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EXECUTIVE SUMMARY 
 

This report includes results from the past two years of a project that began in 
August 1998.  The purpose of this project is to identify factors that contribute to and 
determine year-class strength of fishes in the nearshore waters of Lake Michigan.  This 
research focuses on the Illinois waters of Lake Michigan and is needed because limited 
data exist on year-class strength and recruitment of nearshore fishes.  The focus of this 
research is to describe patterns of year-class strength and try to relate these patterns to a 
set of factors that allow managers to better predict interannual fluctuations in fish 
populations.   

After this project was funded, we learned that an artificial reef would be built at 
one of our nearshore sites.  Little quantitative information exists on the role such artificial 
reefs play in the attraction and recruitment success of fishes in freshwater.  Consequently, 
we added the artificial reef site (plus a nearby reference site) to our sampling protocol to 
identify how the addition of an artificial reef might attract sport fishes, affect recruitment 
success, and assess other possible effects on the nearshore fish community. 

Data from sampling in 2007 are currently being processed; the results and 
discussion in this report are preliminary and should be interpreted as such.  A complete 
reporting of data collected during the 2006 sampling season is presented, as well as 
partial information (generally through July) from the 2007 sampling season.  Further, 
some objectives are based on long term data collection and insights will become clearer 
as results accrue through future sampling; therefore, results for each objective may not be 
specifically discussed in this report.  We present the study objectives and several research 
highlights below. 
 
Study 101:  Quantify abundance, taxonomic composition, and growth of larval fish. 
1.  The north cluster had significantly higher larval fish density compared to the south 
cluster during both 2006 and 2007. 
2.  During both 2006 and 2007 densities of larval yellow perch and cyprinids at the south 
cluster were significantly lower than those at the north sites.  Alewife was the most 
abundant species at the south cluster, with higher density compared to the north cluster.   
3.  Peak hatch of larval alewife collected at both the north and south clusters during 2005 
occurred on June 18; ages of alewife collected ranged from 1- 45 days old. 
4.  Peak hatch of larval yellow perch at the north cluster in 2006 occurred during the first 
week of June.  Growth of larval perch averaged 0.11 mm*day-1. 
 
Study 102:  Quantify abundance, composition, and growth of YOY fishes > 25 mm 
total length. 
1.  Trawling was an effective sampling method only for the northern cluster.  A total of 
50 trawls were conducted during July through October 2006; total catch per unit effort 
(CPUE) was 67.0 fish/100m2.   
2.  In bottom trawling at N1, yellow perch was the most common species collected.  
Alewife, yellow perch, and rainbow smelt were the most abundant species collected at 
N2. 
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3. In small-mesh gill nets, spottail shiners and yellow perch were the most common 
species at N2, with annual means above 12 fish/hour.  Round goby and yellow perch 
were the most abundant species at sites N3 and S1.   
4.  In small-mesh gill nets at 8 locations along the Illinois shoreline in early September, 
2006, the number of fish caught per hour ranged from 2.4 – 14.9.   
 
Study 103:  Quantify nearshore zooplankton abundance and taxonomic 
composition. 
1.  Mean zooplankton density for May through July did not differ between clusters, but 
was significantly lower in 2007 than 2006.  
2.  Copepod nauplii generally made up the largest portion of the zooplankton assemblage 
throughout spring-fall at the north cluster, while Bosmina became more prevalent at the 
south cluster during late summer-fall 
 
Study 104:  Estimate relative abundance and taxonomic composition of benthic 
invertebrates. 
1.  Mean benthic invertebrate density in 2006 was 2899 ± 2132 ind/m2 at the north cluster 
and 2059 ± 3057 ind/m2 at the south cluster.  Mean density from June to July in 2007 was 
775 ± 372 ind/m2 at the north cluster and 631 ± 1031 ind/m2 at the south cluster.  Benthic 
invertebrate density at the two clusters was more similar than in past years. 
2.  During July 2006 and 2007, benthic cores were collected at eight sites along the 
Illinois shoreline.  Total densities ranged from a low of 554 ± 426 ind/m2 at M4 to 8202 ± 
1786 ind/m2 at M2;  densities collected in July 2007 were significantly lower. 
3.  Taxa diversity in 2007 was similar amongst the 8 sites, with 7 sites having 5-7 of the 9 
major categories we devised. 
 
Study 105:  Explore predictive relationships of year class strength of nearshore 
fishes in Lake Michigan. 
1.  Water temperature at the southern cluster warmed faster and fluctuated less than in the 
north cluster during all years of study.   
2.  Surface water temperatures first reached 10°C on May 9, 2007 at the north cluster and 
on April 30 at the south cluster.  Peak temperature in the north cluster occurred on 
August 7 at 24.7°C.   Peak temperature in the south cluster was 25°C on August 8. 
 
Study 106:  Effects of an artificial reef on smallmouth bass abundance. 
1.  SCUBA divers observed round goby, rock bass, juvenile largemouth bass, and 
juvenile and adult smallmouth bass while conducting transect swims at the artificial reef 
in 2006 and 2007.  Round gobies predominated at the reference site.   
2.  Nine smallmouth bass were collected in a gill nets set at the artificial reef in 2006, 
compared to two at the reference site. 
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INTRODUCTION 
 

Research began in August 1998 to identify factors that contribute to and 
determine year-class strength of fishes in the nearshore waters of Lake Michigan.  The 
primary goal of this research is to explore mechanisms regulating year-class strength of 
nearshore fishes such that managers may better predict interannual fluctuations in fish 
populations.  In this report we summarize data collected and analyzed to date from the 
two most recent sampling seasons.  Because of the report deadline timing, sampling for 
2007 is still in progress.  Consequently not all collected samples have been processed in 
their entirety; complete Segment 11 results will be included in future reports of this 
project, F-138-R. 

A “year-class” or cohort of fish is a group of individuals that is spawned in a 
given year (i.e., 1998 year-class), and the number of individuals from that group that 
survive or “recruit” to the adult population defines the “strength” of that year-class.  
Frequently, year-class strength is set long before fish recruit to the adult stock or the 
fishable population.  As a result, growth and survival of larval and juvenile fish are the 
primary early indicators of year-class strength.  Year-class strength and recruitment of the 
early life-stages of fishes can be influenced by many density-independent and density-
dependent factors.  Fluctuations in water temperature or food availability (Houde 1994), 
storm or wind events (Mion et al. 1998), competition (Crowder 1980), and predation 
(Letcher et al. 1996) can affect growth and survival of fishes.  For instance, growth is 
closely related to water temperatures (Letcher et al. 1997) and minor changes in daily 
growth can cause major changes in recruitment (Houde 1987).  An overlap in the 
distribution of species (e.g., alewife, Alosa pseudoharengus and rainbow smelt, Osmerus 
mordax) may reduce the fitness of one or both species if they compete for a limited 
resource like zooplankton (Stewart et al. 1981).  Favorable abiotic and biotic conditions 
have been linked to year-class strength and successful recruitment to the adult population 
(Lasker 1975).  Therefore, understanding the factors that determine success at early life 
stages should help to predict fluctuations in abundance of adult fish populations. 

The nearshore waters of Lake Michigan support a complex assemblage of fishes 
and have a long history of introductions of non-native species.  Many of the earliest non-
native fish species arrived from the Atlantic Coast states.  Rainbow smelt increased 
rapidly in the 1930s and alewife populations exploded in the 1950s (Crowder 1980).  
Alewife and yellow perch are now the major planktivores in nearshore Lake Michigan.  
Native young of the year fish in Lake Michigan may experience competition from non-
native fish that occupy similar habitats and have similar feeding preferences.  In the past, 
yellow perch numbers tended to decline when alewife populations were high and vice 
versa (Wells and McLain 1973).  Although small alewives are primarily zooplanktivores, 
larger alewives can also feed on Diaporeia and Mysis (Crowder and Binkowski 1983), 
which are eaten by native species such as yellow perch, spottail shiners and lake trout 
(Salvelinus namaycush).  Both rainbow smelt and yellow perch switch ontogenetically 
from plankton to benthos and Hrabik et al. 2001 showed diets of these two species 
overlapped in Wisconsin lakes. 

The Lake Michigan yellow perch population supported a thriving commercial and 
recreational fishery in the late 1980s, but since 1988 the yellow perch population has 
suffered extremely poor recruitment (Redman et al. 2006) and the fishery is now 
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restricted.  Understanding the ecological constraints placed on yellow perch year-class 
strength is critical as managers try to predict if and when the Lake Michigan yellow perch 
population will rebound from these series of year-class failures.  Similarly, understanding 
alewife recruitment dynamics is important because these planktivores are the primary 
food source of stocked salmonids in Lake Michigan (Stewart et al. 1981).  An ability to 
predict alewife year-class strength will help managers to determine appropriate salmonid 
stocking levels, and may be useful to predict negative interactions between yellow perch 
and alewife.  Extending our knowledge on other species such as bloaters Coregonus hoyi, 
Cyprinids, and rainbow smelt will provide additional information on the prey base for 
adult sport fishes, and a more complete picture of competitive interactions within the 
nearshore fish assemblage.  

