
 

 
 

Illinois Natural History Survey 
 
 

Final Report 
 

Ecological Classification of Rivers for Environmental  
Assessment and Management:   

Model Development and Risk Assessment 
 

 
 

Ann Marie Holtrop, Leon C. Hinz Jr., and John Epifanio 

 

Final Project Report 
 

Submitted to: 
 

Illinois Department of Natural Resources 
One Natural Resources Way 
Springfield, Illinois  62702 

 
 

Illinois Natural History Survey 
Division of Ecology and Conservation Science 

1816 South Oak Street 
Champaign, Illinois  61820 

 
November 2006 

 
 

 Illinois Natural History Survey Technical Report 2006/12 



 

Illinois Natural History Survey 

Center for Aquatic Ecology and Conservation 
 
 

(February 1, 2003 - September 30, 2006) 
 
 

Ecological Classification of Rivers for Environmental 
Assessment and Management: 

Model Development and Risk Assessment 
 
 
 

Final Project Report 2006 
 

Ann Marie Holtrop, Leon C. Hinz Jr., and John Epifanio  
 

 

 

 

 

Submitted to 
 

Illinois Department of Natural Resources 
One Natural Resources Way 
Springfield, Illinois  62702 

 
 
 

Illinois Natural History Survey 
Division of Ecology and Conservation Science 

1816 South Oak Street 
Champaign, Illinois  61820 

 
 

November 2006 
 
 

Illinois Natural History Survey Technical Report 2006/12



 
Ecological Classification of Rivers for Environmental  

Assessment and Management:   
Model Development and Risk Assessment 

 
 
 

Final Project Report  
Project:  T-2-P-1 

 
(February 1, 2003 - September 30, 2006) 

 
 
 

Ann Marie Holtrop, Leon C. Hinz Jr., and John Epifanio 

 

 
 

 
 
 
 
 

Illinois Natural History Survey 
Division of Ecology and Conservation Science 

1816 South Oak Street 
Champaign, Illinois  61820 

 
 
 

November 2006 
 
 
 
 
 
 
 

__________________________   __________________________ 
Dr. John Epifanio,     Dr. David Thomas, 
Project Coordinator     Chief 
Illinois Natural History Survey   Illinois Natural History Survey 



 

iii 

ACKNOWLEDGMENTS 
 
This project was funded through Illinois’ State Wildlife Grant Program (T-2-P-01) and enhanced 
through collaboration with researchers at the USGS – Great Lakes Aquatic Gap Program, Illinois 
Environmental Protection Agency, Institute for Fisheries Research of the Michigan Department 
of Natural Resources, University of Michigan, Illinois Department of Natural Resources, and 
Wisconsin Department of Natural Resources.  Paul Seelbach initiated this three state 
collaborative effort under a US EPA STAR Grant (R-83059601-0).  We would also like to 
acknowledge several individuals that contributed substantially to the success of this project.  
Arthur Cooper (Institute for Fisheries Research) provided valuable assistance with the GIS 
components of the project, John Lyons (Wisconsin DNR) and Paul Steen (USGS) offered valued 
advice on the fish models, Beth Sparks-Jackson developed the macroinvertebrate models, and 
Brian Pijanowski (Purdue University) developed the land transformation models. 



 

iv 

Ecological Classification of Rivers for Environmental 
Assessment and Management: 

Model Development and Risk Assessment 
 
 
 

 
Acknowledgments . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 
 
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv 
 
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 
 
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 
 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
           
Job 2.4 Location and condition of stream habitats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  

 
Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

 
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

 
Macroinvertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

 
Fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

 
 
Job 4.4 Future risk assessment of Illinois= streams 
 

Land Transformation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
 

Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
 
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 
 
Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
 
 
 



 

v 

List of Tables 
 
Table 2.4a.  Summary of hydrologic model family fit statistics. . . . . . . . . . . . . . . . . . . . . . . . . . 13 
 
Table 2.4b.   Summary of temperature fit statistics and model predictor variables. . . . . . . . . . 14 
 
Table 2.4c.   Multiple linear regression models developed for macroinvertebrate assemblages 

in Illinois streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 
 
Table 2.4d.   Landscape-scale environmental variables used in CART analysis. . . . . . . . . . . . 16 
 
Table 2.4e.   Fish assemblages based on cluster analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 
 
Table 2.4f.   Results of CART analysis of the fish assemblage cluster dataset. . . . . . . . . . . . .21 
 
Table 2.4g.   Results of CART analysis of Striped shiner presence absence dataset. . . . . . . .. 22 
 
Table 2.4h.   Results of CART analysis of Longear sunfish presence absence dataset. . . . . . . 23 
 
Table 2.4i.   Results of CART analysis of Smallmouth bass presence absence dataset. . . . . . 24 
 
Table 2.4j.   Results of CART analysis of Creek chubsucker presence absence dataset. . . . . .25 
 
Table 2.4k.   Results of CART analysis of Hornyhead chub presence absence dataset. . . . . . .26 
 
Table 2.4l.   Results of CART analysis of Fantail darter presence absence dataset. . . . . . . . . 27 
 
Table 2.4m.   Comparison of CART results for individual fish species based on 

presence/absence data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
 
Table 4.4a.   Potential changes in annual median discharge and mean July temperature based 

on LTM output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 
 



 

 
 vi

List of Figures 
 
Figure 2.4a.   Map-based summaries from existing data used for modeling. . . . . . . . . . . . . . . 30 
 
Figure 2.4b.   Annual high flow based on model output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
 
Figure 2.4c.   Annual median flow based on model output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
 
Figure 2.4d.   Annual low flow based on model output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
 
Figure 2.4e.   Summer stream temperatures based on logger data. . . . . . . . . . . . . . . . . . . . . . . 34 
 
Figure 2.4f.   Summer stream temperatures based on model output. . . . . . . . . . . . . . . . . . . . .  35 
 
Figure 2.4g.   Results of fish cluster analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
 
Figure 2.4h.   Predicted fish assemblages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
 
Figure 2.4i.   Predicted presence and absence of Striped shiner. . . . . . . . . . . . . . . . . . . . . . . . .38 
 
Figure 2.4j.   Predicted presence and absence of Longear sunfish. . . . . . . . . . . . . . . . . . . . . .  39 
 
Figure 2.4k.   Predicted presence and absence of Smallmouth bass. . . . . . . . . . . . . . . . . . . . . . 40 
 
Figure 2.4l.   Predicted presence and absence of Creek chubsucker. . . . . . . . . . . . . . . . . . . . .  41 
 
Figure 2.4m.   Predicted presence and absence of Hornyhead chub. . . . . . . . . . . . . . . . . . . . . .  42 
 
Figure 2.4n.   Predicted presence and absence of Fantail darter.  . . . . . . . . . . . . . . . . . . . . . . .  43 
 
Figure 4.4a. Potential future scenarios based on a land transformation model. . . . . . . . . . . .  44 
 
Figure 4.4b.   Kaskaskia River median annual discharge estimates based on model output. . .  45 
 
Figure 4.4c.   Kaskaskia River median annual discharge estimates based on LTM output. . . . 46 
 
Figure 4.4d.  Kaskaskia River summer stream temperature estimates based on model output. 47 
 
Figure 4.4e.   Kaskaskia River summer stream temperature estimates based on LTM output. . 48 
 
Figure 4.4f.   Kaskaskia River fish assemblages based on LTM output. . . . . . . . . . . . . . . . . .  49 
 
Figure 4.4g.   Predicted occurrence of Longear sunfish based on LTM output. . . . . . . .  . . . . .50 



 

