The performance of different scheduling strategies used with the Jacobi
Computation with 64 by 512 by 64 size block.

we got was in the range 6.00 - 6.50 seconds. The remaining 34 runs were between

7.00 - 8.00 seconds. Using fully dynamic scheduling with no locality, performance

was slightly worse than the statically scheduled case. For this case, there were some

small performance variations (within 0.2 seconds) across the 40 trials; these were

most probably due to the varying umber of cache misses, in addition to system

service interference. Using locality with fully dynamic scheduling, the performance

variations over 40 trials here were even lower (within 0.1 seconds). Using the 50%

dynamic scheduling strategy, the execution time was 6.53 seconds, giving us over

7% performance gain over our baseline static scheduling. Thus, we notice that just

by using a reasonable partially dynamic scheduling strategy, performance variation

can be reduced and overall performance can be improved.

In all cases using dynamic scheduling, the thread idle times(not shown here)

contribute to the largest percentage overhead. The high overhead in case 2 is likely

attributed to the fact that threads suffer from doing non-local work. Because some

threads suffer cache misses while others do not, the overall thread idle time (due to

threads waiting at barriers) could be particularly high.
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3.3 Tuning Tasklet Granularity for Reduced

Thread Idle Time

As we noticed in the previous section, the idle times account for a large percentage

of the performance. Total thread idle time (summed across threads) can be high

because of load imbalance. Our setup above used 32 tasklets. However, the tasklets

may have been too coarse grained (each tasklet has a 16-plane slab). With very

coarse granularity, performance suffers because threads must wait (remain idle) at

a barrier, until all threads have completed their dynamic phase. As a first strategy,

we varied the number of tasklets, using 16, 32, 64, 96, and 128 tasklets as our test

cases. The second strategy, called skewed workloads, addresses the tradeoff between

fine-grain tasklets and coarse-grain tasklets. In this strategy, we use a work queue

containing variable sized tasklets, with larger tasklets at the front of the queue and

smaller tasklets towards the end. Skewed workloads reduce the contention overhead

for dequeuing tasklets (seen when using fine-granularity tasklets) and also reduce

the idle time of threads (seen when using coarse-grain tasklets). In figure 3.2, we

notice that as we increase number of tasklets from 16 to 64 tasklets (decreasing

tasklet size) we obtain significant performance gains, and the gains come primarily

from the reduction in idle times. Overall, we notice that the performance increases

rapidly in this region. As we increase from 64 to 128 tasklets, performance starts to

decrease, primarily due to the contention for the tasklets and the increased dequeue

overhead. We also see that performance of the skewed strategy (especially with

50% dynamic scheduling) is comparable to that of 64 tasklets, which has the best

performance. In this way, a skewed strategy can yield competitive performance

without needing to predefine the tasklet granularity.

To understand how tuning with a skewed workload benefits performance, fig-

ure 3.4 shows the distribution of timings for each of the 1000 iterations of the jacobi
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Figure 3.2: Increasing task granularity to helps improve performance, particularly
because of reduced thread idle times. However, at 128 tasklets the performance
starts to degrade due to increasing contention for tasklets.

algorithm, comparing between static scheduling, 50% dynamic scheduling with fixed

size tasklets, and 50% dynamic scheduling with skewed workloads. Using static

scheduling, the maximum iteration time was 9.5 milliseconds(ms), about 40% larger

than the average time of all iterations. Also, the timing distribution is bimodal,

showing that half the iterations ran optimally as tuned to the architecture(running

in about 6 ms), while the other half were slowed down by system noise(running in

about 7.75 ms). Using 50% dynamic scheduling, the maximum iteration time is

reduced to 8.25 ms, but it still suffers due to dequeue overheads, as can be seen

by the mean of 7.25 ms. By using a skewed workload strategy, we see that the

max is also 8.25 ms. However, the mean is lower (6.75 ms) than that seen when

using fixed size tasklets, because of the lower dequeue overhead that this scheme

provides. The skewed workloads provided 7% performance gains over the simple

50% dynamic scheduling strategy, which uses fixed-size coarse-grain tasklets of size

32. Furthermore, the reduced max time when using dynamic scheduling indicates

that our dynamic scheduling strategy better withstands perturbations caused by

system noise.

