American University in Cairo

AUC Knowledge Fountain

Archived Theses and Dissertations

December 2021

Error correction in quantum cryptography

Mohamed Salah EI Ashmawy
The American University in Cairo AUC

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

6‘ Part of the Numerical Analysis and Scientific Computing Commons

Recommended Citation

APA Citation

El Ashmawy, M. S. (2021).Error correction in quantum cryptography [Thesis, the American University in
Cairo]. AUC Knowledge Fountain.

https://fount.aucegypt.edu/retro_etds/2642

MLA Citation

El Ashmawy, Mohamed Salah. Error correction in quantum cryptography. 2021. American University in
Cairo, Thesis. AUC Knowledge Fountain.

https://fount.aucegypt.edu/retro_etds/2642

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Archived Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact fountadmin@aucegypt.edu.


https://fount.aucegypt.edu/
https://fount.aucegypt.edu/retro_etds
https://fount.aucegypt.edu/retro_etds?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2642&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2642?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2642?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2642&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu

/ E Y

The American University in Cairo
School of Sciences and Engineering

Error Correction in
Quantum Cryptography

A Thesis Submitted to
Computer Science Department

In partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

By
Mohamed Salah El Ashmawy

Under the Supervision of
Dr. Amr Goneid

April 2004

pod

3



The American University in Cairo 2oy L

Error Correction in
Quantum Cryptography

A Thesis Submitted by
Mohamed Salah El Ashmawy

To the department of Computer Science
April 2004

In partial fulfillment of the requirements for
the degree of Master of Science

Has been approved by

Dr. Amr Goneid
Thesis Committee Chair/ Adviser
Affiliation

Dr. Amr El Kadi
Thesis Committee Reader/ examiner

Affiliation

Dr. Sherif El Kassass
Thesis Committee Reader/ examiner

Affiliation

Dr. Mohamed Saieed Abdel-Wahab
Thesis Committee Reader/ examiner

Affiliation

Department C
Program Dir



Acknowledgement

I would like to acknowledge my supervisor Dr. Amr Goneid for the help and
support he has provided me with during the course of working on this thesis. I would like
to thank him for guiding me through this work and for his help especially in the
mathematical modeling part. I would also like to thank the examiners Dr. Amr El Kadi
and Dr. Sherif El Kassas for their efforts and for donating some of their time for reading

and assessing this thesis.

I would also like to acknowledge the Computer Science Department for its efforts
at maintaining and enhancing the Computer Science masters program. I would like to
thank the department for its efforts at enhancing the facilities that would help the research
students to work on their thesis. Moreover, I would like to thank the American University
in Cairo for its support for the masters program and for its dedication to high quality
learning. I would also like to thank the University for its Research Facilities such as the

library.

il



Abstract

Quantum Cryptography is the newest branch of cryptography and it is the hottest
topic now especially that quantum cryptanalysis threatens public key cryptography.
Quantum cryptography does not actually encrypt the message itself but rather generates
and distributes a random key between the sender and the receiver that is totally secure;
this key could then be used as a key for one-time pads or Advanced Encryption Standard
(AES) cryptosystems to encrypt messages between sender and receiver. It is based on a
combination of the concepts of quantum physics, information theory and classic
cryptographic schemes with the goal of generating a secret key (or extending a short key)
between the two communicating parties. It is a promising field as it has been proven
unconditionally secure against many types of attacks.

An important phase in the creation of the keys in Quantum Cryptography is the
error correction phase where the two communicating parties share a preliminary key that
contains some discrepancies between both parties’ versions. In this phase, the two parties
communicate to refine the shared key and create a shorter key that has no discrepancies.

This thesis aims at enhancing the error correction phase so that the keys generated
would be created more efficiently to create longer shared keys in less time. This is
achieved through the introduction of memory between the rounds of the error correction
phase where a round would identify the locations it found errors in to help the next round
be more focused. This would have an effect on the final shared key between the two
communicating parties where the shared secret key length would increase in size. In order
to be able to apply the modification, an implementation was made to the standard BB84
protocol as well as our enhanced one that uses memory between rounds. Experiments
were made for both the standard and the enhanced algorithms in order to assess the effect
of the enhancements that have been introduced. The superiority of the present enhanced
algorithm appeared in those experiments and an evaluation parameter has increased from
2.5 to 5 when using initial key size of 2000 bits with 80 discrepancies. The evaluation
parameter has increased from 4.76 to 8.6 in the case of having initial key size of 5000 bits
with 100 discrepancies. The superiority of the present enhanced algorithm has been

established through a mathematical model that has been formulated for the system.
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Chapter 1: Introduction

1.1 Introduction

The start of cryptography dates back to the times of Julius Caesar who used a
cipher to keep his messages safe from the enemies (this cipher is known now as the
Caesar cipher). This cipher was a simple one where the letters of the text were replaced
by other letters that are three letters after them in the alphabetic order. That cipher
depended on the secrecy of the encryption algorithm and if anyone knew the algorithm
used to encrypt the message, he would have been able to decrypt the messages. Since
then cryptography has undergone many developments till it reached the state it is in now.

Cryptography is the art of rendering a message unreadable by any unauthorized
party. It refers to the study of methods for sending an encrypted message from the sender
to the recipient so that only the intended recipient can decrypt it and read the message.

A person who works on cryptography is called a cryptographer whereas a person who
works on attempting to defeat the cryptographic methods and decrypt encrypted
messages is called a cryptanalyst. Cryptanalysis is the science of recovering the plaintext
(the original text of the message) from the ciphertext (the message after being encrypted)
while having no privilege to do so (not knowing the encryption key). Cryptanalysis can

also lead to the recovery of the key used for encryption/decryption [Molin 2001].

Cryptography is sometimes required also to do the following tasks:
1. Authentication: This means that the receiver could ascertain that this message
is sent by the real sender and not from an intruder impersonating him [Schneier
1996].
2. Integrity: This means that the receiver can verify that the message has not
been modified during its way from the sender to the receiver [Schneier 1996].

A cryptosystem is defined as:

“A cryptosystem is comprised of a set {E.: € € K} consisting of enciphering

transformations, and the corresponding set {Dg4: d € K} of deciphering transformations.

i.e. For each e € K there exists a unique d € K such that Dy = E'e so that Dy4(Ee(m)) =m



forall m € M (where M is the message to be enciphered). The keys(e,d) are called key
pairs where possible e=d.” [Molin 2001]

Currently, public key cryptography has been the main cryptographic system used for
encryption. In particular, public key cryptography has been used to create a common key
between the communicating parties. That key would be used by other encryption schemes
such as Data Encryption Standard (DES) for the actual communication between the
parties. However, public key cryptography is under the threat of a new kind of
cryptanalysis (quantum cryptanalysis) that would be able to decrypt the messages sent
between the sender and the receiver. This kind of cryptanalysis (though impractical yet)
deems public key cryptography unsafe as the messages between the communicating
parties is under the threat of being decrypted by any eavesdropper using that technique.
Thus, there is a need for a new cryptographic system that would be safe and secure
against cryptanalytic attacks. Quantum Cryptography is a cryptographic system that
could satisty this need and it has been proven to be unconditionally secure against many
types of attacks [Mayers 2001].

Quantum Cryptanalysis needs quantum computers to be available to be
implemented; however, quantum cryptography does not need quantum computers for
implementation. Quantum cryptography is mainly a key distribution system with the aim
of creating secure keys between the sender and the receiver; however, quantum
computing is the whole system of using quantum effects and quantum computers to
achieve needed results.

Quantum Cryptography is based on the Heisenberg uncertainty principle which
states that “measuring a quantum system disturbs it and yields incomplete information
about its state.” Thus, eavesdropping on the quantum communication channel causes
unavoidable disturbance that can be recognized by the legitimate users [Brassard 1994].
This helps in creating a system for key distribution between two people who don’t
initially share any secret information.

The steps for the quantum key distribution protocol are as follows:

1. Creation of a key between the two communicating parties (Alice and Bob)

using one of several techniques such as polarization methods or phase

methods (explained in the next sections).



2. Error Correction for the errors and discrepancies between the keys with Alice
and Bob.

3. Privacy Amplification which is concerned with reduction of the eavesdropper
information that might be gained during the initial creation of the key.

These steps are explained in further details in chapter 4.

1.2 Thesis Motivation

Cryptography has been dependent in its greatest part on public key cryptography
during the past years. It didn’t actually depend on public key cryptosystems for
encrypting messages but it depended on public key cryptography to create keys that are
secure from any eavesdropper and used these keys as input to symmetric cryptosystems
(DES for example) to encrypt the messages that are actually sent between the sender and
the receiver.

However, this whole view of cryptography is about to be changed as quantum
cryptanalysis is threatening the basis of public key cryptography which is one-way
functions and is threatening to be able to compute them in polynomial time on quantum
computers. Quantum computers are still in their first stages and may not see the light in
the near future but the threat still holds especially that quantum computers with 3 g-bits
have been already developed in the labs as will be explained later in chapter 3.

This means that public key cryptography would no longer be secure in the future and
there is a need for a new class of cryptography. That’s why quantum cryptography has
become a very hot and interesting issue in cryptography during the past few years
especially that it has been proven by Dominic Mayers and many others that it is
unconditionally secure [Boyer et at. 2001, Mayers 2001]. Unconditional security means
that a secure result is expected to hold against all the attacks allowed by the eavesdropper
assuming that he/she has unlimited processing power. Public key cryptography
techniques aren’t unconditionally secure [Boyer et al. 2001, Mayers 2001].

Quantum cryptography is still in the research phase and there are issues that must
be solved. It is apparent that in quantum cryptography there are many issues that need to
be settled on such as the communication medium, the wavelength, and the encoding.

Moreover, the BB84 protocol which is the protocol used for quantum key distribution



contains many phases that need a lot of enhancements and must be put on a secure basis
in addition to being adequate to user requirements [Kollmitzer et al 2002] .

The number of bits in the shared key between the two communicating parties (the
output of quantum cryptography and that would be used as a key between the
communicating parties) depends heavily on the number of bits lost during the error
correction and privacy amplification phases (phases of BB84 protocol). This protocol is
the protocol for quantum key distribution and it consists of three phases which are key
generation, error correction and privacy amplification. Thus, if the error correction phase
keeps more bits the final shared string would become longer. It is desirable that this final
shared string, which would be used as the encryption key later, be as long as possible
because in this case it could be used in vernam ciphers (one time pads) to give the best
possible security. Therefore, it is desirable that the error correction phase keep as much
bits as possible to achieve this goal.

The error correction phase, as it’s designed in the BB84 protocol, is split into a
number of rounds. Each row consists of splitting the string into blocks, comparing the
parities of these blocks, and discarding a bit of each block at the end. Those rounds are
repeated many times till no errors are discovered in the parities for a fixed number of
rounds (20 rounds are used generally). These rounds don’t interact with each other (i.e.
there is no memory between one round and the other) and thus they don’t take advantage

of each other’s results [Bennet and Brassard 1984].

1.3 Thesis Objective

It’s the objective of this research to make enhancements in the error correction
phase of the BB84 protocol to make it more efficient and thus to decrease the number of
bits lost during this phase. This would have an effect on the final shared key between the
two communicating parties where the shared secret key length would increase in size.
This enhancement would be made through the use of memory between the rounds of
error correction where a round would identify the locations it found errors in to help the
next round to be more focused. This would decrease the number of rounds used to reach

the final shared string (increase the shared string size).



1.4 Thesis Outline

This thesis paper is subdivided into different sections, each containing chapters
that are related to a topic. The first section contains literature review on cryptography in
general. The second section is concerned with quantum cryptography, its evolution,
protocols and the problems and current projects in it. The third section contains the work
done in this research to achieve the thesis objective.

This first section contains literature overview on cryptography in general and
quantum computing. It consists of one chapter which is chapter 2 that is concerned with
the evolution of cryptography and its systems (symmetric and public key cryptography
systems), the techniques for each and the drawbacks of them.

The second section contains chapters 3 and 4 and it focuses on quantum
cryptography. Chapter 3 gives a quick overview of quantum computing and is concerned
with the scientific basics of quantum cryptography, its history and how it is realized.
Chapter 4 concentrates on the BB84 protocol which is the main protocol used for
quantum cryptography and describes its details and uses an experiment done using this
protocol as an illustration.

To be able to achieve the thesis objective and compare the results of using the
standard BB84 protocol as described by Bennet and Brassard with the use of the newly
suggested enhanced algorithm, we needed to implement both the standard algorithm and
our enhanced one. The details of this implementation and the results reached during this
research are described in the third section of this thesis paper.

Following is a brief outline of the steps followed in this research of the topic and a
summary of the main problems encountered and resolved. The points in the outline are
elaborated in the chapters of section 3 with the results.
1. Implementing the standard algorithm that was described in the BB84 protocol and
was originally designed by Bennet and Brassard in 1984. The protocol was
implemented and tested with the results they have reached in their experiments.

[the details are in Chapter 5]



. Implementing the proposed enhanced algorithm which contains the dismissal of a
bit from being re-evaluated after it’s already checked sufficient number of times.
This algorithm is based on the standard algorithm but has some customizations to
enhance performance and increase the size of the resultant key. [the details are in

Chapter 5]

. After implementing both algorithm (standard and enhanced), they were tested
thoroughly with different values of errors, block sizes and increments in block
sizes (the variables that affect the resultant key created at the end of the error

correction phase). [the details are in Chapter 6]

After getting the results of both algorithms in step3, the results are compared for
assessing the enhancement that was achieved by using the enhanced algorithm.

[the details are in Chapter 6]

. When the error rate increases above the value of 15%, the standard and enhanced

algorithms give wrong results and don’t calculate the error rate correctly. These
erroneous results occur because the algorithm uses parity to check that 2 blocks of
the key are equivalent which fails when having large number of errors in both
blocks. The solution to this problem was to add sampling before entering into the

algorithm. [the details are in Chapter 6]

. A mathematical model was developed for the behavior of the standard and
enhanced algorithm towards changing values of error rate, initial block size and
block size increment. The results were obtained by applying both the standard and

the enhanced algorithm and they are compared. [the details are in Chapter 7].
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Chapter 2: Overview of Cryptography

2.1 Introduction
Classical cryptography can be classified to symmetric key cryptosystems and Public key

cryptosystems.

2.2 Symmetric Key Ciphers (Symmetric Key Cryptosystems)

A symmetric key cryptosystem is a cryptosystem where it is easy to compute the
decryption key (d) knowing only the encryption key (e) (with the possibility that the
encryption key is the same as the decryption key) [Schneier 1996]. These ciphers are also
called secret-key algorithms and most of them require the sender and the receiver to agree
on a key before they communicate which arouses the problem of how these keys are to be
communicated between them if they do not meet. Moreover, the usage of the same key
more than once between the sender and the receiver makes the cipher more vulnerable to
attacks and may lead to the recovery of the key by a cryptanalyst that have been
eavesdropping. This means that all the messages between this sender and receiver would

be recovered by the cryptanalyst.

Examples of Symmetric key ciphers are

2.2.1 Substitution Ciphers

These are ciphers in which each character in the plaintext is substituted by a
character in the ciphertext and the receiver inverts the substitution on the ciphertext to
recover the plaintext later [Schneier 1996].

These ciphers can be divided into:
1- Monoalphabetic: Each character in the plaintext is substituted by a corresponding

character in the ciphertext [Schneier 1996].

2- Homophonic: Same as Monoalphabetic but each character in the plaintext can

map to one of several characters in the ciphertext [Schneier 1996].

3- Polygon: Blocks of characters are enciphered in groups (not character by

character as in Monoalphabetic substitution ciphers) [Schneier 1996].

4- Polyalphabetic: This consists of r Monoalphabetic substitution ciphers (there are

multiple Monoalphabetic substitution ciphers). For example there might be 3



substitution ciphers that are used depending on the position of the character in the
plaintext [Schneier 1996].
An example of the substitution ciphers is the Caesar Cipher which is given by the
equation:
Ee¢(m;) = ¢j= m; + b (mod n)
Where mj is a message block, c;is the encryption of the message block, n is a prime
number and b is 3 in Caesar cipher.
And the decryption is done using the following equation:

Dd(Cj) =my= ¢ - b (mod n)

Simple Substitution Ciphers face the weakness of being subject to frequency
analysis because they do not change the number of times that a letter appear in the plain
text (and so its equivalent in the cipher text) which can be used by a cryptanalyst to
recover the encryption key. Polyalphabetic Ciphers doesn’t face this weakness because
the frequency of the letters in the alphabet isn’t preserved. This doesn’t mean that
Polyalphabetic Ciphers are totally safe from frequency analysis because if the variable r
is known, then the ciphertext symbols can be separated into r groups and frequency

analysis can be done on each group. [Schneier 1996]

2.2.2 Transposition/Permutation Ciphers
This is a symmetric-key block cryptosystem in which the keyspace is a set of

permutations on {1,2..,r}. The transformation is given by
Eo(m) = (me(1), Mee2y, ... JMem) =C
And the decryption would be as follows:
Dy = (caq1y, Cd2yse--- - - ,Cdr) ) =M
Where d = ¢!
This means that this encryption just changes the places where the plain text symbols are

present [Molin 2001].

