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ABSTRACT 

The phenomena are balking can be said to have been observed when a customer 

who has arrived into queuing system decides not to join it. Reverse balking is a 

particular type of balking wherein the probability that a customer will balk goes 

down as the system size goes up and vice versa. Such behavior can be observed 

in investment firms (insurance company, Mutual Fund Company, banks etc.). As 

the number of customers in the firm goes up, it creates trust among potential 

investors. Fewer customers would like to balk as the number of customers goes 

up. In this paper, we develop an M/M/1/k queuing system with reverse balking. 

The steady-state probabilities of the model are obtained and closed forms of 

expression of a number of performance measures are derived.  

Keywords: Finite capacity; Performance Measure; Queuing Model; Reverse 

Balking; Steady-State Solution  
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1. INTRODUCTION 

 In our day-to-day life, we commonly experience waiting lines at bus stops, bank 

counters, hospitals and the like. A queue or waiting line forms when we need some kind of 

service and arrive at a service channel that offers such facilities (Sharma, 2013). Queuing is 

essential to manage congestion in traffic of any type in the modern technological world. 

Queuing theory describes probabilistically and mathematically, the interaction between the 

arrival process of customers and the service provided to them in order to manage the system in 

an efficient manner. It started when Danish mathematician (Erlang, 1909) showed for the first 

time how probability theory can be used to mathematically model the task of managing 

telephone conversations.   

 Among the various aspects in the study of any queuing system, there is the phenomenon 

of customer attrition. Of late, this has gained importance especially in the cutthroat world of 

business and commerce. Serving a customer is the whole purpose of any business entity. Firms 

invest substantial portion of their time, effort, energy and money to attract customers. 

Consequently, should there be any attrition of customers from a queuing system, it is not only 

an opportunity lost to expand business (with consequent revenue loss) but the fair name of the 

firm also takes a beating in the marketplace. All this is detrimental to it interests.  

 One of the reasons behind attrition is long queues. In any real life queuing system, such 

long queues discourage customers in two ways. A customer may decide not to join the queue 

(which is defined as balking) or leave the queue after joining it (which is defined as reneging). 

In both the cases, the customer does not receive service.  We can find such queuing systems 

almost all around us. In fact, attrition is very common in queues. Examples are firms operating 

in the domains of health, service systems, call centers just to name a few.  

 Balking is the subject matter of this paper. We can observe balking when a customer 

arrives into a queuing system but refuses of join it. Traditionally, balking occurred with longer 

queues - the higher the size of the queue, the higher was the probability of balking. However, 

a particular type of balking which has gained acceptability in recent years is reverse balking. It 

aims to model a phenomena where the probability of balking (of an arriving customer) is low 

when the queue size is large and vice-versa.  

 Clearly, this is the reverse of the traditional concept of balking – an antithesis perhaps 

but there are a number of real like service delivery systems where this phenomenon can be 

observed. For example, consider a financial entity say an insurance company, Mutual Fund 
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Company, commercial bank etc. If the number of investors is already large, it provides some 

sort of comfort to potential customers. In such cases, the (large) number of customers does not 

discourage potential (arriving) investors (customers) arriving into the queuing system.  

 On the contrary, the large size instills a sense of confidence among them with regard to 

the financial soundness of the firm (as a large number of customers are already patronizing it, 

the firm must be financially sound). As a result, the probability of an arriving customer joining 

the queue goes up (consequently, the probability of balking comes down). 

 In this paper, we therefore analyze a queuing system with reverse balking. Among the 

various models available in literature, we choose the single server Markovian queuing system 

with finite buffer. Symbolically, we denote it by M/M/1/k. We describe the model in a later 

section.  

 We arrange the subsequent sections of the paper as follows. After this introduction, 

section 2 reviews the literature. Section 3 and 4 contain model description and derivation of 

steady state probabilities. In section 4, we discuss a numerical example. We conclude in section 

5. To unclutter the paper, we place the detailed mathematical derivations in Appendix. 

2. LITERATURE SURVEY 

  There is a considerable body of literature on customer attrition.  Among them Haight 

(1957) can be considered to be the earliest. Haghighi, Medhi & Mohanty (1986) analyzed a 

multi-server queuing model with balking and reneging. They obtained the steady state 

distribution of the number of customers in the system. They also obtained an expression for 

average customer lost during a fixed duration of time.  

 Choudhury and Medhi (2011A) considered an M/M/k model with the restriction that 

customers may balk from a non-empty queue as well as may renege after they join the queue. 