Managing fish populations in a system as large and dynamic as Lake Michigan 
can be daunting when all possible variables (e.g. temperature, food availability, fishing, 
and pollution) are considered.  To better manage the nearshore fish assemblage it is 
important to elucidate the primary factor or factors that regulate fluctuations in fish 
populations both within and among years.  Understanding how year-class strength of 
nearshore fishes relates to food availability, temperature and successful spawning 
locations will be very beneficial to managers as they work to set angler harvest limits and 
salmonid stocking quotas.  

We developed several study questions to address how quickly year-class strength 
of Lake Michigan nearshore fishes is established.  These objectives were designed to 
explore some of the mechanisms that affect recruitment variability in the early life history 
of nearshore fish, including resource availability and abiotic factors.  The data generated 
from this project will enhance our understanding of the patterns in growth and survival of 
early life stages of nearshore fish. 

After this project was funded, we learned that an artificial reef would be built in 
November 1999 at one of our southern sampling sites.  Use of artificial reefs in larger 
freshwater bodies, such as the Great Lakes, was limited until the 1980s and is still 
considered experimental (Kevern et al. 1985; Gannon 1990; Kelch et al. 1999), in part 
because research on the ecology and success of freshwater artificial reefs is sparse 
(Prince et al. 1985; McGurrin et al. 1989; Bohnsack et al. 1991).  The proximity of the 
artificial reef to our southern sampling sites allowed for sampling the reef site (plus a 
nearby reference site) as part of our sampling protocols.  Artificial reefs are often noted 
for increasing catch rates and attracting more fish (Brown 1986; Bohnsack et al. 1991; 
Stone et al. 1991; Grossman et al. 1997), a primary motive for reef construction.   
Thus we compared fish community structure and relative abundance of key species at the 
artificial reef and a nearby reference site both before and after its construction using a 
combination of collection and survey methods.  We evaluated whether use of the artificial 
reef by smallmouth bass and other species was significantly impacted by habitat, water 
temperature, or other factors. 

 
STUDY SITES 

Site selection was based on a set of criteria that included water depth (3-10 m), 
substrate composition (soft to sandy sediments), distance from shore (<3.7 km), and 
geographical location (north or south) on the Illinois shoreline.  The average depth of 
Lake Michigan nearshore waters along the Illinois shoreline is quite different from north 
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to south.  Bottom bathymetry is relatively steep in the north when compared to the south.  
As a result, waters deeper than 10 m are common within 1.8 – 2.7 km of shore in the 
north but typically do not occur until 5.5 km offshore in the south.  Depth differences are 
even more apparent when looking for water > 13 m deep.  In the north, these waters can 
be found 3.7 km offshore, but in the south those depths are rare within 18 km of shore. 
  During 1999-2005, there were four sample locations in clusters of two, one cluster 
in the north near Waukegan Harbor and the other in the south near Jackson Harbor 
(Figure 1).  Sampling northern and southern clusters facilitated the comparison of two 
distinct nearshore areas within southern Lake Michigan.  In the north cluster a site was 
selected 3.7 km north of Waukegan Harbor at the mouth of the Dead River (site N1; 
Figure 1).  N1 was selected because of the proximity to the Dead River, an intermittent 
tributary of Lake Michigan.  A second site just north of Waukegan Harbor (site N2) was 
chosen primarily for historical value.  This site has been sampled since 1986 as part of a 
related project (F-123-R).  Site selection in the southern cluster was difficult because of 
numerous disruptions in the shoreline (i.e. breakwalls, harbors) and limited water depth, 
typically <8 m within 3.7 km of shore.  One southern site was chosen directly offshore of 
Jackson Harbor (site S1) and the other approximately 2.2 km south of Jackson Harbor 
(site S2)  just north of the 79th Street water filtration plant.   

During 2006, sampling effort for larval fish and zooplankton at one northern site 
(N1) shifted to a site south of Waukegan Harbor (N3) that is also sampled as part of 
related project F-123-R.  Sampling for benthic invertebrates and bottom trawling 
continued at the two northern sites (N1 and N2) sampled in Segments 1-9.  We continued 
to sample the two sites in southern Illinois waters (S1 & S2) as in Segments 1-9.  All sites 
selected were suitable for sampling and had water depths ranging from 3-9 m with 
occasional depths of 10 m.   

In addition, four new sites were sampled beginning in 2006.  These sites were 
selected for preliminary sampling of benthic invertebrates and juvenile fish and are 
located in between the original north and south sampling clusters.  Sites were selected 
from a substrate/bathymetric map to be approximately along the 7.5 m depth contour and 
away from areas with large reef structures or bedrock outcroppings.  Going from north to 
south, the middle sites are located off of Lake Bluff (M1), Highland Park (M2), Evanston 
(M3) and Chicago near Belmont and Diversey Harbors (M4) (Figure 1). 

Artificial Reef  
An artificial reef site selected by the Illinois Department of Natural Resources 

(IDNR) was located approximately 2.7 km offshore of the Museum of Science and 
Industry in 7.5 m of water, situated within the S1 sampling zone (Figure 1).   A second 
site, the reference area, was selected approximately 2.7 km offshore at 7.5 m depth within 
the S2 sampling zone to permit comparisons between the artificial reef and an 
undisturbed site.  

In November 1999 the artificial reef was constructed from pure granite rock of 
variable sizes at the location generally described above.  A side scan sonar survey (Steve 
Anderson; Applied Marine Acoustics) on April 1, 2000 indicated that reef dimensions 
were: length of 256 m along the centerline, mean height of 2.1 m (max 3.2 m), and mean 
width of 15.5 m (max 28.3 m).  The reef stretches from 41° 47.600’N  87° 33.131’W 
(north end) to 41°47.473’N  87° 33.144’W (south end). 
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METHODS 

All north and south sites were sampled bi-weekly, weather permitting, except for 
N2 and N3 where data were collected weekly during June-July in conjunction with 
sampling conducted through F-123-R.  Sampling was conducted from early May through 
October of each year.  On each sampling date, ambient water temperature and secchi disk 
measurements were recorded at each site.  Starting in 2002, we deployed continuously 
recording temperature probes at N3 and S1 to monitor hourly water temperatures 
throughout our sampling season.  Sampling at the middle sites occurred once in the 
summer and once in the fall. 

 
Study 101:  Quantify abundance, taxonomic composition, and growth of larval fish. 
 
Job 101.1:  Quantify abundance and taxonomic composition of larval fish. 

Larval fish sampling was conducted from May through July using a 2x1-m frame 
neuston net with 500-μm mesh netting at sites N2, N3, S1 and S2.  Samples were taken at 
night on the surface to collect vertically migrating larval fish.  All samples were collected 
within 3.7 km from shore with bottom depths ranging from 3 to 10 m.  Neuston nets were 
towed for approximately 10 minutes at each site.  A General Oceanics™ flow meter 
mounted in the net mouth was used to determine the volume of water sampled during 
each tow.  Ichthyoplankton samples were preserved in 95% ethanol, sorted, identified to 
species when possible, and enumerated.   

 
Job 101.2:  Quantify growth and diets of larval fishes. 

Larval fish otolith collection procedures changed slightly in 2005-2007.  For 
purposes of aging, newly hatched yellow perch collected at N1, N2 and N3 were grouped 
into a single nearshore pelagic location, offshore pelagic yellow perch collected at H3, 
H9, and H15, in conjunction with a collaborating project, were grouped into a single 
offshore location, and nearshore benthic yellow perch collected at N1 and N2 were 
grouped into a nearshore benthic location.  Age-0 alewives were grouped in the same 
way, except there was no nearshore benthic group, and samples from S1 and S2 were 
added as the south nearshore location.   

For each location and sampling date, 40 age-0 alewives and 40 age-0 yellow 
perch were randomly sub-sampled to estimate daily ages.  When less than 40 fish of a 
species were collected, all those fish were used for age analysis.  Larval fish were 
measured on a digitizing pad for total length (TL) and sagittal otoliths were removed and 
mounted on glass slides.  Otoliths were read by two independent readers using a 
compound microscope.  If age estimations differed by more than 10%, otoliths were re-
examined until an agreement could be met.  Yellow perch were assigned to 7 day 
hatching cohorts based on daily ages. Hatching distributions of aged fish were then 
extrapolated to represent all yellow perch captured 

Age-0 alewives do not start depositing daily rings until 2 days post-hatch (Essig 
and Cole 1986).  Therefore, two days were added to all daily age estimates.  With otolith 
age estimates, hatching dates and average daily growth rates could be determined.  
Hatching dates were estimated by subtracting estimated age from date of capture.  From 
hatching distributions of age-0 alewives based on the sub-sample of aged fish, I 
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calculated a corrected hatching distribution for each date and location, Hi, to account for 
differences in age-0 alewives abundance as (Ni/T) * A, where i represents the weekly 
cohort, N represents the total number of age-0 alewives aged in a cohort, T represents the 
total number of age-0 alewives aged, and A represents the total number of age-0 alewives 
captured.  Corrected hatching distributions were then summed across dates by location to 
determine annual corrected hatching distributions.  Average daily growth of individual 
age-0 alewives was calculated as (TL - 3.5) / A, where TL is total length in mm, 3.5 is 
mean length at hatch (Auer 1982), and A is estimated age in days. 
 
