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ABSTRACT

A subset {g1, . . . , gd} of a finite group G is said to invariably generate

G if the set {gx11 , . . . , g
xd
d } generates G for every choice of xi ∈ G. The

Chebotarev invariant C(G) of G is the expected value of the random

variable n that is minimal subject to the requirement that n randomly

chosen elements of G invariably generate G. The authors recently showed

that for each ε > 0, there exists a constant cε such that C(G) ≤ (1 +

ε)
√
|G|+ cε. This bound is asymptotically best possible. In this paper we

prove a partial converse: namely, for each α > 0 there exists an absolute

constant δα such that if G is a finite group and C(G) > α
√
|G|, then G

has a section X/Y such that |X/Y | ≥ δα
√
|G|, and X/Y ∼= Fq o H for

some prime power q, with H ≤ F×
q .

1. Introduction

Following [10] and [5], we say that a subset {g1, g2, . . . , gd} of a group G invari-

ably generates G if {gx1
1 , gx2

2 , . . . , gxdd } generatesG for each d-tuple (x1, x2 . . . , xd) ∈
Gd. The Chebotarev invariant C(G) of G is the expected value of the random

∗ Partially supported by Università di Padova (Progetto di Ricerca di Ateneo: “In-

variable generation of groups”).

1
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variable n which is minimal subject to the requirement that n randomly chosen

elements of G invariably generate G.

Motivated by the problem of finding field extensions K/F such that a fixed

finite group G occurs as the Galois group of K/F , E. Kowalski and D. Zywina

carried out a detailed investigation of the invariant C(G) in [12]. Amongst

many interesting results, they show that C(G) can be quite large in comparison

to |G|. More precisely, it is shown that if G ∼= Gq := Fq o F×q , then

C(G) = q −
∑

16=d|q−1

µ(d)

q(1− d−1)(1− d−1 + q−1)
.

In particular, C(Gq) ∼
√
|Gq| as q → ∞. It was also conjectured in [12] that

these are the “worst” cases: that is, that C(G) = O(
√
|G|) as |G| → ∞. The

conjecture was proved by the first author in [15], and was later improved in

[17] where it is shown that for each ε > 0, there exists a constant cε such that

C(G) ≤ (1 + ε)
√
|G| + cε. Furthermore, one has C(G) ≤ 5

3

√
|G| when G is

soluble.

In this paper, we prove a partial converse. Informally, we prove that the the

only examples where C(G) is a constant times
√
|G| are those groups with a

“large” section isomorphic to a subgroup of Gq, for some prime power q. Our

main result reads as follows.

Theorem 1: Fix a constant α > 0. There exists absolute constants βα, γα, δα

and kα, depending only on α, such that whenever G is a finite group with the

property that C(G) > α
√
|G|, then G has a factor group G such that

(i) G ∼= V oH, with V ∼= Fkq , and H ≤ ΓL1(q) oSym(k), with q a prime power

and k ≤ kα;

(ii) |G| ≥ δα
√
|G|; and

(iii) βα|V | ≤ |H| ≤ γα|V |.

Our approach utilises the theory of crowns in finite groups, which we describe

in Section 2. We also require a characterisation of those irreducible linear groups

H ≤ GL(V ) such that the set H∗(V ) := {h ∈ H : vh = v for some v ∈ V \{0}}
is bounded above by an absolute constant, and this is the content of Section 3.

Finally, Section 4 is reserved for the proof of Theorem 1.
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2. Crowns in finite groups

Before defining the notion of a crown in a finite group, we require some termi-

nology. First, let L be a monolithic primitive group. That is, L is a finite group

with a unique minimal normal subgroup V 6≤ Frat(L). For each positive integer

k, write Lk for the k-fold direct product of L. The crown-based power of L of

size k is the subgroup Lk of Lk defined by

Lk = {(l1, . . . , lk) ∈ Lk | l1 ≡ · · · ≡ lk mod V }.

Equivalently, Lk = V k DiagLk.