2.2.3 The DES Cryptosystem

Data Encryption Standard (DES) is a symmetric key cryptosystem in which a

56-bit key is combined with the plaintext divided into blocks in a complicated way that



involves permutations to produce the cipher-text blocks. It is considered one of the best
and most widely used cryptosystem commercially available. However, It is believed now
that DES “has reached the end of its credibility” so improvements and new algorithms are
developed to increase its security such as triple DES and AES (Advanced Encryption
Standard). In triple DES, DES is used to encrypt the plaintext with a key, then it is
decrypted using DES by another key then encrypted again using a third key and vice

versa in case of decryption [Molin 2001].

2.2.4 Vernam Cipher (One Time Pads)
This is the only perfect encryption scheme and was invented in 1917 by Gilbert

Vernam at AT&T. It contains a large nonrepeating sequence of random letters that is held
only by the sender and the receiver (the encryption/decryption key) and that is as long as
the message to be encrypted. Each letter in this key is used to encrypt exactly one
character in the plaintext (by adding to the plaintext character modulo 26) and after
sending the message the sequence of letters used is destroyed and never used again
[Schneier 1996].
This cryptosystem is provably secure; in fact, this is the only cryptosystem that is
provably secure today and its security depends on the following conditions:

1. The key used is completely random.

2. The key is as long as the message itself. (i.e. no letter of the key is used to

encrypt more than one letter in the message)

3. Itis used only once then the key is changed [Kollmitzer et al. 2002].



2.2.5 Problems of Symmetric Key Cryptosystems
Most of the Symmetric key cryptosystems are vulnerable to many attacks as

discussed and can’t be used in critical applications that need the secure transfer of data.
Even DES needs updating and will be substituted by new algorithms such as the
Advanced Encryption Standard (AES) due to the increase in the computational powers of
the machines and the invention of new cryptanalysis techniques that threaten to break the
algorithm. It is not that these new algorithms are impossible to break, but that it would
take long time (years) of computer processing time to decrypt messages today with
present technology.

On the other hand, in 1996 Lov Grover discovered a quantum algorithm (based on
quantum computers) to do searches more efficiently. This algorithm is speculated to
improve the effectiveness of brute force attacks on DES and AES. There are no quantum
computers currently available; however, there is a lot of research done on this topic.
Quantum computers with 3 quantum bits are already built [Rieffel and Pollak 2000] but
there are problems in scaling to increase the number of bits inside them. The power of
quantum computation derives from “the exponential state spaces of multiple quantum
bits” where a single quantum bit can be in a superposition of O and 1 and thus a register
of n gbits (quantum bits) can be in a superposition of 2" possible values [Rieffel and
Pollak 2000]. Thus, in quantum systems “the amount of parallelism increases
exponentially with the size of the system” and an exponential increase in the parallelism
is achieved by a linear increase in the amount of space needed [Rieffel and Pollak 2000].
Since quantum computers provide such an exponential speed-up in computational power,
it is anticipated that some algorithm will eventually obliterate AES and DES or any other
standard based on computational difficulty such as DES and AES. [MagiqTech.
Backgrounder, 2002]

One—-time pad is perfectly secure but it needs a new key each time it is used and
that key would be destroyed afterwards so the key distribution might be a problem.

In general, the presence of a key that is shared only between both the sender and the
receiver is crucial for symmetric key cryptosystems to be secure; moreover, the choice of

the cipher to be used is very crucial because many are vulnerable to cryptanalysis attacks
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like frequency attacks as in the case of substitution ciphers and differential cryptanalysis

attacks that could be used against DES.

2.3 Public Key Cryptosystems

Public key cryptography was first proposed in 1976 by Whitfield Diffie and
Martin Hellman from the Stanford University [Diffie and Hellman 1976] and its first
actual implementation was in 1978 when Ronald Rivest, Adi Shamir and Leonrad
Adelman from the Massachusetts Institute of Technology (MIT) developed the RSA
cryptosystem.

In Public key cryptosystems (also called asymmetric key cryptosystems) the key
used for encryption is different from the key used for decryption and the decryption key
cannot be calculated from the encryption key in a reasonable amount of time [Schneier
1996]. If Bob wants to be able to receive message encrypted with public key
cryptography, then he must create a private key which he keeps secret and compute a
public key from this private key. He then distributes the public key to whomever wants to
send him a message so if Alice wants to send a message, she encrypts it with his public
key and transmits it to Bob. Bob decrypts the message using his private key and reads it
whereas any eavesdropper Eve won’t be able to decrypt it without having Bob’s private
key.

The public key cryptosystems depend on one-way-functions that are defined as
follows: “A function F from a set M to a set E is called one-way function if we can easily
compute F, but it is computationally infeasible to compute F''* [Molin 2001].

Definition of public key cryptosystems: A cryptosystem consisting of a set of
enciphering transformations E. and a set of deciphering transformations Dy is called a
public key cryptosystem if, for each pair (e,d), the enciphering key e (the public key), is
publicly available while the deciphering key d (the private key is kept secret). It must be
computationally infeasible to compute private key d from public key e [Molin 2001].

Public key cryptosystems don’t substitute symmetric key cryptosystems but they
only encrypt keys that are later used by the symmetric key cryptosystems to encrypt the

message itself. The reasons for not encrypting messages using public-key cryptography
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are that it’s slow as they are 1000 times slower than symmetric key cryptosystems
[Schneier 1996].

In public key cryptography, it is possible for a cryptanalyst to intercept the messages sent
between the two communicating entities in the initial key transfer stage and thus he/she
can impersonate them and convince each of them that the cryptanalyst is the other entity.
In order to overcome this, and be able to verify that a message sent from a person is
really a message written by him and not by another person impersonating him, digital
signatures are used.

A digital signature is a digital data string that associates a message to its sender [Molin
2001].

The most famous of the public key cryptosystems is the RSA cryptosystem.

2.3.1 The RSA Public Key Cryptosystem

The RSA algorithm generates two large prime numbers p and q where p # q and
p.q are roughly the same size then computes n=pq and @(n) = (p-1) (g-1). After that the
algorithm selects a random positive integer e such that 1<= e <= @(n) and gcd(e, @(n)) =1
(gcd= greatest common divisor) and then computes d where 1 <d < ¢(n) anded = 1
(mod @(n)) .This can be computed using the extended Euclidian algorithm. Then the
public key is (n,e) and the private key is d. [Molin 2001]
Encryption of a message m is done by the following equation:

c=m’ (Equation 2.1)

Where m is the message plain text and c is the cipher text
Decryption of any encrypted message is done by the following equation:

m=c (Equation 2.2)

RSA depends on the fact that the decryption key d cannot be computed from the

encryption key (e) [Molin 2001].

There are other algorithms that are used for public key encryption such as the
Rabin Public-key cryptosystem and the ElGamal Cryptosystem and each of them has its
own way for the creation of public and private keys and each has its own signature

scheme.
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There are also public key algorithms that rely in their theory on the subset sum
problem and the knapsack problem like the Merkle-Hellman Knapsack Public-key Cipher
(Shamir produced an algorithm that breaks it in 1982 in polynomial time) and the Chor-

Rivest knapsack problem (the only known secure knapsack cipher at the present time).

2.3.2 Problems with Public Key Cryptosystems
A problem that faces public key cryptography is that there is no mathematical

proof that one-way functions exist and there is no real evidence that they can be
constructed. However, there are functions that look one-way in that they are easy to
compute but there is no known way to compute their reverse up till the moment [Schneier
1996]. Thus, all public key cryptosystems rely for their security on unproven assumptions
that could be suppressed by practical or theoretical advances [Gisin et al. 2002].

The RSA cryptosystem relies on the difficulty of factoring large integers (product
of two prime numbers). The fact that factoring is a one way function is because the time
required to factor a number increases exponentially with the number of digits in that
number. Thus, factoring a number that exceeds 1024 digits is infeasible to compute even
on high speed computers in a distributed environment [“Quantum Cryptanalysis” 2002].
Not only RSA but also many other algorithms depend on the fact that factoring large
integers is a one-way function.

However, a new kind of cryptanalysis (quantum cryptanalysis) is threatening to be able to
factor large integers which could cause the collapse of RSA and many other public key
encryption schemes.

Quantum cryptanalysis is based on the existence of quantum computers as it takes
advantage of their nature to succeed in what classical computers failed to do [“Quantum
Cryptanalysis” 2002]. The power of quantum computation derives from “the exponential
state spaces of multiple quantum bits” where a single quantum bit can be in a
superposition of O and 1 and thus a register of n gbits (quantum bits) can be in a
superposition of 2" possible values [Rieffel and Pollak 2000]. Thus, in quantum systems
“the amount of parallelism increases exponentially with the size of the system” and an
exponential increase in the parallelism is achieved by a linear increase in the amount of

space needed [Rieffel and Pollak 2000].
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In 1994, Peter Shor described a quantum algorithm for factoring integers in
polynomial time; moreover, he proposed another algorithm for calculating discrete
logarithms too [Shor 1994, Shor 1997]. Thus, when (or may be it should be said “if””)
quantum computers are built, most of the public key cryptography would be unsafe. It’s
worth noting here that quantum computers with only 3 bits have been built successfully
[Rieffel and Pollak 2000].

Moreover, Daniel Bernstein at the University of Illinois at Chicago devised a way to
build circuits for factorization with present technology. This means that in the near future
RSA and many other public cryptography algorithms will be vulnerable to attacks using
these circuits. Many scientists speculate that the NSA might already have built such
specialized chips and that keys even as long as 1024 bits might already be compromised

[MagiqTech. Backgrounder, 2002].
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Chapter 3: Quantum Computing & Quantum
Cryptography

3.1 Quantum Computing

In 1982, Richard Feynman observed that certain quantum effects can’t be simulated on
our classical computers which made him speculate that computation might be more
efficient if it was made using these effects. However, this field of creating quantum
computers was developing very slowly because of the problems faced regarding the use
of quantum effects in doing computations and the uncertainty of whether using quantum
effects would actually lead to a speed-up in computation [Rieffel and Pollak 2000]..
When Peter Shor described his algorithm for factoring large integers in polynomial time
using quantum computing in 1994, the field got a big boost forward. It became a known
fact that computers based on quantum effects would outperform the classical computers
present today and customized algorithms, like Peter Shor’s one, could be developed to
solve many of the problems that were deemed computationally unfeasible before. This
started a lot of research activity aimed at building quantum computers and building other
quantum algorithms that would solve today’s unsolvable problems on quantum

computers.

3.1.1 The power of Quantum Computing

In classical computers, we can decrease the time to perform a computation by using
parallel processors, but to achieve an exponential decrease in time we need to make an
exponential increase in the number of processors which ends up being very expensive.
The power of quantum computing is that the amount of parallelism increases
exponentially with the linear increase in the number of processors. This effect is called
“quantum parallelism” [Rieffel and Pollak 2000]..

This effect derives from the fact that a single quantum bit (gbit) “can be in a
superposition of 0 &17; thus, a register of n gbits would be in a “superposition of all 2"
possible values”. These states that are not present in classical registers and computers

lead to the exponential size in the quantum state space [Rieffel and Pollak 2000]..
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However, there is a problem facing quantum computation. In spite of the fact that
quantum systems can perform huge parallel computations, access to the results of the
computation is limited by the rules of quantum physics. Reading the results of the
computation is done through making a measurement to get the required value. However,
Heisenberg uncertainty principal states that “measuring a quantum system disturbs it and
yields incomplete information about its state” [Brassard and Crepeau 1996], which means
that making the measurement to read the required value would disrupt the quantum state
and make it impossible to read other values later on. This is a severe problem as it makes
us able to read only one value of the results of a parallel computation disregarding all the
other results. This problem is the major problem facing quantum computing that has been
hindering the research and production on quantum computers.

Some techniques have been devised to get over this problem of measuring the results of a
quantum computation in order to exploit the power of quantum parallelism. One such
technique manipulates the quantum state so that a common property of all the output
values such as symmetry or period can be read off. This technique depends more on the
algorithm that is run on the quantum computer as it must be customized so that it would
have the results depending on this period. This is the technique that Peter Shor has used
in his algorithm for factoring large integers. Another technique for overcoming the
problem is to transform the quantum state and it was used in a search algorithm proposed
by Grover [Rieffel and Pollak 2000].

As noted before, Peter Shor has developed an algorithm that is capable of factorizing
large prime numbers using quantum computation on quantum computers. Moreover, Lov
Grover developed a technique for searching a list of unordered n items in O(Vn) on a
quantum computer which is more efficient than doing the same thing on a classical
computer (On classical computers searching such an unordered list is O(n)) [Grover
1998]. It’s not fully known the variety of applications that would be able to benefit from
the power of quantum computation; however, it might be able to solve NP-complete
problems in polynomial time if clever algorithms are developed for that like Peter Shor’s
algorithm on factoring large prime numbers and Lov Grover’s algorithm on searching an
unordered list. Whether quantum computers would be able to solve NP-complete

problems or no is an open-question at the moment [Rieffel and Pollak 2000].
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3.1.2 Building Quantum Computers

There have been many proposals for building quantum computers based on different
techniques; however, all those techniques face scaling problems. Whether or not useful
quantum computers would be built is still an open question that nobody is sure of. A
breakthrough is needed to build quantum computers with hundreds qubits rather than tens
of qubits [Rieffel and Pollak 2000].

There are four techniques proposed for building quantum computers which are optical,
solid-state, ion trap and nuclear magnetic resonance (NMR) techniques. The optical and
solid-state techniques show promise, but NMR and ion trap are the most advanced ones.
In an ion trap quantum computer, “a linear sequence of ions representing the qubits is
confined by electric fields. Lasers are directed at individual ions to perform single bit
quantum gates. Two-bit operations are realized by using a laser on one qubit to create an
impulse that ripples through a chain of ions to the second qubit, where another laser pulse
stops the rippling and performs the 2-bit operation. The approach requires the ions be
kept in extreme vacuum and extremely low temperatures”. [Rieffel and Pollak 2000]

The NMR approach is the most advanced one and it is better than the ion trap technique
as it works in normal room temperature (rather than needing extremely low temperatures
and vacuum as the ion trap technique). The NMR approach uses “macroscopic amount of
matter and encode a quantum bit in the average spin state of a large number of nuclei.
The spin states can be manipulated by magnetic fields and the average spin state can be
measured with NMR techniques” [Rieffel and Pollak 2000]. The problem with this
approach is that it doesn’t scale, but a proposal has been made to overcome this problem
[Schulman and Vazirani 1998].

Quantum computers with 3 gbits have already been built using the NMR technique.

The major problem that faced quantum computers in the past was the distortion of the
quantum states due to interaction with the environment. Many people thought that
quantum computers can’t be built because it would be impossible to isolate them enough
from the external environment. The solution to this problem came from a rather an
unexpected angle as the solution came from the algorithm side rather than the physical

side. Quantum error correction techniques were the solution to this problem and it
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became possible to design quantum error correcting codes that detects errors and enables

the reconstruction of the exact error-free quantum state. [Rieffel and Pollak 2000]
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3.2 Quantum Cryptography

Quantum Cryptography is the newest branch of cryptosystems and it’s the hottest
topic in cryptography now especially that quantum cryptanalysis threatens the public key
cryptosystems. It is based on a combination of the concepts of quantum physics and
information theory. Quantum cryptography isn’t used to encrypt the message itself but it
is rather used for the generation and distribution of random secret keys between the
sender and the receiver. The key created is used with symmetric cryptosystems (typically
one-time pads) to encrypt the messages between the sender and the receiver. Thus,
quantum cryptography is a technology employing a combination of quantum mechanical
phenomena and classic cryptographic schemes with the goal of generating a secret key
(or extending a short key) between two communicating parties [Kollmitzer et al. 2002].

It has been proven through several researches of the topic that key distribution via
quantum cryptography is secure against “an eavesdropper with unlimited computing
power” which is a thing that public and symmetric key cryptosystems do not have and are

not expected to have [Boyer et al. 2001].

3.2.1 Scientific Basis

Quantum Cryptography is based on the Heisenberg uncertainty principle which
states that “measuring a quantum system disturbs it and yields incomplete information
about its state.” Thus, eavesdropping on the quantum communication channel causes
unavoidable disturbance that can be recognized by the legitimate users [Brassard 1994].
This helps in creating a system for key distribution between two people who don’t
initially share any secret information. This cryptosystem is secure against eavesdropping
even if the Eavesdropper has unlimited computing power. Once the secret key is
established, classical cryptographic techniques (like the one-time pads) can be used to

allow the secure exchange of information.
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The steps for the quantum key distribution protocol are as follows:

1. Creation of a key between the two communicating parties (Alice and Bob)
using one of several techniques such as polarization methods or phase
methods (explained in the next sections).

2. Error Correction for the errors and discrepancies between the keys with Alice
and Bob.

3. Privacy Amplification which is concerned with reduction of the eavesdropper
information that might be gained during the initial creation of the key.

These steps are explained in further details in chapter 4.

