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Abstract

We show how programming language semantics and definitions of their corresponding type systems
can both be written in a single framework amenable to proofs of soundness. The framework is based
on full rewriting logic (not to be confused with context reduction or term rewriting), where rules can
match anywhere in a term (or configuration).

We present an extension of the syntactic approach to proving type system soundness presented by
Wright and Felleisen [1994] that works in the above described semantics-based domain. As before,
the properties of preservation and progress are crucial. We use an abstraction function to relate
semantic configurations in the language domain to semantic configurations in the type domain, and
then proceed to use the preservation and progress properties as usual. We also develop an abstract
type system, which is a type system modulo certain structural characteristics.

To demonstrate the method, we give examples of five languages and corresponding type systems.
They include two imperative languages and three functional languages, and three type checkers and
two type inferencers. We then proceed to prove that preservation holds for each.
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Chapter 1

Introduction & Comparisons

1.1 Background Information

In order to understand the problem addressed in this thesis, it is necessary to understand the
traditional method of proving type system soundness, as well as how our particular language design
framework works. Here we introduce preliminary material necessary to understand the remainder of
the paper.

1.1.1 Type System Soundness

One would often like to restrict the set of acceptable programs in a given programming language.
This is done as an aid to the programmer—if a particular program is necessarily ill-formed, or even
likely ill-formed, it is convenient to report this to the programmer before runtime, when a problem
could affect an end-user. To specify what it means for a program to be ill-formed is a difficult
problem, and “ill-formedness” is almost always a property beyond the capabilities of a context-free
grammar. This gives rise to a kind of “static execution” provided by static type systems. They can
be thought of as abstract interpreters of programs.

A type system is of particular importance when it can guarantee the absence of a certain set of
errors from running programs. Thus, we say a type system is sound if programs that are approved by
the type system are guaranteed not to encounter some particular set of errors we call “type errors.”
What constitutes a type error can vary by language and by type system, but generally involves
calling a function with arguments that are in some way unexpected. For example, a function that
returns the square of a number should never be called with a boolean value as its input, because
squaring a boolean value does not make sense.

Proving type system soundness was once an ad-hoc process, varying wildly from system to
system, typically needing to be reworked from scratch whenever a new feature was added to the
language [Wright and Felleisen, 1994, Section 2]. A general principle of proving soundness using
a context-reduction definition of a language was developed by Wright and Felleisen [1994]. This
method hinges on showing two key properties:

1. If a program type checks, then after taking a step of evaluation, it still type checks.

2. If a program type checks, then during evaluation, it is either the case that you have evaluated
to a value, or you can take another step of computation.

The first property is called preservation (or subject reduction [Curry and Feys, 1958]), and the
second progress.
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1.1.2 A Short Introduction to K

K is a framework for defining programming languages and type systems. It is important to understand
its theory and syntax in order to understand the remainder of this paper. The best introduction to
K can be found in Roşu [2006, 2007, 2008], but a brief (and necessarily incomplete) introduction, in
order to make this document partially self-contained, is included below. It is not the goal of this
thesis to explain the intricacies of K—we only present enough to aid a reader in understanding the
definitions and proofs to follow.

K is based on rewriting logic. Meseguer’s rewriting logic [Meseguer, 1992], not to be confused
with context reduction or term rewriting, organizes term rewriting modulo equations as a logic
with a complete proof system and initial model semantics. Using rewriting logic, we get a lot
of machinery “for free.” Not only do we get operational and algebraic denotational semantics
for our languages, but we also get formal analysis tools such as a model checker and inductive
theorem prover [Meseguer and Roşu, 2004, 2007]. K is similar in spirit to the Chemical Abstract
Machine [Berry and Boudol, 1990], where pieces of the configuration float in a solution (an associa-
tive/commutative “soup,” or multi-set) and can match with reaction rules. In K, multi-sets are also
the basic elements of configurations, together with lists.

To be explicit, K is an extended subset of rewriting logic. It is a subset of rewriting logic in the
sense that it suggests certain stylistic conventions to be adopted by language designers in order to
implement their languages. This restriction streamlines the logic in order to offer pre-built language
modules, to make definitions more consistent, and to make them more modular. Additionally, K

is restricted in that it does not use any conditional rules, which are allowed in rewriting logic.1 It
is an extension of rewriting logic in the sense that the actual semantics of the logic enables more
concurrency than pure rewriting logic. For more information on the concurrency of K, see Roşu
[2008].

At the heart of rewriting logic are rewriting rules. Any time a rule’s left-hand side (LHS) is
able to match a part of the configuration, the rule applies and the subterm is transformed based on
the rule. Each side is allowed to contain variables, although variables on the RHS must appear on
the LHS. Rules are written in a number of general styles. Structural rules are internal rules used
for massaging the form of the configuration. Structural rules are written LHS = RHS or LHS

RHS

. We

use the equality symbol to suggest that configurations resulting from the application of structural
rules are actually identical, or at least in the same equivalence class for the sake of any reasoning.
Semantic rules are the rules that do actual work. Semantic rules are written LHS −→ RHS or LHS

RHS

.

In either case, we use the following symbols to match elements from the middle, the beginning, or
the end of a list or set: 〈|X|〉, LX|〉, 〈|XM respectively. For example, to state a rule where you replace
all Xs in a set with 0, you can simply state 〈|X

0

|〉.

Take a look at Figure 3.1 to see a simple example of a full K-definition. K-definitions are
divided into three distinct parts—a description of the syntax of the language, a description of
program configurations (partially evaluated programs), and a list of rewriting rules. In syntactic

1Indeed, conditional rules can typically be eliminated from any rewriting logic definition. See Şerbănuţă and Roşu
[2006] and their references for more information.
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based definitions like context rewriting, program configurations are identified with the syntax of
the language. In that universe, partially evaluated terms are simply other terms. We introduce
the syntax of our language using traditional grammar notation such as BNF. This syntax is then
annotated in a way which helps generate rules automatically. For example, we use the idea of an
operator’s strictness to suggest which of its operands should be evaluated before the expression itself
should be evaluated. These strictnesses are notated on the grammar of the language, such as in
Figure 3.1a, and then used to generate rules like 6 and 7 in Figure 3.2a.

We use a few conventions in the notation of this document to shorten statements and to aid
understanding. We use the x[y ← z] and x[z/y] notations for “z replaces y in x” interchangeably.
We add L and T subscripts on constructs that are shared between both the language and the type
system. We then only mention the system in which reductions are taking place if it is not immediately
clear from context. A statement like T |= R

∗−→ R′ means that R reduces to R′ under the rewrite
rules for T . Types in K-rules are inferred by context, and used to do matching. If not immediately
clear from context, they are made explicit. One could also take the approach of defining certain
variable names to be of a particular type. We use the variables I, V , E, and K stand for integers,
values, expressions, and computation items respectively, which make statements easier to understand.

We use a sans-serif font to represent syntax available to users who write programs in the languages
being defined. We use an italic font to represent grammar types, such as Int being the type of any
integer, or ConfigItem being the type of a particular configuration item. We use a small-caps font
to represent type values generated by a type inferencer or a type checker. Note that although these
two are both types, they are very different kinds. There are many things of type Int, and each is a
construct of syntax, while there is only a single Int, it lives in a non-syntactic world, and it used
internally and emitted by type systems.

1.2 Statement of the Problem

The K-framework, a modular programming language definitional style, was introduced by Roşu
[2005]. Since its inception, much work has been done on language definitions in this style [Chen et al.,
2006, Hills and Roşu, 2006, 2007a,b, Meredith et al., 2007, Roşu, 2006]. However, even though many
different languages have been formalized within this framework, the work on type systems of these
languages has been minimal. Although type systems were given and discussed in Roşu [2006, chap.
10], the proofs of soundness were left as an exercise to the reader. This thesis attempts to provide
some tools and infrastructure to assist in these kinds of proofs. It is based off a previous work by
Ellison et al. [2008].

Although K uses rewriting, it uses the full power of rewriting logic [Meseguer, 1992], as opposed
to the rewriting of reduction semantics [Felleisen and Hieb, 1992, Plotkin, 2004]. Because traditional
preservation and progress proofs require the use of context-rewriting, this means we cannot simply
adopt their proof style directly. Indeed, for any non-trivial language, the K-framework typically
results in definitions that are semantics based. That is to say, configurations of partially evaluated
programs are not required to be syntactically correct programs. This is in stark contrast to definitions
given in a context-rewriting style, where intermediate terms are necessarily syntactically correct
programs. Furthermore, K-style definitions of type systems are written in the same manner as
programs. Intermediary type checking configurations, for example, are a semantic combination of
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syntax and types. K-style type systems can be thought of as taking a term in the original language,
and abstractly evaluating it to a type. These differences lead us to the conclusion that a new kind of
proof approach is needed to address the differences of K-based languages.

Additionally, K-style definitions are usually very concrete. They are often written so as to
immediately provide an interpreter, simply by executing the rewriting rules in a rewriting logic
engine such as Maude [Clavel et al., 2002]. This makes many proofs about a language difficult, and
so a way is needed to abstract over many of the “insignificant” features of any particular program,
such as its variable names.

1.3 Statement of the Solution

Although we cannot simply adopt the proof style of Wright and Felleisen, as previously discussed, we
can still use the ideas of preservation and progress. However, for the concepts to make sense, we
must provide a mapping function from arbitrary language configurations, resulting from a partial
evaluation of a term, to configurations in the type system domain. With this function in hand, we
can prove preservation and progress and show the desired soundness properties.

To address the issue of proving properties in a framework where definitions are as concrete as an
interpreter, we also develop the idea of an abstract type inferencer in Section 3.5.4. This is not a type
inferencer that can generate abstract (such as polymorphic) types, but instead is a type inferencer
that works modulo a number of structural properties. This lets us prove our desired properties more
easily. However, it still remains an actual K definition, so any other proof techniques developed to
work with K will work with an abstract K definition.

1.4 Related Work

Rewriting logic semantics is similar to other kinds of rewriting, such as context-sensitive, or context-
reduction definitions, as in [Felleisen and Hieb, 1992, Matthews et al., 2004, Wright and Felleisen,
1994], but in rewriting logic, rules apply everywhere by default. In defining languages in this style,
one typically tries to limit where rules can apply, whereas in context-reduction definitions, one has
to specify where rewriting can happen.