 
 1

INTRODUCTION 
 
Hawkins et al. (1993) describe several purposes that a general classification of stream habitats 
should serve, including facilitating communication between researchers and managers.  Although 
the scale of their classification (channel units) may differ from what we propose (stream 
reaches), their suggestions on the functionality of a classification are very relevant.  Unlike our 
terrestrial colleagues who have described habitat types at various spatial scales with much 
clarity, stream ecologists lack standardized names for systems that are widely accepted.  Until 
aquatic systems are uniformly described and named, it is difficult for researchers and managers 
to agree on the status of and preferred management options for various stream types.  Hawkins et 
al. (1993) further suggest that the attributes used in the classification are at the appropriate spatial 
scale to the biota of interest and the defined stream types are ecologically meaningful to both 
researchers and managers.  We recognize that aquatic biota are influenced by local features 
within the channel, but are also influenced by the surrounding landscape and the water moving 
through the channel from the upstream watershed.  Therefore, we have developed a database of 
attributes at several spatial scales that includes the local channel, local riparian zone, and local 
catchment, as well as the entire upstream riparian zone and watershed for each stream reach.  A 
description of the GIS-derived attributes can be found in Holtrop et al. (2005).  
 
Various methods for classifying rivers exist and range from purely physical or biological 
classifications to combinations of both.  Geomorphic classifications such as that proposed by 
Rosgen (1994) and the channel evolution model (Schumm et al. 1984) are widely used across the 
United States.  The premise of these classifications is that channels develop in a set pattern and 
can be classified as to their current state.  Although these developmental channel stages can be 
shown to be important, purely geomorphic classifications do not capture variations in key 
ecological factors such as chemistry, hydrology, and temperature that also strongly shape the 
aquatic biota.  Further, purely biological classifications, such as the Biological Stream 
Characterization (BSC; Bertrand et al. 1996) developed for Illinois waters, do not take into 
account physiochemical habitat when rating streams.  BSC ratings are assigned to a stream reach 
primarily based on the fish community sampled at the site.  Given the limitations of each of these 
approaches Illinois resource managers need a tool that will integrate ecological, biological, and 
geomorphic factors in a way that allows aquatic systems to be described in a standardized 
fashion.   
 
To build on these existing approaches, we proposed the development of a statewide database 
system consisting of physically and biologically attributed stream reaches that can be used for 
description and classification of Illinois streams.  The objectives for this project are to: 1) build 
models to predict habitat and biota from mapped landscape and local variables, and 2) assess risk 
of Illinois streams to future land use change.  These objectives correspond to jobs 2.4 and 4.4 
respectively in T-2-P1. 
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Job 2.4.  Location and condition of stream habitats. 
 
The purpose of this job is to build statistical models for predicting riverine site habitats and biota 
from mapped landscape and local variables.  Specifically, we created a series of models for flow, 
instream temperature, macroinvertebrates, and fish.  The models described below are based on 
landscape-scale environmental variables that were derived from GIS data layers under Job 2.1 in 
T-3-P1 (see Holtrop et al. 2005 for more details).  The models were then used to predict 
biological and habitat conditions for all river segments, including sampled and unsampled 
reaches. 
 
Flow 
 
Discharge was characterized using data from 70 U.S. Geological Survey stream gages scattered 
across Illinois.  These gages were selected to minimize the influence of direct alteration by major 
diversions or seasonal regulation at dams.  We summarized data from 1981-2000 to match the 
most recent land cover available and to be long enough to characterize natural inter-annual 
variation in discharge.  Additional information associated with these catchments was derived 
from GIS data layers and used for model development and application (Figure 2.4a). 
 
Multiple linear regression models were developed for a range of annual exceedence discharges 
(5%, 10%, 25%, 50%, 75%, 90%, and 95%).  Potential predictors were proportions of surficial 
geology, landcover, and summary characteristics of the stream network (e.g., drainage area, link 
number, precipitation, slope) based on the catchment associated with the USGS gage data.  Some 
variables were combinations of attributes such as the percentage of lakes and percent emergent 
wetlands combined into one ‘open and wet’ variable.  Summarized discharge data and all 
potential predictors were checked for normality assumptions and transformed if necessary 
(generally natural logarithm or exponential).   
 
Model development essentially followed an addition (p<0.05)/removal (p<0.10) stepwise 
regression procedure with initial development focused on the median flow.  After each addition 
or removal, the predictive equation derived for the median flow model was reparameterized with 
high flow (Q10) and with low flow (Q90) data.  If the most recent change did not result in a major 
decrease in the fit (adjusted R2 and standard error) of these models, then the change was kept and 
development continued.  When additional changes did not improve the fit of the models, then 
this combination of predictors was used to create a family of models for the additional 
exceedence flows (i.e., Q5, Q10, Q25, Q75, Q90, Q95).  All models predict the natural log of the 
exceedence discharge in cubic meters per second and all predictors were retained in these models 
(values were converted to cubic feet per second for this report).  Overall these models had good 
fits with high flows consistently predicted better than low flows (Table 2.4a).   
 
Summaries from our georeferenced database system were applied to these hydrologic models for 
stream segments throughout the state.  Modeled flows were added to the database system by 
attributing stream segments with the model output, thus allowing for a state-wide view of 
expected annual flows (Figures 2.4b-d).   Less than two percent of all segments within Illinois 
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were not able to be assessed with this method because the models did a poor job predicting 
discharge in small catchments with uniform surficial geology and/or landcover and in very large 
rivers. 
 
Temperature 
 
Records from 75 temperature loggers collected between 1999 and 2005 demonstrate a broad 
range of thermal conditions existing in Illinois streams (Figure 2.4e).  These temperature 
summaries were used with landscape based GIS catchment summaries to develop multiple 
regression models that estimate water temperatures.  Since thermal records were seldom longer 
than a single year at any of the sites, we focused on summer water temperatures. We used 
landcover and geology summary data from several scales as potential predictors.  Summaries 
were acquired for each logger location and each stream reach throughout the state for the local 
watershed, total upstream watershed, local riparian buffer, and total upstream riparian buffer.  
Summarized temperature data and all potential predictors were checked for normality 
assumptions and transformed if necessary (e.g., arcsine, square root, natural logarithm, or 
exponential).  Model development followed an addition/removal stepwise regression procedure 
similar to that used for modeling discharge (see above).  Mean daily maximum and mean daily 
minimum water temperatures for the month of July were modeled separately from these data 
(Table 2.4b). 
 
The developed models were applied within our statewide georeferenced database system as a 
preliminary assessment of the thermal conditions within Illinois streams.  Mean daily July 
temperatures were then derived as the average of the daily maximum and minimum temperatures 
from these models (Figure 2.4f).  Stream segments were given a thermal code based on the 
Minimum and Maximum July water temperatures from the model output.  The vast majority 
(79%) of segments had characteristics of warmwater streams but cold-/cool-water segments 
comprised approximately 16% of the total number of coded segments statewide (Figure 2.4f).  
Roughly four percent of all segments within Illinois were not able to be assessed with this 
method because these models did a poor job predicting water temperatures in very large rivers 
and small and/or relatively uniform catchments.   
 