Next, let G be a finite group. We say that a group V is a G-group if G acts

on V via automorphisms. Following [9], we say that two irreducible G-groups

V1 and V2 are G-equivalent and we put V1 ∼G V2, if there are isomorphisms

φ : V1 → V2 and Φ : V1oG→ V2oG such that the following diagram commutes:

1 −−−−→ V1 −−−−→ V1 oG −−−−→ G −−−−→ 1yφ yΦ

∥∥∥
1 −−−−→ V2 −−−−→ V2 oG −−−−→ G −−−−→ 1.

Note that two G-isomorphic G-groups are G-equivalent. In the abelian case,

the converse is true: if V1 and V2 are abelian and G-equivalent, then V1 and

V2 are also G-isomorphic. It is proved (see for example [9, Proposition 1.4])

that two chief factors V1 and V2 of G are G-equivalent if and only if either

they are G-isomorphic, or there exists a maximal subgroup M of G such that

G/CoreG(M) has two minimal normal subgroups N1 and N2 G-isomorphic to

V1 and V2 respectively. For example, the minimal normal subgroups of a crown-

based power Lk are all Lk-equivalent.

Let V = X/Y be a chief factor of G. A complement U to V in G is a

subgroup U of G such that UV = G and U ∩X = Y . We say that V = X/Y

is a Frattini chief factor if X/Y is contained in the Frattini subgroup of G/Y ;

this is equivalent to saying that V is abelian and there is no complement to V

in G. The number of non-Frattini chief factors G-equivalent to V in any chief

series of G does not depend on the series, and so this number is well-defined:

we will write it as δV (G). We now define LV , the monolithic primitive group
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associated to V , by

LV :=

V o (G/CG(V )) if V is abelian,

G/CG(V ) otherwise.

If V is a non-Frattini chief factor of G, then LV is a homomorphic image of G.

More precisely, there exists a normal subgroup N of G such that G/N ∼= LV

and soc(G/N) ∼G V . Consider now all the normal subgroups N of G with

the property that G/N ∼= LV and soc(G/N) ∼G V : the intersection RG(V )

of all these subgroups has the property that G/RG(V ) is isomorphic to the

crown-based power (LV )δV (G). The socle IG(V )/RG(V ) of G/RG(V ) is called

the V -crown of G and it is a direct product of δV (G) minimal normal subgroups

G-equivalent to V .

We now record a lemma and two propositions which will be crucial in our

proof of Theorem 1. The lemma reads as follows.

Lemma 2: [1, Lemma 1.3.6] Let G be a finite group with trivial Frattini sub-

group. There exists a chief factor V of G and a non trivial normal subgroup U

of G such that IG(V ) = RG(V )× U.

To state the propositions, we need some additional notation. For a finite

group G, and an abelian chief factor V of G, set HV = HV (G) := G/CG(V ),

m = mV = mV (G) := dimEndG(V ) H1(HV , V ), and write H∗ = H∗(V ) =

H∗G(V ) for the set of elements h of HV which fix a non-zero vector in V . Also,

let δV = δV (G), and set θV = θV (G) = 0 if δV = 1, and θV = 1 otherwise.

Finally, let qV = qV (G) := |EndG(V )| and nV = nV (G) := dimEndG(V ) V .

Note that EndG(V ) is a finite field, since V is finite and irreducible.

Proposition 3: [17, Proposition 8 and the Proof of Theorem 1] Let G be a

finite group with trivial Frattini subgroup, and let U , V and R = RG(V ) be

as in Lemma 2. If U is non-abelian, then there exists absolute constants b1, b2

and b3 such that

C(G) ≤ C(G/U) + db3(log |G|)2e+
b1
b2

√
|G|3 log |G|(1− b2/ log |G|)db3(log |G|)2e.

Proposition 4: [17, Proposition 8 and the Proof of Theorem 1] Let G be a

finite group with trivial Frattini subgroup, and let U , V and R = RG(V ) be

as in Lemma 2. Suppose that V is abelian, and write q = qV , n = nV and

H = HV , H∗ = H∗(V ) and m = mV . Also, set δ = δV and θ = θV . Set
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αU :=


∑

0≤i≤δ−1
qδ

qδ−qi ≤ δ + q
(q−1)2 if H = 1,

min
{(
δ · θ +m+ q

q−1

)
|H|
|H∗| ,

(
d δ·θn e+ qn

qn−1

)
|H|
}

otherwise.