Our type system definitions are similar in spirit to those independently introduced by Kuan et al.
[2007] in that their techniques, like ours, involve rewriting terms to their types. However, underlying
K definitions is rewriting logic, which provides both an algebraic denotation semantics, as well as a
structured operational semantics [Meseguer and Roşu, 2007]. Additionally, K offers the concept of a
program configuration that is a first class element of any semantics.

There has been other previous work combining rewriting logic with type systems. For example,
Bravenboer et al. [2005] describes a method of using rewriting to add typecheck notations to a
program. Their work consists entirely of an example typechecker, with no analysis or exposition.
Also, pure type systems, which are a generalization of the λ-cube [Barendregt, 1991], have been
represented in in membership equational logic [Stehr and Meseguer, 2004], a subset of rewriting logic.
There was also a kind of predecessor-to-K rewriting work shown in Roşu [2003]. These notes include
rewriting definitions of both languages and type systems, given in the same syntax.
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There is a large body of work on term graph rewriting [Barendregt et al., 1987, Plump, 1998]
and its applications to type systems [Banach, 1992, Fogarty et al., 2007, Wells, 2002]. There are
similarities with our work, such as using a similar syntax for both types and terms, and a process of
reduction or normalization to reduce programs to their types.

There was a type theory and term rewriting project [Kamareddine, 1997–2000] which resulted in
much theoretical work, including over twenty papers on type theory and term rewriting. A collection
of these papers were published together [Kamareddine and Klop, 2000]. Their goals included using
“a programming language partially or entirely based on explicit concepts of term rewriting” to combine
languages and their type systems [Kamareddine and Wells, 1997–2000].

Adding rewrite rules as annotations to a particular language in order to assist a separate
algorithm with type checking has been explored [Huencke and de Moor, 2001], as well as adding type
annotations to rewrite rules that define program transformations [Mametjanov, 2007].

Of course, much work has been done on defining type systems modularly and proving them
sound [Klein and Nipkow, 2006, Lee et al., 2007, Levin and Pierce, 2003, von Oheimb and Nipkow,
1999]. Much of the recent work in mechanically verified proofs of type soundness has been stimulated
by the PoplMark Challenge [Aydemir et al., 2005].

1.5 Outline of Thesis

In Chapter 2, we begin by presenting the general structure of our proof strategy. Here, we discuss
what our strategy of proof looks like at the most general level. We also state the particular properties
we aim to show, and what those properties look like in both our work and in previous work. Chapter 3
is the meat of this thesis, which includes five different language definitions and their corresponding
type systems, together with proofs of preservation. Each language is described in at least one K

formalism, necessary lemmas are stated, for which proofs are often suggested, then a number of
select preservation cases are examined. We finish up in Chapter 4 by giving an analysis of the overall
contribution of this thesis, as well as a description of work that still needs to be done.

5



Chapter 2

Description of Method

2.1 Proof Description

As discussed in Section 1.2, we need a way of correlating partially evaluated programs (configurations
in the language domain) with their types. Obviously the correlated types should be related in such
a way so as to preserve the type of the original language term. The way we do this is by using
an abstraction function, α, which takes a configuration in the language domain to a corresponding
configuration in the typing domain. Using an abstraction function to prove soundness is a technique
used frequently in the domain of processor construction, as introduced in Hosabettu et al. [1998], or
compiler optimization Kanade et al. [2006, 2007]. One can think of this technique as a generalization
of the syntax driven approach—when your partially evaluated programs are programs themselves,
then the abstraction function is just the identity function. Indeed, in many of our simple examples, α
is little more than an identity function. For an example of a significantly more complicated function,
see Section 3.2.3.

It is necessary to define an α for each language/type system pair as part of the proof of soundness.
We think of this as a formalization of the precise relationship between a language and its type system.
This relationship needs to be established in any proof of type system soundness, not just those using
K—our technique simply makes this an explicit step, with the end result being an actual function
from domain to domain.

We outline below the general statement and lemmas for preservation and progress in each example
language and type system tried so far:

1. Preservation: If JEKT
∗−→ τ and JEKL

∗−→ V for some type τ and value V , then JV KT
∗−→ τ .

(a) Lemma: Structural rules preserve type. Typically, these immediately follow due to
identical rules in the type system.

(b) Main Lemma: If JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R, then T |= α(R) ∗−→ τ .

(c) Lemma: If T |= α(V ) ∗−→ τ then JV KT
∗−→ τ .

2. Progress: For any expression E where JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R, either
R is a value, or ∃ R′ such that R −→ R′.

(a) Lemma: Every subterm of a well-typed term is well typed

In comparison, the definition of preservation as given by Wright and Felleisen [1994, Lemma 4.3]
states: “If Γ . e1 : τ and e1 −→ e2 then Γ . e2 : τ .” We cannot define preservation in the same way,

6



because our terms do not necessarily remain terms as they evaluate. In fact, in non-trivial languages
they end up in a configuration whose equivalence class contains no language term. If one accepts
the idea of our abstraction function, then subject reduction is actually closer in spirit to the above
Lemma 1b.

Although we do not focus our attention on progress in this thesis, it is important to note the
proof of progress in cases where our configurations are equationally equivalent to language terms
is relatively easy—it is equivalent to the same proof in a context reduction framework. However,
when configurations are not identifiable with terms in the language, more work needs to be done to
generalize the idea of “subterm” and how it applies to program configurations that are not themselves
terms of the original language.

7



Chapter 3

Examples

Below we present five languages, corresponding type systems and abstraction functions, together
with formal proofs of preservation. Each example is laid out in a similar manner. First, we have
the K-style definition. This definition includes annotated grammars for the language and language
configurations, as well as any additional evaluation rules necessary. This definition should be the most
compact, and it is what is thought of as being “the” K-definition of a language. Next, optionally, we
have the expanded definition, which decodes each of the annotations. Any rules that were implicit are
made explicit, and each rule is numbered so referring to them is easy. Additionally, transformations
may be applied such as changing the rules of a language to match only at the top of the continuation.
We can do this without changing the semantics because our rules are orthogonal [Klop, 1992].1 A
similar thing is now done for the type system—a K-style definition is given, followed by an expanded
definition. The final definition is that of our abstraction function α from the language domain to the
type domain. Finally, we complete each section with a proof of preservation.

We have defined and proved soundness for a number of simple languages and their type systems
including one for an extremely simple imperative language (SIL), a slightly more complicated
imperative language with functions (SILF), as well as simply typed lambda calculus, lambda calculus
with let-polymorphism (as presented in Wright and Felleisen [1994]), and Milner’s Exp language and
W algorithm [Milner, 1978].

3.1 Simple Imperative Language (SIL)

We wanted to start with a near-trivial language to do our initial proofs. We chose a simple imperative
language with basic arithmetic and comparison, if statements, while statements, and assignment.
Expressions can only be of two types—integer or boolean. Variables can only be assigned integers.

In this example, we give a slightly more verbose K-style definition, to help readers understand
how K is organized. In most definitions, built-in types such as integers or variables do not need to be
mentioned. Additionally, some configuration grammar or grammar schemata is imported and/or
generated from the K-prelude, so defining things like K is unnecessary.

1However, although this transformation does not change the final outcome of program execution, it does decrease
the amount of concurrency in the execution of a definition.
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3.1.1 Language Definition

Int ::= Z
Bool ::= B
Var ::= all identifiers; to be used as names of variables
Exp ::= Int | Bool | Var

| Exp + Exp [strict, extends +Int×Int→Int]
| Exp < Exp [strict, extends <Int×Int→Bool]
| Exp and Exp [strict, extends ∧Bool×Bool→Bool]
| not Exp [strict, extends ¬Bool→Bool]

Stmt ::= Stmt; Stmt [strict(1)]
| Var := Exp [strict(2)]
| if Exp then Stmt else Stmt [strict(1)]
| while Exp do Stmt

Pgm ::= Stmt; Exp [s; e = s y e]

(a) Language Syntax

Val ::= Int | Bool
Result ::= Val
Store ::= Map[Var,Val]

ConfigItem ::= LSet[ConfigItem]M> | LKMkL | LStoreMstore
Config ::= Val | JSet[ConfigItem]K | JKK

K ::= Result | KLabel(List[K]) | Listy[K]

KLabel ::= skip | One for each language construct (e.g. +, <, 1, 2, 3, . . . )

(b) Configuration Syntax

JpK = LLpMkLL·MstoreM>
〈|LvMkL |〉> −→ v
L x

σ[x]

|〉kLσMstore

Lx = v

·
|〉kL σ

σ[x← v]

Mstore

if true then s1 else s2 −→ s1

if false then s1 else s2 −→ s2

Lwhile b do s|〉k = Lif b then s; while b do s else skip|〉k
(c) Language Rules

Figure 3.1: K-style Definition of SIL
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JK KL = LLK MkLL·MstoreM> (1)
L([X , I] )[X ]

I
|〉kL (2)

LS[X ]
0
|〉kL if X /∈ S (3)

([X , ] S)[X ← I] = [X , I] S (4)
S[X ← I] = [X , I] S if X /∈ S (5)

L K + K ′

K y � + K ′
|〉kL (6)

L K + K ′

K ′ y K + �
|〉kL (7)

L not K
K y not �

|〉kL (8)

L K and K ′

K y � and K ′
|〉kL (9)

L K and K ′

K ′ y K and �
|〉kL (10)

L K < K ′

K y � < K ′
|〉kL (11)

L K < K ′

K ′ y K < �
|〉kL (12)

L X := K
K y X := �

|〉kL (13)

L K ; K ′

K y � ; K ′
|〉kL (14)

L if K then S else S ′

K y if � then S else S ′
|〉kL (15)

L while K do K ′

if K then (K ′ ; while K do K ′) else skip
|〉kL (16)

(a) Structural Rules

〈|LV MkL |〉> −→ V (17)
L X
σ[X ]

|〉kLLσMstore (18)

L I + I ′

I +int I
′
|〉kL (19)

L B andB ′

B andbool B
′
|〉kL (20)

L notB
notbool B

|〉kL (21)

L I < I ′

I <int I ′
|〉kL (22)

Lskip ; K
K

|〉kL (23)

LX := I
·
|〉kLL S

S[X ← I]
Mstate (24)

Lif true then S else S ′

S
|〉kL (25)

Lif false then S else S ′

S ′
|〉kL (26)

(b) Semantic Rules

Figure 3.2: Expanded Definition of SIL

10



3.1.2 Type Checker Definition

Notice that in this definition of a type checker for SIL, we need to include a rule for typing skip. This
is, in essence, an artifact of needing the capability of typing arbitrary language configurations. We
discussed a number of possible alternatives to this not-so-elegant solution. One is to simply dissolve
all statements in the type checker. This would be paired with changes to the language semantics
that dissolve all statements. However, options like this are not explored in this thesis.