Macroinvertebrates 
 
Summaries of macroinvertebrate sample collections from 636 stations were obtained from the 
Illinois Environmental Protection Agency (IEPA) that cover a broad range of conditions 
occurring in wadeable streams throughout the state.  These collections were made between 1982 
and 1998 by IEPA biologists and approximate the time associated with the recent landcover in 
our database system.  With the assistance of our collaborators in Michigan, multiple linear 
regression models were developed that relate summaries of the invertebrate assemblage to 
human-induced stressors (e.g., landcover) and natural causes/covariates (e.g., drainage area, 
geology, etc).  Total catchment and riparian zone summaries were obtained for each station from 
our existing database and used to develop models for several invertebrate assemblage summaries 
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(i.e., number of Ephemeroptera Taxa, number of Ephemeroptera + Plecoptera + Trichoptera 
(EPT) Taxa, and the Macroinvertebrate Biotic Index (MBI)).   
 
Where necessary, independent variables were transformed to meet assumptions of normality.   
Predictors that had the highest correlations with the invertebrate metrics were added into the 
models first; subsequent variables were added only if they were significant (p<0.05) and they 
improved the model fit (r2).  Overall these models explained slightly more than one quarter of the 
statewide variation in these invertebrate assemblage summaries (Table 2.4c) and demonstrate the 
potential for using our statewide database system for analysis with macroinvertebrate collections.  
While the model fits are not spectacular, they are in the range of similar models developed in 
other parts of the Midwest (M. J. Wiley, University of Michigan, personnel communication).   
 
IEPA modified its sampling protocol during the course of this study and developed a 
macroinvertebrate Index of Biotic Integrity to better meet their assessment needs and water- 
quality objectives (Tetra Tech, Inc. 2005).  These changes increase the sensitivity of the MBI but 
also make our model results difficult to compare with current assessment practices since the 
sampling protocol differs.  Therefore we did not apply the macroinvertebrate models developed 
in this study throughout the state.  However, we expect to undertake the development of similar 
models once adequate samples collected with the revised methods are available, and will 
subsequently apply these results within our statewide system. 
 
Fish 
 
We obtained fish community data for this study from the Fisheries Analysis System (FAS) 
database, which contains hundreds of samples collected by IDNR - Office of Resource 
Conservation biologists.  Some sites have been sampled multiple times throughout IDNR=s 
monitoring program, thus a sample comprises the fish community sampled at a site on a given 
day.  A subset of samples within FAS have corresponding water quality and instream habitat data 
collected by the Illinois Environmental Protection Agency as part of a cooperative agreement 
between the two agencies.  All samples used in this modeling effort were wadeable or semi-
wadeable sites, and were sampled as part of basin surveys.  Abundance data for fishes were 
obtained from single pass electrofishing surveys conducted during summers from 1990 - 2000 at 
442 sites.   
 
Initially, our dataset comprised 146 fish species, including 9 hybrids.  Each site had 3 - 41 
species.  Similar to Zorn et al. (2002), we used cluster analysis to group fishes that shared similar 
abundance patterns.  Prior to analysis, hybrid species, individuals that were identified to genus, 
and rare species (i.e., those that occurred at less than 2% of sites) were removed.  Sites were 
grouped into fish assemblage categories based on flexible beta hierarchical clustering (beta = -
0.25) of a Relative Sorensen distance matrix, carried out in PC-ORD (PC-ORD 1999).  Cluster 
analysis was performed on abundance data, which was defined as catch per unit effort (CPUE).  
For this job, CPUE was defined as the natural log (catch of each species per 1000 ft of stream 
length sampled +1).  Initial analysis suggested that two ubiquitous species, Bluntnose minnow 
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(present at 89% sites) and Green sunfish (present at 83% of sites) influenced the assemblage 
clusters.  Therefore, these two species were removed prior to final clustering.  
 
We used classification and regression tree (CART) analysis (Salford Systems 2002) to predict 
the occurrence of fish assemblages (defined by cluster analysis) and six individual species in 
Illinois streams based on landscape-scale variables.  Thirty-two landscape-scale environmental 
variables, which were derived from GIS data layers, were used as predictors (Table 2.4d).  
Presence/absence data were used to model six individual species.  Hornyhead chub (Nocomis 
biguttatus), Smallmouth bass (Micropterus dolomieu), Striped shiner (Luxilus chrysocephalus), 
Creek chubsucker (Erimyzon oblongus), Longear sunfish (Lepomis megalotis), and Fantail darter 
(Etheostoma flabellare) were chosen because they represented four families, three fish 
assemblages defined through our cluster analysis, as well as different ranges and habitat 
preferences.  Smallmouth bass is identified as a species in greatest need of conservation in 
Illinois’ Wildlife Action Plan.        
 
To assess the accuracy of CART models, we assessed the classification rate, which is the group 
membership predicted by the model compared to the actual group membership.  For the 
individual species models we further described the level of misclassification into errors of 
commission, where the model predicted presence but absence is observed in the data, and 
omission, where absence is predicted but presence is observed.           
 
Using the remaining 86 species, we identified seven clusters of fishes for continued analysis 
(Table 2.4f).  A dendrogram from the cluster analysis is shown in Figure 2.4g.  Group 1 includes 
a few generalist warm-water fish species, and many species that are affiliated with clear water 
and minimal human impacts.  The species included in group 2 tend to be restricted to the 
Wabash/Ohio drainage, and half of the species are in family Percidae.  Group 3 is the largest 
group and comprises 26 species that are relatively common in larger streams and rivers.  Many 
species in the group prefer sand or gravel substrates.  Species comprising group 4 either persist 
only in southern Illinois, or are most abundant in backwaters, low gradient, and well-vegetated 
streams.  Group 5 comprises species that tend to prefer slower moving water, quiet pools, and 
larger creeks or rivers.  We combined groups 6 and 7 into one group based on the species= 
affinities to clear, cool, faster-flowing water.  The final group comprises two shiner species, 
which prefer large to very large rivers.  Presumably this group would comprise more species if 
our analysis included non-wadeable streams, which would include other large river species.             
 
We used CART analysis to predict the occurrence of fish assemblages that we defined by cluster 
analysis.  Four of the original seven clusters lacked sufficient representation in the dataset for 
further analysis; thus only three assemblages (Group 1, 2, 5 in Table 2.4g) were modeled using 
CART (Table 2.4f).  The resulting model was then used to predict one of the three fish 
assemblages for every stream arc in Illinois (Figure 2.4h).  Overall, these predicted fish 
assemblages matched our expectations.  As our dataset grows to include more examples of the 
rare assemblage types (i.e., the four we could not model due to inadequate sample size), we will 
revisit the development of an assemblage-level model for fish.  We expect the output from a 
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more refined assemblage model will be very valuable for guiding restoration and protection 
efforts of Illinois’ fish species in greatest need of conservation.   
 
In addition to modeling fish assemblages, we modeled the presence/absence of six individual fish 
species (Tables 2.4g – 2.4l).  Models included three to eight variables, and all included latitude 
and at least one landcover predictor (Table 2.4m).  At least half of the models also included 
geology (bedrock or surficial), size, and flow.  The range of total misclassification for each 
model was acceptable and ranged from 17% - 27% (Table 2.4m).  Errors of commission 
accounted for 75% of the misclassification errors for all species models. Each model was then 
applied to all stream arcs, and the results of the models are shown in Figures 2.4i – 2.4n.         
 
In general, the individual species models predict similar trends to known presence and absence 
of the selected species.  In some cases (e.g., Striped shiner [Figure 2.4i] and Longear sunfish 
[Figure 2.4j]), latitude and longitude were such strong predictors that models appear to be driven 
almost exclusively by those factors.  Other models (e.g., Creek chubsucker [Figure 2.4l] and 
Fantail darter [Figure 2.4n]) clearly have a latitudinal component, but other variables weigh in to 
predict occurrence of species outside of the latitude/longitude boundaries.  Overall, the model for 
Smallmouth bass appears to have the most overlap between known presence and absence and the 
model predictions (Figure 2.4k).  In Illinois, Smallmouth have a limited distribution and have a 
strong preference for streams with rocky substrate, continuous flow, and cooler water; these 
habitats are not uniformly represented throughout the state.  The individual species models 
suggest that our approach is useful for predicting species presence/absence, especially for species 
that have specific habitat requirements.   
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Job 4.4.  Future risk assessment of Illinois= streams. 
 