Job 101.3: Data analysis and report preparation. 

 Data was entered into Excel and Access databases, and checked for errors.  Errors 
were corrected in all files, and copies of field and lab sheets were made.  Analysis of 
abundance and species composition were run using SAS version 9 software.  A poster 
presentation discussing ageing age-0 yellow perch otoliths was presented at the 2007 
American Fisheries Society annual meeting. 

 

Study 102:  Quantify abundance, composition, and growth of YOY fishes > 25 mm 
total length. 
 
Job 102.1:  Quantify abundance, composition, and growth of YOY fishes.  

Trawling was an ineffective sampling method in the southern cluster.  Although 
sites were selected by substrate type (soft to sandy), intermittent exposure of boulders and 
bedrock flats covered with zebra mussels repeatedly prevented trawling in the south.  
Thus, sampling for young-of-year and juvenile fish by trawl was limited to the northern 
cluster. Trawling was conducted from late July through October in each year.  Tows of a 
bottom trawl (4.9-m headrope, 38-mm stretch mesh body, and 13-mm mesh cod end 
liner) were conducted for a distance of 0.9 km (4460 m2 of bottom swept) along the 3, 5, 
7.5 and 10-m depth contours.   

Sampling for young-of-the-year fish using small-mesh gill nets began at the north 
and south clusters in late summer 2006.  These nets consist of 33-foot panels of 0.31, 
0.50, 0.75, and 1.0-in stretch mesh.  Nets were fished at 5 and 7.5 meter depths at each 
site and set for 2-12 hours depending on water temperatures and sampling logistics.  We 
attempted to fish the nets at least monthly from August through October. 
 
Job 102.2: Smaller scale quantification of YOY abundance and species composition. 

We also used the small-mesh gill nets to obtain preliminary data on YOY fish 
abundance and species composition at additional sites between our north and south 
clusters.  The nets were fished once in early September at sites N2, N3, M1, M2, M3, 
M4, S1, and S2 at 5 and 7.5 m depths within a period of two consecutive days.  The nets 
were fished for 2-3 hours and all fish were measured and counted.  A subsample of fish 
was preserved in ethanol for later diet analysis.  

 
Job 102.3: Diet analysis of nearshore YOY fishes. 

Subsamples of fish from each trawl and small-mesh gill net catch were preserved 
for length, weight, age, and diet data.  Remaining fish were identified and enumerated in 
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the field and returned to the lake.  Diets of preserved fish were analyzed in the laboratory; 
prey taxa were identified to the lowest practical level.   

For diets collected and analyzed from 2001-2005, prey counts and lengths were 
used to convert diet contents to milligrams of dry weight.  Mean percent composition by 
weight for each of 22 major prey taxa was then calculated for individual stomachs.  The 
four most commonly caught fish in recent bottom trawls were divided into 6 fish/age 
classes; these were age-0 alewife, age-0 yellow perch, age-0 rainbow smelt, age-1 
alewife, age-1 yellow perch and spottail shiners.  The multivariate statistical software 
Primer-E was used to evaluate diet similarity and overlap among these six groups.   
 
Job 102.4: Data analysis and report preparation. 

Data was entered into Excel and Access databases, and checked for errors.  Errors 
were corrected in all files, and copies of field and lab sheets were made.  Analysis of 
YOY abundance and species composition, and diet information were run using SAS 
version 9 and Primer-E software.  A presentation on diet overlap between native and non-
native fish was given at the 2007 American Fisheries Society annual meeting. 

 
Study 103:  Quantify nearshore zooplankton abundance and taxonomic 
composition. 
 
Job 103.1:  Sample zooplankton at selected nearshore sites. 

Duplicate zooplankton samples were taken at each site at depths of 7.5 m in the 
southern cluster and 10 m in the northern cluster.  Because zooplankton samples were 
collected in conjunction with other sampling (i.e., neuston or trawl), both day and night 
zooplankton samples were collected in some years.  At each site a 73-μm mesh 0.5-m 
diameter plankton net was towed vertically from 0.5 m above the bottom to the surface.  
Sampling the entire water column generates a representative sample of the zooplankton 
community composition and abundance.  Samples were stored immediately in 5% sugar 
formalin.   
 
Job 103.2:  Identify and enumerate zooplankton collected under Job 103.1. 

In the lab, samples were processed by examining up to three 5-ml subsamples, 
taken from adjusted volumes that provided a count of at least 20 individuals of the most 
dominant taxa.  Zooplankton were enumerated and identified into the following 
categories: cyclopoid copepodites, calanoid copepodites, copepod nauplii, rotifers, 
cladocerans to genus (Daphnia to species), Macrothrididae spp., Sididae spp., and 
Dreissena polymorpha veligers.  Uncommon and exotic taxa were noted.   
 
Job 103.3:  Data analysis and report preparation. 
 Zooplankton data was entered into Excel and Access databases, and checked for 
errors.  Errors were corrected in all files, and copies of field and lab sheets were made.  
Analysis of zooplankton abundance and species composition were run using SAS version 
9 software.   

 
Study 104:  Estimate relative abundance and taxonomic composition of benthic 
invertebrates. 
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Job 104.1:  Sample benthic invertebrates at selected nearshore locations. 

SCUBA divers collected benthic invertebrates at a depth of 7.5 m at each site 
using a 7.5-cm diameter core sampler.  Four replicate samples from the top 7.5 cm of the 
soft substrate were collected and preserved in 95% ethanol (Fullerton et al. 1998).  When 
soft to sandy substrate sediments were limited, especially in the southern cluster, sample 
depth was reduced to 3.75 cm.   
 
Job 104.2:  Determine gradient of benthic invertebrate diversity along Illinois shoreline. 
 To obtain preliminary data on benthic invertebrate abundance and diversity at 
other points along the Illinois shoreline, we collected additional benthic cores during 
July.  SCUBA divers followed the same protocols as above to collect four cores each at 
sites M1, M2, M3 and M4, in addition to N1, N2, S1 and S2. 
 
Job 104.3:  Identify and enumerate benthic invertebrates. 

In the lab, samples were sieved through 363-μm mesh screens to remove sand.  
Organisms were sorted from the remaining sediment debris.  Organisms were identified 
to the lowest practicable level, typically to genus; total length (mm) and head capsule 
width were measured for each individual.  All taxa were enumerated and total density 
estimates were calculated. 
 
Job 104.4:  Data analysis and report preparation. 

Data was entered into Excel and Access databases, and checked for errors.  Errors 
were corrected in all files, and copies of field and lab sheets were made.  Analysis of 
benthic invertebrate abundance and species composition were run using SAS version 9 
software.   

 
Study 105:  Explore predictive relationships of year class strength of nearshore 
fishes in Lake Michigan. 
 
Job 105.1:  Develop predictive models of year- class strength for nearshore fishes. 

To develop predictive relationships with year-class strength of nearshore fishes, 
we are collecting data for a variety of biotic and abiotic factors.  Zooplankton densities 
provide information on prey availability for larval and age-0 fish, which can also be 
related to fish growth.  Water temperature data can be related to fish hatching dates, prey 
availability, and growth.  Larval fish density data can provide some insight into the initial 
size of a year class, while age-0 fish data gives an indication of the early survival of that 
year class.  Each of the various factors examined may have the potential to explain some 
of the variability in year class strength of nearshore fishes in the Illinois waters of Lake 
Michigan. 
 
Job 105.2: Report preparation. 

Analysis of zooplankton, benthic invertebrate, young-of-the-year fish, larval fish, 
and temperature data at both clusters was used in preparation of this annual report.  
Temperature related data was used in preparation of an article published in the April 2006 
issue of Outdoor Illinois. 
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Study 106:  Effects of an artificial reef on smallmouth bass abundance. 
 
Job 106.1:  Relative abundance of smallmouth bass observed by SCUBA. 

In 1999, sampling was conducted by two SCUBA divers swimming along 100-m 
transect lines at the artificial reef and reference sites to estimate relative fish composition 
and abundance before reef construction.  From 2000 onward, divers swam the entire 
length of the reef (256 m) and swam at the reference site for a duration of 15 min.   

Divers swam in tandem, identifying and counting fish within 2 m on either side of 
each diver.  Divers moved at the same rate along transects to maintain equal encounter 
rate.  At the surface, divers documented count estimates and discussed the relative size 
composition of the observed species.  The behavior of round goby Neogobius 
melanostomus prevented accurate enumeration of individuals; therefore, divers recorded 
percent coverage of gobies in each area.  Transect data will be used to determine how 
adding an artificial rock structure to nearshore waters influences abundance and relative 
composition of the fish assemblage.  During 2002 – 2006 when visibility permitted, one 
diver swam the transect with an underwater video camera.   
 
Job 106.2:  Relative abundance of smallmouth bass collected by gill nets. 

Monofilament gill nets 61 m x 1.52 m with one each 30.5-m panel of 10.2-cm and 
11.5-cm stretch mesh were set at the artificial reef and reference sites during 1999 - 2001.  
During the 2002 - 2006 sampling seasons, one 30.5 m panel of 5.1 cm and one of   
7.6 cm stretch mesh were added to the gill nets, making them 122 m long x 1.5 m high.  
The order of panels for each gill net was randomly assigned.  On each sampling date, 
paired nets were fished on the bottom from approximately one hour before sunset to one 
hour after sunrise.  All fish were identified, measured, and returned to the lake; stomach 
contents were pumped from smallmouth bass. 
 