Then

C(G) ≤ C(G/U) + αU .

We conclude this section with the theorem of the first author mentioned in

the introduction.

Theorem 5: [15, Main Theorem] There exists an absolute constant C such

that C(G) ≤ C
√
|G| for any finite group G.

3. Irreducible linear groups with few elements fixing a non-zero vec-

tor

Let V be a finite dimensional vector space over an arbitrary field. In this section,

our aim is to characterise the groups H ≤ GL(V ), such that the set of elements

which fix at least one non-zero vector in V has cardinality bounded above by

an absolute constant. For ease of notation, we will write

H∗ = H∗(V ) := {h ∈ H : vh = v for some v ∈ V \{0}}

for such a subgroup H. Our main result reads as follows.

Proposition 6: Let V be a vector space of dimension n over a field F , and fix

a constant c > 0. Suppose that H is an irreducible subgroup of GL(V ) with the

property that |H∗| ≤ c. Then there exists positive integers m and k such that

n = mk, and H ≤ R o Sym(k), where either |R| has order bounded above by a

function of |H∗|, or R ∼= Γ1(Fm) for some extension field Fm of F of degree m.

Proposition 6 will follows almost immediately from our next result. Recall

that if F is a field, then an irreducible subgroup H of a linear group GLn(F )

is called weakly quasiprimitive if every characteristic subgroup of G is homoge-

neous.

Proposition 7: There exists a function f : N→ N such that if F is a field, n

is a positive integer, and H ≤ GLn(F ) is finite and weakly quasiprimitive, then

either |H| ≤ f(|H∗|), or H is a subgroup of ΓL1(Fn), for some extension field

Fn of F of degree n.
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Proof. If n = 1, then ΓLn(F ) = GLn(F ). Thus, we may assume that n > 1.

Fix a subgroup H of GLn(F ). We want to prove that if H is not a subgroup of

ΓL1(Fn) for some extension field Fn of F of degree n, then |H| is bounded in

terms of |H∗|.
Suppose first that every characteristic abelian subgroup of H is contained in

Z(GLn(F )). Let L be the generalised Fitting subgroup of H. Our aim is to

prove that |L| is bounded above in terms of |H∗|. Since L is self-centralising,

this will show that |H| is bounded above in terms of |H∗|, which will give us

what we need.

To this end, extend the field F so that F is a splitting field for all subgroups

of L. Then L may longer be homogeneous, but its irreducible constituents are

algebraic conjugates of each other, so L acts faithfully on them. Let W be such

a constituent, and let ri, mi, si, ti, Si and Ti be as in [8, Lemma 2.14]. In

particular, the ri are prime numbers and L is a central product of the collection

of groups Ori(G), Ti, where Ti is a central product of ti copies of a quasisimple

group Si. By [8, Lemmas 2.15, 2.16 and 2.17], W decomposes as a tensor

product

W = WZ ⊗Wr1 ⊗ . . .⊗Wra ⊗Ws1 ⊗ . . .⊗Wsb ,

where WZ is a 1-dimensional module for Z; Wri is an irreducible module for

Ori(G) of dimension rmii ; and Wsi is an irreducible module for Ti of dimension

stii . In particular, [Ori(H),Wrj ] = [Ti,Wsj ] = 1 for i 6= j, and [Ori(H),Wsj ] =

[Ti,Wrj ] = 1, for all i, j. Hence, if a + b > 1, then |L| is bounded above in

terms of |H∗|, as needed. So we may assume that either L = Z(G) ◦Or(H), for

some prime r, or L = Z(G) ◦ T is a central product of t copies of a quasisimple

group S. If Z(G) 6≤ Or(H) in the first case, or Z(G) 6≤ T in the second case,

then the same argument as above gives that |L| is bounded in terms of |H∗|.
So we may assume that either L = Or(H), for some prime r, or L = T is

a central product of t copies of a quasisimple group S. Hence, W is a tensor

product of m [respectively t] copies of an irreducible module for an extraspe-

cial group of order r3 [resp. quasisimple group]. Thus, by arguing as in the

paragraph above, we can immediately reduce to the case m = 1 [resp. t = 1].