The purpose of this job is to develop a series of predictions for ecological attributes of river 
segments reflecting various scenarios of human disturbance.  To do this, we linked output from a 
land transformation model to some of the models developed in Job 2.4.  This linkage allows 
forecasting of riverine conditions as they relate to land use changes in specific river reaches.  The 
future scenarios will help identify stream segments at risk for future impacts loss due to land use 
changes including urban development.    
 
Land Transformation Model 
 
Bryan Pijanowski, Ph.D., and his colleagues at Purdue University developed a Land 
Transformation Model (LTM) for Illinois that uses neural net logic to build a map of predicted 
land cover changes over time.  A key component to building a land transformation model is 
having at least two landcover datasets for a given area that are consistently developed. Because 
Illinois’ two recent landcover datasets (IDNR 1996 and USDA NASS et al. 2002) were 
developed with different methods, Dr. Pijanowski lacked the necessary land use change data to 
build the basic land transformation model.  Therefore, he relied on other sources of data to create 
the base model.  In the northern quarter of Illinois, he used change data collected by the 
Northeastern Illinois Planning Commission (NIPC).  For the southern three quarters of Illinois, 
Dr. Pijanowski relied on central Indiana data.  The NIPC and central Indiana data were used to 
determine the urban rates of growth in small towns and to identify what other landcover is being 
added or lost.  Once these rates and factors were identified, they were applied to Illinois 
landcover data (IDNR 1996).  The resulting LTM was applied statewide, and a series of maps 
reflecting potential future development scenarios was created (Figure 4.4a).         
   
Risk Assessment 
The risk assessment portion of this project proved more difficult than anticipated.  Each time 
series modeled (i.e., 2005, 2010, 2015, 2020, 2025, and 2030) resulted in a new land cover map 
(Figure 4.4a).  In order to rerun the models described in Job 2.4, proportions of each land cover 
type for each time series had to be attributed to each arc.  Further, landcover had to be 
summarized at four spatial scales (i.e., local riparian zone, entire riparian zone, local watershed, 
and entire watershed).  Given that there are approximately 55,000 stream arcs in Illinois, 
attributing six different time series of landcover at four spatial scales proved to be beyond our 
computer capability.  Therefore we selected the Kaskaskia River basin as a pilot for the risk 
assessment portion of this project.  Further, we limited our analysis to current landcover and 
model outputs from 2025, which corresponds to the timeframe of Illinois’ Wildlife Action Plan.   
 
Output from the LTM representing the 2025 development scenario was assigned to each arc, and 
then summarized into variables used in models described in Job 2.4.  
 
Flow 
Annual median discharge was attributed to more than 92% of the available arcs in the Kaskaskia 
River basin using the flow models developed in this project.  Certain reaches with extremely 
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small catchments and areas associated with reservoirs (i.e., Carlyle Lake and Lake Shelbyville) 
were not modeled successfully (Figure 4.4b).  Discharge was also estimated by applying 
summaries from the 2025 LTM and attributed to the appropriate arc (Figure 4.4c).  Comparisons 
between these modeled flows suggest that most stream reaches would experience only small 
changes in annual median flow characteristics under the conditions described with the 2025 
LTM.  The majority of segments (62.6%) had projected median discharges within 10% of those 
from the recent land cover with over forty percent (43.8%) of all modeled segments expected to 
have changes less than 5% under the 2025 projected land cover.  However, a small fraction of 
stream segments show large percentage change in this analysis.  These stream segments are 
primarily those with extremely low discharge where small changes in magnitude are described as 
large percentage change (Table 4.4a).  This highlights a weakness in this form of analysis but 
also of flow models that were developed based on a regional dataset that under-represent 
catchments with small drainage areas and those with very low discharge.  Our flow models have 
a tendency to overestimate low flows and underestimate high flows due to these factors and in 
part from the linear modeling techniques used in their development.  Additional discharge data 
from small streams and the development of separate models for headwaters would greatly 
improve our statewide assessment of these important areas. 
 
Temperature 
 
Mean daily temperature for July was attributed to more than 95% of the available arcs in the 
Kaskaskia River basin using the temperature models developed in this project.  Certain reaches 
with extremely small catchment areas and/or with relatively uniform surficial geology or land 
cover were unable to be modeled successfully.  Similarly, areas associated with reservoirs (i.e., 
Carlyle Lake and Lake Shelbyville) were not modeled (Figure 4.4d).  July stream temperatures 
were estimated by applying summaries from the 2025 LTM and attributed to the appropriate arc 
(Figure 4.4e).  These results suggest that the Kaskaskia River contains a wide range of summer 
temperatures but that warmer waters flow through the majority of the basin.  Modeled 
temperatures were similar between those derived from the recent land cover and the 2025 LTM 
with over half of the stream arcs (58.3%) differing within the resolution (< 0.1 C) of our 
temperature recorders (Table 4.4a).  This analysis suggests that the majority of the Kaskaskia 
River basin will maintain similar summer water temperatures under conditions as described in 
the 2025 LTM.  It must be kept in mind that altering temperatures even small amounts may 
impact stream biota if they are living near their thermal limits.  This could be particularly 
important for coolwater species or those that live in the very warmest of streams.  However, little 
is currently known about the distribution of streams with extreme summer thermal conditions 
within Illinois, especially coolwater areas, where these types of impacts may occur. 
 
Fish 
 
The fish assemblage model was rerun based on output from the land transformation model and 
the results were applied statewide (Figure 4.4e).  Ninety-five percent of the stream arcs had the 
same fish assemblage predicted for current conditions as well as potential conditions in 2025.  
Approximately half of the arcs that showed a change between current conditions and those 
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suggested in 2025 are associated with reservoirs (i.e., Carlyle Lake and Lake Shelbyville) where 
this model is not applicable.  The majority of the remaining arcs (i.e., 96%) differing between 
current and 2025 conditions were predicted to change from group 5, which comprises species 
preferring slower moving water and quiet pools, to group 2, which comprises species of the 
Wabash/Ohio drainage or species in the family Percidae.  Although only a small proportion of 
arcs showed a change in fish assemblages, the arcs that did change suggest the potential for 
alteration in land cover to effect local fish distribution.   
 
Because our model for predicting fish assemblages is rather simplistic, we selected Longear 
sunfish as a test to see if individual species models might be more sensitive to future land use 
change.  When the Longear sunfish model was run based on LTM output for 2025, no additional 
locations were predicted for species presence.  However, if we ignore the stream arcs comprising 
Carlyle Lake and Lake Shelbyville, there are still a few stream reaches where Longear sunfish 
were predicted to occur in present conditions, but were predicted absent using the 2025 land 
cover scenario (Figure 4.4f).  This analysis suggests that the land cover change associated with 
the 2025 LTM would lead to a loss of stream reaches with suitable conditions for Longear 
sunfish.      
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DISCUSSION 
 
This project marks an important step toward developing a tool that simplifies the natural 
variability in stream systems.  The flow, temperature, and fish models developed in this project 
have been applied and attributed to streams segments statewide.  By providing expectations for 
stream habitat and fish communities in sampled and unsampled reaches throughout the state, the 
resulting database system will be a valuable tool for implementing Illinois’ Wildlife Action Plan.  
For example, one of the actions identified in the stream’s campaign of Illinois’ Plan is to restore 
populations of imperilled and extirpated aquatic animals (State of Illinois 2005).  To meet this 
objective, resource managers need to identify where suitable habitat persists, which may include 
groundwater fed streams, as well as those with cool summer water temperatures.  Prior to the 
completion of this project, summer water temperatures and groundwater influence were 
unknown for most streams in Illinois.  Additionally, many of the GIS attributes developed in 
Holtrop et al. (2005) and used in the models in this project provide the basis for identifying 
system-wide limiting factors such as connectivity.   
 