Derivations of closed form expression of a number of performance measures are given. 

Choudhury and Medhi (2011B) analyzed a multi-server Markovian queuing system under the 

assumption that customers may balk as well as renege.  

 Explicit closed form expressions are given. Demonstration of results derived is through 

a numerical example with design connotations. Choudhury and Medhi (2011C) analyzed a 

single server finite buffer Markovian queuing model M/M/1/N with the additional restriction 

that customers may balk as well as renege.  
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 Choudhury and Medhi (2012) considered a finite buffer multi server queuing system 

with balking along with position dependent reneging. Derivations of explicit closed form 

expressions of a number of performance measures are given. Demonstration of usefulness of 

results derived is through a practical problem.  

 Som and Kumar (2017) considered a single server finite capacity queuing system with 

customer retention and balking in which the inter-arrival and service times follow negative-

exponential distribution. The assumption is that the reneging time is exponentially distributed. 

The steady state solution of the model is given.  Derivation of some performance measures is 

given. A discussion on sensitivity analysis of the model is also given.  

  Jain, Kumar and Som (2014) perhaps developed and introduced the concept of reverse 

balking in a single server Markovian queuing system. Derivation of the steady-state solution 

of the model and different measures of effectiveness is given. Kumar, Som and Jain (2015) 

considered a single server finite capacity feedback queuing system with reverse balking. 

Feedback customer in queuing literature refers to a customer who is unsatisfied with 

incomplete, partial or unsatisfactory service.  

 They derived the steady-state solution of the model and obtained some important 

performance measures. Sasikala and Thaigaranjan (2016) considered the M/M/1/N 

interdependent queuing model with controllable arrival rates and reverse balking. They derived 

the steady state solutions along with the system characteristics of the model. Som and Kumar 

(2017) also considered a finite capacity Markovian queuing system with two heterogeneous 

servers, reverse balking and reneging.  

3. ASSUMPTIONS OF THE MODEL 

 In this paper, we shall deal with the M/M/1/k model with reverse balking. Specifically, 

the assumptions of the model are as follows: 

a) Arrivals follow Poisson probability distribution and the inter-arrival times follow 

exponentially distribution with parameter λ. 

b) There is only one server and the service times follow exponentially distribution with 

parameter µ. 

c) The system capacity is restricted to k i.e. the capacity of the system is finite. In other 

words, the maximum number of customers that can be present in the system at any point 

of time is k. 
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d) The queue discipline is FCFS (first come first served) i.e. the customer who arrives first 

into the queuing system will receive service before others. 

e) The probability that an arriving customer will balk is {1 − 1
(𝑎𝑎−𝑛𝑛𝑛𝑛)} and consequently, 

the probability that an arriving customer will join the queuing system (i.e. not balk) 

is 1
(𝑎𝑎−𝑛𝑛𝑛𝑛). Here n is the state of the system (i.e. the number of customers present in the 

system) at the instant of time the test customer arrives into the system. Further, ‘a’ and 

‘b’ are constants to be suitably chosen. Since 1
(𝑎𝑎−𝑛𝑛𝑛𝑛) is a probability, the constants have 

to be chosen in such a manner that (𝑎𝑎 − 𝑛𝑛𝑛𝑛) > 0 (for all n = 1, 2,… k). Essentially this 

means that ‘k’ should be less than  𝑎𝑎
𝑛𝑛
. Thus the buffer size should not exceed the ratio of 

the constants ′𝑎𝑎′ and′𝑛𝑛′.   At this point, an obvious question is how to choose ′𝑎𝑎′ and ′𝑛𝑛′. 

We shall demonstrate the same through an example in section 4. The probability of 

balking will increase as ′𝑎𝑎′ increases and probability of balking will decrease as ′𝑛𝑛′ 

increases. In other words, ′𝑎𝑎′is directly proportion to probability of balking where as 

′𝑛𝑛′ is inversely proportional to the balking probability. 