JEKT = LLEMkT M> (27)
L K + K ′

K y � + K ′
|〉kT (28)

L K + K ′

K ′ y K + �
|〉kT (29)

L not K
K y not �

|〉kT (30)

L K and K ′

K y � and K ′
|〉kT (31)

L K and K ′

K ′ y K and �
|〉kT (32)

L K < K ′

K y � < K ′
|〉kT (33)

L K < K ′

K ′ y K < �
|〉kT (34)

L X := K
K y X := �

|〉kT (35)

L K ; K ′

K y � ; K ′
|〉kT (36)

L if K then S else S ′

K y if � then S else S ′
|〉kT (37)

L if K then S else S ′

S y if K then � else S ′
|〉kT (38)

L if K then S else S ′

S ′ y if K then S else �
|〉kT (39)

L while K do K ′

K y while � do K ′
|〉kT (40)

L while K do K ′

K ′ y while K do �
|〉kT (41)

(a) Structural Rules

〈|LτMkT |〉> −→ τ (42)
V : Int −→ Int (43)
B : Bool −→ Bool (44)

skip −→ Statement (45)
S[X ] −→ Int (46)

Int + Int −→ Int (47)
Bool and Bool −→ Bool (48)

not Bool −→ Bool (49)
Int < Int −→ Bool (50)

Statement ; K −→ K (51)
X := Int −→ Statement (52)

if Bool then τ else τ −→ τ (53)
while Bool do Statement −→ Statement (54)

(b) Semantic Rules

Figure 3.3: Definition of SIL’s Type Checker
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3.1.3 Abstraction Function Definition

This abstraction function is little more than the identity function. It can apply on either completely
unevaluated, partially evaluated, or fully evaluated programs, translating them into corresponding
configurations in the type domain.

α(JEKL) = JEKT (55)
α(LLK MkLL MstoreM>) = LLK MkT M> (56)

α(K ) = JK KT (57)

Figure 3.4: Definition of αSIL

3.1.4 Proofs

Lemma 1. If T |= α(V ) ∗−→ τ then JV KT
∗−→ τ

Proof. This follows directly from rule 57.

Lemma 2 (Top of Stack Lemma). If LS y K MkT
∗−→ Lτ y K MkT , then LS y K ′MkT

∗−→ Lτ y K MkT
for any K ′.

Lemma 3 (Main Lemma for Preservation). Let E be an expression such that JEKT
∗−→ τ and

JEKL
∗−→ R for some τ and R. Then T |= α(R) ∗−→ τ .

Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. α(R) = α(JEKL) and we define α(JEKL) as JEKT by rule
55, so by assumption we have α(R) = τ .

Induction case Assume JEKL
n−→ R and T |= α(R) ∗−→ τ . If no steps can be taken from R then

the property holds vacuously, so assume an n+ 1 step can be taken to get to a state R′. This
step could be any one of the rules of the language. We consider each individually.

Rules 6 through 15 These are taken care of automatically by the fact that each has a corresponding

structural rule in the type system.

Rule 16 R = LLwhile K do K ′ y JMkLL MstoreM>
α(R) By Rule

Lwhile K do K ′ y JMkT 56

LStatement y JMkT ind. assm. & 54

R′ = LLif K then (K ′ ; while K do K ′ else skip y JMkLL MstoreM>

α(R′) By Rule

Lif K then (K ′ ; while K do K ′) else skip y JMkT 56

Lif Bool then (Statement ; while Bool do Statement) else skip y JMkT ind. assm. & 54

Lif Bool then (Statement ; Statement) else skip y JMkT 54

Lif Bool then Statement else skip y JMkT 51

Lif Bool then Statement else Statement y JMkT 45

LStatement y JMkT 53

12



Rule 17 R = LLV MkLL MstoreM>
α(R) By Rule

LLV MkT M> 56

JV KT 27

R′ = V

α(R′) By Rule

JV KT 57

Rule 19 R = LLI : Int+ I ′ : Int y K MkLL MstoreM>
α(R) By Rule

LI + I ′ y K MkT 56

LInt + I ′ y K MkT 43

LInt + Int y K MkT 43

LInt y K MkT 47

R′ = LLI +int I
′ y K MkLL MstoreM>

α(R′) By Rule

LI +int I
′ y K MkT 56

LInt y K MkT 43

Rule 24 R = LLX := I : Int y K MkLLSMstoreM>
α(R) By Rule

LX := I y K MkT 56

LX := Int y K MkT 43

LStatement y K MkT 52

R′ = LLskip y K MkLLS[V ← I]MstoreM>

α(R′) By Rule

Lskip y K MkT 56

LStatement y K MkT 45

Rule 25 R = LLif true then S else S ′ y K MkLL MstoreM>
α(R) By Rule

Lif true then S else S ′ y K MkT 56

Lif true then τ else S ′ y K MkT ind. assm.

Lif true then τ else τ y K MkT ind. assm.

Lτ y K MkT 53

R′ = LLS y K MkLL MstoreM>

α(R′) By Rule

LS y K MkT 56

Lτ y K MkT ind. assm. & Lemma 2

Theorem 1 (Preservation). If JEKT
∗−→ τ and JEKL

∗−→ V for some type τ and value V , then
JV KT

∗−→ τ

Proof. This follows directly from Lemmas 1 and 3.

13



3.2 Simple Imperative Language with Functions (SILF)

SILF originated in Hills et al. [2007], and was further developed in Roşu [2008]. The below version is
actually a pared down version of the language presented in those papers, but still contains function
calls, which is the most interesting part for our purposes.

3.2.1 Language Definition

Int ::= Z
Bool ::= B

Name ::= all identifiers; to be used as names of variables and functions
Type ::= int | bool (one may add more types if one extends the language)
Exp ::= Int | Bool

| Name
| read()
| Name(List[Exp]) [strict(1), f(el1, e, el2) = e y f(el1,�, el2)]
| Exp + Exp [strict, extends +Int×Int→Int]
| Exp < Exp [strict, extends <Int×Int→Bool]
| Exp and Exp [strict, extends ∧Bool×Bool→Bool]
| not Exp [strict, extends ¬Bool→Bool]

Decl ::= var Type Name | var Type Name[Nat]
| Decl; Decl [d1; d2 = d1 y d2]

Stmt ::= {} [{} = ·]
| {Stmt} [{s} = s]
| {Decl; Stmt}
| Stmt; Stmt [s1; s2 = s1 y s2]
| write(Exp) [strict]
| Name = Exp [strict(2)]
| if Exp then Stmt else Stmt [strict(1)]
| if Exp then Stmt [if e then s = if e then s else ·]
| while Exp do Stmt
| call Exp [strict]
| return Exp [strict]

FunDecl ::= function Type Name(List[Type] List[Name]) Stmt
| FunDecl FunDecl [fd1 fd2 = fd1 y fd2]

Pgm ::= FunDecl
| Decl; FunDecl [d; fd = d y fd]

(a) Language Syntax

Figure 3.5: Definition of SILF
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Val ::= Int | Bool | Type λList[Type] List[Name].K
Result ::= Val

Env ::= Map[Name,Loc×Type] (∀ρ ∈ Env, x ∈ Name, let ρ[x] be (loc(ρ[x]), type(ρ[x])))
Store ::= Map[Loc,Val]

FStack ::= List[Env×K × Type]
ConfigItem ::= LKMkL | LFStackMfstack | LEnvMenvL | LEnvMgenvL

| LList[Int]Min | LList[Int]Mout | LTypeMreturnL | LStoreMstore | LLocMnextLoc

Config ::= List[Int] | JK, List[Int]KL | LSet[ConfigItem]M>
| JKKL [JkKL = Jk, ·KL]

K ::= . . . | run | restore(Env)
Type ::= . . . | ? | Type[Nat]

(b) Configuration Syntax

Lp, ilM> = LLp y runMkL L·Mfstack L·MenvL L·MgenvL LilMin L·Mout L?MreturnL L·Mstore Lloc(0)MnextLocM> (58)
〈|L·MkL LilMout|〉> = il (59)

L run
call main

MkL LρMenvL L ·
ρ
MgenvL (60)

L x
σ[loc(ρ[x])]

|〉kL LρMenvL LσMstore (61)

Lread()
i
|〉kL Li

·
|〉in (62)

L(t λtl xl.s)(vl) y k
s

MkL L ·
(ρ, k, t′)

|〉fstack L ρ
ρ′[xl← (ll′, tl)]

MenvL Lρ′MgenvL Lt′

t
MreturnL

L σ
σ[ll′ ← vl]

Mstore L l
l′
MnextLoc where l′ is l +Loc |xl|, ll′ is l . . . (l − 1), and typeOf (vl)=tl

(63)

Lvar t x
·
|〉kL L ρ

ρ[x← (l, t)]
MenvL L l

l +Loc 1
MnextLoc (64)

L {d; s}
d y s y restore(ρ)

|〉kL LρMenvL (65)

Lrestore(ρ)
·

|〉kL L
ρ
MenvL (66)

Lwrite i
·
|〉kL 〈|·

i
Mout (67)

Lx = v
·
|〉kL LρMenvL L σ

σ[loc(ρ[x])← v]
Mstore where type(ρ[x]) = typeOf(v) (68)

if true then s1 else s2 −→ s1 (69)
if false then s1 else s2 −→ s2 (70)

Lwhile b do s|〉kL = Lif b then (s; while b do s)|〉kL (71)

call v −→ . (72)
Lreturn v y

v y k
MkL L(ρ, k, t)

·
|〉fstack L

ρ
MenvL Lt′

t
MreturnL if typeOf(v) = t′ (73)

Lfunction t f(tl xl) s
·

|〉kL L ρ
ρ[f ← (l, ?)]

MenvL L σ
σ[l← t λtl xl.s]

Mstore L l
l +Loc 1

MnextLoc (74)

(c) Language Rules

Figure 3.5: Definition of SILF (cont.)
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3.2.2 Type Checker Definition

It is important to note that except for the annotations, the syntax for SILF’s type checker is identical
to that of the language itself. This is true for all K-style language/type system pairs.