Hydrologic modeling provides a tool for developing expectations for stream flow where data are 
lacking or for assessing potential alterations in flow associated with local changes in model 
parameters (e.g., land cover).  Application of the models developed in this project suggests the 
existence of a wide range of annual flow conditions within the streams of Illinois.  When applied 
to the Kaskaskia River basin and compared with the 2025 LTM, these models provide a spatial 
analysis of potential alterations in flow associated with changes in land cover.  While many of 
the stream reaches show little change in flow character, certain areas appear to be vulnerable to 
large alterations in flow conditions if current development trends continue.  These results may 
help develop guidance for flow standards and will provide insight into the contribution of land 
alteration to the modification of flow regimes especially as additional basins are assessed.   
 
Our assessment of thermal conditions in Illinois streams provides a geospatial picture of the 
locations where summer temperatures may limit the distribution or success of many aquatic 
species, particularly those considered coolwater or those that require high dissolved oxygen 
concentrations.  However, our temperature models are based only on summer water temperatures 
from a single year at each site and thus provide no information about interannual variability or 
nonsummer conditions.  Longer thermal records that would allow the modeling of mean 
conditions that take into account annual variability should improve the fit of our temperature 
models and provide more accurate estimates of the thermal character of modeled streams.  Long 
periods of cold temperature are another potential period of stress for stream organisms that are 
not addressed with these models but may have a strong influence on the distribution of aquatic 
species in Illinois streams.  These limitations could easily be addressed by continuing to annually 
monitor water temperature at fixed stations and in a variety of different streams throughout the 
state.  Redevelopment and improvement of temperature models as additional data become 
available would improve and expand the reliability of our assessment of Illinois stream 
temperatures. 
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Although the fish assemblage model presented in this report is simplistic, it presents a useful 
approach to classifying biotic communities in rivers.  As more data become available, the models 
may be refined to identify locations of rarer community types, including coolwater and 
headwater fish assemblages. The individual species models, which are based on 
presence/absence data, provide one approach for identifying areas that can be conserved to 
sustain population of listed species, as well as identifying suitable habitats for species 
reintroductions.          
     
The outputs for the models developed in this project along with the GIS attributes developed in 
Holtrop et al. (2005) provide the necessary data for developing a stream classification for 
Illinois. We intend to develop an approach for grouping stream arcs into larger stream reaches 
and then classify these reaches into stream types.  An ecological classification of rivers as we 
propose will help Illinois resource managers identify high-quality examples of all river and 
stream communities, thereby helping to set restoration and management priorities.  In this 
project, we attempted to document changes in flow, temperature, biota associated with altered 
land use.  In general, our models did not detect numerous changes between current conditions 
and those of 2025.  However the changes that were identified suggest areas that may be at risk by 
future land use change.  As our models are refined, we should have increased ability to detect 
potential risks to biota in the future.   
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Table 2.4a.  Summary of hydrologic model family fit statistics.  Landcover and surficial geology Variables are 
transformed proportions of the total upstream watershed.  Bold are statistically significant (p<0.05). 

Model Q05 Q10 Q25 Q50 Q75 Q90 Q95 
R squared 98.6% 98.4% 98.0% 96.9% 93.9% 81.9% 75.6% 

R squared (adjusted) 98.4% 98.2% 97.7% 96.6% 93.2% 79.8% 72.7% 
Standard Error 0.197 0.2175 0.2551 0.3372 0.537 1.37 1.888 

Degrees of Freedom 67 67 67 67 67 67 67 
        

Variable prob prob prob prob prob prob prob 
Constant < 0.0001 < 0.0001 0.0924 0.7583 0.6245 0.2167 0.8084 

(Ln) Drainage Area < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
(exp) Forested Wetland < 0.0001 0.0741 0.0006 < 0.0001 < 0.0001 0.0003 0.012 

(exp) Open and Wet 0.4399 0.157 < 0.0001 < 0.0001 < 0.0001 0.0019 0.0045 
(exp) Fine Moraine 0.0002 0.5422 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

(exp) Urban 0.7493 0.0139 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
(exp) Coarse Moraine 0.34 0.0769 0.0022 0.0044 0.0044 0.0343 0.0525 

(exp) Bedrock < 0.0001 0.019 0.7737 0.0082 < 0.0001 0.0055 0.0203 
(exp) Medium Moraine 0.0032 0.0662 0.5843 0.026 < 0.0001 < 0.0001 < 0.0001 
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Table 2.4b. Summary of temperature fit statistics and model predictor variables.  Landcover and geology 
variables are transformed proportions of the total upstream watershed (WT_), local riparian (R_), total 
upstream riparian (RT_).  Bold are statistically significant (p<0.05). 

July mean daily Minimum Fit  July mean daily Maximum Fit 
R squared  68.6% R squared 55.5% 

R squared (adjusted)  63.4% R squared (adjusted)  48.2% 
Standard Error  1.418 Standard Error  1.724 

Degrees of Freedom  61 Degrees of Freedom  61 
    

Variable prob Variable prob 
Constant < 0.0001 Constant < 0.0001 

 WT_Darcy < 0.0001  WT_Darcy < 0.0001 
(asin) R_Shale 0.0199 (asin) R_Shale 0.0009 

(asin) R_BD0 50 0.0036 (asin) R_BD0 50 0.0027 
(asin) RT_Moraine < 0.0001 (asin) RT_Moraine 0.0004 
(sqrt) WT_Moraine 0.0019 (sqrt) WT_Moraine 0.0207 

(ln) WT_Slope 0.0012 (ln) WT_Slope 0.0001 
(ln) Link 0.0012 (ln) R_Soil_Permeability 0.0068 

RT_Carbonate 0.0523 (ln) RT_Slope 0.0006 
(asin) RT_Fine 0.0475 (ln) Link 0.0152 
(sqrt) R_Slope 0.0896 (exp) R_Forest Total 0.0092 
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Table 2.4c.  Multiple linear regression models developed for macroinvertebrate assemblages in Illinois streams.  
Models are in the general form Y = constant + B1Ln(X1+0.0001) + B2 Ln(X2+0.0001) + …+ Bn Ln(Xn+0.0001). All 
independent variables are catchment scale attributes, land use and geology are in percentages, drainage area in km2, 
Air temp in °C, ecoregion code 1 = interior river valleys and hills, ecoregion code 2 = driftless area.  aNo 
transformation used on variable, bSquare root transformation used on variable. 
 