In classical cryptography (symmetric and asymmetric), the communication
between Alice and Bob can always be passively monitored by an eavesdropper which
means that Eve can be capturing all the data sent between the communicating parties
without being noticed by Alice and Bob. However, in quantum cryptography this is not
possible because in quantum key distribution the data is sent as a polarization of photons
or as a shift in the phases of the photons and any eavesdropper cannot even gain partial
information on the state of the photons holding the data without disturbing the system in
a random and uncontrollable way which would be evident to both Alice and Bob
[Kollmitzer et al.2002]

At present, the channel used for communication is fiber optics; however, this has
the limitation of being limited to no more than 120 km as long as quantum repeaters are
not available and that’s why there are experiments on using free space in the quantum
channel as will explained later.

There are two possibilities for wavelengths for use by quantum cryptography
within the fiber optic communication channel. The first wavelength is around 800 nm and
the second is the range of 1350-1550 nm. There are efficient photon counters (needed for
the detection of the photons) commercially available for the wavelength of around 800
nm; however, this is not compatible with present telecommunications optic fibers and so
would need special fibers. On the other hand, the wavelength of around 1350-1550 nm is
compatible with the present optic fibers but would need the development of new photon

detectors [Kollmitzer et al.2002].
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The source of quantum signals can be either single photon source (faint laser pulse) or
entangled photon pairs (There is a photon and a photon pair).
The coding of the information can be polarization coding or phase coding that

will be described in later sections with more detail.
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3.2.2 History of Quantum Cryptography

Quantum Cryptography was born in the late 1960s by Stephen Weisner who
wrote “Conjugate Coding” which was unpublished and unnoticed by the time. Stephen
Weisner had the concept of “Quantum money” which is impossible to counterfeit. His
idea was to “charge” the dollar bill with several photons that are polarized in two non-
orthogonal bases which means that measuring the state of the photons using one basis
randomizes the value of the other. Thus, a counterfeiter will have to measure the state of
the photons of a dollar to be able to reproduce them in the new counterfeited bill.
However, since he doesn’t know the original basis that was used to code the photons (this
is kept a secret by the bank), he’ll have to try either of the bases which will necessarily
randomize the other. Thus, the counterfeiter will have a 50% error. On the other hand, the
bank has the basis that was used to code the photons and so can measure the polarization
of the photons on the dollar bill and can check whether the bill is counterfeited or not.
This idea was real novel but it was impractical because it is impossible to store a photon
trapped for a long period of time [Brylevski 2002].

In 1979 Charles Bennet and Gilles Brassard thought of using the photons to
transmit information through a quantum channel rather than storing it as Weisner
proposed. The quantum channel consisted of optical fiber and the transmission was done
by light pulses so weak that the probability of a photon appearing in light pulses is lower
than 1 per pulse. Their aim was to provide two communicating parties Alice and Bob
with an identical sequence of random bits that can be used to encrypt messages between
them.

However, in 1982 Quantum Cryptography had a major drawback during the
CRYPTO ’82 conference which made the people have the impression that everything that
has to do with quantum cryptography was unrealistic [Bennet et al. 1992].

In the past few years, there was a remarkable interest in quantum cryptography and it
became part of the mainstream computer science and physics especially after the paper
“Experimental Quantum Cryptography” published in 1991 by Charles Bennet (IBM
Research), Gilles Brassard (University of Montreal) and Frangois Bessette (University of

Montreal) [Bennet et al. 1992] and the experiment mentioned in that paper. That
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experiment was performed at IBM and was the first demonstration of Quantum
Cryptography over 30 cm of air with polarized photons [Zbinden et al. 2000] and marked
the start of experimental improvements during the subsequent years.

In 1996, Antoine Muller at the University of Geneva used a single photon
polarization based systems at wavelength 1300 nm to create a key at a distance of 23 km
between the cities of Geneva and Nyon. The interesting feature is that they used the
standard optic fiber used by Swisscom for carrying phone conversations as their quantum
channel [Kollmitzer et al. 2002, Muller 1996]. This was the first quantum key distribution
experiment to be done outside physics labs and had a strong impact on the interest of the
public in the field of quantum cryptography. That experiment was done after he made
another experiment to implement the quantum key distribution protocol at a distance of
1100 meters using a wavelength of 800nm [Gisin et al. 2002].

Paul Townsend of BT Laboratories was able to use standard telecommunication
fibers to create a key at a distance of 10 km using single-photon polarization encoding at
800 nm. He was able to do that by carefully controlling the launching conditions of the
photons [Kollmitzer et al.2002].

At the University of Innsbruck, Anton Zeilinger and his group were the first to
use entangled-polarization based system over a distance of 720 meters using special optic

fibers that were designed to operate at wavelength 700 nm [Kollmitzer et al.2002].
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3.2.3 Quantum Key Distribution coding schemes

All existing encodings for bits in the quantum key distribution systems use non-
orthogonal states of photons as carriers of information, as they cannot be cloned
(duplicated) by an eavesdropper. Even if imperfect cloning is attempted, it induces errors
in the quantum transmission. That’s why any two non-orthogonal states can be used for

quantum cryptography [Bennet 1992].

3.2.3.1 Quantum Key distribution based on Photon Polarization

The essential quantum property involved in this key distribution scheme is the
existence of pairs of properties of photons that are incompatible “in the sense that
measuring one property randomizes the value of the other”. Any pair of polarization
states is referred to as bases if they correspond to a measurable property of a single
photon and two bases are said to be conjugates if measuring one of them randomizes the
other.

The quantum key distribution protocol described by Bennet and Bassard used two
conjugate bases which are the rectilinear basis (horizontal vs. vertical polarization) and
circular basis (left vs. right circular polarization). They are referred to as canonical bases.
Another basis that is sometimes used with these bases consists of 45 and 135 degrees
polarization which is conjugate to the other bases too.

This scheme became the first experiment on Quantum key distribution over 30 cm using

free air optical path as quantum channel [Bennet et al. 1992].

3.2.3.2 Problems of Photon Polarization

Long optical fibers induce a polarization transformation for the transmitted photons. This
polarization transformation remains stable and low for a while (which is bearable and
doesn’t cause problems), but it then suddenly increases indicating a modification of the
polarization transformation in the fiber. This means that active alignment would be
needed to compensate for this which is actually possible but very difficult. Such an
alignment system has already been implemented by James Franson [Franson and Jacobs

1995], but he didn’t complete his work and pursue on that direction [Brylevski 2002].
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3.2.3.3 Coding based on Phase Coding

Because of the polarization transformation problem in photon polarization coding in
optical fibers, it is very difficult to setup quantum key distribution along long distances
using them. The other option is to encode the value of the bits in the phase of the photons
rather than their polarization [Brylevski 2002].

In Phase coding, Alice can apply a phase shift (0, [1/2, T1, 311/2) to encode a bit value.
Phases 0 and I1/2 encode bit value 0, while phase value IT, 3I1/2 are used to encode bit
value 1. On the other hand, Bob applies a basis choice by randomly applying and phase
shift of 0 or I1/2.

A table for the four states phase coding is shown below [Brylevski 2002]

Table 3-1 Phase Coding States

Alice Bob
Bit 0a (032} Pa - OB Bit
Value Value
0 0 0 0 0
0 0 I1/2 311/2 ?
1 IT 0 IT 1
1 I1 1172 [172 ?
0 I1/2 0 1172 ?
0 I1/2 1172 0 0
1 31172 0 31172 ?
1 311/2 1172 II 1

Thus, photon phase coding can be used in the quantum cryptography protocol just the

same as photon polarization.
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3.3 Problems of Quantum Cryptography

A serious limitation of Quantum cryptography using fiber optics as
communication channel is that it can’t extend more than 120 kilometers because there are
no quantum repeaters available; however, this should be solved by using free-space as a
quantum channel (using free-space as the quantum channel is detailed in the next
section).

In quantum cryptography eavesdropping is indistinguishable from the noise to
Alice and Bob as there are no practical means to distinguish an eavesdropper attack from
noise available in present photon counters and quantum communication channels
[Castelletto et al. 1995]. Noise and eavesdropping can cause the secure quantum
exchange to fail. This leads to 2 potential problems [Ford 1996]:

1. An eavesdropper can prevent a communication.
2. If attempting to make the key distribution in the presence of high noise, then the
eavesdropping attempts would be more feasible.
Moreover, the noise indicated above is putting limits on the distances between the two
communicating parties, Alice and Bob [Zbinden et al. 2000].

Another problem that needs to be solved for quantum key distribution is the
wavelengths to be used for the fiber optics (if the fiber optics are used as communication
channels). There are two possibilities for wavelengths for use by quantum cryptography
within the fiber optic communication channel which are around 800 nm and the range of
1350-1550 nm. There are efficient photon counters (needed for the detection of the
photons) commercially for the wavelength of around 800 nm; however, this is not
compatible with present telecommunications optic fibers and so would need special
fibers. On the other hand, the wavelength of around 1350-1550 nm is compatible with the
present optic fibers but would need the development of new photon detectors.

Another problem that was mentioned is the polarization transformation for the
transmitted photons in polarization coding which means that the quantum key distribution

systems have to actively compensate for the polarization changes.
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3.4 Free-Space as the Quantum Channel

In the previous stated experiments and work done, fiber optics were used as the
communication channel; however, a serious limitation of using fiber optics in quantum
cryptography is that it can’ extend more than 120 kilometers because there are no
quantum repeaters available. Thus, there are now initial experiments for using free space
systems as quantum channels (i.e, photons are sent between telescopes). The goal is to
use quantum cryptography between satellites. This free space communication has been
demonstrated for distances of several kilometers and theoretical estimates indicate that
single photon communication between earth and satellites is feasible. [Kollmitzer et al.
2002]

Transmission over free space has some advantages over transmission in fiber
optics. The first is the distance limitation stated before because fiber optics as a channel
provide a limit on the distance between the two communicating parties Alice and Bob
(unless quantum repeaters are invented); however, there is no theoretical limit on the
distance between the communicating parties in case of free space communication.
Another advantage for using free space as the quantum channel is that the atmosphere has
a “high transmission window at a wavelength of around 770nm” which means that
existing commercial photon detectors could be used for photon detection. This means
also that a high channel transmission speed over long distances can be ensured.
Moreover, “atmosphere is only weakly dispersive and essentially non-birefringent at
these wavelengths” which means that it won’t alter the polarization of a photon. [Gisin et
al. 2002]

On the other hand, there are drawbacks for using free air as the communication
channel. Tn contrast to fiber optics, which is a guided medium, energy transmitted in free-
space spreads out leading to higher transmission losses; moreover, daylight and
moonlight at night can “couple in the receiver” increasing the error rate. Finally, it’s clear
that free-space transmission performance would depend on the atmospheric conditions
and would only be possible in clear weather [Gisin et al. 2002].

There were many experiments already done using free-space as the quantum
channel. In 1996 Jacobs and Franson were able to conduct the first free-space quantum

cryptography experiment over a distance of a few centimeters; after that they exchanged
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a key over a distance of 150 m in standard florescent lightening, then over a distance of
75 m in outdoor bright daylight [Gisin et al. 2002]. Later, Buttler and Hughes and their
team were able to conduct experiments on distances of 1 km in outdoor nighttime
conditions [Buttler et al. 1998] and 1.6 km in daylight conditions [Buttler et al. 2000].
Finally, Gormen and Rarity were able to make the key distribution over a distance of 1.9
km in nighttime [Gorman 2001].

A quantum cryptography link could be established to the low orbit satellites in
order to be able to exchange keys between any two parties (wherever they are) through
these satellites. In that case, each of Alice and Bob (the communicating parties) would
exchange a key with the same satellite independently to produce two keys K, and Kg.
After that the satellite computes K = K4 XOR Kpg and announce the result publicly; thus,
Bob can know K, since he knows both K and Kg whereas nobody else can know the
value of K which could then be used as a secure key used between Alice and Bob. The
main problem in this scheme is due to the fact that satellites move with respect to the
ground which generates a problem in beam pointing to the satellite. The major
disadvantage of this protocol for key exchange between Alice and Bob through the

satellite is the fact that the satellite operator knows the key between Alice and Bob.
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3.5 Current Projects in Quantum Cryptography

3.5.1 The Arc Project

Kollmitzer, Monyk and Suda from the Austrian Research Center (ARC),
Seibersdorf Austria are now building upon the knowledge of Prof. Zeilinger’s group
(their experiments are noted in section 3.2.2) with the aim of developing a “system
relevant for practical application which uses quantum cryptography to generate and
exchange keys for subsequent communication over public channels” [Kollmitzer et al.
2002]. The scheduled period of their project is 5 years at the end of which they should
have developed an industrial quantum cryptographic prototype that will generate and
exchange absolutely secure keys between two communicating parties. They aim for their
developed prototype to be ready for transfer to industrial serial-production

The project team is planning to use optical fibers as their communication medium,
polarization coding with entangled photons as their coding scheme and they’ll use a
wavelength of 800nm. The use of the 800 nm wavelength means that they’ll need special
optical fibers and won’t be able to use ones commercially available right now. They
could shift to the use of telecommunication optical fibers commercially available if that is
technically feasible; however, at the moment it’s not.

Quantum Cryptography is limited to distances less than 120 km (actually, the longest
distance that an experiment reached is 23 kilometers) and thus the project team will have
to focus on concepts and ways to make the exchange of the key feasible over longer

distances.
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3.5.2 Magiq Navajo Project

By the end of 2003, MagiQ Technologies (www.magiqtech.com) has announced its

product, Navajo, which is a quantum cryptographic solution offering encryption based on
quantum cryptography. An overview of the Najavo system is shown in figure 6.1
[MagigTech Navajo White Paper 2003]

Figure 6-1 Overview of Najavo System
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Najavo is the first commercial product that applies quantum cryptography to be able to
secure transmissions. It addresses the key distribution and secure key exchange problems;
moreover, it gives the chance of refreshing the keys at a high rate which is desirable to
keep the keys secure.

Najavo tries to achieve the following objectives:

1. Tt is capable of detecting intrusions. The system would be able to detect any
eavesdropping attempt.

2. Tt is capable of protecting against theft of key information. This is done through the
rapid key refresh rate of the keys between the sender and the receiver; thus, the keys
stolen are of no use.

3. It is proven secure and it can withstand the advance of technology as the security of the
system is established by the rules of quantum physics. [MagigTech Navajo White Paper
2003]
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3.5.3 Other Projects

Another project is running now at the NTNU (Norges Teknisk
Naturvitenskapelige Univestet) university in Norway where many masters projects are
about quantum key distribution and they aim at generating a key transmission software.
[Brylevski 2002]

There are also projects going on with quantum cryptography at the Los Alamos

laboratory, Munich, Geneva, Oslo and the University of Vienna.
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Chapter 4: The BB84 Protocol

BB84 is the protocol widely used in Quantum Key distribution. It is the protocol
detailing the steps to be applied to achieve the goal of quantum key distribution which is
creating a secure key that is shared between the 2 communicating parties (Alice and
Bob). The BB84 protocol was proposed in 1984 by Bennet and Brassard [Bennet and
Brassard 1984]. Following is a brief description of the BB84 protocol along with a
description of the Bennet and Brassard Experiment.

The steps for the quantum key distribution protocol whatever the encoding are as follows:

1. Creation of a key between the two communicating parties (Alice and Bob)

using one of several techniques such as polarization methods or phase
methods.

2. Error Correction for the errors and discrepancies between the keys with Alice

and Bob that were created in step 1.
3. Privacy Amplification which is concerned with reduction of the eavesdropper
information.
Before describing the protocol algorithm and the steps that need to be applied for the
implementation of the BB84 protocol, it is important to give an overview of random

number generation as it is crucial for the first phase of the BB84 protocol (the creation of

the key phase).

4.1 Random number generation

Computers are deterministic systems and thus they don’t actually create truly
random numbers, but they produce pseudo-random numbers in general. A quantum
solution for this problem is to rely on the “random choice of a single photon at a
beamsplitter” [Rarity et al. 1994]. The randomness of the numbers using this technique
would be guaranteed by the laws of quantum mechanics; however, care should be taken
so as not to introduce “artifacts that could correlate adjacent bits” [Gisin et al. 2002].
There have been some experiments on this technique and there are prototypes available

for it.

32



4.2 Protocol Algorithm (based on photon Polarization)

4.2.1. Creation of the key

1. Alice sends Bob a random sequence of the four canonical kinds of polarized
photons to Bob.

2. Bob chooses randomly for each photon whether to measure the photon’s
rectilinear or circular polarization and announces publicly which kind of
measurement he made for each photon (but doesn’t announce the results of his
measurement).

3. Alice tells Bob publicly whether he made the right measurement (for each
photon).

4. Alice and Bob discard all bit positions where Bob has performed the wrong
measurement. They also discard the bit positions where Bob didn’t detect
anything at all.

5. For the remaining photons, horizontal or left-circular polarizations are
interpreted as O whereas vertical and right-circular polarizations are interpreted
as 1. The resulting is a binary string that is shared between Alice and Bob,
provided that Eve didn’t eavesdrop on the quantum communication channel.

After that Alice and Bob test for eavesdropping by comparing the polarizations of

random subsets of photons (Note that measuring the value of the polarization by an

eavesdropper would make a difference in the state of the photon and thus Bob

wouldn’t read the value the same as Alice) [Bennet et al. 1992].

4.2.2. Error Correction

Presence of noise in the quantum channel and photon detectors induces errors
even in the absence of an eavesdropper. Thus, errors are induced either due to the
presence of an eavesdropper or due to noise in the detectors.