Int ::= Z
Bool ::= B

Name ::= all identifiers; to be used as names of variables and functions
Type ::= Int | Bool (one may add more types if one extends the language)
Exp ::= Int | Bool

| Name
| read()
| Name(List[Exp]) [strict(1), f(el1, e, el2) = e y f(el1,�, el2)]
| Exp + Exp [strict]
| Exp < Exp [strict]
| Exp and Exp [strict]
| not Exp [strict]

Decl ::= var Type Name | var Type Name[Nat]
| Decl; Decl [strict]

Stmt ::= {}
| {Stmt} [strict]
| {Decl; Stmt}
| Stmt; Stmt [strict]
| write(Exp) [strict]
| Name = Exp [strict]
| if Exp then Stmt else Stmt [strict]
| if Exp then Stmt [strict]
| while Exp do Stmt [strict]
| call Exp [strict]
| return Exp [strict]

FunDecl ::= function Type Name(List[Type] List[Name]) Stmt
| FunDecl FunDecl [strict]

Pgm ::= FunDecl
| Decl; FunDecl [strict]

(a) Language Syntax

Type ::= . . . | ? | Decl | Statement | FunDecl | Program | List[Type]→ Type
Result ::= Type
TEnv ::= Map[Name,Type]

ConfigItem ::= LKMkT | LTEnvMenvT | LTEnvMgenvT | LTypeMreturnT | L·MtoType

Config ::= done | JKKT | LSet[ConfigItem]M>
K ::= . . . | restore(TEnv) | Type λList[Type] List[Name].K

(b) Configuration Syntax

Figure 3.6: Definition of SILF’s Type Checker

16



LpM> = LLpMkT L·MenvT L·MgenvT L?MreturnT L·MtoTypeM> (75)
Lt y restore(ρ)

·
|〉kT L

ρ
MenvT (76)

(c) Structural Rules

i −→ Int (77)
b −→ Bool (78)

read() −→ Int (79)
(tl→ t)(tl) −→ t (80)
Int + Int −→ Int (81)
Int <Int −→ Bool (82)

Bool and Bool −→ Bool (83)
Bool or Bool −→ Bool (84)

not Bool −→ Bool (85)
Decl; Decl −→ Decl (86)

{} −→ Statement (87)
{Statement} −→ Statement (88)

Decl; Statement −→ Statement (89)
write Int −→ Statement (90)

(t = t) −→ Statement (91)
if Bool then Statement else Statement −→ Statement (92)

if Bool then Statement −→ Statement (93)
while Bool do Statement −→ Statement (94)

call t −→ Statement (95)
FunDecl FunDecl −→ FunDecl (96)

Decl; FunDecl −→ Program (97)

(d) Semantic Rules

Figure 3.6: Definition of SILF’s Type Checker (cont.)
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〈|L·MkT L·MtoType|〉> = done (98)
L x
ρ[x]
|〉kT LρMenvT (99)

Lvar t x
Decl

|〉kT L ρ
ρ[x← t]

MenvT (100)

L {d; s}
d; s y restore(ρ)

|〉kT LρMenvT (101)

Lreturn t y
·

MkT Lt
?
MreturnT (102)

Lfunction t f(tl xl) s
FunDecl

|〉kT L ρ
ρ[f ← (tl→ t)]

MenvT 〈| ·
t λtl xl.s

MtoType (103)

LProgram
·

MkT LρMenvT L ·
ρ
MgenvT (104)

LFunDecl
·

MkT LρMenvT L ·
ρ
MgenvT (105)

L ·
s
MkT L ρ

ρ′[xl← tl]
MenvT Lρ′MgenvT Lt′

t
MreturnT Lt λtl xl.s

·
|〉toType (106)

(e) Semantic Rules, Continued

Figure 3.6: Definition of SILF’s Type Checker (cont.)

3.2.3 Abstraction Function Definition

We want to define a function that will take a configuration in the statically type-checked language
domain and convert it to a corresponding configuration in the static type-checker domain.

Observations:

1. run remains on the stack until the entire global environment is computed

2. While the global environment is being computed, only variable and function declarations are
on the stack

3. After the global environment is computed, it is never changed again

4. Saving function declarations is atomic

5. In the type system, everything after a return is discarded

With these observations in mind, we now proceed to define α.
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α:
α(Jp, ilKL) = JpKT (107)

α(il) = done (108)

α(LLpMkL LΛMfstack LρMenvL LωMgenvL LilMin Lil ′Mout LτMreturnL LσMstore LlMnextLocM>)
= LLαk(p)MkT Lαenv(ρ, σ)MenvT Lαenv(ω, σ)MgenvT LτMreturnT LαtoType(σ)MtoTypeM> (109)

αk:

αk(p) = · if run /∈ p (110)
αk(p) = p if run ∈ p but p 6= run (111)
αk(p) = FunDecl if p = run (112)

αenv:

αenv(〈|x ← (l , τ)|〉, 〈|l ← v |〉) = (x ← αvl(v , τ)) αenv(〈|·|〉, 〈|·|〉) (113)
αenv(L·M, σ) = · (114)

αvl :

αvl(v , τ) = τ if τ 6= ? (115)
αvl(τ λτl xl . s, ) = τl → τ (116)

αtoType:

αtoType(〈|l ← (τ λτl xl . s)|〉) = (τ λτl xl . s) αtoType(〈|·|〉)αtoType(σ) (117)
= · otherwise (118)

Figure 3.7: Definition of αSILF
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3.2.4 Proofs

When we state what preservation means in SILF, we run into an interesting thing. Our type checker
is indiscriminate—it only says whether programs pass through, not what particular type they are.
Thus, we can consider all final values (which in SILF are lists of values) to be passing programs. We
see this in our definition of α of value lists. According to rule 108, all value lists are automatically
“done.” Therefore, our secondary preservation lemma is very unnatural. Indeed, it belies the fact that
what we call the main lemma for preservation is the best analogue for preservation in our setting,
despite the fact that it contains α directly.

Lemma 4. ∀ reachable language configurations C, ∀X ∈ env of C, loc(X) ∈ store of C.

Lemma 5. ∀ reachable language configurations C, ∀X ∈ genv of C, loc(X) ∈ store of C.

Lemma 6. ∀ reachable language configurations C, let ρ be the env of C and σ be the store of C.
αenv(ρ, σ) ∗−→ some Map[Name,Type].

Lemma 7. ∀ reachable language configurations C, let ω be the genv of C and σ be the store of C.
αenv(ω, σ) ∗−→ some Map[Name,Type].

Lemma 8. ∀ reachable language configurations C, let σ be the store of C. αtoType(σ) ∗−→ some
List[Type λList[Type] List[Name]].

Theorem 2 (Preservation). If JpKT
∗−→ done and JpKL

∗−→ R for some R, then T |= α(R) ∗−→ done.

Proof. The proof proceeds by induction on the number of steps taken to get from JpKL to R.

Base Case Assume no steps were taken. Then R = JpKL. We see that α(R) = α(JpKL) =
α(Jp, ·KL), so by α-rule 107, we see that α(R) = JpKT . By assumption, this reduces to done, so
we have that α(R) ∗−→ done.

Induction Case Assume JpKL
n−→ R and α(R) ∗−→ done. We want to show that if R′ is a

language configuration such that L |= R −→ R′, then α(R′) ∗−→ done. The step from R to
R′ could be any one of the structural or semantic rules of the language. We consider each
individually:

Rule 59 R = 〈|L·MkL LilMout|〉>, R′ = il

α(R):

α(R) = α(〈|L·MkL LilMout|〉>)

= done by ind. assm.

α(R′):

α(R′) = α(il)

= done by α-rule 108
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Rule 60 R = 〈|LrunMkL LρMenvL L·MgenvL |〉>, R′ = 〈|Lcall main()MkL LρMenvL LρMgenvL |〉>
α(R):

α(R) = α(LLrunMkL LρMenvL L·MgenvL L Min L Mout LτMreturnL LσMstore L MnextLocM>)

= LLαk(run, ρ)MkT Lαenv(ρ, σ)MenvT Lαenv(·, σ)MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by α-rule 107

= LLFunDeclMkT Lαenv(ρ, σ)MenvT Lαenv(·, σ)MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by α-rule 112

= LLFunDeclMkT Lρ′MenvT Lαenv(·, σ)MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by Lemma 6

= LLFunDeclMkT Lρ′MenvT L·MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by α-rule 114

= LLFunDeclMkT Lρ′MenvT L·MgenvT LτMreturnT LflMtoTypeM> by Lemma 8

= LL·MkT Lρ′MenvT Lρ′MgenvT LτMreturnT LflMtoTypeM> by typing-rule

= done by ind. assm.

α(R′):

α(R′) = α(LLcall main()MkL LρMenvL LρMgenvL L Min L Mout LτMreturnL LσMstore L MnextLocM>)

= LLαk(call main(), ρ)MkT Lαenv(ρ, σ)MenvT Lαenv(ρ, σ)MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by α-rule 107

= LL·MkT Lαenv(ρ, σ)MenvT Lαenv(ρ, σ)MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by α-rule 110

= LL·MkT Lρ′MenvT Lρ′MgenvT LτMreturnT LαtoType(σ)MtoTypeM> by Lemma 6

= LL·MkT Lρ′MenvT Lρ′MgenvT LτMreturnT LflMtoTypeM> by Lemma 8
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3.3 Monomorphic Lambda Calculus (Mono)

Here we look at an extremely simple version of lambda calculus. It is simply-typed, call-by-value,
and monomorphic. For brevity, we simply call it “Mono.”

3.3.1 Language Definition

Type ::= • | Type→ Type
Exp ::= λVar :Type .Exp | Exp Exp [strict]

(a) Language Syntax

Val ::= λVar :Type .Exp | Var
Result ::= Val

ConfigItem ::= LKMkL
Config ::= Result | JKKL [JkKL = LLkMkLM>] | LSet[ConfigItem]M>

(b) Configuration Syntax

〈|LvMkL |〉> −→ v

L(λx :τ . e) v|〉kL −→ Le[x← v]|〉kL

(c) Language Rules

Figure 3.8: K-style Definition of Mono

JEKL = LLEMkLM> (119)
K K ′ = K y �K ′ (120)
K K ′ = K ′ y K� (121)

(a) Structural Rules

〈|LV MkL |〉> −→ V (122)
L(λX :τ . E)(V : Val)

E[V /X ]
|〉kL (123)

(b) Semantic Rules

Figure 3.9: Expanded Definition of Mono

23



3.3.2 Type Checker Definition

Type ::= • | Type→ Type [strict(2)]
Exp ::= λVar :Type .Exp | Exp Exp

(a) Language Syntax

Val ::= Type
Result ::= Val
Exp ::= Val | Exp Exp [strict]
ConfigItem ::= LKMkT
Config ::= Result | JKKT [JkKT = LLkMkT M>] | LSet[ConfigItem]M>

(b) Configuration Syntax

〈|LτMkL |〉> −→ τ

λx :τ . e −→ τ → e[x← τ ]

(τ → τ ′)τ −→ τ ′

(c) Language Rules

Figure 3.10: K-style Definition of Mono’s Type Checker

JEKT = LLEMkT M> (124)
K K ′ = K y �K ′ (125)
K K ′ = K ′ y K� (126)

τ → K = K y τ → � (127)

(a) Structural Rules

〈|LτMkT |〉> −→ τ (128)
λX :τ .K −→ τ → K [τ/X ] (129)
(τ → τ ′)τ −→ τ ′ (130)

(b) Semantic Rules

Figure 3.11: Expanded Definition of Mono’s Type Checker

3.3.3 Abstraction Function Definition

α(JEKL) = JEKT (131)
α(LLK MkLM>) = LLK MkT M> (132)

α(V : Val) = JV KT (133)

Figure 3.12: Definition of αMono
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3.3.4 Proofs

Lemma 9. α is a total function over all reachable configurations of the language, modulo the
structural rules of the language.