 
Dependent 
Variable 

 
 

Independent variable 

 
 

Coefficient 

Coefficient 
standard 

error 

 
Coefficient 

P-value 

 
Model 

R2 

 
Model 
P-value 

No. of E taxa Constant  0.466 0.407   0.253 29.7 <0.001 
   (E count) Drainage area   0.842 0.072 <0.001   
 Urban -0.213 0.046 <0.001   
 Wetland -0.795 0.102 <0.001   
 Forest  0.205 0.077   0.008   
 Q90/Q10 b -3.844 1.335   0.004   
        
 No. of EPT taxa Constant 15.600 4.671 <0.001 27.4 <0.001 
   (EPT count) Drainage Area   1.095 0.098 <0.001   
 Urban -0.439 0.069 <0.001   
 Wetland -0.650 0.132 <0.001   
 JL Air Temp Maxa -0.458 0.152   0.003   
       
Macroinvertebrate Constant  6.029 0.114 <0.001 26.3 <0.001 
Biotic Index  Drainage area  -0.183 0.021 <0.001   
   (MBI) Urban  0.094 0.013 <0.001   
 Forest -0.113 0.022 <0.001   
 Q90/Q10 b  1.142 0.418   0.007   
 Ecoregion code 1a  0.675 0.071 <0.001   
 Ecoregion code 2a  0.657 0.211   0.002   
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Table 2.4d.  Landscape-scale environmental variables used in CART analysis.  All variables are taken, calculated, or 
predicted from GIS data layers. 
 

 
Variable Name 

 
Definition 

Connectivity 
DAM Categorical variable which identifies the presence of a dam (1) versus 

not (0) 
BIGRIVER Categorical variable which identifies if the stream reach is connected to a 

large river, defined as  
DLINK Shreve stream order of downstream arc
 
Water Temperature 
MEANJULY Maximum daily mean water temperature, based on model predictions 
RANGEJULY Greatest daily range in water temperature between June through August, 

based on model predictions 
MEANCODE Categorical variable for predicted mean July temperature 
RANGECODE Categorical variable for range July temperature

Channel Form 
SLOPE Mean slope 
SINUOSITY Sinuosity of stream reach, the actual channel length/straight line 
GRADIENT Channel gradient, the change in elevation /channel length from start to 

finish 
 
Flow 
Q_MAGNITUDE 50% exceedence flow, the median flow; as 50% of flows are higher and 
 50% of flows are lower 

Q_VARIATION 10% exceedence flow divided by the 90% exceedence flow 

Q50YIELD 50% exceedence flow/drainage area
 
Location 
LATITUDE Latitude (decimal degrees, N) 
LONGITUDE Longitude (decimal degrees, W)
ECOREGION Omernik's Level III ecoregions
 
Potential Groundwater Inputs 
R_DARCY Average Darcy value, an index of potential groundwater movement with 

lower values indicating more groundwater potential, for an area 150 m 
wide, centered on channel 

 
Land Use/Land Cover 
R_URBAN % of riparian zone with urban land uses such as roads, residential, 
R_AGR % of riparian zone with agricultural land uses such as row crops, 

pasture, orchards, farm buildings, and feedlots 
R_FOREST % of riparian zone with forest land cover, excluding forested wetlands 

WT_URBAN % of entire watershed with urban land uses 
WT_AGR % of entire watershed with agricultural land uses
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WT_FOREST % of entire watershed with forest land cover

Bedrock and Surficial 
W_BD0_50 % of watershed with bedrock at a depth of 50 ft or less 
W_SHALE % of watershed with shale bedrock
W_FINE % of watershed with fine texture surficial geology
W_MEDIUM % of watershed with medium texture surficial geology 
W_COARSE % of watershed with coarse texture surficial geology 
 
Size 
LINK Shreve stream order 
ORDER Strahler stream order
DA_KM2 Drainage area of entire watershed, calculated in square kilometers
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Table 2.4e.  Fish species assemblages as defined by cluster analysis.  Table is sorted by common name within each 
group. 
 
 SPECIES CODE COMMON NAME SCIENTIFIC NAME FAMILY 
Group 1 
 BMS Bigmouth shiner Notropis dorsalis Cyprinidae 
 BLD Blackside darter Percina maculata Percidae 
 COS Central stoneroller Campostoma anomalum Cyprinidae 
 CRC   Creek chub Semotilus atromaculatus Cyprinidae 
 GOR Golden redhorse Moxostoma erythrurum Catostomidae 
 HOC Hornyhead chub Nocomis biguttatus Cyprinidae 
 JOD Johnny darter Etheostoma nigrum Percidae 
 NHS Northern hog sucker Hypentelium nigricans Catostomidae 
 ORD Orangethroat darter Etheostoma spectabile Percidae 
 RES Red shiner Cyprinella lutrensis Cyprinidae 
 ROB Rock bass Ambloplites rupestris Centrarchidae 
 RYS Rosyface shiner Notropis rubellus Cyprinidae 
 SAS Sand shiner Notropis ludibundus Cyprinidae 
 SHR Shorthead redhorse Moxostoma macrolepidotum Catostomidae 
 SVR Silver redhorse Moxostoma anisurum Catostomidae 
 SMB Smallmouth bass Micropterus dolomieu Centrarchidae 
 STC Stonecat Noturus flavus Ictaluridae 
 STS Striped shiner Luxilus chrysocephalus Cyprinidae 
 SUM Suckermouth minnow Phenacobius mirabilis Cyprinidae 
 WHS White sucker Catostomus commersoni Catostomidae 
Group 2 
 BAD Banded darter Etheostoma zonale Percidae 
 BLR Black redhorse Moxostoma duquesnei Catostomidae 
 BRM Brindled madtom Noturus miurus Ictaluridae 
 DUD Dusky darter Percina sciera Percidae 
 ESD Eastern sand darter Etheostoma pellucidum Percidae 
 LOP Logperch Percina caprodes Percidae 
 RAD Rainbow darter Etheostoma caeruleum Percidae 
 SFS Spotfin shiner Cyprinella spiloptera Cyprinidae 
 SPB Spotted bass Micropterus punctulatus Centrarchidae 
 SDS Spotted sucker Minytrema melanops Catostomidae 
Group 3 
 BHC Bighead carp Aristichthys nobilis Cyprinidae 
 BLB Black bullhead Ameiurus melas Ictaluridae 
 BNS Blacknose shiner Notropis heterolepis Cyprinidae 
 CAP Carp Cyprinus carpio Cyprinidae 
 CCF Channel catfish Ictalurus punctatus Ictaluridae 
 CYM Cypress minnow Hybognathus hayi Cyprinidae 
 EMS Emerald shiner Notropis atherinoides Cyprinidae 
 FHM Fathead minnow Pimephales promelas Cyprinidae 
 FCF Flathead catfish Pylodictis olivaris Ictaluridae 
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 FRD Freshwater drum Aplodinotus grunniens Sciaenidae 
 GZS Gizzard shad Dorosoma cepedianum Clupeidae 
 GOL Goldeye Hiodon alosoides Hiodontidae 
 GRC Grass carp Ctenopharyngodon idella Cyprinidae 
 HFC Highfin carpsucker Carpiodes velifer Catostomidae 
 LOG Longnose gar Lepisosteus osseus Lepisosteidae 
 NOP Northern pike Esox lucius Esocidae 
 ORS Orangespotted sunfish Lepomis humilis Centrarchidae 
 ULL Quillback Carpiodes cyprinus Catostomidae 
 RSF Redear sunfish Lepomis microlophus Centrarchidae 
 RVC River carpsucker Carpiodes carpio Catostomidae 
 SHD Slenderhead darter Percina phoxocephala Percidae 
 SAB Smallmouth buffalo Ictiobus bubalus Catostomidae 
 WAE Walleye Stizostedion vitreum Percidae 
 WES Weed shiner Notropis texanus Cyprinidae 
 WHB White bass Morone chrysops Moronidae 
 WHC White crappie Pomoxis annularis Centrarchidae 
Group 4 
 BAS Banded sculpin Cottus carolinae Cottidae 
 BKB Black buffalo Ictiobus niger Catostomidae 
 BLC Black crappie Pomoxis nigromaculatus Centrarchidae 
 BOW Bowfin Amia calva Amiidae 
 FLR Flier Centrarchus macropterus Centrarchidae 
 RBS Ribbon shiner Lythrurus fumeus Cyprinidae 
 STD Stripetail darter Etheostoma kennicotti Percidae 
 TPM Tadpole madtom Noturus gyrinus Ictaluridae 
Group 5 
 BST Blackspotted topminnow Fundulus olivaceus Cypriodontidae 
 BLT Blackstripe topminnow Fundulus notatus Cypriodontidae 
 BLG Bluegill Lepomis macrochirus Centrarchidae 
 BRS Brook silverside Labidesthes sicculus Atherinidae 
 CCS Creek chubsucker Erimyzon oblongus Catostomidae 
 GRP Grass pickerel Esox americanus Esocidae 
 LMB Largemouth bass Micropterus salmoides Centrarchidae 
 LOS Longear sunfish Lepomis megalotis Centrarchidae 
 MOF Mosquitofish Gambusia affinis Poeciliidae 
 PRP Pirate perch Aphredoderus sayanus Percopsidae 
 RDS Redfin shiner Lythrurus umbratilus Cyprinidae 
 SJM Silverjaw minnow Notropis buccatus Cyprinidae 
 SES Steelcolor shiner Cyprinella whipplei Cyprinidae 
 YEB Yellow bullhead Ameiurus natalis Ictaluridae 
Group 6 
 BKD Blacknose dace Rhinichthys atratulus Cyprinidae 
 CMS Common shiner Luxilius cornutus Cyprinidae 
 FAD Fantail darter Etheostoma flabellare Percidae 
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 LSS Largescale stoneroller Campostoma oligolepis Cyprinidae 
Group 7 
 OZM Ozark minnow Notropis nubilus Cyprinidae 
 SRD Southern redbelly dace Phoxinus erythrogaster Cyprinidae 
Group 8 
 MMS Mimic shiner Notropis volucellus Cyprinidae 
 RVS River shiner Notropis blennius Cyprinidae 
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Table 2.4f.  Results of CART analysis of the fish assemblage cluster dataset.  Four of the original seven clusters 
lacked sufficient representation in the dataset for CART analysis; thus only three assemblages were modeled using 
CART.  The CART model is portrayed as a dichotomous key.  For each leaf in the model, N indicates the number of 
sites within that leaf.  Parentheses are used to identify the number of sites with each assemblage type in that leaf.  
The total misclassification rate for the model is 25%.  
   