Suppose first that L = Or(H) = M o 〈x〉 is extraspecial of order r3, for a

prime r, where M is cyclic of order r2 if L has exponent r2, and M is elementary

abelian of order r2 otherwise. Then, being an absolutely irreducible module for

L of dimension r, W is isomorphic to U ↑LM , where U is a one dimensional
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module for M in which Z(L) acts non-trivially. Hence, we may write W =⊕r−1
i=0 U ⊗ xi. It follows that for each non-zero vector u ∈ U , xj fixes the non-

zero vector u⊗ 1 +u⊗x+ . . .+u⊗xr−1. Thus, r ≤ |H∗|, from which it follows

that |L| = r3 is bounded above in terms of |H∗|, as needed.

Finally, assume that L is quasisimple. Since L acts on L∗ by conjugation, we

may assume that L∗ ≤ Z (otherwise L ≤ Sym(L∗), which would imply that |L|
is bounded above in terms of |H∗|). However, since Z = Z(H) ≤ Z(GLn(F )),

Z acts on V by scalar multiplication. Hence, Z∩H∗ = 1. It follows that L∗ = 1,

and hence that L is a Frobenius complement in the group V o L. Since L is

perfect, it now follows from Zassenhaus’ Theorem that L ∼= SL2(5). Whence,

|L| is bounded, and this proves our claim.

Finally, assume that H has a characteristic abelian subgroup not contained

in Z(GLn(F )), and let M ≤ H be maximal with this property. Then by [16,

Lemma 1.10], M is contained in Z(GL n
m

(Fm)) for some m dividing n, and

some extension field Fm of F of degree m. Hence, H1 := CH(M) is a subgroup

of GL n
m

(Fm) with the property that every characteristic abelian subgroup of

H1 is contained in Z(GL n
m

(Fm)). Furthermore, H1 is weakly quasiprimitive,

since it is characteristic in H. Also, the group H/H1 is naturally embedded

in Gal(Fm/F ), its action induced by a vector space isomorphism F
n
m
m → Fn.

Since H∗1 (F
n
m
m ) = H∗1 (Fn), it follows from the arguments above that either |H1|

is bounded in terms of |H∗|; or n = 1. If |H1| is bounded in terms of |H∗|,
then so is |H|, since H1 is self-centralising and normal in H. If n = 1, then

H1 ≤ GL1(Fn), so H ≤ ΓL1(Fn), since H/H1 acts on M = Z(H1) via the

Galois group, as described above. This completes the proof.

Finally, we prove Proposition 6.

Proof of Proposition 6. If H is primitive, then the result follows immediately

from Proposition 7. Thus, we may assume that H is not primitive. Then V

may be decomposed into a system V = W1⊕W2⊕ . . .⊕Wk of imprimitivity for

H. Let Γ := {W1, . . . ,Wk}, let S := HΓ denote the induced (transitive) action

of H on Γ, and let R := StabH(W1)W1 denote the induced action of StabH(W1)

on W1. Then H is isomorphic to a subgroup of the wreath product R o S.

Finally, since StabH(W ) induces R on W , we have |R∗(W1)| ≤ |H∗(V )|.
Hence, Proposition 7 implies that either R ≤ ΓL1(Fm), for some extension Fm

of F of degree m, or |R| is bounded above by a function of |H∗|. This completes

the proof.
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4. The proof of Theorem 1

We begin our preparations towards the proof of Theorem 1 with a lemma con-

cerning the cohomology of an irreducible linear group which has a bounded

number of elements fixing a non-zero vector.

Lemma 8: There exists an absolute constant c such that if V is a vector space

of dimension n over a field F of characteristic p > 0, and H is an irreducible

subgroup of GL(V ) with the property that |H| >
√
|V |, then 2m ≤ c|H∗|4,

where m := dimF H1(H,V ) and F := EndH V .