This problem of errors can be solved using the following protocol that reconciles the
differences between sent and received data in the quantum transitions and distills from it

a smaller amount of data that is perfectly secret (It is important to note that the next steps
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are done using the normal communication channels and not quantum channels as the
“creation of keys” stage):

1. Alice and Bob agree on a random permutation of the bit positions in their
strings and partition the strings into blocks of size k that is unlikely to contain
more than one error

2. Alice and Bob compare the parities of each block, if they are the same the data
in the block is matching, if not then the block is further divided to block and
parities compared till the error is detected and corrected

3. Alice and Bob discard the last bit of each block after reconciliation to avoid
the leaking of information assuming that Eve has been eavesdropping during
the reconciliation process

Steps 1-3 are repeated several times with different permutations and increasing block

sizes until Alice and Bob are sure that the shared data has no errors [Bennet et al. 1992].

4.2.3. Privacy Amplification

Privacy amplification is concerned with distilling *“highly secret” shared
information from a larger amount of shared information that is partially a secret. Using
BB&4 protocol, Eve might have been able to spy on some of the information sent on the
channel and thus might be able to know the value of some part of the shared key between
Alice and Bob [Bennet et al. 1995].

Assuming that x is the shared string between Alice and Bob and that it consists of
n bits. Assuming also that Eve’s knowledge is no more than L bits where L<n. It has been
shown by Brassard and Bennet that a hash function h can be publicly chosen form a set of

appropriate class of functions that will map n bits to n-L-s bits such that Eve’s expected
information would be less than 2 [Bennet et al. 1992].
n
An example for doing privacy amplification would be for Alice to randomly
choose a pair of bits, compute their XOR and announce which bits she chose (not the
result value of her XOR operation). Thus, Bob can compute the XOR value too and both
Alice and Bob would replace the two bits which were XORed by their XOR result. In this

way, the shared key will shorten but will still be kept error free; however, if Eve knew
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partial information on the two bits, then her information would be even less after privacy
amplification. For example, if Eve knew the value of one bit but she didn’t know the
value of the other, then she would have no information at all about the XOR result value.
If Eve knew the value of both bits with probability 60%, then the probability of her
guessing correctly the XOR result value would be 52%. This XORing of values would be
repeated several times in order to minimize (or even diminish) what Eve knows of the

shared key.

A problem in this protocol is that Eve can impersonate both Alice and Bob for the
other (called the man-in-the-middle-attack) and thus she would end up with a string
shared with Alice and a string shared with Bob [Bennet et al. 1992 , Ford 1996]. This can
be solved by using an authentication scheme to certify that Alice is talking to the real Bob
and vice versa which means that Alice and Bob need to have some shared secret
information beforehand to authenticate with and that each time a few bits of this key is
unfit for re-use again (this is actually easy because each instance of the key distribution
protocol provides Alice and Bob with a large amount of new shared key information.
Thus, this protocol in this case would be key expansion protocol rather than key

distribution protocol [Bennet et al. 1992].
This BB84 protocol has been assumed to be unconditionally secure by Dominic

Mayers which means that a “security result is expected to hold against all attacks allowed

by quantum mechanics.” [Mayers 2001]
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4.3 Eavesdropping Strategies

Eavesdropping is concerned with finding protocols which would allow Eve to know the
secret shared key and still Alice and Bob think that their shared key is totally secure.
There are two main eavesdropping strategies for this quantum key distribution encoding

scheme which are intercept/resend and beam splitting

4.3.1 intercept/Resend Attack

Let u be the expected number of photons per light pulse and it should be sufficiently
smaller than 1.

In this attack an eavesdropper Eve intercepts selected light pulses and reads them
in a basis that she chooses. For each pulse that she intercepts, with probability u, Eve
would be able to successfully detect a photon (assuming she has perfect photon
detectors). Then, Eve would fabricate a new pulse with the same polarization as she
detected and sends it to Bob.

In classical communication channels, Eve would be able to measure Alice’s signal
exactly with no probability of error and then send an exact copy to Bob without being
detected at all. However, in this quantum key distribution scheme Eve doesn’t actually
know the basis in which Alice has polarized her photos so can’t read information
deterministically and then send an exact copy of it to Bob. It has been proven that Eve
will introduce at least 25% error in the pulses detected by Bob if she uses this kind of
attack [Bennet et al. 1992].

Therefore, if Alice and Bob discover t errors in their raw transmission, then they should

assume that Eve have intercepted 4¢ + 5+/12¢ of their bits (The second term is an

allowance for statistical errors). Actually, these errors can result in practice from noise at
the detectors, disturbance in the quantum channel or optical misalignment but it’s safer

for Alice and Bob to assume that all errors are due to intercept/resend attacks.
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4.3.2 Beamsplitting Attack

This attack depends on the fact that transmitted light pulses are not pure single photons.
Thus, Eve diverts a fraction f of the original beam to herself letting the remainder pass
undisturbed to Bob. This attack doesn’t introduce errors as the intercept /resend attack but
it reduces the intensity reaching Bob by 1-f [Bennet et al. 1992] which might not be
detectable by Alice and Bob.

This attack could leak each bit to Eve with probability p (where p is the expected number
of photons per light pulse) and assuming that there are N pulses in the transmission then

Eve would learn less than

Nu+5/Np (1-p)
Bits through this kind of attack (where the second term is an allowance for statistical
errors) [Bennet et al. 1992].
Therefore, Alice and Bob can determine probabilistically the amount of data leaked to
Eve. Following is a summary of the experimental results of the experiment done by

Bennet and Brassard.

4.4 Experimental Results

These are the experimental results obtained by Bennet and Brassard from the

experiment they did using photon polarization as an encoding scheme.

4.4.1 A run without Eavesdropping

The intensity used, u, was = 0.12 and 715,000 pulses were sent from Alice to Bob
of which 2000 were successfully received by Bob in the correct basis. The string with
Bob actually contained 79 errors (this is due to noise) which mean that the error
frequency was 3.95%. Next, the block parity comparison has been performed on random
permutations of the strings at Alice and Bob’s sides to reach to 1379 identical bits and
discovering 76 errors (By interpolation Alice and Bob estimate 3.6 errors eliminated
without detection). Thus, it was estimated that 466 bits could have been leaked to Eve

(226 from intercept/resend attacks and 240 from beamsplitting attack). The string is then
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compressed by random subset hashing to make it just 754 bits whose Eve’s expected

information is less than 107 bit.

4.4.2 A run with Eavesdropping

In this experiment intercept/resend attacks has been attempted on 1/8 of the pulses
whereas beamsplitting has been attempted on all the pulses.

The intensity used, u, was = 0.12 and 715,000 pulses were sent from Alice to Bob
of whom 2000 were successfully received by Bob in the correct basis. Due to the
intercept/resend attacks Bob had 160 errors with an error frequency 8% (Actually during
this experiment Eve learned 336 bits in total).

Next, the block parity comparison has been performed on random permutations of the
strings at Alice and Bob’s sides to reach 1007 identical bits and discovering 148 errors
(By interpolation Alice and Bob estimate 14 errors eliminated without detection). Thus, it
was estimated that 699 bits could have been leaked to Eve (459 from intercept/resend
attacks and 240 from beamsplitting attack). The string is then compressed by random
subset hashing to make it just 105 bits. This compression that removed 902 bits “was

based on a very conservative estimates of what Eve might know [Bennet et al. 1992].

4.5 Variations of the BB84 Protocol

There are many variations proposed to the described BB84 protocol. One such
variation is for the bases not to be chosen with equal probability (i.e. there is some bias
towards one of the bases). This would mean that the probability of Alice and Bob
choosing the same basis would higher than 0.5 which is the probability if both bases
would be chosen with the same probability. On the other hand, this would put Eve in a
better position as she could then make more guesses that are likely to be true if she knew

which basis is with the higher probability.
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Chapter 5: An Enhanced Algorithm for the BB84 Error
Correction Phase

5.1 Standard Error Correction Phase

As described before in chapter 4, the BB84 protocol consists of 3 phases which are

1) Creation of a key between the two communicating parties

2) Error correction for the discrepancies in the keys between Alice and Bob

3) Privacy amplification to reduce possible eavesdropper information.
The phase that this research concentrates on is the error correction phase, as this research
aims at enhancing the error correction phase in order to reduce the number of bits lost
during this phase.

At the start of the error correction phase, each of the two communicating parties
(Alice and Bob) has a key that resulted from the first phase of the BB84 protocol. Ideally,
the key that Alice and Bob have should be the same; however, practically noise distorts
many transmissions of the first phase of the BB84 protocol and thus discrepancies
between the keys with Alice and Bob occur. [Noise is not the sole reason for the
discrepancies as the presence of an eavesdropper induces errors in the keys too]. The
error correction phase is required to remove those discrepancies. At the end of this phase,
Alice and Bob should have an identical key; moreover, they should have an error rate
estimate to be able to know the percentage of discrepancy approximately. According to
the error rate, the BB84 protocol goes to the next phase which is privacy amplification;
however, if the error rate is too high, it means that an eavesdropper has been listening to
the communication and the thus the protocol should be aborted and restarted again.

Thus, the error correction phase takes as its input two keys which are the keys that
Alice and Bob have at the end of the Creation of the key phase. At the end of the error
correction phase, an identical key should be reached between Alice and Bob and they

both should have the error rate.
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The error correction phase consists of the following steps:

1. Alice and Bob agree on a random permutation of the bit positions in their
strings and partition the strings into blocks of size k that is unlikely to contain
more than one error.

2. Alice and Bob compare the parities of each block, if they are the same the data
in the block 1s matching. If not then the block is further divided to smaller
blocks and parities compared till the error is detected and corrected.

3. Alice and Bob discard the last bit of each block after reconciliation to avoid
the leaking of information assuming that Eve has been eavesdropping during
the reconciliation process

In the error correction phase, steps 1-3 are repeated several times with different
permutations and increasing block sizes until Alice and Bob are sure that the shared data
have no errors [Bennet et al. 1992].

According to the algorithm, there are two free parameters that need to be supplied
to an implementation of the error correction phase. The parameters are the initial block
size that would be used to partition the initial key to blocks and the block size increment
that should be applied after finishing the 3 steps and starting all over with another loop.
The values of the initial block size and the block size increment actually depend on the
key value and the errors present in them; thus, we used them in the present
implementations as test values that are applied with different values and we have been
monitoring their effect on the final outcome of the error correction algorithm.

There is no reliable implementation of the error correction phase on the Internet to
be able to use it as a basis for our implementation. However, a full description of the
algorithm is described in detail in the “Experimental Quantum Cryptography” paper
published in 1992 by Bennet and Barassard [Bennet et al. 1992]. Thus, the
implementation of the algorithm was made according to the algorithm described in that
paper. That algorithm is the algorithm that has been used for all the later experiments on
the Quantum Cryptography topic.

The algorithm is implemented using C# and it ran over the .Net framework. The
application has a “Sender” class and a “Receiver” class. The “Sender” class does the

steps needed from Alice and the “Receiver” class does the steps at Bob’s side. When
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running an experiment, 2 instances of the application should be run (one instance for
Alice and another instance for Bob). The 2 instances communicate in this phase using the
normal networking infrastructure (as required by the BB84 protocol) to be able to
reconcile on the final key [The 2 instances can be run on different machines as long as a
network connection can be established between them]. After reconciling the key with
Alice and Bob, an estimate of the error rate is calculated to be used to determine whether

to continue or to abort.

41



5.2 Standard Algorithm Implementation

The standard algorithm implementation is built up of 2 modules which are the

“Sender” (Alice) and the “Receiver” (Bob) where each of them does the part needed from

the respective user during the error correction phase.

A quick overview of the steps needed of each module is given in this section

5.2.1 Sender (Alice) module

When running the algorithm implementation as Alice, the error correction phase

implementation receives an initial key value which represents the key that Alice has. The

key is represented by an array of bits. The following tasks are applied:

L.

Alice creates a random permutation of numbers from 1 till the size of the key that
she has. This permutation is used later to shuffle the locations of the bit values in
the key array.

Alice sends the permutation created in stepl to Bob. This is done through TCP
over the network so the “Receiver” (Bob) module could be running on a different
machine. By receiving the permutation, Bob and Alice would have the same
permutation and could use it to shuffle the locations in the key array if they want
to. This permutation would be later used to shuffle the order by which the bits are
compared.

Alice computes the number of blocks that it would split the key to. The number of
blocks is calculated to be equal the number of bits in the key divided by the
current block size. [The current block size is equal to the initial block size at the
start. The initial block size is one of the parameters that are set for the error
correction phase].

Alice partitions the key into blocks each of the size of the current block size (the
current block size is the initially the initial block size that is a parameter to the
error correction phase). The bit positions of the each block are taken from the key
and are computed using the permutation created in step 1.The number of blocks

has been computed in step 3 noted earlier.
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5. For each block the following is applied:
a. The parity of the block is calculated.
b. The parity computed is sent to the receiver (Bob) through networking.
c. The parity of the corresponding bit at Bob’s side is received.
d. If the parity is different between the two
i. The number of errors in the pass is incremented
i1. The block is split into 2 and the parity of each is checked with the
parity on Bob’s side. This continues recursively until the exact
error location in the block is identified.
iii. The error location in the block is mapped to the error location in
the key and its value is flipped (if it were O, it would be changed to
1 and vice versa).

6. The last bit of each block is removed from the key so that the parity information
sent in step 5 would be useless for any eavesdropper who might have been able to
record them. Moreover, a bit is removed for each group whose parity has been
sent over the network (this applies to the smaller blocks whose parities are sent on
the network in step 5.d.ii)

7. The current block size is incremented with the block size increment.

Steps 1 to 7 are repeated over so that the key would be passed over the error correction
phase with different block size comparisons. When the key iterates 20 passes without
having any discrepancy between the parities at Alice and Bob’s side, it is assumed that
the key is now the same with both of them.

At this stage, the error correction phase computes the error rate to check whether it is in
the acceptable limits. This is done by applying the following steps:

1. The total number of errors is calculated which is a count of the errors encountered
at the different stages of the error correction phase.

2. An estimate of errors that hasn’t been encountered is made by interpolation. These
errors were undiscovered because they have been removed when deleting the last
bit of each block; thus, they were removed but not counted as errors by the

algorithm so we need to interpolate them.
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3. The total number of errors is calculated as the sum of the counts computed at steps
1 and 2.
4. The error rate is computed to be the total errors divided by the number of bits in the
initial key.
If the error rate is too high, then the algorithm aborts because of the hazard of an
eavesdropper and the first phase of the BB84 protocol (the creation of the keys) should be
re-applied. The error rate induced by the several techniques of eavesdropping would be
higher than 11% and thus 11% has been taken the threshold of the error rate. [Gisin et al.
2002].

5.2.2 Receiver (Bob) module

When running the algorithm implementation as Bob, the error correction phase
implementation receives an initial key value which represents the key that Bob has. The
key is represented by an array of bits. The following tasks are applied:

1. Bob receives the permutation created by Alice. This is done through TCP over the
network. By receiving the permutation, Bob will have the same permutation Alice
has and could use it to shuffle the locations in the key array if they want to. This
permutation would be later used to shuffle the order by which the bits are
compared.

2. Bob computes the number of blocks that it would split the key to. The number of
blocks is calculated to be equal the number of bits in the key divided by the
current block size. [The current block size is equal to the initial block size at the
start. The initial block size is one of the parameters that are set for the error
correction phase].

3. Bob partitions the key into blocks each of the size of the current block size (the
current block size is the initially the initial block size that is a parameter to the
error correction phase). The bit positions of the each block are taken from the key
and are computed using the permutation received in step 1.The number of blocks
has been computed in step 2 noted earlier. The blocks at Bob and Alice side are

the same as they applied the same algorithm to create them.
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4. For each block the following is applied:
a. The parity of the block is calculated.
b. The parity of the corresponding bit at Alice’s side is received.
c. The parity computed is sent to the sender (Alice) through networking.
d. If the parity is different between the two
i. The number of errors in the pass is incremented
ii. The block is split into 2 and the parity of each is checked with the
parity on Alice’s side. This continues recursively until the exact
error location in the block is identified.

iii. The error location in the block is mapped to the error location in
the key. The value of the bit is not flipped on Bob’s side as it is
flipped on Alice’s side.

5. The last bit of each block is removed from the key so that the parity information
sent in step 4 would be useless for any eavesdropper who might have been able to
record them. Moreover, a bit is removed for each group whose parity has been
sent over the network (this applies to the smaller blocks whose parities are sent on
the network in step 4.d.ii)

6. The current block size is incremented with the block size increment.

Steps 1 to 6 are repeated over so that the key would be passed over the error correction
phase with different block size comparisons. When the key iterates 20 passes without
having any discrepancy between the parities at Alice and Bob’s side, it is assumed that
the key is now the same with both of them.

At this stage, the error correction phase computes the error rate to check whether it is in
the acceptable limits. This is done by applying the following steps:

1. The total number of errors is calculated which is a count of the errors encountered
at the different stages of the error correction phase.