To understand how tuning with a skewed workload benefits performance, fig-

ure 3.4 shows the distribution of timings for each of the 1000 iterations of the jacobi

12



Figure 3.3: Histogram view showing the performance variation of iterations for
static scheduling, 50% dynamic scheduling with fixed-size tasklet granularity, and
50% dynamic scheduling with skewed workload strategy.
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algorithm, comparing between static scheduling, 50% dynamic scheduling with fixed

size tasklets, and 50% dynamic scheduling with skewed workloads. Using static

scheduling, the maximum iteration time was 9.5 milliseconds(ms), about 40% larger

than the average time of all iterations. Also, the timing distribution is bimodal,

showing that half the iterations ran optimally as tuned to the architecture(running

in about 6 ms), while the other half were slowed down by system noise(running in

about 7.75 ms). Using 50% dynamic scheduling, the maximum iteration time is

reduced to 8.25 ms, but it still suffers due to dequeue overheads, as can be seen

by the mean of 7.25 ms. By using a skewed workload strategy, we see that the

max is also 8.25 ms. However, the mean is lower (6.75 ms) than that seen when

using fixed size tasklets, because of the lower dequeue overhead that this scheme

provides. The skewed workloads provided 7% performance gains over the simple

50% dynamic scheduling strategy, which uses fixed-size coarse-grain tasklets of size

32. Furthermore, the reduced max time when using dynamic scheduling indicates

that our dynamic scheduling strategy better withstands perturbations caused by

system noise.

3.4 Using our Technique to Improve Scalability

For many large MPI applications (especially with barriers) running on many nodes of

a cluster, even a small system service interruption on a core of a node can accumulate

to offset the entire computation, and degrade performance. In this way, the impact

of a small load imbalance across cores is amplified for a large number of processes.

This reduces the ability for application scalability, particularly for a cluster with a

very large number of nodes (and there are many machines with more than 10000

nodes). To understand how our technique can be used to improve scalability, we

tested our skewed workload with a 50% dynamic scheduling strategy on 1, 2, 4, 8, 16,

14



Figure 3.4: Histogram view showing the performance variation of iterations for
static scheduling, 50% dynamic scheduling with fixed-size tasklet granularity, and
50% dynamic scheduling with skewed workload strategy.
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Figure 3.5: Scalability results show that the 50% dynamic scheduling strategy per-
forms better and also scales well compared to the traditional static scheduling ap-
proach.

32, and 64 nodes of a cluster. One core of a node was assigned as a message thread to

invoke MPI communication (for border exchanges) across nodes. We used the hybrid

MPI/pthread programming model for implementation. Figure 3.5 shows how as we

increase the number of nodes, using 50% dynamic scheduling always outperforms

the other strategies and scales well. At 64 nodes, the 50% dynamic scheduling gives

us on average a 30% performance improvement over the static scheduled case.

As we can see for the case with static scheduling, a small overhead due to system

services is amplified at 2 nodes and further degrades as we move up to 64 nodes.

In contrast, for the 50% dynamic scheduling strategy using skewed workloads, the

performance does not suffer as much when increasing the number of nodes, and our

jitter mitigation techniques’ benefits are visible at 64 nodes. To see the reasons for

better scalability, we consider the iteration time distributions for 1 node in our 64

node runs, as shown in figure 3.6 (the distributions across all nodes were roughly the

same). Compared to the top left histogram of figure 3.4, the histogram in figure 3.6
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Figure 3.6: The histograms (taken from node 0) in a 64 node run are shown. The left
histogram corresponds to the static scheduling technique, while the right histogram
corresponds to the 50% dynamic scheduling technique.

shows that the distribution has shifted significantly to the right for static scheduling.

This makes sense since each node’s jitter occurs at different times. The chain of

dependencies through MPI messaging for border exchanges compounds the delay

across nodes in consecutive iterations.With dynamic scheduling, the distribution

has not shifted as much. For example, the mode(the tallest line) only shifted from

6.75 ms to 7.00 ms. This is because in each iteration, the node that experiences

noise mitigates its effect by scheduling delayed tasklets to its other threads.
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4 Related Work

The work by [5, 1] shows how regular mesh (stencil) codes can be auto-tuned onto a

multi-core architecture by enumerating different parameters and using sophisticated

machine learning techniques to search for the best parameter configurations. In their

work, the search space is based on the architectural parameters. In our work, we

suggest another issue that one should be aware of for tuning codes: the random

system noise incurred by OS-level events.