Job 106.3:  Data analysis and report preparation. 

SCUBA and gill net data was entered into Excel and Access databases, and 
checked for errors.  Errors were corrected in all files, and copies of field and lab sheets 
were made.  Analysis of community and individual species abundance was run using 
SAS version 9 software.  This annual report was prepared using results from the data 
analysis and a manuscript was published in the August 2006 issue of North American 
Journal of Fisheries Management.  This paper was also highlighted in the December 2006 
issue of Fisheries Magazine. 

 
RESULTS 

 
 Results are reported for May 2006 through early August 2007.  Data collection 
and processing continues for 2007; thus these results consist of all Segment 9 data and a 
portion of the 2007 data (Segment 10).  Complete 2007 data will be reported in the 
Segment 10 report.  Differences in number of samples collected at sites in the northern 
cluster result from additional sampling at N2 by project F-123-R.  There also are 
generally fewer samples at the southern cluster due to occasional weather related 
cancellations of sample outings. 
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Study 101:  Quantify abundance, taxonomic composition, and growth of larval fish. 
 
Job 101.1:  Quantify abundance and taxonomic composition of larval fish. 

Larval fish densities have remained low throughout the study period compared to 
densities in the 1980s and early 1990s.  The north cluster had significantly higher larval 
fish densities compared to the south cluster during both 2006 and 2007 (F = 3.06, p < 
0.04) (Figure 2).  Total larval fish density during May-July 2006 was 91.4 fish/100 m3 at 
the north cluster and 21.5 fish/100 m3 at the south cluster.  During May-July 2007, total 
density in the north was 103.4 fish/100 m3 but only 10.7 fish/100 m3 at the south cluster. 

In addition to total larval fish density, different patterns emerged between clusters 
when analyzing individual species.  Yellow perch was the most abundant species at the 
north cluster in both 2006 and 2007 (Figures 3 & 4).  In contrast, larval yellow perch at 
the south cluster were almost nonexistent in 2006 and none were collected in 2007.  
Cyprinids also had higher densities in the north cluster compared to the south cluster.  
Alewife was the most abundant species at the south cluster, with higher density compared 
to the north cluster (p< 0.04).  One of the largest differences in 2006 compared to 
previous years was the relatively large number of bloaters captured at both clusters.  Over 
90% of the “other” category in 2005 and 2006 was comprised of bloaters, while in the 
past catastomids and sticklebacks were slightly more common.  However, no bloaters 
were identified in 2007. 
 
Job 101.2:  Quantify growth and diets of larval fish. 

During 2005, age-0 alewives initiated hatching on May 23 and continued through 
August 1, a span of 11 weeks.  All three sampling areas showed similar results for peak 
hatching of age-0 alewives, which occurred on June 18 (Figure 5).  Alewives from the 
south cluster began hatching late May and experienced another hatching peak on July 11 
(Figure 5A).  Hatching was less protracted at the north cluster (7 weeks), beginning a 
week later and ending a week earlier than the south cluster (Figure 5B).  Age-0 alewives 
surviving to the offshore period displayed a similar hatching distribution, which lasted 9 
weeks from the end of May until mid-July (Figure 5C).  

The highest proportion of age-0 alewives captured in the south cluster was 
between 13-18 days old; the age range collected was 4-42 days (Figure 6A).  Age-0 
alewives captured in the north cluster were between 1-45 days old; abundance of all ages 
was similar (Figure 6B).  Age-0 alewives captured offshore were between 6-70 d (Figure 
6C) with peak abundance occurring for fish aged 15-17 days.   

Alewife growth rates appeared to be strongly influenced by hatch dates.  Highest 
growth rates were observed during the week of 18 June, synchronous with peak hatching 
abundance.  Age-0 alewives in the south cluster experienced a gradual increase in growth 
rates before peaking on June 18 (Figure 7a).  Age-0 alewives at the north cluster 
experienced a negative relationship between growth rate and hatching date, but few fish 
were captured prior to the June 18 peak in growth (Figure 7b).  Age-0 alewives that 
reached the offshore pelagic environment grew faster than 0.4 mm/day (Figure 7c).  
However, no relationship existed between growth rate and hatch date in the offshore 
environment  
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Age-0 alewives length at age varied between the three sampling areas (Figure 8).  
Age-0 alewives hatching in the south had the smallest initial size (P<0.001), but grew at 
the fastest rate (P<0.001).  Age-0 alewives in the north hatched at larger sizes than age-0 
alewives from the south cluster (P=0.003), but had slower growth (P=0.02).  Age-0 
alewives reaching the offshore pelagic environment grew slower than age-0 alewives 
from the north and south nearshore sites (P<0.001). 

Larval yellow perch in 2006 began hatching nearshore in the north cluster during 
late May, and continued until the end of June.  Peak hatch nearshore occurred during the 
first week of June (Figure 9).  Growth of yellow perch nearshore averaged 0.11 mm*day-

1.  As seen in previous years, newly hatched yellow perch larvae (4-6 mm) quickly 
disappeared from the nearshore environment; few individuals were captured in the 
nearshore pelagic environment past 6 days of age (Figure 10).  The decline of older 
larvae in the nearshore pelagic area overlapped with the appearance of older individuals 
in the offshore pelagic environment (Figure 10).   

Hatching distribution of yellow perch in the offshore pelagic environment was 
different from the nearshore pelagic environment in 2006 (Figure 9).  Both early and late 
hatched cohorts were more likely to survive to the offshore pelagic environment than 
individuals that hatched during the first week of June (nearshore pelagic peak hatching 
period).  Few individuals older than 60 days were captured in the offshore pelagic 
environment, suggesting that yellow perch spent approximately 45 days in offshore 
waters (Figure 10).   
  
Job 101.3: Data analysis and report preparation. 

Relevant data were analyzed and results incorporated into this report.  A poster 
presenting results from ages of larval yellow perch obtained from otoliths was given at 
the 2007 American Fisheries Society annual meeting.  

  
Study 102:  Quantify abundance, composition, and growth of YOY fishes > 25 mm 
total length. 
 
Job 102.1:   Quantify abundance, composition and growth of YOY fishes. 
 Bottom trawling was successfully conducted at the north cluster in 1999-2006; 
data for 2007 is still being collected.  A total of 50 trawls were conducted during July 
through October 2006, of these 9 trawl tows were empty.  Total catch per unit effort 
(CPUE) was 67.0 fish/100m2, with an annual mean CPUE of 1.34 ± 3.10 fish/100m2.  
Mean CPUE in 2006 trawls was similar at N2 (1.45 ± 3.3 fish/100m2 ) and N1 (1.07 ± 2.6 
fish/100m2 ).  Yellow perch was the most common species collected at N1, contributing 
to the peak catch in August (Figure 11).  Alewife, yellow perch, and rainbow smelt were 
the most abundant species collected at N2. 
 From mid August to mid October, excluding September 6 and 7, a total of six 
small-mesh gill nets were set at the south cluster and 14 at the north cluster.  Total catch 
per hour was consistently highest at N2 and increased through the fall with a peak of 80 
fish/hour in October (Figure 12).  Catch rates at S1, S2 and N3 were similar to each other 
and through the sampling season.  Spottail shiners and yellow perch were the most 
commonly caught species at N2, with annual means above 12 fish/hour (Figure 13).  
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Round goby and yellow perch were the most abundant species at sites N3 and S1.  
Species abundance at S2 was similar for all, ranging from 2-3.3 fish/hour.   

A subset of yellow perch collected in 2006 bottom trawls was aged using otoliths.  
Yellow perch appeared in the nearshore benthic environment as young as 47 days and 
peak abundance occurred at 65 days (Figure 10C).  The cohort that hatched during the 
first week of June, and was most abundant in the nearshore pelagic environment, 
contributed the highest percentage of individuals returning to the nearshore benthic 
environment (Figure 9C).  Growth rates in the nearshore benthic area for juvenile yellow 
perch averaged 0.52 mm*day-1 with later hatched cohorts experiencing faster growth 
rates.  Differential growth rates of yellow perch cohorts resulted in similar lengths of 
surviving juveniles cohorts.   
 
 
Job 102.2: Smaller scale quantification of YOY abundance and species composition. 
 Two small-mesh gill nets were set at each of eight sites along the Illinois 
shoreline on either September 6 or September 7, 2006.  Figure 14 shows total catch per 
hour for each site; sites are laid out on the Y-axis from left to right in their order from 
north to south.  Number of fish caught per hour ranged from 2.4 – 14.9.  Although there 
was no clear longitudinal pattern for overall catch rates, they were generally higher at the 
4 northern sites (N2-M2) compared to the 4 southern sites (M3-S2).  In addition, more 
yellow perch were caught at the 4 northernmost sites, whereas more round goby were 
collected at the 5 southernmost sites (Figure 14).  M2, which had the highest number of 
fish per hour, had high catches of both yellow perch and round goby.  Alewife was not 
collected at the four middle sites, and spottail shiners were not caught at the 3 
southernmost sites and N3.   
 