2. An estimate of errors that hasn’t been encountered is made by interpolation. These
errors were undiscovered because they have been removed when deleting the last
bit of each block; thus, they were removed but not counted as errors by the

algorithm so we need to interpolate them.
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3. The total number of errors is calculated as the sum of the counts computed at steps
| and 2.
4. The error rate is computed to be the total errors divided by the number of bits in the
initial key.
If the error rate is too high, then the algorithm aborts because of the hazard of an
eavesdropper and the first phase of the BB84 protocol (the creation of the keys) should be
re-applied. The error rate induced by the several techniques of eavesdropping would be

higher than 11% and thus 11% has been taken the threshold of the error rate. [Gisin et al.
2002].

As can been noted from the previous steps, the work done on Bob’s side is nearly the
same as the one done at Alice’s side with some modifications. Thus, in our
implementation we created a base class that contains all the common functionality and

inherited it in the Sender and Receiver classes.
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5.3 Enhanced Error Correction algorithm considerations

The objective of this research is to make enhancements in the error correction
phase of the BB84 protocol to make it more efficient and thus to decrease the number of
bits lost during this phase. This objective is to be realized through the use of memory
between the rounds of error correction phase where a round would identify the locations
it found errors in to help the next round to be more focused. This would decrease the
number of rounds used to reach the final shared string and increase the shared string size.

The proposed enhancement to achieve this goal is to keep an array of the history
of each bit in the shared key and use it before making the key comparisons using parity in
each round. This history attribute for each bit would keep the number of times the bit has
participated in blocks that had parity checks with the other communicating party before.
Thus, this history attribute could be queried to check whether the bit has passed a parity
check in a block before and if it has passed such parity checks, the history attribute could
tell the number of times it had passed such parity checks. Keeping this history attribute is
beneficial as each round could make such a query before choosing to check on the
identified bit again. Thus, at the start of each round the enhanced algorithm would query
the history table and identify the bits that have been thoroughly checked in the previous
rounds. If a bit has been proven correct using parity check in different blocks where the
parity has been the same with both communicating parties, then this bit doesn’t get
included in the new round. Doing this decreases the number of bits participating in the
parity check of the round, and thus less number of rounds would be needed; moreover,
this would mean that the number of bits removed at the end of the round decreases as the
exclusion of some bits from the round would decrease the number of blocks compared in
that round. Decreasing the number of rounds means decreasing the number of bits
removed as the last bit at each block is removed.

Using the history table information to exclude bits from entering next rounds
would not affect the correctness of the algorithm and its ability to achieve correct results.
A bit is excluded from entering next rounds only when it is thoroughly checked in
previous rounds and has passed at least 5 correct parity checks in different blocks. Since

the maximum error rate would be 11% there is an upper limit on the number of errors and
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those parity checks are enough for accepting the bit value as correct. This was more
apparent in the experiments described in chapter 6 where the enhanced algorithm got

correct results as the standard one but it creates longer keys in less time.

5.4 Enhanced Algorithm Implementation

As with the implementation of the standard algorithm, the enhanced algorithm is
built up of 2 modules which are the “Sender” (Alice) and the “Receiver” (Bob) where
each of them does the part needed from the respective user during the error correction

phase. Detailed description of the modules for the Sender and the receiver follows:

5.4.1 Sender (Alice) module

When running the algorithm implementation as Alice, the error correction phase
implementation receives an initial key value which represents the key that Alice has. The
key is represented by an array of bits. The following tasks are applied:

1. The bits history array is set to zeros.

2. Alice creates a comparison key from the key present at the time. The comparison
key is the same as the initial key at the first round; however, it is computed in the
other rounds as will be shown later in step 10.

3. Alice computes the number of blocks that it would split the key to. The number of
blocks is calculated to be equal the number of bits in the comparison key divided
by the current block size. [The current block size is equal to the initial block size
at the start. The initial block size is one of the parameters that are set for the error
correction phase].

4. Alice creates a random permutation of numbers from 1 till the size of the
comparison key that she has. This permutation is used later to shuffle the
locations of the bit values in the key array.

5. Alice sends the permutation created in step 4 to Bob. This is done through TCP
over the network so the “Receiver” (Bob) module could be running on a different
machine. By receiving the permutation, Bob and Alice would have the same

permutation and could use it to shuffle the locations in the key array if they want
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to. This permutation would be later used to shuffle the order by which the bits are
compared.

6. Alice partitions the comparison key into blocks each of the size of the current
block size (the current block size is the initially the initial block size that is a
parameter to the error correction phase). The bit positions of the each block are
taken from the key and are computed using the permutation created in step 3.The
number of blocks has been computed in step 3 noted earlier.

7. For each block the following is applied:

a. The parity of the block is calculated.
b. The parity computed is sent to the receiver (Bob) through networking.
The parity of the corresponding bit at Bob’s side is received.
d. If the parity is different between the two
i. The number of errors in the pass is incremented

ii. The block is split into 2 and the parity of each is checked with the
parity on Bob’s side. This continues recursively until the exact
error location in the block is identified.

iit. The error location in the block is mapped to the error location in
the key and its value is flipped (if it were 0, it would be changed to
1 and vice versa).

iv. The bits history array is reset to zero for all the bits participating in
the block to indicate that the bits of this block has participated in
an erroneous block.

e. If the parity is the same between the two communicating parties:
i. The bits history array is incremented for all the bits participating in
the block to indicate that the bits of this block have participated in
a correct block.

8. The last bit of each block is removed from the key so that the parity information
sent in step 7 would be useless for any eavesdropper who might have been able to
record them. Moreover, a bit is removed for each group whose parity has been
sent over the network (this applies to the smaller blocks whose parities are sent on

the network in step 7.d.ii)
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9. The current block size is incremented with the block size increment.

10. The comparison key for the next round is computed. The comparison key is
computed to contain all the bits that have bit history values less than 5. Having a
bit history value less than 5 means that the bit has participated in less than 5
successful block parity comparisons before. Excluding the bit from the
comparison means that we consider that it is enough that a bit has passed 5
comparisons to consider it as the same at the sender’s and receiver’s side.

Steps 2 to 10 are repeated over so that the key would be passed over the error correction
phase with different block size comparisons. When the key iterates 20 passes without
having any discrepancy between the parities at Alice and Bob’s side, it is assumed that
the key is now the same with both of them.

At this stage, the error correction phase computes the error rate to check whether it is in
the acceptable limits. This is done by applying the following steps:

1. The total number of errors is calculated which is a count of the errors encountered
at the different stages of the error correction phase.

2. An estimate of errors that hasn’t been encountered is made by interpolation. These
errors were undiscovered because they have been removed when deleting the last
bit of each block; thus, they were removed but not counted as errors by the
algorithm so we need to interpolate them.

3. The total number of errors is calculated as the sum of the counts computed at steps
1 and 2.

4. The error rate is computed to be the total errors divided by the number of bits in the
initial key.

If the error rate is too high, then the algorithm aborts because of the hazard of an
eavesdropper and the first phase of the BB84 protocol (the creation of the keys) should be
re-applied. The error rate induced by the several techniques of eavesdropping would be
higher than 11% and thus 11% has been taken the threshold of the error rate. [Gisin et al.
2002].
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5.4.2 Receiver (Bob) module

When running the algorithm implementation as Bob, the error correction phase

implementation receives an initial key value which represents the key that Bob has. The

key is represented by an array of bits. The following tasks are applied:

1.
2.

The bits history array is set to zeros.
Bob creates a comparison key from the key present at the time. The comparison
key is the same as the initial key at the first round; however, it is computed in the
other rounds as will be shown later in step 10.
Bob computes the number of blocks that it would split the key to. The number of
blocks is calculated to be equal the number of bits in the comparison key divided
by the current block size. [The current block size is equal to the initial block size
at the start. The initial block size is one of the parameters that are set for the error
correction phase].
Bob receives the permutation created by Alice. This is done through TCP over the
network. By receiving the permutation, Bob will have the same permutation Alice
has and could use it to shuffle the locations in the key array if they want to. This
permutation would be later used to shuffle the order by which the bits are
compared.
Bob partitions the key into blocks each of the size of the current block size (the
current block size is the initially the initial block size that is a parameter to the
error correction phase). The bit positions of the each block are taken from the key
and are computed using the permutation received in step 4. The number of blocks
has been computed in step 3 noted earlier. The blocks at Bob and Alice side are
the same as they applied the same algorithm to create them.
For each block the following is applied:

a. The parity of the block is calculated.

b. The parity of the corresponding bit at Alice’s side is received.

c. The parity computed is sent to the sender (Alice) through networking.

&

If the parity is different between the two

i. The number of errors in the pass is incremented
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ii. The block is split into 2 and the parity of each is checked with the
parity on Alice’s side. This continues recursively until the exact
error location in the block is identified.

iii. The error location in the block is mapped to the error location in
the key. The value of the bit is not flipped on Bob’s side as it is
flipped on Alice’s side.

iv. The bits history array is reset to zero for all the bits participating in
the block to indicate that the bits of this blocks has participated in
an erroneous block.

e. If the parity is the same between the two communicating parties:
i. The bits history array is incremented for all the bits participating in
the block to indicate that the bits of this block have participated in
a correct block.

7. The last bit of each block is removed from the key so that the parity information
sent in step 6 would be useless for any eavesdropper who might have been able to
record them. Moreover, a bit is removed for each group whose parity has been
sent over the network (this applies to the smaller block whose parities are sent on
the network in step 7.d.i1)

8. The current block size is incremented with the block size increment.

9. The comparison key for the next round is computed. The comparison key is
computed to contain all the bits that have bit history values less than 5. Having a
bit history value less than 5 means that the bit has participated in less than 5
successful block parity comparisons before. Excluding the bit from the
comparison means that we consider that it is enough that a bit has passed 5
comparisons to consider it as the same at the sender’s and receiver’s side.

Steps 2 to 9 are repeated over so that the key would be passed over the error correction
phase with different block size comparisons. When the key iterates 20 passes without
having any discrepancy between the parities at Alice and Bob’s side, it is assumed that

the key is now the same with both of them.
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At this stage, the error correction phase computes the error rate to check whether it is in
the acceptable limits. This is done by applying the following steps:

1. The total number of errors is calculated which is a count of the errors encountered
at the different stages of the error correction phase.

2. An estimate of errors that hasn’t been encountered is made by interpolation. These
errors were undiscovered because they have been removed when deleting the last
bit of each block; thus, they were removed but not counted as errors by the
algorithm so we need to interpolate them.

3. The total number of errors is calculated as the sum of the counts computed at steps
1 and 2.

4. The error rate is computed to be the total errors divided by the number of bits in the
initial key.

If the error rate is too high, then the algorithm aborts because of the hazard of an
eavesdropper and the first phase of the BB84 protocol (the creation of the keys) should be
re-applied. The error rate induced by the several techniques of eavesdropping would be
higher than 11% and thus 11% has been taken the threshold of the error rate. [Gisin et al.
2002].

As can been noted from the previous steps, the work done on Bob’s side is nearly
the same as the one done at Alice’s side with some modifications (the same case as the
standard algorithm). Thus, in our implementation we created a base class that contains all

the common functionality and inherited it in the Sender and Receiver classes.
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Chapter 6

Test results & Assessment



Chapter 6: Test results & Assessment

6.1 Experimentation Scenarios

A systematic approach was applied to make the experimentation and extract the
results on both the standard and the enhanced implementations of the error correction
phase. The aim was to be able to assess the performance of both implementations under
different criteria that might affect them. The criteria that are of effect on the error
correction phase are the following:

1. The number of bits initially present as a shared key between the sender and the

receiver (Alice and Bob) at the start of the error correction phase.

2. The number of discrepancies between Alice’s and Bob’s bit strings. This is the
number of errors that should be captured by the error correction phase.

3. The initial (basic) block size. The algorithm splits the shared key into number
of blocks, each with the size of the initial block size. These are the blocks that
are used for parity comparison between Alice and Bob (the details are in chapter
5).

4. The block size increment. This is the increment added to the block size at the
end of each round in the error correction phase. Thus, a round would use a block
size which is bigger than the block size used at the previous round (the

difference between the 2 block sizes is the block size increment).

The algorithm performance on a run is calculated based upon a set of counters
that monitor the key strings established between Alice and Bob at the end of the error
correction phase. Moreover, there are counters that calculate the time needed to reach the
shared key and the discrepancies initially present between Alice’s and Bob’s keys. The

full set of counters and their significance is detailed in Table 6-1.
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Table 6-1 Counters for the error correction Phase

Counter

Description

Number of Passes

The number of rounds needed for the error correction phase to

settle on the final key between Alice and Bob

Total Operations

The number of comparisons (parity checks) between Alice’s

and Bob’s bits

Key Length The length of the final key that is shared between Alice and Bob
at the end of the error correction phase
Evaluation This is a calculated value which is equal to the Key Length

divided by the total operations. It indicates the relation between
the key length with the time needed to reach it. This value needs

to be maximized for best performance

Errors Found

This is the number of discrepancies that the error correction
phase was able to find between Alice’s and Bob’s initial key

strings

Interpolated Errors

This is the number of errors interpolated based upon the number

of errors that were actually calculated

Total Errors

This is the sum of errors found and interpolated errors. This
value should be the same as the number of discrepancies that

were initially present between Alice’s and Bob’s keys

Error Rate

This is the calculated error rate. It is calculated to be equal to
the total errors divided by the number of bits initially present at
the start of the error correction phase. If the error rate is too

high, then the transmission is aborted.

At the start of each scenario, the error correction phase implementation takes the

IP of the other part in order to be able to contact it during the running of the phase. Both

the Sender and receiver module take as input a key string which is the shared key

between them. The errors are induced at this phase for testing the performance of the

algorithm at different key sizes and different number of errors. After that the algorithm
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runs till it reaches a shared key at the end. Moreover, it calculates all the needed counters
for the run; most importantly it calculates the error rate to check if it’s acceptable or not.
Additional counters are saved for each round of the running of the algorithm such as the
number of errors discovered at each round; however, these are round-specific and they
are summed to be the total errors found so they weren’t included in the comparison

tables.

56



6.2 Standard Algorithm experimental results (2000 bits)

6.2.1 80 discrepancies:

The first set of experiments applied on the standard algorithm were done using
initial key size of 2000 bits and an error rate of 4% which is equivalent to 80 errors. We
started up with those values because they were the values described during the
experimentation of Bennet and Brassard in 1992 [Bennet et al. 1992]. Applying those
values with an initial block size of 5 and having a variable block size increment gave us

the results in Table 6-2

Table 6-2 Standard Algorithm (2000 Bits — 80 Errors) with basic block size =5

G 13 820 1180 351 | 1.43902439 75 | 10.82234071 | 85.822341

5 4.291117035
5 10 14 723 1277 349 | 1.766251729 73 8.99880448 | 81.998804 | 4.099940224
5 15 16 678 1322 350 [ 1.949852507 72 | 8.267173191 | 80.267173 | 4.01335866
5 20 14 633 1367 357 | 2.159557662 69 | 8.109548109 | 77.109548 | 3.855477405
5 25 15 631 1369 376 | 2.169572108 74 | 8.909344015 | 82.909344 4.145
5 30 16 620 1380 379 | 2.225806452 72 | 7.633981865 | 79.633982 | 4.247946608
5 35 17 630 1370 398 | 2.174603175 74 | 8.560371998 | 82.560372 4.1280186
5 40 16 618 1382 401 | 2.236245955 74 | 8.235404804 | 82.235405 | 4.11177024
5 50 16 600 1400 397 | 2.333333333 72 | 8.362372536 | 80.362373 4.01
5 60 18 607 1393 406 [ 2.294892916 71 [ 7.483042096 | 78.483042 3.92
5 70 18 575 1425 378 | 2.47826087 69 | 8.284535308 | 77.284535 3.86
5 80 21 639 1361 435 | 2.129890454 69 | 5.552581534 | 74.552582 3.73
5 90 31 673 1327 448 | 1.971768202 72 | 6.537829534 | 78.53783 3.93
5 100 19 563 1437 374 | 2.552397869 68 9.21084105 | 77.210841 3.86
5 110 23 612 1388 410 | 2.267973856 69 | 7.685441204 | 76.685441 3.83

57




6.2.2 160 discrepancies

A second set of experiments were made on the standard algorithm with an initial
key of 2000 bits but having 160 errors (8%). The same set of experiments applied with 80
errors is repeated with 160 errors. However, we included only the results of using the
basic block size at 5 as the conclusions are the same as the ones obtained when having
the number of errors 80. The results are tabled in Table 6-3 and plotted as shown in

Fig. 6-2.
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Table 6-3 Standard Algorithm (2000 Bits — 160 Errors) with basic block size =5
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Figure 6-2 Standard Algorithm (2000 Bits — 160 Errors) with basic block size =5

60

5 10 17 977 668 0.955034213 7.655721275
5 20 25 986 1014 677 1.028397566 | 121 13.00691227 | 134.0069123 | 6.700345613
5 30 37 1099 901 792 0.819836215 | 126 11.23760789 | 137.2376079 | 6.861880395
5 40 42 1099 901 798 0.819836215 | 127 12.46022502 | 139.460225 | 6.973011251
5 50 40 1107 893 829 0.806684734 | 126 11.43821454 | 137.4382145 | 6.871910727
5 60 41 1058 942 788 0.890359168 | 123 13.61079945 | 136.6107995 | 6.830539973
5 70 43 1086 914 814 0.841620626 | 124 12.82846635 | 136.8284664 | 6.841423318
5 80 53 1146 854 847 0.745200698 | 123 11.06986019 | 134.0698602 | 6.70349301
5 90 54 1172 828 897 0.706484642 | 127 9.838432808 | 136.8384328 | 6.84192164
5 100 46 1153 847 886 0.734605377 | 129 12.8702212 141.8702212 | 7.09351106
5 110 55 1155 845 881 0.731601732 | 131 14.67097427 | 145.6709743 | 7.283548713
5 120 64 1161 839 876 0.722652885 | 126 12.43118062 | 138.4311806 | 6.921559031
5 130 50 1162 838 889 0.721170396 | 129 11.99941486 | 140.9994149 | 7.049970743
5 140 58 1186 814 904 0.686340641 | 127 9.656704764 | 136.6567048 | 6.832835238
5 150 68 1232 768 931 0.623376623 | 127 9.283777199 | 136.2837772 | 6.81418886
5 160 64 1188 812 907 0.683501684 | 127 11.0253032 | 138.0253032 | 6.90126516
5 170 61 1196 804 933 0.672240803 | 129 11.07246697 | 140.072467 | 7.003623349
5 180 65 1175 825 910 0.70212766 | 128 11.56317819 | 139.5631782 | 6.97815891
5 190 70 1185 815 911 0.687763713 | 127 11.71902184 | 138.7190218 | 6.935951092
5 200 58 1201 799 916 0.665278934 | 130 109336661 140.9336661 | 7.046683305
2000 Bits, 160 Errors, Initial Size=5
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We notice from the graph that when the error rate increased (from 4% to 8%), the
number of bits removed has increased and the key length, reached at the end of the error
correction phase, became shorter and thus the evaluation value has decreased. When there
are160 errors, the maximum value reached for the evaluation is 1.02; however, when
there were 80 errors, the evaluation reached 2.5 (Actually, this observation is predictable

because when the errors increase, we expect the key reached at the end to be smaller).
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6.3 Enhanced Algorithm experimental results (2000 bits)

The experiments that have been tested on the standard algorithm are replayed

again on the enhanced algorithm to be able to assess the performance of the enhanced

algorithm under the same conditions the standard algorithm has been tested.