Cilk is a programming library [6] intended to enhance performance of many

multi-core applications, and uses the ideas of shared queues and work stealing to

dynamically schedule work. While the implementation of our dynamic strategy

is similar to the Cilk dynamic scheduling strategy, we propose using a dynamic

scheduling strategy for just the last fraction of the computation, rather than all of

it. Furthermore, our method is locality-aware and allows one to tune this fraction of

dynamic scheduling to the inherent system noise. We believe this can be particularly

beneficial to scientific codes that are already optimally partitioned across nodes and

tuned for the architecture. In [7] dynamic task scheduling with variable task sizes

is used as a method for optimizing ScaLaPack libraries. Our work uses predefined,

but tuned, task sizes that mitigate the system noise, without incurring dynamic

scheduling overhead.

Charm++[8] is a programming library for allowing programmers to easily imple-

ment scientific applications that are inherently load imbalanced. It has been, and

still remains, a successful programming library used for applications such as molec-

ular dynamics, cosmology simulations, and social network analysis. A key charac-
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teristic of such applications is that they involve irregular or dynamically varying

computation. In our work, we show that even applications that are regular and that

have traditionally been statically scheduled still require load balance, particularly

when scaling to a very large number of nodes. In this case, we identify load imbal-

ance due to irregularities in the underlying architecture (e.g. due to system noise),

rather than focusing on the irregular nature of in the algorithm. Load imbalance

due to irregularities such as system noise is transient, whereas load imbalance due to

an irregular algorithm is persistent from iteration to iteration. The load imbalance

problem is different, and we provide a different solution. To address our issue, we

use a light-weight load balancing strategy within each multi-core SMP node, rather

than a load balancing strategy used across nodes in Charm++. Through our care-

ful performance tuning and identification of the percentage of dynamic scheduling

we need, we postpone load balancing to the latter stage of computation, where we

know that the benefits of load balancing outweighs its costs. In short, our solution

addresses the overhead that continous load balancing would incur for regular com-

putations, and suggests an alternative hybrid static+dynamic scheduling strategy

for such regular computations.

The work in [9] identifies, quantifies, and mitigates sources of OS jitter mitigation

sources on large supercomputer. This work suggests different methodologies for

handling each type of jitter source. This study suggests primarily modifying the

operating system kernel to mitigate system noise. Specific methods for binding

threads to cores [10] have been shown to have effect in reducing system interference

(particularly process migration and its effects on cache misses) for high-performance

scientific codes. However, these approaches cannot mitigate all system noise such

as background processes or periodic OS timers. Our approach involves tuning an

MPI application to any system noise, rather than modifying the operating system

kernel to reduce its interference. In addition, the techniques we present can be
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used in conjunction with thread binding or other such techniques, rather than as an

alternative.
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5 Conclusion and Future Work

In this work, we introduced a dynamic scheduling strategy that can be used to im-

prove scalability of MPI implementations of regular meshes. To do this, we started

with a pthread mesh code that was tuned to the architecture of a 16-core SMP

node. We then incorporated our partially dynamic scheduling strategy into the

mesh code to handle inherent system noise. With this, we tuned our scheduling

strategy further, particularly considering the grain size of the dynamic tasklets in

our work queue. Finally, we added MPI for communication across nodes and de-

mostrated the scalability of our approach. Through proper tuning, we showed that

our methodology can provide good load balance and scale to a large number of nodes

of our cluster of SMPs, even in the presence of system noise.

For future work, we plan to apply our technique to larger applications such

as MILC[4]. We will also incorporate more tuning parameters (we are currently

examining more sophisticated work-stealing techniques). In addition, we will tune

our strategy so that it works alongside other architectural tuning strategies and other

basic jitter mitigation techniques. We also plan to test on clusters with different

system noise characteristics. With this, we hope to develop auto-tuning methods

for such MPI/pthread code in the search space we have presented.
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