4. THE STEADY STATE PROBABILITIES 

 In this section, we derive the steady state probabilities by using the Markov process 

method. Let 𝑝𝑝𝑛𝑛  denote the probability that there are ‘n’ customers in the system. The steady 

state equations are 

                                    µ𝑝𝑝1     =        
𝜆𝜆
𝑎𝑎
𝑝𝑝0       (1) 

µ𝑝𝑝𝑛𝑛+1 + � 𝜆𝜆
𝑎𝑎−(𝑛𝑛−1)𝑛𝑛

� 𝑝𝑝𝑛𝑛−1 = � 𝜆𝜆
𝑎𝑎−𝑛𝑛𝑛𝑛

+ µ� 𝑝𝑝𝑛𝑛   ;  n = 1, 2… k-1 (2) 

� 𝜆𝜆
𝑎𝑎−(𝑘𝑘−1)𝑛𝑛

� 𝑝𝑝𝑘𝑘−1 = µ𝑝𝑝𝑘𝑘            (3) 

 Solving recursively, we get    

𝑝𝑝𝑛𝑛 =   � 𝜆𝜆𝑛𝑛

µ𝑛𝑛 ∏ (𝑎𝑎−𝑟𝑟𝑛𝑛)𝑛𝑛−1
𝑟𝑟=0

� 𝑝𝑝0    ; n = 0, 1, 2… k                (4) 

 Where  𝑝𝑝0 is obtained from the normalizing condition ∑ 𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=0 = 1  and is given as  

𝑝𝑝0=  � 1

1+∑ � 𝜆𝜆𝑛𝑛

µ𝑛𝑛∏ (𝑎𝑎−𝑟𝑟𝑟𝑟)𝑛𝑛−1
𝑟𝑟=0

�𝑘𝑘
𝑛𝑛=1

�      
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 An important performance measure is the average number of customers in the system. 

It is traditionally denoted by L. We shall derive an expression for the same from the p.g.f. 

(probability generating function) of the steady state distribution.  

 Let P(s) be the p.g.f.  We recall that  

    L = P/(1) = 𝑑𝑑
𝑑𝑑𝑑𝑑

 P(s) |s=1. 

 Under the assumptions of the model, (see appendix 1 for the derivation) 

                                𝑃𝑃/(𝑠𝑠) = 𝜆𝜆
µ
∑ (𝑛𝑛+1)𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

(𝑎𝑎−𝑛𝑛𝑛𝑛)
𝑘𝑘−1
𝑛𝑛=0                               (5) 

 Substituting s=1 in equation (5), we obtain the average number of customers in the 

system. 

    L =  𝑃𝑃/(1) = 𝜆𝜆
µ
∑ (𝑛𝑛+1)𝑃𝑃𝑛𝑛

(𝑎𝑎−𝑛𝑛𝑛𝑛)
𝑘𝑘−1
𝑛𝑛=0      (6) 

5. NUMERICAL EXAMPLE. 

 To illustrate the use of our results, we apply them to a queuing problem. We quote 

below an example from Choudhury and Medhi (2011A). 

 Traffic to a message switching Centre for Extraterrestrial Communications Corporation 

arrives in a random pattern (remember that ‘random pattern’ means exponential inter-arrival 

time) at an average rate of 240 messages per minute. The line has a transmission rate of 800 

characters per second. The message length distribution (including control characters) is 

approximately exponential with an average length of 176 characters. Calculate the principal 

statistical measure of system performance assuming that a very large number message buffers 

is provide. Suppose, however that it is desired to provide only the minimum number of 

messages buffers required to guarantee that 

𝑝𝑝𝑘𝑘 < 0.005 

 How many buffers should be provided? 

 This is a design problem. To be specific, we are required to determine the system 

capacity k (i.e. size of the buffer) in such a manner that the boundary condition pk < 0.005 is 

satisfied. It is clear that we would like k to be as small as possible (so as to keep costs down – 

an additional buffer would mean additional expenditure). We shall therefore first check if k=1 

enables us to attain the boundary condition. Then we shall examine for k=2 and so forth. An 
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additional issue is to fix the values of the constants ‘a’ and ‘b’ for which we shall examine 

various alternatives.  

 A reading of the problem statement tells us that the arrival rate is 4 per second and the 

service rate is 4.55 per second. Hence here, λ = 4/s and µ = 4.55/s. We analyze the problem for 

different choices of ‘𝑎𝑎’ and ‘𝑛𝑛’. In particular, we consider the following alternatives – 

1. 𝑎𝑎 = 5 & 𝑛𝑛 =1    4. 𝑎𝑎 = 10 & 𝑛𝑛 =3 

2. 𝑎𝑎 = 10 & 𝑛𝑛 =1    5. 𝑎𝑎 = 40 & 𝑛𝑛 =1 

3. 𝑎𝑎 = 10 & 𝑛𝑛 =2    6. 𝑎𝑎 = 40 & 𝑛𝑛 =19 

 In what follows, we shall analyze different scenarios for different values of k and 

different alternatives of ‘a’ and ‘b’.  