Proof. Clearly we may assume that m > 0. Then, it is proven in [15, Lemma

9] that

(1) H has a unique minimal normal subgroup N , which is non-abelian.

(2) If S is a component of H, then CH(S) ⊆ H∗.
(3) If W is an irreducible N -submodule of V not centralised by S, then m ≤

dimF H1(S,W ).

Write N = S1 × . . . × St ∼= St, and view H as a subgroup in the wreath

product Aut(N) = Aut(S) oK, where K denote the induced action of H on the

components in N . Suppose first that t > 1. Then (2) implies that Si ⊆ H∗ for

all i. Hence, |H∗| ≥ 1+ t(|S|−1). Also, |H∗| ≥ CH(S1) ≥ |H ∩B||StabK(1)| =
|H ∩ B| |K|t , where B := Aut(S2) × . . . × Aut(St). Note that |H| ≤ |H ∩
B||Aut(S)||K|. It follows that |H| ≤ |H∗|t|Aut(S)| ≤ |H∗|t(|S| − 1)2 ≤ |H∗|3.

Next, it is shown by Guralnick and Hoffman in [7, Theorem 1] that m ≤ n
2 .

Since we also have |H| >
√
|V |, it follows that

m ≤ n

2
≤ log

√
|V | < log |H| ≤ log |H∗|3.

Thus, we may assume that H ≤ Aut(S) is almost simple. Before distinguishing

cases, we make some remarks. First, p = charF divides |H|, since H1(H,V ) 6=
0. Furthermore, |H∗| ≥ |H|p, since every element of a Sylow p-subgroup of H

fixes a non-zero vector in V . Finally, note that we may assume that S is not

sporadic, since there are a bounded number of such groups having an irreducible

module with non-zero cohomology.

Thus, we have two cases.

(a) S ∼= Alt(k). In this case, we have n
2 ≤ log

√
|V | ≤ log |H| ≤ k log k, as long

as k > 6. Hence, by [15, Proof of Proposition 10], we have m ≤ 4 log k and

|H|p > k
2 , if k is large enough. Hence 2m ≤ k4 ≤ 16|H∗|4 in this case. If
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k is bounded, then m is also bounded, since m ≤ n
2 ≤ log |H|. Hence, the

result also follows in this case.

(b) S ∼=ε Xk(r) is a group of Lie type. Write RF (S) for the smallest degree of a

non-trivial irreducible representation of S over the field F . If charF is dif-

ferent to the defining characteristic for S, then we have p
RF (S)

2 > |Aut(S)|
for |S| large enough (see [13, 18, 20]). Since

√
|V | ≤ |H|, we conclude that

either |S| is bounded, or charF coincides with the defining characteristic of

S. In the latter case, we have |H|p > |S|
1
3 by [11, Proposition 3.5]. Also,

|S| ≥ |Aut(S)| 45 by [14, Proposition 4.4]. Hence,

|H∗| > |S| 13 ≥ |Aut(S)| 4
15 > |H| 14 ≥ 2

m
4 .

Thus, either |S| is bounded, or 2m ≤ |H∗|4. This gives us what we need.

Next, we prove a reduction lemma.

Lemma 9: Fix a constant α > 0. There exists absolute constants b = b(α), c =

c(α) and ci = ci(α), 1 ≤ i ≤ 4, depending only on α, such that: If G is a finite

group with trivial Frattini subgroup with the property that C(G) > α
√
|G|,

and U is as in Lemma 2, then one of the following holds.

(i) U is non-abelian and |G| ≤ b.
(ii) U is abelian and |U | ≤ c.
(iii) U is abelian and G has a factor group G such that

(a) G ∼= V oH, with V ∼= U an abelian chief factor of G, and H ≤ GL(V );

(b) |H∗(V )| ≤ c1;

(c) dimEndH V H1(H,V ) ≤ c2; and

(d) c3|V | ≤ |H| ≤ c4|V |.