Job 102.3: Diet analysis of nearshore YOY fishes. 
  A total of 1589 full stomachs were analyzed from fish collected in bottom trawls 
during 2001-2005; processing for the most recent years is underway.  Overall mean 
percent composition of prey taxa weight varied by fish and month.  In August, alewife, 
yellow perch and spottail shiners consumed at least 38% chironomids (Figure 15A).  
Beyond chironomids, age-0 and age-1 fish of each species differed in their diets.  Age-0 
alewife ate lots of Bosminidae zooplankton, while age-1 alewife consumed a large 
percentage of Dreissenid veligers.  Age-0 yellow perch rounded out their diets with 
mostly zooplankton, while age-1 yellow perch and spottails consumed only invertebrates.  
 During September, importance of chironomids in alewife and rainbow smelt diets 
declined, while over 80% of age-0 yellow perch diet weight was from chironomids 
(Figure 15B).  Bosminidae were a large component of alewife and rainbow smelt diets.  
Age-1 yellow perch diets had the largest percent weight from amphipods, followed by 
chironomids.  Spottail shiners ate mostly chironomids followed by other invertebrates, 
such as gastropods and isopods. 
 Diets of alewife and rainbow smelt in October switched to a predominance of 
Copepods then Bosminidae (Figure 16).  Amphipods were the major contributor to diets 
of both age classes of yellow perch, and were also found in smaller percentages in age-1 
alewife and spottail shiner diets.  Age-0 yellow perch still consumed a moderate amount 
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zooplankton in October, while invertebrates accounted for 99% of stomach weight for 
age-1 yellow perch.  
 Cluster analysis resulted in 5 main clusters that had similarity at 50% (Figure 17).  
In general, the two invasive species, alewife and rainbow smelt, clustered together and 
the two native species, yellow perch and spottail shiners clustered together.  The 
exception to this was age-0 yellow perch.  In August and September, age-0 yellow perch 
grouped with the non-native species.  In October, they grouped with the native species.   
 Non-metric multidimensional scaling visually displays the similarity of samples; 
the closer together symbols are to each other, the more similar they are.   Figure 18 shows 
that the fish species/age groups tended to be grouped together very similar to the main 
groupings in the cluster analysis.  For example, spottail shiner symbols are closest to each 
other and yellow perch, and farthest from rainbow smelt.  When similarity at 30% is 
overlaid, the diagram is split into the non-native species on the left and the native species 
on the right.  However, age-0 yellow perch are included in both groups, indicating they 
have diet similarities to both the native and non-native fish.   
 Similarity profile analysis was run to confirm reduction of the 6 individual fish 
groups into 4 multi-species groups identified by the cluster analysis.  Groups identified 
from the similarity profiles have a multivariate pattern that would not be present if they 
were further broken down, and thus are considered to have similar/overlapping diets.  
Four main groups were identified and are displayed on the same non-metric 
multidimensional scaling figure, but labeled according to month and the new fish 
grouping (Figure 19).  We will focus on the 3 largest groups.  Group A contained both 
ages of alewife and age-0 yellow perch collected in August and September (Figure 19).  
For fish in group A, chironomids, Bosminidae, and copepods contributed 70.2% of their 
diet similarities (Table 1).  Alewife and rainbow smelt collected in September and 
October were in group B.  Copepods and Bosminidae contributed 66% of the similarity in 
diets of these two non-native fish in the fall.  Group D was made up of age-1 yellow 
perch and spottail shiners collected in August-October and age-0 yellow perch collected 
only in October.  Group D fish ate primarily chironomids and amphipods, which 
contributed 84% of their diet similarities (Table 1.  Group B and group D were least 
similar in diet composition, with a dissimilarity value of 82%.   
 
Job 102.3: Data analysis and report preparation. 

Relevant data were analyzed and results incorporated into this report.  A 
presentation incorporating YOY diet overlap between native and non-native fishes was 
given at the American Fisheries Society Annual meeting in September 2007. 
 
Study 103:  Quantify nearshore zooplankton abundance and taxonomic 
composition. 
 
Job 103.1:  Sampling zooplankton at selected nearshore sites. 
 During our 2006 sampling season, 32 zooplankton samples were collected at the 
south cluster and 42 at the north cluster.  Samples collected through July 2007, numbered 
24 at the south cluster and 32 at the north cluster. 
 
Job 103.2:  Identify and enumerate zooplankton. 
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Crustacean zooplankton densities fluctuated throughout this study at both clusters, 
but overall have remained low since 1999.  Mean density for May through July in 2006 
was 3.6 ± 4.2 ind/L in the north cluster and 8.3 ± 9.0 ind/L in the south cluster.  Average 
density for May through July 2007 was 2.7 ± 2.1 ind/L in the north cluster and 3.6 ± 2.6 
ind/L in the south cluster.  These means differed between years (p< 0.05) but did not 
differ between clusters.  Zooplankton densities in August through October 2006 were 
below 5 and 8 ind/L in the north cluster and south clusters respectively (Figure 20).  In 
general, zooplankton densities peaked in July. 

Although total densities did not differ significantly between clusters, species 
composition of the nearshore zooplankton assemblage exhibited different patterns 
between clusters during the course of this study (Figures 20 & 21).  Copepod nauplii 
generally made up the largest portion of the zooplankton assemblage throughout spring-
fall at the north cluster, while Bosmina became more prevalent at the south cluster during 
late summer-fall.  

 Larger zooplankton taxa such as Daphnia sp. made up a very small portion of the 
nearshore zooplankton assemblage during all study years and did not appear until late 
summer.  Daphnia sp. had a higher percent composition at the north cluster than at the 
south cluster during 2006 and 2007.   
 
Job 103.3:  Data analysis and report preparation. 

Relevant data were analyzed and results incorporated into this report.   

 
Study 104:  Estimate relative abundance and taxonomic composition of benthic 
invertebrates. 
 
Job 104.1: Sample benthic invertebrates at selected nearshore locations. 
 A total of 63 benthic core samples were collected from N1, N2, S1, and S2 during 
June through September, 2006; 31 samples have been collected from June and July in 
2007.   
 
Job 104.2: Determine gradient of benthic invertebrate diversity along Illinois shoreline. 
 During July 2006 and 2007, benthic cores were collected at eight sites along the 
Illinois shoreline (Figure 1).  Total densities during July 2006 ranged from a low of 554 ± 
426 ind/m2 at M4 to 8202 ± 1786 ind/m2 at M2 (Figure 22).  Taxa diversity was highest at 
sites N1, N2, M1 and S1 (Figures 23 & 24).  Chironomids comprised 11.3 – 37 % of the 
benthic invertebrate assemblage at the three northern most sites (Figure 23).  Percent 
composition of chironomids increased at the 5 southern most sites, with S2 having the 
highest percentage at 79%.  Ostracods comprised 70% of the benthic invertebrates at sites 
N1 and N2, however their contribution declined to less than 4% at the other sites.  The 
percent composition of nematodes was higher at the four middle sites (21.7-40.3 %) than 
the north cluster or south cluster sites.  Annelids were found at all eight sites, with a 
percent contribution ranging from 5.2% at M4 to 16.7% at M2.  Invasive mollusks were a 
small part of the assemblages, except at M1 where they accounted for 26% of 
invertebrates. 
 Total densities during July 2007 were significantly lower than those collected in 
2006 (F = 4.85, p< 0.001), however the patterns amongst the 8 sites were similar (Figure 
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22).  M4 again had the lowest total density (129 ± 37 ind/m2) and M2 again had the 
highest (2682 ± 2101 ind/m2) (Figure 22).  Taxa diversity in 2007 was similar amongst 
the 8 sites, with 7 sites having 5-7 of the 9 major categories we devised (Figures 25 & 
26).  S1 however had only chironomids and nematodes present.  Chironomids made up a 
larger portion of the invertebrate assemblage at N1, N2 and M1 compared to 2006, but 
were at very similar levels to 2006 at sites M2, M3, S1 and S2 (Figures 25 & 26).  
Percent contribution of Ostracoda declined at N1 and N2 compared to 2006, but 
increased at M1.  Invasive mussels accounted for 20.7% and 15.4% of invertebrates at N1 
and N2, but less than 5% at other sites.  Native mussels were also highest at these two 
sites.  Percent contribution of nematodes was again lowest at the northernmost sites and 
ranged from 18-30% at sites M2-S1.   
 A rough surface sediment sample was also collected at all 8 sites in July 2006.  
N1 and N2 had mostly fine sand (Figure 27) .  M1 also had some fine sand, but it became 
rarer as we moved south.  Sites M1 and M2 had the coarsest substrate with 40% and 
63%, respectively, pebbles and gravel.  Sand made up 66-90% of the substrate at the 4 
southernmost sites (Figure 28).  S1 also had 30% pebbles and gravel. 
 
Job 104.3:  Identify and enumerate benthic invertebrates. 