Table 1: Steady state probabilities for varying system capacity with a = 5 & b =1 
Probabilities System Capacity 

k=1 k=2 k=3 k=4 
𝑝𝑝0 0.85047 0.82341 0.81580 0.81250 
𝑝𝑝1 0.14953 0.14477 0.14344 0.14286 
𝑝𝑝2 undefined 0.03182 0.03152 0.03140 
𝑝𝑝3 undefined undefined 0.00924 0.00920 
𝑝𝑝4 undefined undefined undefined 0.00404 

Total 1.00000 1.00000 1.00000 1.00000 

 Table 1 displays a few steady state probabilities assuming a=5 & b=1. For k=1, p1 

=0.14953 > 0.005, for k=2, 𝑝𝑝2 = 0.03182 > 0.005 and for k=3, 𝑝𝑝3 = 0.00924 > 0.005. 

These do not satisfy the given design condition. On the other hand k=4 satisfies the given 

design restriction of  𝑝𝑝𝑘𝑘 < 0.005  Therefore the number of buffers should be equal to 4. We 

need not check beyond k=4 because of our restriction that  𝑘𝑘 < 𝑎𝑎
𝑛𝑛
 (in our case  𝑎𝑎

𝑛𝑛
= 5). Thus if 

we choose a=5 & b=1, then the optimum choice of k is 4. 

Table 2: Steady state probabilities for varying system capacity with 𝑎𝑎 = 10 & 𝑛𝑛 =1 
Probabilities System Capacity 

k=1 k=2 k=3 
𝑝𝑝0 0.91919 0.91199 0.91121 
𝑝𝑝1 0.08081 0.08018 0.08011 
𝑝𝑝2 undefined 0.00783 0.00782 
𝑝𝑝3 undefined Undefined 0.00086 

Total 1.00000 1.00000 1.00000 

 Table 2 displays a few steady state probabilities assuming a=10 & b=1. For k=1, p1 

=0.08081 > 0.005, for k=2, p2=0.00783 > 0.005. These do not satisfy the given design 

condition. On the other hand k=3 satisfies the given design restriction of  𝑝𝑝𝑘𝑘 < 0.005  

Therefore the number of buffers should be equal to 3. We need not check beyond k=3 because 
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in general, it is better to have as few buffers as possible. Thus if we choose a=10 & b=1, then 

optimum choice of k is 3. 

Table 3: Steady state probabilities for varying system capacity with 𝑎𝑎 = 10 & 𝑛𝑛 =2 
Probabilities System Capacity 

k=1 k=2 k=3 
𝑝𝑝0 0.91919 0.91110 0.90993 
𝑝𝑝1 0.08081 0.08010 0.07999 
𝑝𝑝2 undefined 0.00880 0.00879 
𝑝𝑝3 undefined Undefined 0.00129 

Total 1.00000 1.00000 1.00000 

 Table 3 displays a few steady state probabilities assuming a=10 & b=2. For k=1, p1 

=0.08081 > 0.005, for k=2, p2=0.00880 > 0.005. These do not satisfy the given design 

condition. However k=3 satisfies the given design restriction of  𝑝𝑝𝑘𝑘 < 0.005  

(p3=0.00129).Therefore the number of buffers should be equal to 3. Here we need not check 

beyond k=3 because in general, it is better to have as few buffers as possible. Thus if we choose 

a=10 & b=2, then the optimum choice of k is 3. 

Table 4: Steady state probabilities for varying system capacity with 𝑎𝑎 = 10 & 𝑛𝑛 =3 
Probabilities  System Capacity 

k=1 k=2 k=3 
𝑝𝑝0 0.91919 0.90996 0.90795 
𝑝𝑝1 0.08081 0.08000 0.07982 
𝑝𝑝2 undefined 0.01005 0.01002 
𝑝𝑝3 undefined Undefined 0.00220 

Total 1.00000 1.00000 1.00000 

 Table 4 displays a few steady state probabilities assuming a=10 & b=3. For k=1, p1 

=0.08081 > 0.005, for k=2, p2=0.01005 > 0.005. These do not satisfy the given design 

condition. However k=3 satisfies the given design restriction of  𝑝𝑝𝑘𝑘 < 0.005  (p3=0.00220). 

Thus if we choose a=10 & b=3, then the optimum choice of k is 3. 