Proof. Adopt in its entirety the notation of Proposition 4, so that U , V and

R = RG(V ) are as in Lemma 2. We first consider the case where V is non-

abelian. Then by Proposition 3 we have

α
√
|G| < C(G/U)+db3(log |G|)2e+ b1

b2

√
|G|3 log |G|(1−b2/ log |G|)db3(log |G|)2e,

where b1, b2 and b3 are the absolute constants from Proposition 3. Since

C(G/U) ≤ C
√
|G/U |, it follows that

√
|G| ≤ α′db3(log |G|)2e+ b1

b2

√
|G|3 log |G|(1−

b2/ log |G|)db3(log |G|)2e, for some constant α′ depending only on α. Hence, since

the square root of |G| divided by the right hand side of the above equation
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tends to ∞ as |G| tends to infinity, we must have that |G| is bounded above by

a constant b = b(α) depending only on α.

Thus, we may assume that U is abelian. Then by Proposition 4 and Theorem

5, there exists an absolute constant C such that

α
√
|G| ≤ C(G) ≤ C(G/U) + αU ≤ c

√
|G|
|U |

+ αU .

In particular, using the definition of αU from Proposition 4, we conclude that

α ≤ c√
|U |

+ (δ · θ +m+ 2)

√
|H|√

|V |δ|H∗|
, and(4.1)

α ≤ c√
|U |

+

(⌈
δ · θ
n

⌉
+ 2

) √
|H|√
|V |δ

.(4.2)

We claim first that δ = 1. Indeed, assume otherwise, and note that |H|
|H∗| ≤

|H|/|Hv| ≤ |V |, for any non-zero v ∈ V . Hence, since m ≤ n
2 , we conclude from

(4.1) that

|V |
δ−1
2 ≤ C1(n+ δ),(4.3)

where C1 = C1(α) depending only on α. Now, since |U | = |V |δ = qnδ, we

conclude that there exists a constant c = c(α) such that if |U | > c and δ > 1

then |V | δ−1
2 > C1(n+ δ).

Hence, we may assume that δ = 1. We will first prove that the properties (b)

and (c) of Part (iii) of thge statement of the lemma hold in the factor group

G := G/RG(V ). If |H| ≤ |V |n2 , then (4.1) [respectively (4.2)] implies that |H∗|
[resp. n] is bounded above by a constant depending only on α. Properties (b)

and (c) then follow immediately.

So we may assume that |H| > |V |
n2 . We then use (4.1) and the fact that

|H|/|Hv| ≤ |V | to deduce that |H∗| ≤ C2(1 + m2), where C2 = C2(α) is a

constant depending only on α. Since |H| >
√
|V |, if follows from Lemma 8 that

|H∗| ≤ C3(1 + log |H∗|2), where C3 = C3(α) is a constant depending only on α.

It follows that |H∗|, and hence m, are bounded above by constants depending

only on α. This proves that Properties (b) and (c) hold.

Finally, the existence of c3 follows immediately from (4.2), while the exis-

tence of c4 follows from (4.1) and the bound |H|/|H∗| ≤ |V |. This proves that

Property (d) holds, and completes the proof.
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We are now ready to prove Theorem 1.

Proof of Theorem 1. Let C be the constant from Theorem 5; let f be the func-

tion from Proposition 7; let b1, b2 and b3 be the constants from Proposition 3;

and let b = b(α) and c = c(α) be the constants from Lemma 9. Also, let ci,

1 ≤ i ≤ 4, be the functions of α from Lemma 9. Note that we may assume

that f , c1, c2 and c4 are increasing functions, while c3 is decreasing. Hence, we

may also assume that g satisfies g(α1α2) ≥ g(α1)α2, for g ∈ {f, c1}. For ease

of notation, we will sometimes write ci in place of ci(α).

Set b4 := max{b, db3(log b)2e + b1
b2

√
b3 log b(1 − b2/ log b)db3(log b)2e}; α′ :=

max{α,C}; c5 := max{c, 1
c3(α′)f(bc1(α′)c)

c1(α′)
c3(α′) b c1(α′)

c3(α′)c!}; and c6 := (2 + c2)c5.