Mean benthic invertebrate density from June through September in 2006 was 
2899 ± 2132 ind/m2 at the north cluster and 2059 ± 3057 ind/m2 at the south cluster.  
Mean density from June to July in 2007 was 775 ± 372 ind/m2 at the north cluster and 
631 ± 1031 ind/m2 at the south cluster.  Benthic invertebrate density at the two clusters 
was more similar than in past years.  During 2006, mean monthly density increased from 
June to July at both clusters and then remained relatively consistent at the north cluster, 
while density peaked in September at the south cluster (Figure 29).  In 2007 samples, 
density declined from June to July in the north, but greatly increased in the south (Figure 
30).   

The taxonomic richness of benthic invertebrates during both 2006 and 2007 was 
higher at the north cluster compared to the south cluster (Figures 29 & 30).  A large 
number of organisms were temporarily classified as invasive Mollusca until we separate 
zebra mussels from quagga mussels (Dreissena bugensis).  During 2006, Ostracoda was 
the most common taxa in the north, followed by chironomids and invasive mollusca 
(Figure 29). These were also the three most abundant taxa in 2007.   Diaporeia at the 
north cluster peaked at 260 ind/m2 during July, but was not present in any south cluster 
samples during 2006 or 2007 (Figures 29 & 30).  In the southern cluster, chironomids 
were the most abundant taxa followed by annelids and nematodes in both years.  
Densities of other amphipods and miscellaneous Insecta were the lowest overall for both 
years and clusters.  
 
Job 104.4:  Data analysis and report preparation. 
 Relevant data were analyzed and results incorporated into this report.  This data 
was used in the preparation of two grant proposals seeking to further investigate the 
benthic invertebrate community of nearshore Lake Michigan. 
 
Study 105:  Explore predictive relationships of year-class strength of nearshore 
fishes in Lake Michigan. 
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Job 105.1:  Develop predictive models of year- class strength for nearshore fishes. 

We have explored the effect temperature may have on several of the biotic 
variables we measured.  Temperature loggers deployed at S1 in June 2005 were missing 
from their anchor during retrieval in May 2006 and new ones were not in place until mid-
June.   The logger on the bottom at the north site (N3) was also missing during June 2007 
retrieval.  These loggers were most likely lost due to severe weather action.  Both surface 
and bottom loggers were successfully retrieved from the south cluster in June 2007.  
However, a critical LED light was damaged on the logger from the bottom and we are 
waiting on the data company to retrieve the data for us.  Because of these various data 
gaps, we will limit the current discussion on water temperatures.   

During 2006, north cluster surface water temperatures had reached 10°C by early 
May, but then declined below this level for ten days (Figure 31A).  Bottom water 
temperatures reached 10°C on June 1 and remained above this threshold throughout June.  
Surface water temperatures at the south cluster were above 15°C by June 1 (Figure 31B).  
Both clusters experienced a large mid-summer decline in surface temperatures during 
July 31-August 7.   

Water temperatures at the north cluster first reached 10°C in 2007 on May 9 
(Figure 32).  Peak temperature occurred on August 7 at 24.7°C.   Surface temperatures at 
the south cluster first reached 10°C on April 30 and remained above this through the 
summer.  South cluster surface temperature peaked at 25°C on August 8. 
 
Job 105.2:  Report preparation. 

Relevant data were analyzed and results incorporated into this report.  A 
manuscript comparing aquatic communities at the artificial reef site and the reference 
sites, which incorporates both biotic and abiotic data collected at the southern cluster was 
published in the August 2006 issue of North America Journal of Fisheries Management.  
This article was also highlighted in the December 2006 issue of Fisheries. 

 

Study 106:  Effects of an artificial reef on smallmouth bass abundance. 
 
Job 106.1:  Relative abundance of smallmouth bass observed by SCUBA. 

Divers have encountered greater fish abundance and species diversity at the 
artificial reef site as compared to the reference site.  Since 2000, four to eight fish species 
have been observed each year during dives at the artificial reef.  Divers have also 
observed increased species diversity at the reference site since 1999, however the number 
of fish species (2 - 4) each year and total number of fish has been lower than at the 
artificial reef.    
 On July 7, 2006 divers encountered 3 species of Centrarchids, along with round 
goby, at the artificial reef (Table 2).  These same 3 species were also observed at higher 
numbers on August 17, 2006.  At the reference site transect on the same day, only round 
goby and 1 freshwater drum were observed.  Smallmouth bass were present at the 
artificial reef on July 24, 2007, but not on August 28, 2007.  To date, no transects have 
been swum at the reference site during 2007. 
 
Job 106.2:  Relative abundance of smallmouth bass collected by gill nets. 
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  Gill nets set overnight at the artificial reef on August 17, 2006 collected a total 
of 28 fish, the most common being yellow perch and smallmouth bass adults (Table 3).  
Rock bass were caught at the artificial reef, but not at the reference site.  Yellow perch 
accounted for the majority of the 44 fish colleted at the reference site.  Two smallmouth 
bass adults were also captured. 

 
Job 106.3:  Data analysis and report preparation. 

Relevant data were analyzed and results incorporated into this report.  A 
manuscript that compares aquatic communities at the artificial reef and reference sites, 
and incorporates the SCUBA and gill net fish data has been published in the August 2006 
issue of North American Journal of Fisheries Management.  This article was also 
highlighted in the December 2006 issue of Fisheries. 

 
DISCUSSSION 

 
 The patterns observed after nine years of study demonstrate that mechanisms 
influencing fish assemblages and recruitment may operate at localized spatial scales (i.e. 
<100km).  Clearly, temporal changes in the abundance of fish also occur.  Qualitative 
differences in abiotic and biotic conditions that could influence larval fish recruitment 
success have been observed between our north and south sampling clusters.  Water 
temperature and composition of larval fish, zooplankton, and benthic invertebrates all 
differed between clusters in most years.  Continued monitoring is needed to build a long 
term data set to help determine the impact these differences may have on fish recruitment 
in the Illinois nearshore waters of Lake Michigan.  

Current larval fish densities at both clusters are low (< 15 fish/100m3) compared 
to the late 1980s (>25 fish/100m3).  Growth and survival during the first few weeks after 
larval fish hatch has been linked to prey availability (Houde 1994, Bremigan et al. 2003), 
and our analysis indicates that low zooplankton densities in Lake Michigan during May-
July are likely negatively impacting first-feeding larval fish.  Nearshore zooplankton 
densities in southwestern Lake Michigan have declined from > 500 ind/L during 1988 to 
< 20 ind/L in the 2000s (Dettmers et al. 2003).  We observed a positive relationship 
between levels of July zooplankton and cyprinid larvae density.   Although we have not 
observed any significant relationships with yellow perch larvae, our data are beginning to 
indicate important direct and indirect links between prey availability for this species as 
well.  Bremigan et al. (2003) demonstrated that foraging success of larval yellow perch in 
Green Bay was poor when densities of small zooplankton were < 10 ind/L.  Larval 
yellow perch in the Illinois nearshore waters of Lake Michigan likely experienced poor 
foraging success as well; zooplankton densities during May and June were often < 5 
ind/L.   

As in previous years, densities of yellow perch and cyprinid larvae were 
significantly higher in the north, while densities of alewife larvae were generally higher 
in the south during 2006 and 2007.  Although many factors could influence these changes 
in larval fish assemblage between clusters, one factor that stands out is water 
temperature.  Water temperature is a very important variable for growth of fish because it 
influences their metabolic rate and foraging activity, and indirectly mediates biotic 
interactions (Hinz and Wiley 1997).  When looking at all years and clusters we observed 
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positive relationships between surface water temperatures and larval alewife densities.  
Preliminary results from ageing larval alewife otoliths collected in 2005, indicate 
protracted spawning with synchronized peak hatches across latitudes.  Peak alewife hatch 
occurred on June 18 at both the north and south cluster.  Early summer temperature 
regimes generally differ between Chicago and Waukegan, however, temperatures 
between June 1 and June 17, 2005 rarely differed by more than 2°C.  On June 18 surface 
temperatures at both locations was approximately 13.5°C.  Larval alewife collected 
offshore had a higher growth rate compared to the north and south nearshore locations.  
This may suggest slow growing individuals nearshore experienced higher mortality.   

The relationships between larval fish density and growth and biotic and abiotic 
factors observed thus far provide important insights.  Continued monitoring can help 
develop a better understanding of the combined influence of these factors on recruitment 
in Lake Michigan, which may allow us to manage the fishery accordingly.  

Prey taxa composition in diets of YOY fish collected in bottom trawls over five 
years exhibited seasonal but not annual changes within fish groups.  Age-0 yellow perch 
had the most diet overlap, which may make them most vulnerable to prey resource shifts.  
Age-0 yellow perch and alewife diets were most similar in August and September, when 
both were consuming primarily chironomids, Bosmina and copepods.  Given the current 
low zooplankton abundances, alewife may be at a competitive advantage because of their 
ability to switch feeding modes. This also makes them more efficient at feeding on 
smaller zooplankton. 