Table 5: Steady state probabilities for varying system capacity with 𝑎𝑎 = 40 & 𝑛𝑛 =1 

 
 Table 5 displays a few steady state probabilities assuming a=40 & b=1. For k=1, p1 = 

0.02151 > 0.005. This does not satisfy the given design condition. However k=2 satisfies the 

given design restriction of  𝑝𝑝𝑘𝑘 < 0.005  .Therefore here the number of buffers should be equal 

to 2.  

 

Probabilities 
System Capacity 

k=1 k=2 
𝑝𝑝0 0.97849 0.97801 
𝑝𝑝1 0.02151 0.02149 
𝑝𝑝2 undefined 0.00049 

Total 1.00000 1.00000 
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Table 6: Steady state probabilities for varying system capacity with 𝑎𝑎 = 40 & 𝑛𝑛 =19 
Probabilities System Capacity 

k=1 k=2 
𝑝𝑝0 0.97849 0.97761 
𝑝𝑝1 0.02151 0.02149 
𝑝𝑝2 undefined 0.00090 

Total 1.00000 1.00000 

 Table 6 displays a few steady state probabilities assuming a=40 & b=19. For k=1, p1 = 

0.02151 > 0.005. This does not satisfy the given design condition. However k=2 satisfies the 

given design restriction of  𝑝𝑝𝑘𝑘 < 0.005  (p3=0.00090).Therefore the optimal number of buffers 

is 2.  

6. CONCLUSION: 

 In this paper, we have derived the steady state probabilities and a performance measure 

assuming a specific reverse balking rule. We have applied our results to a numerical problem. 

In the problem, we have examined the impact of different balking rules on the steady state 

probability. We recall that the assumption regarding balking probability is {1 − 1
(𝑎𝑎−𝑛𝑛𝑛𝑛)}. 

Therefore the probability of joining is 1
(𝑎𝑎−𝑛𝑛𝑛𝑛).  

 We wanted to analyse the effect of change in ‘a’ and ‘b’. We have observed that if ‘a’ 

increases with ‘b’ held constant, then the probability of joining decreases. This is by comparing 

table 2 and table 3. In table 1, we have seen that the probability that there is no customer in the 

system is 0.81250. This is small when compared to the probability of 0.91121 in table 2. On 

other hand, we can examine the impact of increasing ‘b’ keeping ‘a’ constant with comparing 

table 2, table 3 and table 4.  

 The boundary condition is met with k=4 in table1, with k=3 in table 2 and k=2 in table 

5. A clear pattern has emerged; ‘k’ decreases as ‘a’ increases (which is to be expected). While 

the optimum value of k will depend on the constants ‘a’ and ‘b’, it has to be emphasized that 

the values of ‘a’ and ‘b’ have to be chosen given the conditions of the queuing system and the 

assessment made by the management of the queuing system about nature of reverse balking 

probabilities. Therefore our reverse balking formulation, which is the main thrust of this paper, 

is apparently more flexible than Awasthi (2018).  
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APPENDIX.  

Derivation of 𝑃𝑃/(1)  

Let P(s) denote the probability generating function, defined by 

   𝑃𝑃/(𝑠𝑠) = ∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛∞
𝑛𝑛=0  

From equation (2) we have 

µpn+1 +  � 𝜆𝜆
𝑎𝑎−(𝑛𝑛−1)𝑛𝑛

� 𝑝𝑝𝑛𝑛−1 = � 𝜆𝜆
𝑎𝑎−𝑛𝑛𝑛𝑛

+ µ� 𝑝𝑝𝑛𝑛−1   n = 1,2,3,… ,k-1 

Multiplying both sides of the above equation by  Sn and summing over  ‘n’ 

𝜆𝜆𝑠𝑠 �∑ 𝑃𝑃𝑛𝑛−1𝑆𝑆𝑛𝑛−1

𝑎𝑎−(𝑛𝑛−1)𝑛𝑛
𝑘𝑘−1
𝑛𝑛=1 � − 𝜆𝜆 �∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

𝑎𝑎−𝑛𝑛𝑛𝑛
𝑘𝑘−1
𝑛𝑛=1 � = µ∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛𝑘𝑘−1

𝑛𝑛=1 − 1
𝑑𝑑

µ∑ 𝑃𝑃𝑛𝑛+1𝑆𝑆𝑛𝑛+1𝑘𝑘−1
𝑛𝑛=1          (7) 

From equation (3) we have 
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� 𝜆𝜆
𝑎𝑎−(𝑘𝑘−1)𝑛𝑛