Lemma 10. Any reachable configuration of the language is equivalent under the structural rules to
exactly one configuration of the form JEKL for some expression E.

Lemma 11. If LLE[τ ′/X ] y K MkT M>
∗−→ LLτ y K MkT M> and LLV y K ′MkT M>

∗−→ LLτ ′ y K ′MkT M>,
then LLE[V /X ] y K MkT M>

∗−→ LLτ y K MkT M>.

Proof. Assume LLE[τ ′/X ] y K MkT M>
∗−→ LLτ y K MkT M> and LLV y K ′MkT M>

∗−→ LLτ ′ y K ′MkT M>
for some τ ′, X , τ and V . We will do an induction on the size of E.

Base Case: Consider expressions E of size 0. These include only variable names. If E = X then
LE[τ ′/X ] y K MkT = Lτ ′ y K MkT and LE[V /X ] y K MkT = LV y K MkT which by assumption
reduces to Lτ ′ y K MkT . We see that the property holds in this case.

Alternatively, if E = Y where Y 6= X then LE[τ ′/X ] y K MkT = LY y K MkT . However, this
cannot reduce to any type because we cannot type single variables. Therefore, this case cannot
occur under the assumptions.

Inductive Case: Assume the above property holds for all expressions up to size n. Consider an
expression of size n+ 1. It is either a lambda expression or an application expression.

If it is a lambda expression, we see LE[τ ′/X ] y K MkT = L(λY :σ .E ′)[τ ′/X ] y K MkT . Using
the typing rule for lambda expressions, and properties of substitution, we see that this reduces
to Lσ → (E ′[σ/Y ])[τ ′/X ] y K MkT . Finally, by the structural rule, we see that this is equivalent
to L(E ′[σ/Y ])[τ ′/X ] y σ → � y K MkT .

Similarly, we see that LE[V /X ] y K MkT = L(λY :σ .E ′)[V /X ] y K MkT for some σ and E ′.
Using the typing rule for lambda expressions, and properties of substitution, we see that this
reduces to Lσ → (E ′[σ/Y ])[V /X ] y K MkT = L(E ′[σ/Y ])[V /X ] y σ → � y K MkT . Because
we must be able to type this, we now see by inductive assumption that this is the same as
L(E ′[σ/Y ])[τ ′/X ] y σ → � y K MkT , which is also the same as above, so the property holds
in this case.

Similarly for the other cases.

Lemma 12. If T |= α(V ) ∗−→ τ then JV KT
∗−→ τ

Proof. This follows directly from rule 133.

Lemma 13 (Main Lemma for Preservation). Let E be an expression such that JEKT
∗−→ τ and

JEKL
∗−→ R for some τ and R. Then T |= α(R) ∗−→ τ .

Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. Then R = JEKL. By 131 we see that α(R) = JEKT . By
assumption, this reduces to τ , so we have that α(R) ∗−→ τ .
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Induction case Assume JEKL
n−→ R and α(R) ∗−→ τ . If no steps can be taken from R then the

property holds vacuously, so assume an n + 1 step can be taken to get to a state R′. This
step could be any one of the structural or semantic rules of the language. We consider each
individually.

Rule 119 R = JEKL
α(R) By Rule

JEKT 131

R′ = LLEMkLM>

α(R′) By Rule

LLEMkT M> 132
JEKT 124

Rule 122 R = LLV MkLM>
α(R) By Rule

LLV MkT M> 132

R′ = V

α(R′) By Rule

JV KT 133
LLV MkT M> 128

Rules 120 and 121 These follow because the type system has corresponding structural rules
125 and 126.

Rule 123 R = LL(λX :τ ′ . E)(V : Val) y K MkLM>
α(R) By Rule

LL(λX :τ ′ . E)(V : Val) y K MkT M> 132
LL(τ ′ → E[τ ′/X ])(V : Val) y K MkT M> 129
LL(τ ′ → E[τ ′/X ])(τ ′) y K MkT M> ind. assm.
LLE[τ ′/X ] y K MkT M> 130

R′ = LLE[V /X ] y KMkLM>

α(R′) By Rule

LLE[V /X ] y KMkT M> 132
LLE[τ ′/X ] y K MkT M> Above & Lemma 11

Theorem 3 (Preservation). If JEKT
∗−→ τ and JEKL

∗−→ V for some type τ and value V , then
JV KT

∗−→ τ

Proof. This follows directly from Lemmas 12 and 13.
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3.4 Polymorphic Lambda Calculus (Poly)

In this section we present the full polymorphic lambda calculus with constants as described in
Wright and Felleisen [1994, Section 4]. For brevity, we simply call it “Poly.” We take advantage of
the correspondence between their type system and one where let bindings are substituted. This
change vastly simplifies our proof because it causes the type system to be more like the language
semantics.

3.4.1 Language Definition

JEKL = LLEMkLM> (134)
EE ′ = E y �E ′ (135)

(V : Val)E = E y V� (136)
let X be E in E ′ = E y let X be � in E ′ (137)

(a) Structural Rules

〈|LV MkL |〉> −→ V (138)
L(λX . E)(V : Val)

E[V /X ]
|〉kL (139)

Llet X be V : Val in E
E[V /X ]

|〉kL (140)

L(C : Const)(V : Val)
δ(C , V )

|〉kL (141)

L Y(V : Val)
V (λX . (YV )X )

|〉kL (142)

(b) Semantic Rules

Figure 3.13: Definition of Poly

3.4.2 Type Inferencer Definition

(τ = τ) = · (143)

τ1 → τ2 = τ ′1 → τ ′2

(τ1 = τ ′1), (τ2 = τ ′2)

(144)

L τe

τe[τ/τv]

y solve|〉kT L(τv = τ) · E
E [τ/τv]

Meqns ⇐ τv /∈ vars(τ) (145)

Lτ y solve

·
|〉kT L·Meqns (146)

(a) Unification Rules

Figure 3.14: Definition of Poly’s Type Inferencer
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JEKT = LLE y solveMkT L·Meqns Lτ0MnextTypeM> (147)
K K ′ = K y �K ′ (148)
K K ′ = K ′ y K� (149)

τ → K = K y τ → � (150)

(b) Structural Rules

〈|LτMkT L·Meqns |〉> −→ τ (151)
L λX . E
τv → E[τv/X ]

|〉kT L τv
next(τv)

MnextType (152)

Lτ τ ′

τv

|〉kT L ·
τ = τ ′ → τv

|〉eqns L τv
next(τv)

MnextType (153)

Llet X be E in E ′

E ′[E/X ]
|〉kT (154)

L C
instantiate(TypeOf (C))

|〉kT (155)

Linstantiate(∀(·).τ)
τ

|〉kT (156)

Linstantiate(∀〈τv
·
〉. τ
τ [τv ′/τv]

)|〉kT L τv
′

next(τv ′)
MnextType (157)

L Y
((τv → next(τv))→ τv → next(τv))→ τv → next(τv)

|〉kT L τv
next(next(τv))

MnextType (158)

(c) Semantic Rules

Figure 3.14: Definition of Poly’s Type Inferencer (cont.)

3.4.3 Abstraction Function Definition

α(JEKL) = JEKT (159)
α(LLK MkLM>) = LLK y solveMkT L·Meqns Lτ0MnextTypeM> (160)

α(V : Val) = JV KT (161)

Figure 3.15: Definition of αPoly

3.4.4 Proofs

Lemma 14. If T |= α(V ) ∗−→ τ then JV KT
∗−→ τ

Proof. This follows directly from rule 161.

Lemma 15 (Main Lemma for Preservation). Let E be an expression such that JEKT
∗−→ τ and

JEKL
∗−→ R for some τ and R. Then T |= α(R) ∗−→ τ .
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Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. Then R = JEKL. By 159 we see that α(R) = JEKT . By
assumption, this reduces to τ , so we have that α(R) ∗−→ τ .

Induction case Assume JEKL
n−→ R and α(R) ∗−→ τ . If no steps can be taken from R then the

property holds vacuously, so assume an n + 1 step can be taken to get to a state R′. This
step could be any one of the structural or semantic rules of the language. We consider each
individually.

Rule 134 R = JEKL
α(R) By Rule

JEKT 159

LLE y solveMkT L·Meqns Lτ0MnextTypeM> 147

R′ = JLEMkLKL

α(R′) By Rule

LLE y solveMkT L·Meqns Lτ0MnextTypeM> 160

Rule 139 R = LL(λX . E)(V : Val) y K MkLM>
α(R) By Rule

L(λX . E)(V : Val) y K y solveMkT L·Meqns Lτ0MnextType 160

LλX . E y �V y K y solveMkT L·Meqns Lτ0MnextType 148

Lτ0 → E[τ0/X ] y �V y K y solveMkT L·Meqns Lτ1MnextType 152

LE[τ0/X ] y τ0 → � y �V y K y solveMkT L·Meqns Lτ1MnextType 150

Lα y τ0 → � y �V y K y solveMkT LEMeqns Lτ1MnextType ind. assm.

Lτ0 → α y �V y K y solveMkT LEMeqns Lτ1MnextType 150

L(τ0 → α)β y K y solveMkT LEMeqns Lτ1MnextType ind. assm.