Yellow perch diets overlapped in October, when both age classes switched 
primarily to amphipods. Although this reduces overlap with spottails and alewife, it may 
increase intra-specific competition, especially if amphipods declined.  Diaporeia make up 
a large portion of the amphipods collected near Waukegan, IL.  If Diaporeia abundances 
collapse, as seen on the eastern side of Lake Michigan (Nalepa et al. 1998; Madenjian et 
al. 2002), it could have a severe impact on age-0 yellow perch.  Competitive interactions 
between two successive age-classes could result in reduced growth rates of the younger 
fish thus reducing their over-winter survival (Persson 1983).  Both plankton and benthic 
resources have declined since the high yellow perch abundances of the 1980s.  Thus, 
increased competition due to declining prey levels may be why we have seen no back to 
back successful year classes of yellow perch since the late 1980s.  The recent 
establishment of round goby in the Waukegan area could create even more diet overlap 
for young perch.  The fish we are now collecting using small-mesh gill nets at both the 
north and south sites will help provide some insight into round goby diets and their 
possible competition with native species. 

As seen in our diet results and those of others, many YOY fish such as yellow 
perch, spottail shiner, and trout-perch Percopsis omiscomaycus rely on benthic 
invertebrates as primary or secondary food sources, especially when they reach 30 mm in 
length (Gerking 1994; Gopalan et al. 1998).  Benthic invertebrates are thus important to 
the function of the aquatic community because they act as a benthic-pelagic link for many 
fish species (Covich et al. 1999).  Over all years of our study, the most significant 
differences observed between the north and south were for benthic invertebrate density 
and taxa diversity.  Such differences in prey availability between these two areas likely 
affect growth of YOY and juvenile fish and thus influence recruitment success.   
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Preliminary collection of benthic invertebrates at additional sites the past two 
years, showed there is an even wider variability of invertebrate density and diversity 
along the entire Illinois shoreline of Lake Michigan.  Substrate also varied widely among 
the eight sites, from very sandy to very rocky sites.  These combined factors likely have a 
large impact on juvenile fish in Lake Michigan.  Continued additional sampling of the 
invertebrates, fish and fish diets on a smaller spatial scale may provide key insights into 
nearshore areas with the best growth and survival potential for both native and non-native 
fish.  

Linking growth of YOY fishes to food availability in the field is a critical first 
step toward understanding how differences in both zooplankton and benthic invertebrates 
can affect year-class strength of various fishes.  Because year-class strength frequently is 
set in the first year of life, monitoring YOY fish abundance can be a cheaper method that 
yields predictions quicker than the traditional method of monitoring adult populations 
(Sammons and Bettoli 1998).  This would allow managers to adjust harvest regulations 
before catastrophic collapse of sport fishes or their prey base occurs.   

Understanding the degree to which biotic and abiotic factors act together to affect 
growth and survival of nearshore fishes in Lake Michigan can provide useful predictive 
information to managers as they strive to regulate harvest of important sport and 
commercial fishes.  Data collected during Segments 1-9 has been highly variable but we 
have begun to see some trends and relationships emerging from univariate models. The 
relationships we have observed thus far are not strong enough to serve as predictive tools 
for managers.  However, they do indicate potential predictive ability in the future with 
additional data.  The lack of successful year-classes has limited the ability to identify the 
factors that can best predict year-class strength.  It is imperative to build on the current 
data set and continue data collection to more clearly identify the most important suite of 
factors for managers to be aware of and consider when making management decisions.   

 
Artificial Reef   

The appearance of smallmouth bass and other fish at the artificial reef appears to 
be temperature driven.  Smallmouth bass spawn at traditional locations when the water 
temperature reaches 15-18.3ºC (Armour 1993), and then appear to migrate to the reef 
when nest guarding is complete and water temperatures rise above 22ºC.  Based on dive 
observations and gill net data, it appears that smallmouth bass remain at the reef until 
early October when temperatures decline to 14 -17ºC.  Similar behavioral responses to 
water temperature were reported by Langhurst and Schoenike (1990) who observed that 
age-2 and older smallmouth bass initiated winter migrations when temperatures fell 
below 16ºC.  Smallmouth bass at the artificial reef also disperse during large mid-
summer declines in temperature.  For instance, on July 24, 2007 bottom water 
temperature was 20.5 ºC and smallmouth bass were observed at the reef.  However, on 
August 28, 2007 bottom temperature was 13.5 ºC and no smallmouth bass were observed 
along the entire length of the reef.  It is not known where the smallmouth bass migrate 
once they leave the artificial reef in late fall. 
 Throughout the study, although large numbers of yellow perch were collected in 
gill nets at the artificial reef site, relatively few adults were observed on the 
corresponding dates during the dive transects.  This may indicate that yellow perch do not 
use the reef as long term habitat, but are mainly transients attracted to the reef for food or 
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temporary shelter.  The sighting of YOY yellow perch at the artificial reef for the first 
time during 2005, corresponds with large numbers captured in bottom trawls at the north 
cluster during 2005.  This general pattern of numerous YOY yellow perch at both clusters 
could be an indication of a potential strong 2005 year class. 

The nine year data set from this study indicated that smallmouth bass and rock 
bass use of the artificial reef was greater than the reference site, whereas catch rates for 
the fish community as a whole did not differ between the two sites.  The reef appears 
only to be attracting those species that prefer rocky, complex habitats.  For example, 
freshwater drum and salmonines exhibited clear responses to temperature rather than site 
specific preference.  Long-term monitoring of artificial reefs in the Great Lakes is 
essentially non-existent.  Continued monitoring at both the artificial reef and reference 
sites will provide data to help determine the importance of the artificial reef for attracting 
smallmouth bass and other species over the long-term as compared to the surrounding, 
relatively featureless, environment.  SCUBA sampling also allows us to monitor the 
physical condition of the artificial reef through time. 
 
 
Conclusions 
 Current management strategies for Lake Michigan focus on nearshore waters as 
contiguous units despite many habitat differences.  Therefore, it is important to continue 
to investigate how ecological conditions vary temporally and within smaller spatial scales 
of the nearshore zone, and the effects these differences (e.g., temperature and 
zooplankton) may have on growth, survival, and species composition of the entire 
nearshore fish assemblage.   
 Preliminary and continuing analysis of data from Segments 1-9, showed that 
temperature, and prey availability of both zooplankton and benthic invertebrates are 
factors that appear to contribute to the survival of nearshore fish early in their life.  
Continued monitoring of larval and juvenile fishes along with abiotic and biotic variables 
that may affect their success is needed to determine 1) what mechanisms play a role in 
regulating fish recruitment in Illinois nearshore waters, 2) the extent of recruitment 
variability across years and between clusters, as well as increase our understanding of 
why these fluctuations occur, and 3) appropriate mechanistic models to predict year-class 
strength of nearshore fishes to aide managers in making decisions for harvest regulations. 
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 Table 1.  Similarity percentages for diets of bottom trawl fish collected during 2001-
2005 at N1 and N2.  Fish groups are those identified by similarity profile analysis.  
Contribution percentage is the amount that prey taxa contributed to diet similarity of the 
fish in that particular group. 
 
Fish group Prey taxa Contribution % Cumulative  

contribution % 
Chironomid larvae 20.4 20.4 

Chironomid pupa 16.8 37.2 

Bosminidae 10.5 47.7 

Group a (alewife & 
age-0 yp – Aug & Sept) 

Copepod 22.5 70.2 

Copepod 52.3 52.3 Group b (alewife and  
smelt – Sept & Oct) Bosminidae 18.2 66.0 

Chironomid larva  38.7 38.7 

Amphipod 33.9 72.6 

Group d (Age-1 yp and  
spottail, all months, &  
age-0 yp in Oct) 

Chironomid pupa 11.6 84.1 
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Table 2.  Fish counts observed during SCUBA transect sampling at the artificial reef site 
from 2006 - 2007.   
 
 
Date 

Round 
goby 

Rock bass Smallmouth 
bass- adults 

Smallmouth 
bass- juveniles 

Largemouth 
bass- juveniles 

7/6/06 1% 2 9  1 
8/17/06  1% 6 14 24 4 
      
7/24/07 2.5% 1 9 2  
8/28/07 2%    1 
 
 
 
 
 
 
 
 
Table 3.  Total number of each fish species caught in gill nets at the artificial reef (S1) 
and reference (S2) sites during 2006.  Number of nets set each year is indicated in the 
parentheses following the site name. 
 
 2006 
Species/Site (# 
of nets) 

S1 (2) S2 (2) 

Yellow perch 
 

13 39

Gizzard shad 
 

0 1

Freshwater 
drum 

2 2

Smallmouth 
bass 

9 2

Rock bass 
 

4 0

Total 28 44
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Figure 1.  Location of sites in the north and south sampling clusters, along with the 
preliminary middle sites (M1-M4), in the Illinois nearshore waters of Lake Michigan.  
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Figure 2.  Mean (+ 1 SD) larval fish abundance at the north and south clusters during May-
July (A) 2006 and (B) 2007.  Numbers along the x-axis refer to the week of the year. 
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Figure 3.  Mean density of larval alewife, cyprinid, perch, other species, and 
unidentifiable/damaged fish at the (A) north and (B) south sampling clusters during June-
July 2006.  Numbers along the x-axis refer to the week of the year. 
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Figure 4. Mean density of larval alewife, cyprinid, perch, other species, and 
unidentifiable/damaged fish at the (A) north and (B) south sampling clusters during June-
July 2007.  Numbers along the x-axis refer to the week of the year. 
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Figure 5. – Distribution of age-0 alewife hatching dates in southwestern Lake Michigan 
during June - August 2005.  Samples were taken from (A) south cluster, (B) north cluster, 
and (C) offshore from N2.  
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Figure 6.  Age-frequency histogram for age-0 alewives captured in 2005 near (A) south 
cluster, (B) north cluster, and (C) offshore from N2. 
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Figure 7. – Effect of hatching date on age-0 alewife average daily growth rate during 
2005 at (A) south cluster, (B) north cluster, and (C) offshore from N2. 
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Figure 8. – Length at age of age-0 alewives sampled from the north and south clusters 
and offshore from N2.  Length is in millimeters (mm) and age is measured in days (d).  
Alewives captured at the three locations differed in initial size and growth rate (P<0.05). 