6.3.1 80 discrepancies:

The first set of experiments were applied to the standard algorithm were done

using initial key size as 2000 bits and the error rate at 4% which means that there were 80

errors. This was the first test for the enhanced algorithm too. Applying those values with

an initial block size of 5 and having a variable block size increment gave us the results in

Table 6-4

1076

-

5 5 15 1079 .997219648 17.05315822 | 85.05315822 | 4.252657911
5 10 15 891 1270 162 1.425364759 | 68 17.05315822 | 85.05315822 | 4.252657911
5 15 16 815 1358 174 1.666257669 | 70 17.5547217 87.5547217 | 4.377736085
5 20 15 737 1407 145 1.909090909 | 62 1554846779 | 77.54846779 | 3.87742339

5 25 15 700 1442 143 2.06 60 15.04690432 | 75.04690432 | 3.752345216
5 30 16 703 1464 168 2.082503556 | 68 17.05315822 | 85.05315822 | 4.252657911
5 35 16 680 1483 164 2.180882353 | 68 17.05315822 | 85.05315822 | 4.252657911
5 40 14 653 1494 148 2.287901991 | 60 15.04690432 | 75.04690432 | 3.752345216
5 45 15 658 1504 163 2.285714286 | 70 17.5547217 | 87.5547217 | 4.377736085
5 50 17 631 1514 146 2.399366086 | 62 15.54846779 | 77.54846779 | 3.87742339

5 55 17 626 1520 147 2.428115016 | 60 15.04690432 | 75.04690432 | 3.752345216
5 60 17 623 1527 151 2.451043339 | 62 15.54846779 | 77.54846779 | 3.87742339

5 65 16 618 1531 150 2.477346278 | 62 15.54846779 | 77.54846779 | 3.87742339

5 70 20 612 1535 148 2.508169935 | 62 15.54846779 | 77.54846779 | 3.87742339

5 75 19 607 1541 149 2.538714992 | 64 16.05003127 | 80.05003127 | 4.002501563
5 80 20 600 1541 142 2.568333333 | 60 15.04690432 | 75.04690432 | 3.752345216
5 85 22 618 1543 162 2.496763754 | 66 16.55159475 | 82.55159475 | 4.127579737
5 90 18 601 1547 149 2.574043261 | 64 16.05003127 | 80.05003127 | 4.002501563
5 95 18 622 1551 174 2.493569132 | 70 17.5547217 87.5547217 | 4.377736085
5 100 21 616 1548 165 2.512987013 | 72 18.05628518 | 90.05628518 | 4.502814259
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Plotting the values of the evaluation versus block increment having the other values as
constant gives us Fig. 6-3

2000 bits, 80 Errors, Initial Block =5

-
4

Evaluation
—
[8,]

o
o

o

T T T T T 1

20 40 60 80 100 120

o

Block Size Increment

Figure 6-3 Enhanced Algorithm (2000 Bits — 80 Errors) with basic block size =5

The same parameters were used but with changing the basic block size value to become
10 in some experiments and 20 in others. The tables containing the results for those
experiments and the figures plotted using those values are presented in the appendix in
table A-3 and Fig A-3 (for the case of using basic block size at 10) and table A-4 and
Fig A-4 (for the case of using basic block size at 20).

It is apparent from comparing those figures with the corresponding figures using
the standard algorithm that there hasn’t been much improvement due to using the new
algorithm when starting with a block size of 5. However, increasing the initial block size
to become 10 and 20 showed a real difference from the standard algorithm. The standard
algorithm reached a maximum of 2.5 for the evaluation at 10 or 20 initial block size.
Using the enhanced algorithm, the algorithm reaches till 4.5 using 10 as the initial block
size and reaches 8 when using 20 as the initial block size which is a great improvement

over the standard algorithm.
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6.4 Comparison Graphs for 2000 bits

The results and graphs obtained in the previous sections are concentrating on
having an initial key of 2000 bits with 80 discrepancies between the sender’s and
receiver’s bits. Figures 6-4, 6-5 and 6-6 combine the graphs of both the standard and
enhanced algorithm for the different values of the initial block size. Those graphs are
used for the comparison of the results of applying both the standard and the enhanced

algorithms.

2000 Bits, 80 Errors, Initial Block Size=5

—e—Standard
_a— Enhaticed

Evaluation
(8 4]

D IllllllllllllllIlllll’llllllllllllllllﬁ
PR PP QPP E

Block Size Increment

Figure 6-4 Standard vs. Enhanced (2000 Bits — 80 Errors) Basic block size =5
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2000 Bits, 80 Errors, Initial Block Size= 10
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Figure 6-5 Standard vs. Enhanced (2000 Bits — 80 Errors) Basic block size =10
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Figure 6-6 Standard vs. Enhanced (2000 Bits — 80 Errors) Basic block size =20

These comparison graphs make it clear that at the initial block size of 5, there is
no significant difference between the results obtained by the standard and the enhanced
algorithms; however, when increasing the basic block size to 10 or 20, the gap between
the standard and the enhanced algorithm performances became wider and the superiority
of the enhanced algorithm became apparent. Using basic block size of 10, the standard

algorithm reached a maximum evaluation value of 2.5; however, the enhanced algorithm
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gave results at the range of 4-5 which is much better of course. The same result Is
concluded when using the basic block size at value 20. Using basic block size at 20, the
standard algorithm works in the range of 2.5 maximum (Just as it did when the basic
block size was 5 and 10); however, the enhanced algorithm has reached even a better
performance result at the range of 6-8 which is better than the results obtained when the
basic block size was set to 10. A complete mathematical model for the results of the
algorithm and a quantitative measure of the performance differences between the
standard and the enhanced algorithms is present at chapter 7 “Algorithm Behavioral

Mathematical Model”.
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6.5 Standard Algorithm experimental results (5000 bits)

The experiments were repeated but using a 5000-bit initial key string between

both parties rather than the 2000-bit one used earlier. The same experiments were applied

with 100 discrepancies between the sender’s and receiver’s initial key strings. The

experiments were re-applied with 200 discrepancies between the bit strings. The results

of those experiments are noted in the following sections.

6.5.1 100 discrepancies

Table 6-5 represents the result of applying the experiments on the standard

algorithm with 100 discrepancies between the sender and the receiver with basic block

size set to 10. Figure 6-7 is the figure obtained from the result value when using basic

block size of 10. The same parameters were used but with changing the basic block size

value to become 20 in some experiments and 30 in others. The tables containing the

results for those experiments and the figures plotted using those values are presented in

the appendix in table A-5 and Fig A-5 (for the case of using basic block size at 20) and

table A-6 and Fig A-6 (for the case of using basic block size at 30).

Table 6-5 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =10

T

5 1699 3301 443 1.942907593 | 97 9.689542693 | 106.6895427 | 2.133790854
10 10 13 1407 3593 448 2.55366027 | 97 9.399259681 | 106.3992597 | 2.127985194
10 20 13 1178 3822 474 3.244482173 | 100 10.72916108 | 110.7291611 | 2.214583222
10 30 14 1077 3923 478 3.642525534 | 98 9.942087394 | 107.9420874 | 2.158841748
10 40 14 992 4008 464 4.040322581 | 97 10.05352272 | 107.0535227 | 2.141070454
10 50 14 978 4022 494 4.112474438 | 98 9.338807285 | 107.3388073 | 2.146776146
10 60 14 969 4031 519 4.15995872 | 99 8.807000647 | 107.8070006 | 2.156140013
10 70 14 918 4082 490 4.446623094 | 98 10.29973406 | 108.2997341 | 2.165994681
10 80 19 986 4014 557 4.070993915 | 98 7.478176506 | 105.4781765 | 2.10956353
10 90 15 906 4094 509 4.518763797 | 96 9.439546529 | 105.4395465 | 2.108790931
10 100 15 917 4083 532 4.452562704 | 97 8.454485651 | 105.4544857 | 2.109089713
10 110 16 918 4082 536 4.446623094 | 96 8.299112724 | 104.2991127 | 2.085982254
10 120 16 911 4089 540 4.488474204 | 97 8.38173421 105.3817342 | 2.107634684
10 130 17 915 4085 546 4.464480874 | 96 8.0746881 104.0746881 | 2.081493762
10 140 16 878 4122 519 4.69476082 | 96 9.214196863 | 105.2141969 | 2.104283937
10 150 15 900 4100 550 4.555555556 | 97 8.396540709 | 105.3965407 | 2.107930814
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Figure 6-7 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =10

We notice from the previous figures that the initial block size slightly affects the
result obtained. As can be seen, the evaluation has a maximum of 4.9 and the basic block
size value doesn’t have an effect on it. When the basic block size was set to10, 20 or 30
nearly the same results are obtained. This observation is the same as the observation

made when a 2000-bit key string was used in the previous sections.
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6.5.2 200 discrepancies

Table 6-6 represents the result of applying the experiments on the standard

algorithm with 200 discrepancies between the sender and the receiver with basic block

size set to 10. Figure 6-8 is the figure obtained from the result value when using basic

block size of 10. The same parameters were used but with changing the basic block size

value to become 20 in some experiments and 30 in others. The tables containing the

results for those experiments and the figures plotted using those values are presented in

the appendix in table A-7 and Fig A-7 (for the case of using basic block size at 20) and

table A-8 and Fig A-8 (for the case of using basic block size at 30).

Table 6-6 Standard Algorithm (5000 Bits — 200 Errors) with basic block size =10

2.31446438

208.8144649

" 4.176289208

10 5 15 2105 859 1.375296912

10 10 15 1863 3137 920 1.683843264 | 190 21.29912971 | 211.2991297 | 4.225982594
10 20 15 1608 3392 913 2.109452736 | 183 21.77195016 | 204.7719502 | 4.095439003
10 30 17 1562 3438 969 2.201024328 | 189 24.34720828 | 213.3472083 | 4.266944166
10 40 18 1563 3437 1030 2.198976328 | 183 18.4106364 | 201.4106364 | 4.028212728
10 50 20 1545 3455 1051 2.236245955 | 183 18.94069574 | 201.9406957 | 4.038813915
10 60 19 1455 3545 998 2.436426117 | 179 21.23259806 1 200.2325981 | 4.004651961
10 70 22 1507 3493 1057 2.317850033 | 177 16.79910418 | 193.7991042 | 3.875982084
10 80 32 1676 3324 1205 1.983293556 | 186 16.38900033 | 202.3890003 | 4.047780007
10 90 28 1558 3442 1117 2.209242619 | 183 19.17486354 | 202.1748635 | 4.043497271
10 100 40 1666 3334 1185 2.00120048 | 181 16.08614686 | 197.0861469 | 3.941722937
10 110 40 1679 3321 1209 1.977963073 | 185 18.1863215 203.1863215 | 4.06372643
10 120 37 1626 3374 1176 2.07503075 | 183 17.46471829 | 200.4647183 | 4.009294366
10 130 39 1658 3342 1205 2.015681544 | 182 17.24965623 | 199.2496562 | 3.984993125
10 140 38 1623 3377 1180 2.080714726 | 185 19.76314081 | 204.7631408 | 4.095262816
10 150 46 1729 3271 1256 1.891844997 | 181 14.8129663 195.8129663 | 3.916259326
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Figure 6-8 Standard Algorithm (5000 Bits - 200 Errors) with basic block size =10

The same observations that were noticed when using 2000 bits are still observed
with the increase of the number of bits in the initial key string. We notice that when the
error rate increased (from 2% to 4%), the number of bits removed has increased and the
key length, reached at the end of the error correction phase, became shorter and thus the
evaluation value has decreased. When there are 200 errors, the maximum value reached

for the evaluation is 2.5; however, when there were 100 errors, the evaluation reached 4.9
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6.6 Enhanced Algorithm experimental results (5000 bits)

The same experiments applied to the standard algorithm were applied to the enhanced

algorithm with 100 discrepancies between the sender’s and receiver’s initial key strings,

then with 200 discrepancies between the bit strings.

noted in the following sections.

6.6.1 100 discrepancies

The results of those experiments are

Tables 6-7 represents the result of applying the experiments on the enhanced

algorithm with 100 discrepancies between the sender and the receiver with basic block

size set to 10. Figure 6-9 is the figure obtained from the result value when using basic

block size of 10. The same parameters were used but with changing the basic block size

value to become 20 in some experiments and 30 in others. The tables containing the

results for those experiments and the figures plotted using those values are presented in

the appendix in table A-9 and Fig A-9 (for the case of using basic block size at 20) and

table A-10 and Fig A-10 (for the case of using basic block size at 30).

Table 6-7 Enhanced Algorithm (5000 Bits — 100 Errors) with basic b

3173

lock size =10

10 S 12 1826 173 1.737677985 | 50 7.041511454 | 57.04151145 | 1.140830229
10 10 12 1443 3554 175 2.462924463 | 50 7.224380743 | 57.22438074 | 1.144487615
10 20 13 1150 3849 183 3.346956522 | 50 6.883211081 | 56.88321108 | 1.137664222
10 30 13 1018 3979 179 3.908644401 | 49 7.157853449 | 56.15785345 | 1.123157069
10 40 13 956 4041 190 4.226987448 | 50 6.424071494 | 56.42407149 | 1.12848143

10 50 13 898 4101 181 4.566815145 | 49 6.354772479 | 55.35477248 | 1.10709545

10 60 14 871 4129 187 4.740528129 | 50 7.052847137 | 57.05284714 | 1.141056943
10 70 14 859 4141 197 4.820721769 | 50 6.371744706 | 56.37174471 | 1.127434894
10 80 15 836 4163 194 4.979665072 | 50 6.310513844 | 56.31051384 | 1.126210277
10 90 15 837 4162 207 4.972520908 | 50 6.000308833 | 56.00030883 | 1.120006177
10 100 16 790 4210 174 5.329113924 | 50 7.324737491 | 57.32473749 | 1.14649475

10 110 16 798 4201 192 5.264411028 | 50 6.651385659 | 56.65138566 | 1.133027713
10 120 16 783 4217 185 5.385696041 | 49 6.655301291 | 55.65530129 | 1.113106026
10 130 17 790 4208 199 5.326582278 | 49 6.412023306 | 55.41202331 | 1.108240466
10 140 16 774 4226 191 5.45994832 | 50 7.03041153 57.03041153 | 1.140608231
10 150 16 802 4196 221 5.2319202 49 5.757744048 | 54.75774405 | 1.095154881
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Figure 6-9 Enhanced Algorithm (5000 Bits - 100 Errors) with basic block size =10

It can be noticed from the previous graphs that as the basic block size increases,
better results are reached. When the basic block size was 10, the maximum evaluation
reached was around 5.5; however, when the basic block size was 20, the maximum
evaluation was 7.7. When the basic block size was 30, the evaluation reached a maximum
of 8.6. Thus, the enhanced algorithm reaches better results when the basic block size 18

incremented (contrary to the standard algorithm that doesn’t get affected by the value of

the basic block size).