Lτ1 y K y solveMkT L(τ0 → αMeqns = (β → τ1) · E) Lτ2MnextType 153

We see τ1 = α by unification, and that V
∗−→ τ0 and E[τ0/X ]

∗−→ α

R′ = LLE[V /X ] y K MkLM>

α(R′) By Rule

LE[V /X ] y K y solveMkT L·Meqns Lτ0MnextType 160

By a lemma similar to the one we used with Mono (Lemma 11), we know E[V /X ]
∗−→ α.

Rule 140 R = LLlet X be V : Val in E y K MkLM>
α(R) By Rule

Llet X be V : Val in E y K y solveMkT L·Meqns Lτ0MnextType 160

LE[V /X ] y K y solveMkT L·Meqns Lτ0MnextType 154

R′ = LLE[V /X ] y K MkLM>

α(R′) By Rule

LE[V /X ] y K y solveMkT L·Meqns Lτ0MnextType 160
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Rule 141 R = LL(C : Const)(V : Val) y K MkLM>
α(R) By Rule

L(C : Const)(V : Val) y K y solveMkT L·Meqns Lτ0MnextType 160

L(instantiate(TypeOf (C)))V y K y solveMkT L·Meqns Lτ0MnextType 155

L(τ1 → τ2)V y K y solveMkT L·Meqns Lτ0MnextType ind. assm.

L(τ1 → τ2)τ ′ y K y solveMkT LEMeqns Lτ0MnextType ind. assm.

Lτ0 y K y solveMkT L(τ1 → τ2 = τ ′ → τ0) · EMeqns Lτ1MnextType 153

R′ = LLδ(C , V ) y K MkLM>

α(R′) By Rule

Lδ(C , V ) y K y solveMkT L·Meqns Lτ0MnextType 160

Lτ2 y K y solveMkT L·Meqns Lτ0MnextType above & δ-typeability
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3.5 Exp & W

3.5.1 Language Definition

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Bools, ints, etc.)

| λVar .Exp
| Exp Exp [strict]
| µVar .Exp
| if Exp then Exp else Exp [strict(1)]
| let Var = Exp in Exp [let x = e in e′ = (λx.e′) e]
| letrec Var Var = Exp in Exp [letrec f x = e in e′ = let f = µf.(λx.e) in e′]

(a) Language Syntax

Val ::= λVar .Exp | ...(Bools, ints, etc.)
Result ::= Val

KProper ::= µVar .Exp
Config ::= Val | JKK | LKMk

(b) Configuration Syntax

JeK = LLeMkM>
LLvMkM> = v

L (λx.e) v

e[x← v]

|〉k

L µ x.e

e[x← µ x.e]

|〉k

if true then e1 else e2 → e1

if false then e1 else e2 → e2

(c) Language Rules

Figure 3.16: K-style Definition of Exp
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JEKL = JLEMkLKL (162)
JLV MkLKL = V (163)

EE ′ = E y �E ′ (164)
EE ′ = E ′ y E� (165)

let X be E in E ′ = E y let X be � in E ′ (166)
if E then E1 else E2 = E y if � then E1 else E2 (167)

K + K ′ = K y � + K ′ (168)
K + K ′ = K ′ y K + � (169)

(a) Structural Rules

LI : Int+ I ′ : Int
I +int I

′
|〉kL (170)

L(λX . E)(V : Val)
E[V /X ]

|〉kL (171)

Llet X be V : Val in E
E[V /X ]

|〉kL (172)

Lif true then E else E ′

E
|〉kL (173)

Lif false then E else E ′

E ′
|〉kL (174)

L fix X . E
E[fix X . E/X ]

|〉kL (175)

(b) Semantic Rules

Figure 3.17: Expanded Definition of Exp

3.5.2 Definition of Exp’s Type Inferencer (W )

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Bools, ints, etc.)

| λVar .Exp
| Exp Exp [strict]
| µVar .Exp
| if Exp then Exp else Exp [strict(1)]
| let Var = Exp in Exp [let x = e in e′ = (λx.e′) e]
| letrec Var Var = Exp in Exp [letrec f x = e in e′ = let f = µf.(λx.e) in e′]

(a) Language Syntax

Result ::= Type
TEnv ::= Map[Name,Type]

Type ::= . . . | let(Type)
K ::= . . . | Type→ K [strict(2)]

(b) Configuration Syntax

Figure 3.18: K-style Definition of W
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JeK = LLeMk L·Mtenv L·Meqns Lt0MnextTypeM>
〈|LtMk LγMeqns|〉> = γ[t]
i→ int, true→ bool, false→ bool, (and similarly for all the other desired basic values)
Lt1 + t2

int

|〉k 〈| ·
t1 = int, t2 = int

|〉eqns (and similarly for all the other standard operators)

L x

(γ[t])[tl← tl′]

|〉k LηMtenv LγMeqns L tv

tv + |tl|
MnextType when η[x] = let(t), tl = vars(γ[t])− vars(η)

and tl′ = tv . . . (tv + |tl| − 1)

L x

η[x]

|〉k LηMtenv when η[x] 6= let(t)

L λx.e

(tv → e) y restore(η)

|〉k L η

η[x← tv]

Mtenv L tv

tv + 1

MnextType

Lrestore(η)

·
|〉kLη′

η

Mtenv

Lt1 t2
tv

|〉k 〈| ·
t1 = t2 → tv

|〉eqns L tv

tv + 1

MnextType

L µx.e

e y?=(tv) y restore(η)

|〉k L η

η[x← tv]

Mtenv L tv

tv + 1

MnextType

Lt→ ?=tv

·
|〉k 〈| ·

tv = t

|〉eqns

L let x = t in e

e y restore(η)

|〉k L η

η[x← let(t)]

Mtenv

Lif t then t1 else t2

t1

|〉k 〈| ·
t = bool, t1 = t2

|〉eqns

(c) Typing Rules

Figure 3.18: K-style Definition of W (cont.)

3.5.3 Equivalence of Milner’s and Our W 2

We would like to make explicit how our rewriting definition is effectively equivalent to Milner’s W ,
up to the additions of some explicit fundamental data types and operators. To do this, it is easiest
to look at J , Milner’s simplified algorithm, which he proved equivalent to W . Milner’s definition of
J is given in Figure 3.20 as a convenience for the reader.

The main questions of equivalence center around recursive calls and their environments, as well
as the substitution. We address each concern in turn. J is a recursive algorithm. It calls itself
on subexpressions throughout the computation. We achieve the same effect through the use of
strictness attributes and the saving and restoring of environments. Our strictness attributes cause
subexpressions to be moved to the front of the computation structure, effectively disabling rules that
would apply to the “context,” and enabling rules applying to the subexpression itself.

Type environments (also called typed prefixes in Milner’s notation) are passed to each call of J .
Because we have only one global type environment, it is not immediately obvious that changes to
the type environment when evaluating subexpressions cannot affect the remaining computation. In

2This section comes from Ellison et al. [2008].
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JEKT = LLEMkT L·MenvT L·Meqns Lτ0MnextTypeM> (176)
〈|LτMkT LEMeqns |〉> = E [τ ] (177)

EE ′ = E y �E ′ (178)
EE ′ = E ′ y E� (179)

if K then S else S ′ = K y if � then S else S ′ (180)
if K then S else S ′ = S y if K then � else S ′ (181)
if K then S else S ′ = S ′ y if K then S else � (182)

let X be K in K ′ = K y let X be � in K ′ (183)
τ → K = K y τ → � (184)

(a) Structural Rules

Lτ y restore(Γ)
·

|〉kT L
Γ
MenvT (185)

I : Int −→ Int (186)
true −→ Bool (187)
false −→ Bool (188)

L X
(E [τ ])[tl← tl′]

|〉kT LΓMenvT LEMeqns L τv
τv + |tl|

MnextType

if Γ[X ] = let(t), tl = vars(E [τ ])− vars(Γ) and tl′ = τv . . . (τv + |tl| − 1)
(189)

L λX . E
(τv → E) y restore(Γ)

|〉kT L Γ
Γ[X ← τv]

MenvT L τv
next(τv)

MnextType (190)

Lτ + τ ′

Int
|〉kT 〈| ·

τ = Int · τ ′ = Int
|〉eqns (191)

Lτ1τ2
τv

|〉kT L ·
τ1 = τ2 → τv

Meqns L τv
next(τv)

MnextType (192)

L let X be τ in E
E y restore(Γ)

|〉kT L Γ
Γ[X ← let(τv)]

MenvT (193)

Lif τ then τ1 else τ2
τ1

|〉kT 〈| ·
τ = Bool · τ1 = τ2

|〉eqns (194)

(b) Semantic Rules

Figure 3.19: Expanded Definition of W
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J (p̄, f) = τ

1. If f is x then:
If λxσ is active in p̄, τ := σ.
If let xσ is active in p̄, τ = [βi/αi]Eσ, where αi are the generic type variables of let xEσ in Ep̄,
and βi are new variables.

2. If f is de then:
ρ := J (p̄, d); σ := J (p̄, e);
UNIFY(ρ, σ → β); (β new)
τ := β

3. If f is (if d then e else e′), then:
ρ := J (p̄, d); UNIFY(ρ, bool);
σ := J (p̄, e);, σ′ := J (p̄, e′);
UNIFY(σ, σ′); τ := σ

4. If f is (λx · d) then:
ρ := J (p̄ · λxβ , d); (β new)
τ := β → ρ

5. If f is (fix x · d), then:
ρ := J (p̄ · fix xβ , d); (β new)
UNIFY(β, ρ); τ = β

6. If f is (let x = d in e) then:
ρ := J (p̄, d); σ := J (p̄ · let xρ, e);
τ := σ.

UNIFY is a procedure that delivers no result, but has a side effect on a global substitution E. If
UNIFY(σ, τ) changes E to E′, and if U (Eσ,Eτ) = U , then E′ = UE, where U is a unification
generator.

Figure 3.20: Milner’s J Algorithm
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Milner’s algorithm, this is handled by virtue of passing the environments by value. We ensure this
by always placing, at the end of the local computation, a restore marker and a copy of the current
environment before affecting the environment. Thus, when the local computation is complete, the
environment is restored to what it was before starting the subcomputation.

Both definitions keep a single, global substitution, to which restrictions are continually added as
side effects. In addition, both only apply the substitution when doing variable lookup. The calls
to UNIFY in the application, if/then/else, and fix cases are reflected in our rules by the additional
formulas added to the eqns configuration item. Indeed, for the rules of Exp (disregarding our
extensions with integers), these are the only times we affect the unifier. As an example, let us look
at the application de in an environment p̄. In J , two recursive calls to J are made: J (p̄, d) and
J (p̄, e), whose results are called ρ and σ respectively. Then a restriction to the global unifier is
made, equating ρ with σ → β, with β being a new type variable, and finally β is returned as the
type of the expression.