 39

 

0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
ue

nc
y 

(%
)

0.0

0.1

0.2

0.3

Hatch date
Apr 22  May 06  May 20  Jun 03  Jun 17  Jul 01  Jul 15  

0.0

0.1

0.2

0.3

A. North pelagic

B. Offshore pelagic

C. North  benthic

 
 
 
Figure 9. Hatching distributions of yellow perch captured at (A) north cluster pelagic, N2 
& N3, (B) offshore pelagic sites, and (C) north cluster benthic, N1 & N2, sites in 2006.   
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Figure 10.  Age-frequency histogram of yellow perch collected at (A) north nearshore 
pelagic sites, N2 & N3, (B) offshore pelagic sites, and (C) nearshore benthic, N1 & N3, 
sites in 2006.  Yellow perch are grouped into 3-day age classes.  Number of yellow perch 
collected (n) for each location is provided. 
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Figure 11.  Mean CPUE (number of fish/100 m2 of bottom swept) for alewife, Cyprinids, 
rainbow smelt, yellow perch, and other species collected with a bottom trawl at (A) N1 and 
(B) N2 during 2006.  Numbers in parentheses above bars are the number of trawl tows for 
that month. 
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Figure 12.  Seasonal CPE (number of fish caught per hour) in small-mesh gill nets set at 
N2, N3, S1 and S2 during 2006. 
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Figure 13.  Species mean annual CPE (number of fish caught per hour) in small-mesh gill 
nets set at N2, N3, S1 and S2 during 2006. 
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Figure 14.  Total CPE by species (number of fish caught per hour) in small-mesh gill nets 
set at eight locations on September 6 and 7, 2006. 
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Figure 15.  Mean percent composition by weight (dry weight, milligrams) of major taxa 
groups in the diets of alewife (ale), rainbow smelt (smlt), yellow perch (yp), and spottail 
shiners collected in bottom trawls at sites N1 and N2 in (A) August and (B) September 
during 2001-2005. 

A. August

Age0ale
Age0yp

Age1ale
Age1yp

Spottail

P
er

ce
nt

 c
om

po
si

tio
n 

by
 w

ei
gh

t

0

20

40

60

80

100

120

Amphipod 
Chironomid 
Copepod
Bosminidae 
Zooplankton
Daphnia 
Invertebrates
Veligers

B. September

Age0ale
Age0smlt

Age0yp
Age1ale

Age1yp
Spottail

Pe
rc

en
t c

om
po

si
tio

n 
by

 w
ei

gh
t

0

20

40

60

80

100

120

 

 



 46

 
 
 Figure 16.  Mean percent composition by weight (dry weight, milligrams) of major taxa 
groups in the diets of alewife (ale), rainbow smelt (smlt), yellow perch (yp) and spottail 
shiners collected in bottom trawls at sites N1 and N2 in October during 2001-2005. 
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Figure 17.  Dendrogram resulting from cluster analysis of mean monthly percent composition in diets for 22 prey taxa.  Numbers below 
the fish symbols correspond to month: 8 = August, 9 = September and 10 = October. 
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Figure 18.  Non-metric multidimensional scaling plot for diet composition (% dry weight) of alewife, yellow perch, rainbow smelt and 
spottail shiner collected in bottom trawls at N1 and N2 during 2001-2005.  Symbols that are close together have greater similarity in diet 
than symbols that are further apart.  The overlaying circles indicate groups from the cluster analysis that had 30% diet similarity. 
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Figure 19.  Non-metric multidimensional scaling plot for diet composition (% dry weight) of alewife, yellow perch, rainbow smelt and 
spottail shiner collected in bottom trawls at N1 and N2 during 2001-2005.  Fish groups with similar diets corresponding to groups a-d, 
numbers above symbols refer to month of fish collection: 8 = August, 9 = September and 10 = October.
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Figure 20.  Mean crustacean zooplankton density (number/L) during May-October 2006 at 
the (A) north cluster and (B) south cluster.  Numbers along the x-axis refer to the week of 
the year. 
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Figure 21. Mean crustacean zooplankton density (number/L) during May-July 2007 at the 
(A) north cluster and (B) south cluster.  Numbers along the x-axis refer to the week of the 
year. 
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Figure 22.  Total benthic invertebrate density (#/m2) found at 8 locations along the Illinois 
shoreline of Lake Michigan during July of (A) 2006 and (B) 2007.  Locations are listed 
along the x-axis from left to right in their order of north to south.
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Figure 23.  Percent composition by number of benthic invertebrates collected during July 
2006 at N1, N2, M1 and M2, the four most northern of eight locations along the Illinois 
shoreline of Lake Michigan.   
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Figure 24.  Percent composition by number of benthic invertebrates collected during July 
2006at M3, M4, S1 and S2, the four most southern of eight locations along the Illinois 
shoreline of Lake Michigan.   
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Figure 25.  Percent composition by number of benthic invertebrates collected during July 
2007 at N1, N2, M1 and M2, the four most northern of eight locations along the Illinois 
shoreline of Lake Michigan.   
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Figure 26.  Percent composition by number of benthic invertebrates collected during July 
2007 at M3, M4, S1 and S2, the four most southern of eight locations along the Illinois 
shoreline of Lake Michigan.   
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Figure 27.  Substrate percent composition collected during July 2006 at sites N1, N2, M1 
and M2 in conjunction with benthic invertebrate sampling along the Illinois shoreline of 
Lake Michigan.   
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Figure 28.  Substrate percent composition collected during July 2006 at sites M3, M4, S1 
and S2, in conjunction with benthic invertebrate sampling along the Illinois shoreline of 
Lake Michigan.   
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Figure 29. Mean density (number/m2) of benthic invertebrates sampled using a 7.5 cm 
diameter core sampler at monthly intervals in the (A) north and (B) south clusters during 
June – September, 2006. 
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Figure 30. Mean density (number/m2) of benthic invertebrates sampled using a 7.5 cm 
diameter core sampler at monthly intervals in the (A) north and (B) south clusters during 
June and July 2007. 
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Figure 31.  Mean daily water temperature recorded from thermal loggers and manual 
profiles at the bottom and surface during 2006 at the (A) north cluster – N3 and (B) south 
cluster – S1. 
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Figure 32.  Mean daily water temperature recorded from thermal loggers and manual 
profiles at the bottom and surface during 2007 at the (A) north cluster – N3 and (B) south 
cluster – S1. 
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Appendix A.  Cost Summary for 2006 - 2007 
Segment 10 

 
         Budgeted Actual  
Study   101     Quantify the abundance, taxonomic composition,  

            and growth of larval fish 
 Job 1: Quantify abundance and taxonomic composition  
   of larval fish           $12,000 12,000 
 Job 2: Quantify growth of larval fishes   $ 9,000   9,000 
 Job 3: Data analysis and report preparation   $ 3,000   3,000 
 
Study   102      Quantify the abundance, composition, and growth  
  of YOY fishes 
 Job 1:  Quantify abundance, growth, and composition of  
   YOY fishes          $12,000 12,000 
 Job 2: Diet analysis of nearshore YOY fishes  $ 9,000   9,000 
 Job 3: Data analysis and report preparation       $ 3,000   3,000 
 
Study  103      Quantify nearshore zooplankton abundance and  
   taxonomic composition 
 Job 1: Sample zooplankton at selected nearshore sites $ 5,000   5,000 
 Job 2: Identify and enumerate zooplankton        $12,000 12,000 
 Job 3: Data analysis and report preparation        $ 4,000   4,000 
 
Study  104      Estimate relative abundance and taxonomic  
  composition of benthic invertebrates 
 Job 1 Sample benthic invertebrates at selected nearshore  
   locations      $ 5,000   5,000 
 Job 2 Count and identify benthic invertebrates  $ 5,000    5,000 
 Job 3 Data analysis and report preparation        $ 3,000   3,000 
 
Study 105      Explore predictive relationships of year class strength  
   of nearshore fishes in Lake Michigan 
 Job 1 Develop predictive models of year class strength of  
   nearshore fishes         $ 4,000   4,000 
 Job 2 Report preparation     $ 3,000   3,000 
 
Study  106      Effects of an artificial reef on smallmouth bass abundance 
 Job 1 Relative abundance of smallmouth bass observed  
   by SCUBA      $ 4,000   4,000 
 Job 2 Relative abundance of smallmouth bass collected  
   by gill nets      $ 4,000   4,000 

Job 3 Data analysis and report preparation   $ 2,000   2,000 
 
 Total Estimated Cost $99,000 
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