6.6.2 200 discrepancies
The same experiments were re-applied to the enhanced algorithm and the graphs

conveyed the same results previously noted.
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6.7 Comparison Graphs for 5000 bits

The results and graphs obtained in the section are concentrating on having an
initial key of 5000 bits with 100 discrepancies between the sender’s and receiver’s bits.
Figures 6-10, 6-11 and 6-12 combine the graphs of both the standard and enhanced
algorithm for the different values of the initial block size. Those figures are used for the
comparison of the results of applying both the standard and the enhanced algorithms.

The next figures are similar to figures 6-4, 6-5 and 6-6 that were used to compare

the performance of the standard and the enhanced algorithm for 2000 bits initial key.
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Figure 6-10 Standard vs. Enhanced (5000 Bits — 100 Errors) Basic block size =10
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5000 Bits, 100 Errors Initial Block Size =20
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Figure 6-11 Standard vs. Enhanced (5000 Bits — 100 Errors) Basic block size =20
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Figure 6-12 Standard vs. Enhanced (5000 Bits — 100 Errors) Basic block size =30
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These comparison graphs make it clear that at the initial block size of 10, there is
some difference between the results obtained by the standard and the enhanced algorithm;
however, when increasing the basic block size to 20 or 30, the gap between the standard
and the enhanced algorithm performances became wider and the superiority of the
enhanced algorithm became apparent. Using basic block size of 10, the standard
algorithm reached a maximum evaluation value of 4.7; however, the enhanced algorithm
gave results that reached 5.4. Using basic block size at 20, the standard algorithm works
in the range of 4.8 maximum; however, the enhanced algorithm has reached even a better
performance result at the range of 6-7.8 which is better than the results obtained when the
basic block size was set to 10. Using basic block size of 30, the standard algorithm stayed
in the same range of evaluation values, but the enhanced algorithm was able to reach 8.6.
A complete mathematical model for the results of the algorithm and a quantitative
measure of the performance differences between the standard and the enhanced

algorithms is present at chapter 7 “Algorithm Behavioral Mathematical Model”.
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6.8 Error Rate Effect

6.8.1 Effect of increasing error rate

During the experimentation on the standard and the enhanced algorithm, some
experiments were made where the error rate was made to be 25% and above. The purpose
of doing such experiments with more than 25% discrepancies between the sender’s and
receiver’s initial bit strings is to monitor the performance of the error correction phase
algorithm in very noisy environments or under heavy eavesdropping attack
[Eavesdropping on quantum key distribution induces errors which are detectable later
through the error rate].

Applying those experiments revealed a drawback that must be overcome. The
problem was the following: when the algorithm (the standard or the enhanced one) was
applied to such bit strings with high error rates, the algorithm would return calculating an
error rate that is a low value (much lower than the actual error rate value). Moreover, the
key created at the end of the error correction phase on the sender’s side is different than
the key created at the receiver’s size. Both the above results are catastrophic on the result
of the error correction phase due to the following reasons. Having the error correction
phase estimating a wrong value for the error rate means that it might accept transmissions
that it should have refused. For example, if the error rate was actually 20% then the
transmission should be aborted; however, if the error correction phase calculated the error
rate to be 9% only, then the transmission would be considered safe and no abortion will
occur. Having different keys at the sender’s and the receiver’s side at the end of the error
correction phase is a failure of this phase in achieving its goal. The key that results at the
end of the error correction phase should be the key that would be later used for
encryption/decryption between the sender and the receiver: thus, having discrepancies in
such a key would mean that the sender and the receiver would encrypt/decrypt with
different keys and all their communications would fail.

Tables 6-8, 6-9 and 6-10 show the results of applying the standard algorithm with
an initial key size of 5000 and 1000 errors between the sender’s and receiver’s bits. Thus,

there are 5000 bit-string and 20% error rate between the sender and the receiver.
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Only the first two rows of each of tables 6-8, 6-9 and 6-10 got the same keys between the
sender and the receiver. The other rows in the table denote experiments where there were

discrepancies between the keys at the sender and receiver side.

Table 6-8 Standard Algorithm (5000 Bits — 1000 Errors) with basic block size =10

10 5| 3 4056 944 2912 | 0232741617 563 | 73.90838997 | 636.90839 | 12.7381678

10 10 4191 809 3124 | 0.193032689 525 | 50.07388681 | 575.0738868 | 11.50147774
10 20 103 4092 908 3131 | 0.221896383 462 | 34.42243044 | 496.4224304 | 9.928448609
10 30 149 4356 644 3434 | 0.147842057 483 | 39.07704322 | 522.0770432 | 10.44154086
10 40 173 4281 719 3352 | 0.167951413 448 | 30.87568324 | 478.8756832 | 9.577513665
10 50 167 4200 800 3345 0.19047619 437 | 30.38521809 | 467.3852181 | 9.347704362
10 60 178 4167 833 3310 | 0.199904008 431 | 31.07262217 | 462.0726222 | 9.241452443
10 70 182 4160 840 3312 | 0.201923077 429 | 32.26685709 | 461.2668571 | 9.225337142
10 80 184 4105 895 3291 | 0.218026797 416 | 28.33671306 | 444.3367131 | 8.886734261
10 90 181 4088 912 3255 | 0.223091977 399 | 21.40972709 | 420.4097271 | 8.408194542
10 100 180 4001 999 3200 | 0.249687578 394 | 24.30192791 | 418.3019279 | 8.366038558
10 110 176 3997 1003 3215 | 0.250938204 404 | 28.11197131 | 432.1119713 | 8.642239426
10 120 194 4031 969 3209 | 0.240387001 397 | 26.01450921 | 423.0145092 | 8.460290184
10 130 193 3978 1022 3184 | 0.256913022 397 | 28.41779286 | 425.4177929 | 8.508355857
10 140 191 4021 979 3219 | 0.243471773 405 | 30.73590519 | 435.7359052 | 8.714718104
10 150 196 3951 1049 3147 | 0.265502404 389 | 26.44330576 | 415.4433058 | 8.308866115

Table 6-9 Standard Algorithm (5000 Bits — 1000 Errors) with basic block size =20

e e

20 5 34 924 0.226692836 544 | 65.46302824 | 609.4630282 | 12.18926056
20 10 77 4328 672 0.155268022 539 | 54.35394905 | 593.3539491 | 11.86707898
20 20 141 4444 556 3410 | 0.125112511 490 | 36.35875388 | 526.3587539 | 10.52717508
20 30 157 4363 637 3416 | 0.146000458 469 | 31.97513501 500.975135 | 10.0195027
20 40 155 4268 732 3382 | 0.171508903 458 | 36.03218713 | 494.0321871 | 9.880643743
20 50 166 4190 810 3312 | 0.193317422 429 | 28.13103502 457.131035 | 9.1426207
20 60 179 4174 826 3312 | 0.197891711 426 | 30.13093595 456.130936 | 9.122618719
20 70 179 4173 827 3323 | 0.198178768 422 | 26.62692925 | 448.6269292 | 8.972538585
20 80 175 4024 976 3196 | 0.242544732 389 | 19.81772921 | 408.8177292 | 8.176354584
20 90 187 4096 904 3267 | 0.220703125 412 | 27.59730812 | 439.5973081 | 8.791946162
20 100 186 4099 901 3270 0.21980971 418 | 33.25412191 | 451.2541219 | 9.025082438
20 110 182 4009 991 3222 | 0.247193814 403 | 26.76301887 | 429.7630189 | 8.595260377
20 120 184 4031 969 3231 | 0.240387001 402 | 28.90739683 | 430.9073968 | 8.618147937
20 130 195 3955 1045 3148 | 0.264222503 388 | 24.86286959 | 412.8628696 | 8.257257392
20 140 178 4034 966 3257 | 0.239464551 399 | 25.33950464 | 424.3395046 | 8.486790093
20 150 189 3939 1061 3156 | 0.269357705 392 | 27.31233071 | 419.3123307 | 8.386246614
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30 10 70 4284 716 3199 0.16713352 531 | 51.05647105 582.056471 | 11.64112942
30 20 132 4464 536 3450 | 0.120071685 499 | 35.46597815 | 534.4659782 | 10.68931956
30 30 155 4342 658 3393 | 0.151543068 465 | 32.44818428 | 497.4481843 | 9.948963686
30 40 164 4288 712 3399 | 0.166044776 462 | 35.32792119 | 497.3279212 | 9.946558424
30 50 164 4186 814 3329 | 0.194457716 437 | 29.70453768 | 466.7045377 | 9.334090754
30 60 169 4146 854 3287 | 0.205981669 416 | 24.29150347 | 440.2915035 | 8.805830069
30 70 177 4079 921 3239 | 0.225790635 412 27.2112711 | 439.2112711 | 8.784225422
30 80 191 4137 863 3275 0.20860527 415 | 28.73350267 | 443.7335027 | 8.874670053
30 90 196 4121 879 3271 | 0.213297743 419 | 32.81343998 451.81344 | 9.0362688

30 100 199 4133 867 3278 | 0.209774982 410 26.9385553 | 436.9385553 | 8.738771106
30 110 187 4011 989 3208 | 0.246571927 403 | 27.79802444 | 430.7980244 | 8.615960489
30 120 182 4041 959 3248 | 0.237317496 406 | 28.37927271 | 434.3792727 | 8.687585454
30 130 202 3949 1051 3115 | 0.266143327 387 | 25.16057295 | 412.160573 | 8.243211459
30 140 185 4027 973 3230 | 0.241619071 398 | 26.55284794 | 424.5528479 | 8.491056959
30 150 207 3974 1026 3147 | 0.258178158 387 | 25.57991394 | 412.5799139 | 8.251598279

We notice from the graphs that nearly all of the results are wrong in the sense that
they produce different keys at the sender and the receiver side. Moreover, we notice that
the calculated error rate is around 8% or 9% which is much less than the actual error rate
(20%). Miscalculating the error rate by that amount is dangerous as it could hide the
presence of an eavesdropper. For example, if the threshold was 11% (any error rate above
that would mean that the communication is insecure and should be aborted), then all the
above experiments would pass as they are below the threshold though their actual error
rate is 20%. This problem appears more significant when we have 2000 errors (error rate
=40%) as all the results are erroneous and the algorithm assumes that they are right and
have low error rates.

The same effect appears in the enhanced algorithm too as it is an enhancement of the

standard algorithm.
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6.8.2 Cause and Solution

The above problem occurs because of the way the blocks are checked between the
sender’s and the receiver’s side. In BB84, the sender creates a block, checks its parity and
sends the parity to the receiver. The receiver applies the same scenario and both sides
check the local and the other side’s parity. If the parities are the same, the BB84 protocol
assumes that the blocks are the same depending on the fact that later blocks would verify
that in later rounds. This way of comparison works fine with a low number of
discrepancies between the 2 keys at both sides; however, when the error rate increases,
using the parity to check the blocks doesn’t give the correct results as there are multiple
errors in any block. This is the cause of the problem noted in the previous section which
is the erroneous results of the protocol when the error rate increases.

The solution to this problem is to have an estimate of the error rate prior to
starting the parity checks on the keys. Having such an estimate before-hand would help
the error correction phase to abort early before it starts the parity checks phase; moreover,
it avoids the problem described in the previous section [Xu 2002].

Thus, the error correction phase algorithm would be modified to add a part that
would calculate such an estimate. The modifications are made to the algorithm
implementation on both sides (the sender and the receiver). The modification would need
to apply the following steps:

1. Create a sample block at both the sender’s and the receiver’s sides.

2. Compare the values of each bit in the block between the sender and the

receiver.

3. Calculate the error rate of the block.

The value calculated in the previous steps would be a representative sampling rate

that would be used to estimate the error rate.

6.8.2.1 Alice (Sender)
The following steps are added at the start of the error correction phase at the

sender’s side to be able to calculate an estimate of the error rate:
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. Alice creates a random array of locations in the initial key. This array contains

random locations in the initial key that would be used to create a sample to
check the error rate with.

Alice sends the array of locations to the receiver (Bob).

Alice sends the value of each element in the sample to Bob and receives Bob’s
value.

Alice compares her value with the value received from Bob. If the values are
different then the number of errors is incremented.

Alice calculates the sample error rate (Number of errors / Sample block Size).
If the error rate is above the threshold, then the transmission is aborted.

If the sample error rate is acceptable, then Alice removes all the bits that has
participated in the sample and starts the algorithm for the error correction

phase.

6.8.2.2 Bob (Receiver)

The following steps are added at the start of the error correction phase at the

receiver’s side to be able to calculate an estimate of the error rate:

L.
2.

Bob receives the array of locations sent by Alice.

Bob receives the value of each element in the sample from Alice and sends his

value for the same element.

Bob compares her value with the value received from Alice. If the values are
different then the number of errors is incremented.

Bob calculates the sample error rate (Number of errors / Sample block Size).
If the error rate is above the threshold, then the transmission is aborted.

If the sample error rate is acceptable, then Bob removes all the bits that has
participated in the sample and starts the algorithm for the error correction

phase.
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Chapter 7: Algorithm Behavioral Mathematical Model

In order to assess the effect of the enhanced algorithm on the performance of the
error correction phase, there is a need to quantify the experimental results and have a
mathematical model for the system. There is also a need to note the effect of changing the
parameters of the algorithm such as the initial block size and the block size increment on
both the standard and the enhanced algorithms. The work done in this direction is

explained in this chapter.

7.1 Result Graphs

A set of experiments were applied to both the standard and the enhanced
algorithm with changing values of basic block size and block size increment. The graphs
of the results of the experiments are detailed in this section. The first set of the
experiments were applied using 5000 bits with 100 and 200 errors (error rate = 2% and

4% respectively).

7.1.1 Standard algorithm

Figures 7.1 and 7.2 represent the results of applying the standard algorithm on a
bit string of 5000 bits with 100 and 200 errors respectively. In both those cases, the basic
block size was kept constant at 10 and the block size increment was varying each time to

be able to identify its effect on the final algorithm result.
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Figure 7-1 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =10
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Figure 7-2 Standard Algorithm (5000 Bits — 200 Errors) with basic block size =10

It is apparent from the graphs that the block size increment has an effect on the
final outcome of the algorithm. As the block size increment increases, the evaluation
result gets higher until it reaches a maximum limit and it saturates. When there were 100

errors, the saturation was at around 3.56 and when there were 200 errors, the saturation
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Figure 7-4 Standard Algorithm (5000 Bits — 200 Errors) with block size inc. =5

It is apparent from the figures that the basic block size has an effect on the final
outcome of the algorithm. As the basic block size increases, the evaluation result gets
higher until it reaches a maximum limit and it saturates. When there were 100 errors, the

saturation was at around 3.15 and when there were 200 errors, the saturation was at

1.715.

7.1.2 Enhanced Algorithm

The same set of experiments and results were done on the enhanced algorithm.
Figures 7.5 and 7.6 represent the results of applying the enhanced algorithm on a bit
string of 5000 bits with 100 and 200 errors respectively. In both those cases, the basic

block size was kept constant at 10 and the block size increment was varying each time to

be able to identify its effect on the final algorithm result.
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Figure 7-5 Enhanced Algorithm (5000 Bits — 100 Errors) with basic block size =10
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Figure 7-6 Enhanced Algorithm (5000 Bits — 200 Errors) with basic block size =10

The same observation noted in the standard algorithm is noted here too where the

block size increment affects the result of the algorithm.
Figures 7.7 and 7.8 represent the results of applying the enhanced algorithm on a

bit string of 5000 bits with 100 and 200 errors respectively. In both those cases, the block
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size increment was kept constant at 5 and the basic block size was varying each time to

be able to identify its effect on the final algorithm result.
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Figure 7-7 Enhanced Algorithm (5000 Bits — 100 Errors) with block size inc.
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Figure 7-8 Enhanced Algorithm (5000 Bits — 200 Errors) with block size inc. =5

The same observation noted in the standard algorithm is noted here too where the

basic block size affects the result of the algorithm.
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7.2 Mathematical Model

All the above graphs exhibit the same behavior which is mainly trying to reach a
value and saturate at it. This is apparent in all the figures of chapter 6 as the evaluation
always move on increasing until it reaches a maximum value and then the evaluation
would saturate at that value. Trying to model such a behavior mathematically yields the
function y = a(l—e™") where x is the input, y is the output. a and b are constants where
a is the maximum value that would be reached and b indicates the speed of moving
towards the saturation value. [For the previous graphs of this chapter, y would be the

“ayaluation” values, and x would be the “basic block size” or the “block size increment”].
Using the y =a(l- e ") as a model of the behavior would mean that we should

calculate the a and b values for the standard and enhanced algorithm under the different
basic block size and block size increment values. Calculating the a and b values for such
cases would show the effect of changing each value and the effect of using the enhanced
algorithm versus the standard algorithm. Those values could then be used as a
quantitative way to measure the effect of the changes made on the results obtained.