We do a very similar thing. The strictness attributes of the application operator forces evaluation
of the arguments d and e first. These eventually transform into ρσ. We can then apply a rewrite
rule where we end up with a new type β, and add an equation ρ = σ → β to the eqns configuration
item. The evaluations of d and e are guaranteed not to change the environment because we always
restore environments upon returning types.

3.5.4 Definition of Abstract Type Inferencer

JEKT̂ = JLEMkT̂ L·MenvT LIDMsubstKT̂ (195)

J〈LτMkT̂ LθMsubst〉KT̂ = LτMsubst (196)

EE ′ = E y �E ′ (197)
EE ′ = E ′ y E� (198)

if K then S else S ′ = K y if � then S else S ′ (199)
if K then S else S ′ = S y if K then � else S ′ (200)
if K then S else S ′ = S ′ y if K then S else � (201)

let X be K in K ′ = K y let X be � in K ′ (202)
τ → K = K y τ → � (203)

(a) Structural Rules

θ : TypeVar→ TypeVar which we extend over K , TypeEnv, θs, and K̂ in the natural way.
θ ⊕ (τ1 = τ2) = θ ⊗ (Lτ1Msubst = Lτ2Msubst)

θ ⊗ (τ1 = τ2) =



θ if τ1 = τ2

θ[τ1 ← τ2] if τ1 ∈ TypeVar
θ[τ2 ← τ1] else if τ2 ∈ TypeVar
θ ′ ⊕ (τ ′1 = τ ′2)⊕ (τ ′′1 = τ ′′2 ) if τ1 6= τ2 and τ1 = τ ′1 → τ ′′1 and τ2 = τ ′2 → τ ′′2
⊥ otherwise

(b) Unification Operator

Figure 3.21: Definition of Abstract Type Inferencer
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Lτ y restore(Γ)
·

|〉kT̂ L
Γ
MenvT (204)

I : Int −→ Int (205)
true −→ Bool (206)
false −→ Bool (207)

L X
τ [tl← tl′]

|〉kT̂ LΓMenvT

where Γ[X ] = let(τ), tl = vars(τ)− vars(Γ), and tl ′ = |tl | fresh type variables
(208)

L X
Γ[X ]

|〉kT̂ LΓMenvT where Γ[X ] 6= let( ) (209)

L λX . E
(τv → E) y restore(Γ)

|〉kT̂ L Γ
Γ[X ← τv]

MenvT where τv is a fresh type variable (210)

L let X be τ in E
E y restore(Γ)

|〉kT̂ L Γ
Γ[X ← let(τv)]

MenvT where τv is a fresh type variable (211)

L fix X . E
E y?=(τv) y restore(Γ)

|〉kT̂ L Γ
Γ[X ← τv]

MenvT where τv is a fresh type variable (212)

Lτ y ?=(τv)
·
|〉kT̂ L θ

θ ⊕ (τ = τv)
Msubst (213)

Lτ + τ ′

Int
|〉kT̂ L θ

θ ⊕ (τ = Int)⊕ (τ ′ = Int)
Msubst (214)

Lτ1τ2
τv

|〉kT̂ L θ
θ ⊕ (τ1 = τ2 → τv)

Msubst where τv is a fresh type variable (215)

Lif τ then τ1 else τ2
τ1

|〉kT̂ L θ
θ ′

Msubst where θ ′ = θ ⊕ (τ1 = τ2)⊕ (τ = Bool) (216)

(c) Structural Rules

Figure 3.21: Definition of Abstract Type Inferencer (cont.)

We define the reduction relation −̂→ as −̂→ = −→; θ. We further identify configurations
JLK 1MkT̂ LΓ1MenvT Lθ1MsubstKT̂ and JLK 2MkT̂ LΓ2MenvT Lθ2MsubstKT̂ where ∃ a bijection ι : TypeVar →
TypeVar, extended in the usual way, such that ι(K 1) = K 2, ι(Γ1) = Γ2, and ι(θ1) = θ2.

Lemma 16. Any reachable configuration in the language domain can be transformed using structural
rules into a unique expression.

Proof. This follows from two key points. One, you cannot use the structural rules to transform an
expression into any other expression, and two, each structural rule can be applied backwards even
after semantic rules have applied.

3.5.5 Abstraction Function Definition

α(JEKL) = JEKT (217)

Figure 3.22: Definition of αExp
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By Lemma 16, we know this definition of α is well-defined for all reachable configurations, and
homomorphic with respect to structural rules.

3.5.6 Proofs

The proofs in this section that describe properties of the abstract type inferencer are preliminary.
They represent mostly a collection of lemmas we believe to be true, but they have not been formalized
yet.

Definition 1 (Generalizes relation). A type τ is said to generalize a type τ ′ (written τ � τ ′) if
∃ θ | θ(τ) = τ ′ where θ is a substitution over type variables.

Definition 2 (Type Equivalance). A type τ is said to be type equivalent to τ ′ if τ � τ ′ and τ ′ � τ .

Lemma 17.

JLK 1MkT̂ LΓMenvT LθMsubstKT̂ −̂→JLK 2MkT̂ LΓ′MenvT Lθ ′MsubstKT̂

iff
JLK 1 y K MkT̂ LΓMenvT LθMsubstKT̂ −̂→JLK 2 y θ ′(K MkT̂ ) LΓ′MenvT Lθ ′MsubstKT̂

Lemma 18. θ � θ ⊕ E

Lemma 19. If
JLK MkT̂ LΓMenvT LθMsubstKT̂ −̂→JLK ′MkT̂ LΓ′MenvT Lθ ′MsubstKT̂

then θ � θ ′.

Lemma 20. If
JLEMkT̂ LΓMenvT LθMsubstKT̂

∗̂−→ JLτMkT̂ LΓ′MenvT Lθ ′MsubstKT̂

then Γ′ = θ ′(Γ).

Lemma 21. If
JLEMkT̂ LΓMenvT LθMsubstKT̂

∗̂−→ JLτ1MkT̂ LΓ′MenvT Lθ ′MsubstKT̂

then if
JLEMkT̂ LΓ[X ← τ ]MenvT LθMsubstKT̂

∗̂−→ JLτ2MkT̂ LΓ′′MenvT Lθ ′′MsubstKT̂

for some fresh type variable τ , we have that τ2 � τ1.

Lemma 22. If

JLEMkT̂ LΓ[X ← τ ]MenvT LθMsubstKT̂
∗̂−→ JLτ1MkT̂ LΓ′MenvT Lθ ′MsubstKT̂

then if
JLEMkT̂ LΓ[X ← τ ′]MenvT LθMsubstKT̂

∗̂−→ JLτ2MkT̂ LΓ′′MenvT Lθ ′′MsubstKT̂

for types τ ′ � τ , we have that τ2 � τ1.

Lemma 23. If

JLEMkT̂ LΓMenvT LθMsubstKT̂
∗̂−→ JLτ1MkT̂ Lθ ′(Γ)MenvT Lθ ′MsubstKT̂
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and E contains no X , then

JLEMkT̂ LΓ[X ← τ ]MenvT LθMsubstKT̂
∗̂−→ JLτ1MkT̂ Lθ ′(Γ)[X ← τ ]MenvT Lθ ′MsubstKT̂

for a fresh τ .

Lemma 24. If
JLEMkT̂ LΓMenvT LθMsubstKT̂

∗̂−→ JLτ1MkT̂ LΓ1MenvT Lθ1MsubstKT̂

and τ is a fresh type variable, then for any X ,

JLEMkT̂ LΓ[X ← τ ]MenvT LθMsubstKT̂
∗̂−→ JLτ2MkT̂ LΓ2MenvT Lθ2MsubstKT̂

and τ2 � τ1 and θ2 � θ1.

Lemma 25 (Env ⇒ Rep). If

• JLV MkT̂ LΓMenvT Lθ0MsubstKT̂
∗̂−→ JLτV MkT̂ LΓ1MenvT Lθ1MsubstKT̂

• JLEMkT̂ LΓ1[X ← τV ]MenvT Lθ1MsubstKT̂
∗̂−→ JLτEMkT̂ LΓ2MenvT Lθ2MsubstKT̂

then JLE[X ← V ]MkT̂ LΓMenvT Lθ0MsubstKT̂
∗̂−→ JLτRMkT̂ LΓ3MenvT Lθ3MsubstKT̂ where τR � τE and

θ3 � θ2.

Proof. We will do an induction on the size (number of operators) of E. (Incidentally, Γ1 = θ1(Γ),
Γ2 = θ2(Γ1[X ← τV ]), and Γ3 = θ3(Γ).

Base Case: Consider an expression E of size 0. These include only variable names and constants.

Inductive Case: Consider an expression E of size n+ 1. It could be any of the expressions of the
language, and we consider each in turn. Assume the above property holds for all expressions
up to size n.

Consider the case when E is a lambda expression. We assume

LV MkT̂ LΓMenvT Lθ0Msubst
∗̂−→ LτV MkT̂ LΓ1MenvT Lθ1Msubst (218)

and

LλY . EMkT̂ LΓ1[X ← τV ]MenvT Lθ1Msubst
∗̂−→ LE y K MkT̂ LΓ1[X ← τV ][Y ← τ ]MenvT Lθ1Msubst

(219)
∗̂−→ LτE y θ2(K MkT̂ ) LΓ′MenvT Lθ2Msubst (220)
∗̂−→ Lθ2(τ)→ τEMkT̂ LΓ′′MenvT Lθ2Msubst (221)

(222)

for K = (τ → �) y restore(Γ1[X ← τV ]). We want to show that

L(λY . E)[X ← V ]MkT̂ LΓMenvT Lθ0Msubst
∗̂−→ LτRMkT̂ LΓ3MenvT Lθ3Msubst (223)
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with τR � θ2(τ)→ τE and θ3 � θ2.

We first notice that there can be no Y in V , so by Lemma 23 and assumption 218, we know
that

LV MkT̂ LΓ[Y ← τ ]MenvT Lθ0Msubst
∗̂−→ LτV MkT̂ LΓ1[Y ← τ ]MenvT Lθ1Msubst (224)

Furthermore, by Lemma 24,

LEMkT̂ LΓ1[Y ← τ ][X ← τV ]MenvT Lθ1Msubst
∗̂−→ Lτ ′EMkT̂ LΓ′2MenvT Lθ ′2Msubst (225)

for some τ ′E � τE and θ ′2 � θ2. Now we can apply the inductive hypothesis to conclude

LE[X ← V ]MkT̂ LΓ[Y ← τ ]MenvT Lθ0Msubst
∗̂−→ LτSMkT̂ LΓ3MenvT Lθ3Msubst (226)

with τS � τ ′E � τE and θ3 � θ ′2 � θ2.