� 𝑝𝑝𝑘𝑘−1 = µ𝑝𝑝𝑘𝑘       

Multiplying both sides of the above equation by Sk  
𝜆𝜆𝑑𝑑

𝑎𝑎−(𝑘𝑘−1)𝑛𝑛
𝑃𝑃𝑘𝑘−1𝑆𝑆𝑘𝑘−1 = µ𝑃𝑃𝑘𝑘𝑆𝑆𝑘𝑘                       (8) 

Now adding (7) and (8)  

 𝜆𝜆𝑠𝑠 �∑ {𝑃𝑃𝑛𝑛−1𝑆𝑆
𝑛𝑛−1

𝑎𝑎−(𝑛𝑛−1)𝑛𝑛
𝑘𝑘−1
𝑛𝑛=1 } + 𝑃𝑃𝑘𝑘−1𝑆𝑆𝑘𝑘−1

𝑎𝑎−(𝑁𝑁−1)𝑛𝑛
� − 𝜆𝜆∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

𝑎𝑎−𝑛𝑛𝑛𝑛
𝑘𝑘−1
𝑛𝑛=1   

                      =µ �∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛𝑘𝑘−1
𝑛𝑛=1 + 𝑃𝑃𝑘𝑘𝑆𝑆𝑘𝑘 −

1
𝑑𝑑
∑ 𝑃𝑃𝑛𝑛+1𝑆𝑆𝑛𝑛+1𝑘𝑘−1
𝑛𝑛=1 � 

 𝜆𝜆𝑠𝑠 ∑ {𝑃𝑃𝑛𝑛−1𝑆𝑆
𝑛𝑛−1

𝑎𝑎−𝑛𝑛𝑛𝑛
𝑘𝑘−1
𝑛𝑛=0 }− 𝜆𝜆∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

𝑎𝑎−𝑛𝑛𝑛𝑛
+ 𝜆𝜆𝑃𝑃0

𝑎𝑎
𝑘𝑘−1
𝑛𝑛=0   

   = µ �∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛𝑘𝑘
𝑛𝑛=1 − 1

𝑑𝑑
∑ 𝑃𝑃𝑛𝑛+1𝑆𝑆𝑛𝑛+1𝑘𝑘−1
𝑛𝑛=1 � 

 𝜆𝜆(𝑠𝑠 − 1)∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

𝑎𝑎−𝑛𝑛𝑛𝑛
+ 𝜆𝜆𝑃𝑃0

𝑎𝑎
𝑘𝑘−1
𝑛𝑛=0   

= µ  

 𝜆𝜆(𝑠𝑠 − 1)∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

𝑎𝑎−𝑛𝑛𝑛𝑛
+ 𝜆𝜆𝑃𝑃0

𝑎𝑎
𝑘𝑘−1
𝑛𝑛=0   =µ

𝑑𝑑
[𝑠𝑠𝑃𝑃(𝑠𝑠) − 𝑠𝑠𝑃𝑃0 − 𝑃𝑃(𝑠𝑠) + 𝑃𝑃0 + 𝑠𝑠𝑃𝑃1] 

 𝜆𝜆𝑑𝑑
µ

(𝑠𝑠 − 1)∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

𝑎𝑎−𝑛𝑛𝑛𝑛
+ 𝜆𝜆𝑑𝑑

µ𝑎𝑎
𝑘𝑘−1
𝑛𝑛=0 𝑃𝑃0 = 𝑃𝑃(𝑠𝑠)(𝑠𝑠 − 1) − 𝑃𝑃0(𝑠𝑠 − 1) + 𝜆𝜆𝑑𝑑

µ𝑎𝑎
𝑃𝑃0  

 𝑃𝑃(𝑠𝑠) = 𝜆𝜆
µ
∑ 𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛+1

𝑎𝑎−𝑛𝑛𝑛𝑛
+ 𝑃𝑃0𝑘𝑘−1

𝑛𝑛=0  

Therefore, we have  

 𝑃𝑃/(𝑠𝑠) = 𝜆𝜆
µ
∑ (𝑛𝑛+1)𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛

(𝑎𝑎−𝑛𝑛𝑛𝑛)
𝑘𝑘−1
𝑛𝑛=0                         (9) 

Putting s=1 in equation (9), we get the average number of customers in the system i.e. L

    L =  𝑃𝑃/(1) = 𝜆𝜆
µ
∑ (𝑛𝑛+1)𝑃𝑃𝑛𝑛

(𝑎𝑎−𝑛𝑛𝑛𝑛)
𝑘𝑘−1
𝑛𝑛=0  
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