Then define

δ(α) := min{f(bc1(β)c) : 0 < β ≤ α′} and

k(α) :=
c1(α′)

c3(α′)
.

Finally, set β := c3 and γ := c4. Note that by construction k is an increasing

function of α, and that

δ(β
√
u) ≥ δ(β)

√
u ≥ δ(α)

√
u,(4.4)

whenever β ≤ α.

We will now prove by induction on |G| that G has a factor group G such that

(i) G ∼= V oH, with V ∼= Fkq , and H ≤ ΓL1(q) oSym(k), with q a prime power

and k ≤ k(α);

(ii) |G| ≥ δ(α)
√
|G|; and

(iii) β(α)|V | ≤ |H| ≤ γ(α)|V |.

Suppose first that Frat(G) = 1, and let U , V and R = RV (G) be as in Lemma

2. We would like to reduce to the case where |G| > b if V is non-abelian, and

|U | > c5 if V is abelian. We first deal with the non-abelian case. So assume

that V is non-abelian and that |G| ≤ b. In this case, we have

α
√
|G| < C(G/U) + b4 ≤ (1 + b4)C(G/U),

by Proposition 3. In particular, it follows that C(G/U) > α1

√
|G/U |, where

α1 :=
α
√
|U |

1 + b4
.
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Note that γ(α1) ≤ γ(α), since α1 ≤ α, and γ is an increasing function. Similarly,

k(α1) ≤ k(α) and β(α) ≤ β(α1). Furthermore, δ(α1) ≥ δ(α)
√
|U | by (4.4). The

inductive hypothesis now implies that G, and hence G/U , has a factor group G

with the desired properties.

Next, assume that V is abelian, and that |U | ≤ c. Then since αU ≤ c6,

Proposition 4 yields C(G/U) > α2

√
|G/U |, where

α2 :=
α
√
|U |

1 + c6
.

As above, it now follows from the inductive hypothesis and the definitions of

δ(α) and k(α) that G has a factor group G with the desired properties.

Thus, we may assume that |G| > b if U is non-abelian, and |U | > c5 ≥ c

otherwise. However, Lemma 9 then implies that U must be abelian, and that

G has a factor group G such that

(a) G ∼= V oH, with V ∼= U an abelian chief factor of G, and H ≤ GL(V );

(b) |H∗(V )| ≤ c1(α);

(c) dimEndH V H1(H,V ) ≤ c2(α); and

(d) c3(α)|V | ≤ |H| ≤ c4(α)|V |.

Furthermore, Lemma 6 guarantees the existence of positive integers m and k,

and a transitive permutation group S of degree k, such that n = mk and H ≤
R o S, with either |R| ≤ f(c1), or R ≤ ΓL1(pm). Hence, we just need to prove

that k ≤ k(α). Indeed, if this is true then we must have R ≤ ΓL1(pm), since

otherwise |V | ≤ 1
c3(α) |H| ≤

1
c3(α)f(c1(α))

c1(α)

c3(α) b c1(α)
c3(α)c!, contradicting |U | > c5.

Now, note that (b) and (d) above imply that the number of orbits of H in

its action on V is bounded above by 1 + c1
c3

. Hence, the number of orbits of

X := GLm(p) o Sym(k) is bounded above by 1 + c1
c3

. Then since GLm(p) has 2

orbits in its action on the natural module (Fp)m, it follows that the number of

orbits of X on V is precisely the number of orbits of Sym(k) in its action on

the k-fold cartesian power {0, 1}k by permutation of coordinates. This number

is precisely k + 1. Hence, we have k + 1 ≤ 1 + c1
c3

, and this completes the proof

in the case Frat(G) = 1.

Finally, assume that Frat(G) > 1. Then C(G/Frat(G)) = C(G) > β
√
|G/Frat(G)|,

where β := α
√
|Frat(G)|. Now, since α

√
|G| < C(G/Frat(G)) ≤ C

√
|G/Frat(G)|,

we have |Frat(G)| ≤ (Cα )2. Hence, β ≤ C. The result now follows from the

inductive hypothesis and the definitions of δ(α) and k(α).
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