So now we know that

L(λY . E)[X ← V ]MkT̂ LΓMenvT Lθ0Msubst
∗̂−→ LE[X ← V ] y K MkT̂ LΓ[Y ← τ ]MenvT Lθ0Msubst

(227)
∗̂−→ Lθ3(τ)→ τSMkT̂ LΓ3MenvT Lθ3Msubst (228)

All that remains to be shown is that θ3(τ)→ τS � θ2(τ)→ τE . We know:

1. ∃θ.∀τv.θ(θ3(τv)) = θ2(τv)

2. ∃θ′.θ′(τS) = τE

3. θ2(τE) = τE

4. θ3(τS) = τS

5. τ is a base type

This is true if ∃θ′′.θ′′(θ3(τ)→ τS) = θ2(τ)→ τE , or equivalently we can find a θ′′ st

1. θ′′(θ3(τ)) = θ2(τ)

2. θ′′(τS) = τE

We have not been able to show this yet.

Lemma 26 (Top of Stack Lemma). If LS y K MkT
∗−→ Lτ y K MkT , then LS y K ′MkT

∗−→ Lτ y K MkT
for any K ′.

Lemma 27. If T |= α(V ) ∗−→ τ then JV KT
∗−→ τ

Proof. This follows directly from the W rewrite rules for values.

Lemma 28 (Main Lemma for Preservation). If JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R,
then T |= α(R) ∗−→ τ ′ for some τ ′ unifiable with τ .

40



Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. Then R = JEKL. By the definition of α, we see that
α(R) = JEKT . By assumption, this reduces to τ , so we have that α(R) ∗−→ τ .

Induction Case Assume JEKL
n−→ R and α(R) ∗−→ τ . If no steps can be taken from R then the

property holds vacuously, so assume an n + 1 step can be taken to get to a state R′. This
step could be any one of the structural or semantic rules of the language. We consider each
individually:

Rule 162 through 169 These all follow from Lemma 16.

Rule 170 R = LLI : Int+ I ′ : Int y K MkLM> Now we work with α(R):

α(R) = α(LLI + I ′ y K MkLM>)

which reduces to:

LLI + I ′ y K MkT L·MenvT L·Meqns Lτ0MnextTypeM>

by the definition of α. This then reduces to:

LLInt + Int y K MkT L·MenvT L·Meqns Lτ0MnextTypeM>

because we reduce integers to Int. This then reduces to:

LLInt y K MkT L·MenvT LInt = Int, Int = IntMeqns Lτ0MnextTypeM>

by applying the reduction rule for addition. Finally, we can reduce this to:

LLInt y K MkT L·MenvT L·Meqns Lτ0MnextTypeM>

by applying one of the rules of unification twice. Now we work with R′. We start with:

α(R′) = α(LLI +int I
′ y K MkLM>)

which reduces to:

LLI +int I
′ y K MkT L·MenvT L·Meqns Lτ0MnextTypeM>

by the definition of α. This immediately reduces to:

LLInt y K MkT L·MenvT L·Meqns Lτ0MnextTypeM>

because we reduce integers to Int. So, we now have that α(R) and α(R′) both reduce to the

same configuration. We know by inductive assumption that α(R)
∗−→ τ . Since α(R) and α(R′)

both reduce to the same configuration, α(R)
∗−→ τ also. This completes the case.
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Rule 171 R = LL(λX . E)(V : Val) y K MkLM>
α(R) By Rule

L(λX . E)(V : Val) y K MkT L·MenvT L·Meqns Lτ0MnextType 217

LλX . E y �V y K MkT L·MenvT L·Meqns Lτ0MnextType 197

L(τ0 → E) y restore(·) y �V y K MkT L[X, τ0]MenvT L·Meqns Lτ1MnextType 210

LE y (τ0 → �) y restore(·) y �V y K MkT L[X, τ0]MenvT L·Meqns Lτ1MnextType 203

Lτ1 y (τ0 → �) y restore(·) y �V y K MkT L[X, τ0]MenvT LEMeqns LτvMnextType ind. assm.

L(τ0 → τ1) y restore(·) y �V y K MkT L[X, τ0]MenvT LEMeqns LτvMnextType 203

L(τ0 → τ1) y �V y K MkT L·MenvT LEMeqns LτvMnextType 204

L(τ0 → τ1)V y K MkT L·MenvT LEMeqns LτvMnextType 197

LV y (τ0 → τ1)� y K MkT L·MenvT LEMeqns LτvMnextType 198

Lτ2 y (τ0 → τ1)� y K MkT L·MenvT LE ′Meqns Lτv
′MnextType ind. assm.

L(τ0 → τ1)τ2 y K MkT L·MenvT LE ′Meqns Lτv
′MnextType 198

Lτv
′ y K MkT L·MenvT LE ′ · (τ0 → τ1 = τ2 → τv

′)Meqns Lτv
′MnextType 215

In the above we see that

• LE y K 1MkT L[X, τ0]MenvT L·Meqns Lτ1MnextType
∗−→

Lτ1 y K 1MkT L[X, τ0]MenvT LEMeqns LτvMnextType

• LV y K 2MkT L·MenvT LEMeqns LτvMnextType
∗−→

Lτ2 y K 2MkT L·MenvT LE ′Meqns Lτv
′MnextType .

• τ0 = τ2

• τ1 = τv
′

R′ = LLE[V /X ] y K MkLM>

α(R′) By Rule

LE[V /X ] y K MkT L·MenvT L·Meqns Lτ0MnextType 217

Lτv
′ y K MkT L·MenvT L·Meqns Lτ0MnextType Lemma 25
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Rule 172 R = LLlet X be V : Val in E y K MkLM>
α(R) By Rule

Llet X be V in E y K MkL L·MenvT L·Meqns Lτ0MnextType 217

LV y let X be � in E y K MkT L·MenvT L·Meqns Lτ0MnextType 202

Lτ1 y let X be � in E y K MkT L·MenvT L·Meqns LτvMnextType ind. assm.

Llet X be τ1 in E y K MkT L·MenvT LEMeqns LτvMnextType 202

LE y restore(·) y K MkT L[X , let(τ1)]MenvT LEMeqns LτvMnextType 211

Lτ2 y restore(·) y K MkT L[X , let(τ1)]MenvT LE ′Meqns Lτv
′MnextType ind. assm.

Lτ2 y K MkT L·MenvT LE ′Meqns Lτv
′MnextType 204

In the above we see that

• LE y K 1MkT L[X, let(τ1)]MenvT LEMeqns LτvMnextType
∗−→

Lτ2 y K 1MkT L[X, let(τ1)]MenvT LE ′Meqns Lτv
′MnextType

• LV y K 2MkT L·MenvT LEMeqns Lτ0MnextType
∗−→

Lτ1 y K 2MkT L·MenvT LE ′Meqns LτvMnextType .

R′ = LLE[V /X ] y K MkLM>

α(R′) By Rule

LE[V /X ] y K MkT L·MenvT L·Meqns Lτ0MnextType 217

Lτv
′ y K MkT L·MenvT L·Meqns Lτ0MnextType Lemma 25

Rule 173 R = LLif true then E else E ′ y K MkLM>
α(R) By Rule

Lif true then E else E ′ y K MkL L·MenvT L·Meqns Lτ0MnextType 217

Lif Bool then E else E ′ y K MkL L·MenvT L·Meqns Lτ0MnextType 206

LE y if Bool then � else E ′ y K MkL L·MenvT L·Meqns Lτ0MnextType 200

Lτ y if Bool then � else E ′ y K MkL L·MenvT LEMeqns LτvMnextType ind. assm.

Lif Bool then τ else E ′ y K MkL L·MenvT LEMeqns LτvMnextType 200

LE ′ y if Bool then τ else � y K MkL L·MenvT LEMeqns LτvMnextType 201

Lτ ′ y if Bool then τ else � y K MkL L·MenvT LE ′Meqns Lτv
′MnextType ind. assm.

Lif Bool then τ else τ ′ y K MkL L·MenvT LE ′Meqns Lτv
′MnextType 201

Lτ y K MkL L·MenvT LE ′ ·Bool = Bool · τ = τ ′Meqns Lτv
′MnextType 216

R′ = LLE y K MkLM>

α(R′) By Rule

LE y K MkT L·MenvT L·Meqns Lτ0MnextType 217

Lτ y K MkT L·MenvT LEMeqns LτvMnextType Lemma 26

Rule 174 This proceeds like rule 173.

Theorem 4 (Preservation). If JEKT
∗−→ τ and JEKL

∗−→ V for some type τ and value V , then
JV KT

∗−→ τ ′ unifiable with τ .

Proof. This follows directly from Lemmas 27 and 28.
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Chapter 4

Conclusions

4.1 Statement of Results

The aim of this work was to demonstrate the feasibility of proving type preservation using the
K-method. We were able to sketch formal arguments for preservation of typing in five different
languages and type systems. This result is promising, and suggests work in this area should continue.
However, much more complicated type systems need to be investigated before we can say whether
the technique composes or even scales.

4.2 Problems Left Unsolved

This work does not address languages that have references, continuations, halt, exceptions, records,
reflection, and many other common (and typically problematic) language features. It is important
to note, however, that all of these language features have been investigated on their own, but not
in relation to type systems. Similarly, many type system features have also been neglected—for
example, no effort has been made in type systems with subtyping. We plan on starting work soon for
some of these features (records and subtyping) for our submission to PoplMark [Aydemir et al.,
2005].

This work also does not address the issue of modularity. The modularity of K at the language-
definition level has been established by [Roşu, 2006, 2008]. It is highly desirable that type system
definitions be modular. If one adds subtyping, one should not need to do anything but add those
particular rules. Additionally, it would be ideal to have the proofs of language level theorems to be as
modular as the language semantics. To study this, one would need to take an arbitrary language and
type system, for which preservation has been proved, and add either new language or type system
features. Then a careful analysis can be made as to which parts of the original definitions and proofs
can be kept.

This proof is also not as formal as a proof about programming languages should be. We should
be able to formalize this work in a proof assistant, and have the computer aid us in proving these
and similar properties. Additionally, a library of commonly used theorems should accompany the
K-prelude of commonly used programming language features.
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