 
1a.  ECOREGION  < 63.000 Go to 2. 

 
2a. GRADIENT < 0.001 Go to 3. 

 
3a.  QVARIATION < 192.859 Go to 4. 

 
4a.  WT_URBAN < 1.495; N=37 (1=19, 2=1, 5=17) 

 
4b.  WT_URBAN > 1.495; N=21 (1=17, 2=3, 5=1) 

 
3b.  QVARIATION > 192.859; N=43 (1=38, 2=3, 5=2) 

 
2b. GRADIENT > 0.001; N=146 (1=139, 2=3, 5=4) 

 
1b.  ECOREGION > 63.000 Go to 5. 
 

5a.  QANN50_CMS < 0.287; N=111 (1=29, 2=78, 5=4) 
 
5b.  QANN50_CMS > 0.287 Go to 6. 

 
6a.  W_SHALE < 87.555; N=30 (1=18, 2=2, 5=10) 
 
6b.  W_SHALE > 87.555 Go to 7. 

 
7a.  R_FOREST < 20.460; N=7 (1=4, 2=1, 5=2) 

 
7b.  R_FOREST > 20.460; N=35 (1=16, 2=18, 5=1) 
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Table 2.4g. Results of CART analysis of Striped shiner presence/absence dataset.  The CART model is portrayed as 
a dichotomous key.  For each leaf in the model, N indicates the number of sites within that leaf.  Parentheses are 
used to identify the number of sites where the species is present or absence in that leaf.  The total misclassification 
rate for the model is 19%.   
  
 
1a.  WT_FOREST < 6.500 Go to 2. 
 

2a.  LATITUDE < 41.500 Go to 3. 
 

3a.  LONGITUDE < -90.500; N=11 (0=9, 1=2) 
 

3b.  LONGITUDE > -90.500; N=152 (0=24, 1=128) 
 

2b.  LATITUDE > 41.500 Go to 4. 
 

4a.  WT_AGR < 76.000; N=17 (0=17, 1=0) 
 

4b.  WT_AGR > 76.000; N=18 (0=8, 1=10) 
 
1b.  WT_FOREST >6.500; N=243 (0=212, 1=31)   
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Table 2.4h.  Results of CART analysis of Longear sunfish presence/absence dataset.  The CART model is portrayed 
as a dichotomous key.  For each leaf in the model, N indicates the number of sites within that leaf.  Parentheses are 
used to identify the number of sites where the species is present or absence in that leaf.  The total misclassification 
rate for the model is 17%.    
  
 
1a.  LONGITUDE < -89.500; N=152 (0=136, 1=16) 
 
1b.  LONGITUDE > -89.500 Go to 2. 
 

2a.  LATITUDE < 41.500 Go to 3. 
 

3a.  W_BDO_50  < 1.500 Go to 4. 
 

4a.  R_FOREST  < 67.000 Go to 5. 
 

5a.  QANN50_YLD  < 0.003; N=37 (0=6, 1=31) 
 

5b.  QANN50_YLD > 0.003 Go to 6. 
 

6a.  LINK  < 40.500; N=29 (0=9, 1=20) 
 

6b.  LINK > 40.500; N=11 (0=10, 1=1) 
 
4b.  R_FOREST > 67.000; N=13 (0=10, 1=3) 

 
3b.  W_BDO_50 > 1.500; N=162 (0=18, 1=144) 

 
2b.  LATITUDE > 41.500; N=37 (0=37, 1=0) 
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Table 2.4i.  Results of CART analysis of Smallmouth bass presence/absence dataset.  The CART model is portrayed 
as a dichotomous key.  For each leaf in the model, N indicates the number of sites within that leaf.  Parentheses are 
used to identify the number of sites where the species is present or absence in that leaf.  The total misclassification 
rate for the model is 26%. 
  
 
1a.  LATITUDE < 39.500; N=166 (0=164, 1=2) 
 
1b.  LATITUDE > 39.500 Go to 2.   

 
2a.  DA_KM2 < 73.000; N=44 (0=34, 1=10) 

 
2b.  DA_KM2 > 73.000 Go to 3. 
 

3a.  LATITUDE < 40.500 Go to 4. 
 

4a.  QANN50_YLD < 0.002; N=12 (0=11, 1=1) 
 

4b.  QANN50_YLD > 0.002 Go to 5. 
 

5a.  W_FINE < 58.500 Go to 6. 
 

6a.  QANN50_YLD < 0.003; N=12 (0=11, 1=1) 
 

6b.  QANN50_YLD > 0.003 Go to 7. 
 

7a.  WT_URBAN < 7.000 Go to 8. 
 

8a.  WT_AGR < 85.000; N=18 (0=4, 1=14) 
 

8b.  WT_AGR > 85.000; N=13 (0=11, 1=2) 
 

7b.  WT_URBAN > 7.000; N=6 (0=6, 1=0) 
 

5b.  W_FINE > 58.500; N=18 (0=5, 1=13) 
 

3b.  LATITUDE > 40.500; N=152 (0=48, 1=104) 
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Table 2.4j.  Results of CART analysis of Creek chubsucker presence/absence dataset.  The CART model is 
portrayed as a dichotomous key.  For each leaf in the model, N indicates the number of sites within that leaf.  
Parentheses are used to identify the number of sites where the species is present or absence in that leaf.  The total 

isclassification rate for the model is 20%. m 
 

1a.  LATITUDE < 39.500 Go to 2. 
 

2a.  LONGITUDE < -89.500 Go to 3. 
 

3a.  WT_URBAN < 0.500; N=6 (0=3, 1=3) 
 

3b.  WT_URBAN > 0.500; N=29 (0=29, 1=0) 
 

2b.  LONGITUDE > -89.500; N=131 (0=65, 1=66) 
 
1b.  LATITUDE > 39.500 Go to 4.  
 

4a.  W_FINE < 99.500 Go to 5. 
 

5a.  QVARIATION < 7020.190; N=257 (0=253, 1=4) 
 

5b.  QVARIATION > 7020.190; N=7 (0=3, 1=4) 
 

4b.  W_FINE > 99.500; N=11 (0=6, 1=5) 
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Table 2.4k.  Results of CART analysis of Hornyhead chub presence/absence dataset.  The CART model is portrayed 
as a dichotomous key.  For each leaf in the model, N indicates the number of sites within that leaf.  Parentheses are 
used to identify the number of sites where the species is present or absence in that leaf.  The total misclassification 
rate for the model is 21%. 
  

 
1a.  LATITUDE < 39.500; N=166 (0=164, 1=2) 
 
1b.  LATITUDE > 39.500 Go to 2.  
 

2a.  DA_KM2 < 284.500; N=275 (0=90, 1=185) 
 

2b.  DA_KM2 > 284.500 Go to 3.  
 
    3a.  R_AGR < 5.500; N=15 (0=13, 1=2) 
 

3b. R_ARG > 5.500; N=61 (0=30, 1=31) 
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Table 2.4l.  Results of CART analysis of Fantail darter presence/absence dataset.  The CART model is portrayed as 
a dichotomous key.  For each leaf in the model, N indicates the number of sites within that leaf.  Parentheses are 
used to identify the number of sites where the species is present or absence in that leaf.  The total misclassification 
rate for the model is 29%. 
  

 
1a.  LATITUDE < 39.500 Go to 2.  

 
2a.  SLOPE < 5.500; N=159 (0=157, 1=2) 

 
2b.  SLOPE > 5.500; N=7 (0=4, 1=3) 

 
1b.  LATITUDE > 39.500 Go to 3. 

 
3a.  QANN50_CMS < 1.007 Go to 4. 

 
4a.  R_AGR < 39.000 Go to 5. 

 
5a.  W_SHALE < 84.000; N=58 (0=26, 1=32) 

 
5b.  W_SHALE > 84.000 Go to 6. 

 
6a.  LONGITUDE < -89.500; N=39 (0=37, 1=2)   

 
6b.  LONGITUDE > -89.500; N=60 (0=36, 1=24) 

 
4b.  R_AGR > 39.000 Go to 7. 

 
7a. R_FOREST < 0.500; N=10 (0=6, 1=4) 

 
7b.  R_FOREST > 0.500; N=47 (0=45, 1=2) 

 
3b.  QANN50_CMS > 1.007 Go to 8. 

 
8a.  WT_FOREST < 11.500; N=56 (0=55, 1=1) 

 
8b.  WT_FOREST > 11.500; N=5 (0=2, 1=3) 
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Table 2.4m.  Comparison of CART results for individual fish species based on presence/absence data.  A 
misclassification of commission (COM) indicates that the model predicted the species to be present but it was 
actually absent, whereas omission (OM) indicates the models predicted the species to be absent but it was actually 
present. The predictor variables are listed in order of entry into the model; variables separated by a backslash entered 
at the same level but at different branches in the tree. 
 

 
 

 
 

 
% Misclassification 

 
 

 
Species 

 
Sites 

Present 

 
Total 

 
COM 

 
OM 

 
Predictor Variables 

 
Striped shiner 

 
171 

 
19 

 
10 

 
9 

 
WT_FOREST, LATITUDE, 
LONGITUDE/WT_AGR 

 
Longear sunfish 

 
215 

 
17 

 
13 

 
4 

 
LONGITUDE, LATITUDE, W_BDO_50, 
R_FOREST, QANN50_YLD, LINK 

 
Smallmouth bass 

 
147 

 
26 

 
21 

 
5 

 
LATITUDE, DA_KM2, LATITUDE, 
QANN50_YLD, W_FINE, QANN50_YLD, 
WT_URBAN, WT_AGR 

 
 Creek Chubsucker 

 
82 

 
20 

 
17 

 
3 

 
LATITUDE, LONGITUDE/W_FINE, 
WT_URBAN/QVARIATION 

 
Hornyhead chub 

 
187 

 
21 

 
15.6 

 
5.7 

 
LATITUDE, DA_KM2, R_AGR  

 
Fantail darter 

 
73 

 
27 

 
21 

 
6 

 
LATITUDE, SLOPE/ QANN50_CMS, 
R_AGR/ WT_FOREST, W_SHALE/ 
R_FOREST, LONGITUDE 
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Table 4.4a.  Potential change in annual median discharge and mean July temperature  
based on model output from the LTM 2025 for the Kaskaskia River basin.  
       

Model Assessed   

  
Percent change between models. 

      
Median Discharge < 1 % < 5 % < 10 % < 25 % < 50 % > 50 %

% of stream 
segments 21.0 43.8 62.6 89.6 95.9 4.1 

       

   

  
Magnitude of change between models. 

     
July Mean Daily 

(C) < 0.1 < 0.5 < 1 < 1.5 > 1.5  
% of stream 
segments 58.3 97.7 99.8 100.0 0.0  
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Figure 2.4a.  Map-based summaries were derived from existing data and used to populate stream reaches using a GIS system.  Summaries of bedrock geology, 
surficial geology, landcover, digital elevation, and meteorological data (e.g., air temperature, growing degree days, precipitation) were incorporated by attributing 
these data to individual stream reaches. 
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Illinois Stream Temperatures
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Figure 2.4e. Summer stream temperatures from loggers records collected 1999 – 2005 throughout 
Illinois.  Each point provides a summary of an individual site that collectively illustrate the wide 
range of thermal conditions that exist within the wadeable streams of Illinois.
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Figure 2.4g.  Dendrogram resulting from cluster analysis carried out in PC-ORD. 
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Figure 2.4h.  Fish assemblages based on CART-derived model output.  Only three assemblages, 

which are described in Table 2.4e, contained sufficient members for modeling. 
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Figure 2.4i.  Known presence and absence of Striped shiner compared to predicted presence and absence of the species. 
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Figure 2.4j.  Known presence and absence of Longear sunfish compared to predicted presence and absence of the species. 
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Figure 2.4k.  Known presence and absence of Smallmouth bass compared to predicted presence and absence of the species. 
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Figure 2.4l.  Known presence and absence of Creek chubsucker compared to predicted presence and absence of the species. 
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Figure 2.4m.  Known presence and absence of Hornyhead chub compared to predicted presence and absence of the species. 
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Figure 2.4n.  Known presence and absence of Fantail darter compare to predicted presence and absence of the species.
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Figure 4.4a.  Potential future scenarios based on a land transformation model developed by Bryan Pijanowski, Ph.D.
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Figure 4.4f.  Kaskaskia River fish assemblages based on LTM output.
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Figure 4.4g.  Predicted occurrence of Longear sunfish based on LTM output. 