First, some mathematical analysis should be made to be able to have a clear path
on how to calculate the a and b values from figures like the ones present in this chapter
(figures 7-1 to 7-8). Calculating the value of a is obvious as it is the saturation value that
the evaluation value tries to reach so it is easy to note the value from the graph; however,

calculating the value of b needs some extra calculations to be made.
In the equation Y =a(l-e™)
Y is the evaluation, X is the input and a is calculated directly from the graph

Thus, the only unknown is b:

Since Y = a(l—e™™)

Then r_ l1—e™
a

Thus —bX =In(1- z) [Equation 7.1]
a
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Let Z =In(1- X—)
a

For any point (i) Z, = -bX,

The error between the value returned for the equation and the actual value is E. We are
trying to reduce this error and our optimum is to have it being equal to zero. Using square

error

E =Y (Zactual) - Z,(calculated DE
i=1

Our aim is to have 9E _ 0
ob
Thus, %ﬁ— = gab—[?; (Z,(actual) - Z, (calculated))2]
0 & 2
=—[>.(Z(actual) +bX)*]
ob 5

=91z +2bZ,X, 4K, ]
ob i=1
a n , n »
=—[2b) ZX, +b*) X, ]
ab i=l i=l

= 2iz,.x,. +2b jxf ]
i=]

=1

Since —E =0

ob

Then, ZiZ,.X,.+2b Z":Xf 1=0
i=1 i=]
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n Y.
> n(l-—+ X,
Thus, b = ~(“1——"—)

n

X/
i=1

Thus we calculate b using the equation above.

[Equation 7.2]
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7.3 Applying Mathematical Model on results

The mathematical model described above creates a model for the experiments and
a quantitative way to show the effect of making those changes on the results obtained.
The experiments are modeled by the equation Since ¥ = a(1—e™) where a and b are
constants that will be calculated for each experiment. Y is the evaluation function, and X
is the variable that would change during the experimentation (the basic block size or the

block size increment).

The results of applying this model using the standard and enhanced algorithm are
detailed as follows. All the experiments done at this point use 10000-bits key strings in

order to have a large range of error values and thus a broader range of results obtained.

7.3.1 Standard Algorithm

As stated earlier, all experiments are done with 10000-bits initial key string. It is

Y
noted from equation 7.1 that In(l ——}i) = —bX , which means that if In(1——)is drawn in
a a

relation to X, the result should be a straight line whose slope is —b. This graph is

presented for each experiment later on.

The results of applying the standard algorithm on a 10000-bits key string with 50

errors and a basic block size of 10 are shown in Fig. 7.9

fi—o— Series ﬂl
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Figure 7-9 Standard Algorithm (10000 Bits — 50 Errors) with basic block size =10
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After that the value of a is estimated, which is 5.06 in this case, and the graph of block

Evaluation

size increment versus In(1— —————) is plotted as seen in Fig. 7-10
a
|
: 0 I\\II\]IIIlllII\IIT\!!I\\I\l!]lllT\l\W\TIVI\III!ill!(lKW
0.52] e X

B—— Seri_eg1

In(1-Evaluatior/a)
V)

Increment

Figure 7-10 Standard Algorithm (10000 Bits — 50 Errors)
Block Size Inc. vs. In (1-Eval/a)

The value of b is calculated according to equation 7.2 and it was 0.001173759 in this case.
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Applying this same scenario with a 10000 bits-key strings with 100 errors showed the

results in figures 7.11 and 7.12.

[—T—‘S eries
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| |
Figure 7-11 Standard Algorithm (10000 Bits — 100 Errors) with basic block size=10

a was calculated and it turned out to be 4.46

|
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Figure 7-12 Standard Algorithm (10000 Bits — 100 Errors)
Block Size Inc. vs. In (1-Eval/a)
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b was calculated according to equation 7.2 and it turned out to be 0.001203714
Various different experiments were calculated by changing the block size increment,
basic block size and the number of discrepancies between the sender’s and receiver’s bits.

The results are combined and are presented at the end of this chapter.
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7.3.2 Enhanced Algorithm

The experiments and values obtained on the standard algorithm are repeated on
the enhanced algorithm to be able to get the corresponding values and graphs. The results

of running the experiment in a 10000-bits key string with 50 errors and a basic block size

of 10 are shown in Fig. 7.13

Evaluation
w
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1 Block Size Increment

Figure 7-13 Enhanced Algorithm (10000 Bits — 50 Errors) with basic block size=10
Evaluation

a was calculated and it turned out to be 5.17 . Plotting In(l — ——————) versus block
a

size yielded Fig. 7.14
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Figure 7-14 Enhanced Algorithm (10000 Bits — 50 Errors)
Block Size Inc. vs. In (1-Eval/a)

b was calculated according to equation 7.2 and it turned out to 0.001248532
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The experiment was re-run again on the enhanced algorithm but with 100 errors between
the sender’s and the receiver’s keys (rather than 50 errors in the first experiment). Figures

7.15 and 7.16 are plotted for this experiment.
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Figure 7-15 Enhanced Algorithm (10000 Bits — 100 Errors) with basic block size=10

a was calculated and it turned out to be 4.55
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Figure 7-16 Enhanced Algorithm (10000 Bits — 100 Errors)
Block Size Inc. vs. In (1-Eval/a)
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b was calculated according to equation 7.2 and it turned out to 0.001284135

As with the standard algorithm, various different experiments were calculated by
changing the block size increment, basic block size and the number of discrepancies
between the sender’s and receiver’s bits and the results are combined and are presented in

the next section.
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7.4 Standard vs. Enhanced according to the mathematical model
A full set of experiments have been made on the standard and the enhanced

algorithms using the mathematical model described in this chapter. The experiments were
done using 5000 and 10000 bits key strings with various ranges of basic block size and
block size increment values. Those experiments followed the same path and had the same
graphs as the ones described in the last section “Applying Mathematical Model on
Results”; however, not all the graphs were included in this document as they would be
redundant. The graphs and the equations of the preceding chapter were used to create a

table containing the values of a and b for the different experiments done (a and b are the

constants of the equationY = a(l1— ¢ ). The table of a,b values are presented in

Table 7.1
Table 7-1 a,b values
Standard enhanced
a b a b
5000 Bits

100 Error [Incerement Changes] 3.56 0.05683 | 3.62 0.05911
200 Error [Incerement Changes] 2.35 0.06352 | 2.36 0.07058
100 Error [Block Size Changes] 3.15 0.02202 | 3.62 0.02119
200 Error [Block Size Changes] | 1.715 0.03203 2.1 0.02248

10000 Bits
50 Error [Incerement Changes] 506 | 0.001174 ] 5.171 0.001249
100 Error [Incerement Changes] 446 | 0.001204 | 4.55] 0.001284
150 Error [Incerement Changes] 3.95| 0.001278 4.1 0.001095
250 Error [Incerement Changes] | 3.145 | 0.001364 | 3.28 | 0.001177
300 Error [Incerement Changes] | 2.825 | 0.001343 | 2.88 0.001352
350 Error [Incerement Changes] 2.58 0.00132 | 2.628 [ 0.001389

50 Error [Block Size Changes] 6.6 | 0.000345| 7.54| 0.000341
100 Error [Block Size Changes] 49| 0.000415 | 5.622 [ 0.000403
150 Error [Block Size Changes] 3.87 | 0.000431 | 4.464 0.00042
250 Error [Block Size Changes] 2.61 | 0.000497 | 3.13| 0.000404
300 Error [Block Size Changes] | 2.251 | 0.000484 | 2.923 | 0.000332
350 Error [Block Size Changes] | 1.945 | 0.000533 | 2.48 0.00036
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Many observations could be concluded from table 7-1 above.

The first observation would be the changes in the value of a when using the
enhanced algorithm. We notice that the enhanced algorithm has higher values for a than
the corresponding standard algorithm under the same conditions. a is the maximum value
that the evaluation function reaches. This means that the enhanced algorithm gets better
evaluation (longer key in less iterations) than the standard algorithm since it has a higher
a. This is a quantitative measure that shows the performance of the enhanced algorithm in
comparison to the standard algorithm under the same conditions. The difference of the
value of a is above 0.5 in average.

The second observation that can be noted is that the value of a decreases with the
increase of the number of errors. The observation that the evaluation decrease with the
increase in the number of errors has been made before in several experiments; however,
this is the first time to have a value to associate it with. This observation is logical
because we expect the algorithm to create a smaller key when the number of
discrepancies between the initial keys at the sender and the receiver side is larger. The
value that a decreases when the errors increase varies according to the amount of increase
in the error rate and the present error rate; however, the value decreased doesn’t depend
on the fact that the algorithm used is standard or enhanced.

The value of b is generally better in the enhanced algorithm when the basic block
size is kept constant and the block size increment is varied; however, when the block size
increment is kept constant and the basic block size is varied the opposite occurs and b 1s
better in the standard algorithm. The change in the value of b is small as the value of b
itself is rather small. b is a representative of the speed the algorithm tries to reaches its

best evaluation value.
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Chapter 8: Conclusion & Future Work

8.1 Conclusion

This research had the objective of making enhancements in the error correction
phase of the BB84 protocol to make it more efficient and thus to decrease the number of
bits lost during this phase. This enhancement is made through the use of memory
between the rounds of error correction where a round would identify the locations it
found errors in to help the next round to be more focused. This would decrease the
number of rounds used to reach the final shared string (increase the shared string size).
In order to be able to apply the modification, an implementation was made to the standard
BB84 protocol as well as the enhanced one that uses memory between rounds.
Experiments were done to both the standard and the enhanced algorithms in order to
assess the effect of the enhancements that have been introduced (those experiments are
detailed in chapter 6). The superiority of the present enhanced algorithm appeared in
those experiments and appeared in the comparison figures 6-8, 6-9, 6-10, 6-20, 6-21 and
6-22.

When using 2000 bits as the initial key string between Alice and Bob and having
80 discrepancies between them, the comparison graphs made it clear that at the initial
block size of 5, there is no significant difference between the results obtained by the
standard and the enhanced algorithms. However, when increasing the basic block size to
10 or 20, the gap between the standard and the enhanced algorithm performances became
wider and the superiority of the enhanced algorithm became apparent. Using basic block
size of 10, the standard algorithm reached a maximum evaluation value of 2.5; however,
the enhanced algorithm gave results at the range of 4-5 which is much better. Using basic
block size of 20, the standard algorithm works in the range of 2.5 maximum but the
enhanced algorithm has reached even a better performance result at the range of 6-8.
When using 5000 bits as the initial key string between Alice and Bob and having 100
discrepancies between them, the comparison graphs showed that at the initial block size
of 10, there is some difference between the results obtained by the standard and the

enhanced algorithm. However, when increasing the basic block size to 20 or 30, the gap
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between the standard and the enhanced algorithm performances became wider. Using
basic block size of 10, the standard algorithm reached a maximum evaluation value of 4.7
and the enhanced algorithm gave results that reached 5.4. Using basic block size of 20,
the standard algorithm works in the range of 4.8 maximum and the enhanced algorithm
has reached even a better performance result at the range of 6-7.8. Using basic block size
of 30, the standard algorithm stayed in the same range of evaluation values, but the
enhanced algorithm was able to reach 8.6

Moreover, the superiority of the present enhanced algorithm has been established
through the mathematical model that has been formulated for the system (chapter 7). This
is apparent in Table 7-1 which compares the values of a and b for both the standard and
the enhanced error correction phase of the BB84 protocol. The enhanced algorithm had
higher values for a than the corresponding standard algorithm under the same conditions.
Since a is the maximum value that the evaluation function reaches, then this means that
the enhanced algorithm gets better evaluation (longer key in less iterations) than the
standard algorithm since it has a higher a. This is a quantitative measure that shows the
performance of the enhanced algorithm in comparison to the standard algorithm under the
same conditions. The difference of the value of a between the standard and the enhanced
algorithms is above 0.5 in average.

In conclusion, this research provides an enhanced implementation of the standard
error correction phase in the BB84 protocol. The enhancement has been proven superior
to the standard one in terms that it generates a larger key in a small number of rounds
(thus less amount of time). The superiority of the enhanced algorithm has been
established through raw result of experiments and through a mathematical model that has

been built for the system.
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8.2 Future Work

There is currently a set of projects working on realizing Quantum Cryptography
and trying to overcome the problems it is facing. Some of those projects are mentioned in
chapter 3.5. The most important of these projects is the Najavo project as it became the
first commercial application for Quantum Cryptography. Another important project 1s the
ARC project that aims at creating another commercial application using Quantum
Cryptography.

Quantum Cryptography faces a set of problems at the lowest levels (the physics
level which is the first phase of the BB84 protocol) which are effect of noise, the distance
limitation and the photon polarization problems. All these issues should be solved and
settled on for Quantum Cryptography to reach its full potential. The current projects
running intend to try to resolve some of such issues such as the ARC project that aims at
trying to find a workaround for the distance limitation and the photon polarization issues.
However, more research needs to be done in those areas to be able to find better solutions
for these problems.

Moreover, an enhancement needs to be made to the privacy amplification phase
of the BB84 protocol. The privacy amplification phase is concerned with distilling highly
secret shared information from a larger amount of shared information that is partially
secret. Using the BB84 protocol, Eve might have been able to spy on some of the
information sent on the channel and thus might be able to know the value of some part of
the shared key between Alice and Bob. That is why the privacy amplification phase is
needed.

This stage causes the loss of a large number of bits of the key between the sender and the
receiver. This was apparent in the experiments done by Bennet and Brassard where 625
bits were removed during this phase in one of the experiments and 902 were removed in
another experiment (see section 4.4). Thus, more research should be done in the privacy
amplification phase to enhance it so that it would loose a small number of bits. Such an
enhancement in the privacy amplification phase would result in a large improvement in
the performance of Quantum Key Distribution and would result in much longer keys to

be used in encrypting messages.
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The error correction phase can be modified too to become even more efficient
than the way presented here. This would mean the re-thinking of the whole phase and
how it is to be implemented. Using other measures to check the similarity of the bits at
the sender’s and the receiver’s sides (rather than parity check) and devising a different

algorithm for implementing the error correction phase might prove to bear better results.

104



References



References

BENNET, Charles., BRASSARD, Gilles., “Quantum Cryptography: Public Key
Distribution and Coin Tossing”, Proceedings of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York,
1984) p.175.

BENNET, C.H., BRASSARD, G., and ROBERT, G.M., “Privacy Amplification by
public discussion”, SIAM Journal of Computing, Vol. 17 no.2, (April 1988.), p.210-
229,

BENNET, Charles., BESSETTE, Francois., BRASSARD, Gilles. , SALVAIL, Louis.,
and SMOLIN , John., “Experimental Quantum Cryptography”, Journal of
Cryptography, Vol.5, (1992), p. 3-28.

BENNET, Charles H., “Quantum Cryptography using any two Nonorthogonal
States”. Physical Review Letters, Vol 68 no.21, (25 May 1992), p.3121-3124.

BENNET, Charles., BRASSARD, Gilles., CREPEAU, Claude, MAURER, Ueli M.,
“Generalized Privacy Amplification”, IEEE Transaction on Information Theory, Vol.
41, no. 6, (1995) pp. 1915-1923.

BOYER, Michel., BEHAM, Eli., BRASSARD, Gilles., VAN DE GRAAF, Jeoren.,
and MOR, Tal., “Security of Quantum Key Distribution Against All Collective
Attacks”, Tech. Rep. 9801022, LANL Quant-ph archives(December 5, 2001).

BRASSARD, G., and CREPEAU, C., JOSZA, R., LANGLOIS, Daniel, A quantum
bit commitment scheme provably unbreakable by both parties”, Proceedings of the
34™ Annual IEEE Symposium on Foundations of Computer Science, (November
1993), p.361-371.

BRASSARD, G., and CREPEAU, C. “25 years of quantum cryptography”, SIGACT
News, Vol. 27, (3 September 1996), p. 13-24.

BRASSARD, Gilles., CREPEAU, Claude., MAYERS, Dominic., and SALVAIL,
Louis, “The Security of Quantum Bit Commitment Schemes”, Proceedings of
Randomized Algorithms, Satellite Workshop of 23rd International Symposium on
Mathematical Foundations of Computer Science, Brno, (August1998), p. 13-15.

BRASSARD, Gilles. ,”A Bibliography of Quantum Cryptography”.
http://www.cs.mcgill.ca/~crepeau/CRYPTO/Biblio-QC.html , 1994

BRYLEVSKI, Alexei. “Quantum Key Distribution: real Time Compensation of
Interferometer Phase Drift”, http:/www.vad1.com/qcr/alexey/, NTNU University,

February 2002.

105



BUTTLER, W. T., HUGHES, R. T., KWAIT, P.G., LAMOREAUX, S. K.,
LUTHER, G. G., MORGAN G. L., NORDHOLT J. E., PETERSON C. G., and
SIMMONS C., “Practical free-space quantum key distribution over 1 km”, Physics
Review Letters, Vol. 81, (1998) p. 3283-3286.

BUTTLER, W. T., HUGHES, R. T., LAMOREAUX, S. K., MORGAN G. L,,
NORDHOLT J. E., PETERSON C. G., “Daylight quantum key distribution over 1.6
km”, Physics Review Letters, Vol. 84 (2000) p. 5652-5655.

CASTELLETTO, S., DEGIOVANNI, L.P., RASTELLO, M. L., “Effects of
Experimental Limits in Quantum Cryptography Systems based on polarization
entangled photons”, http://www.physics.umd.edu/rgroups/ep/yskim/boston/castel.pdf
Istituto Elettrotecino Nazionale Torino ,Italy (2 January 2002).

DIFFIE, W., and HELLMAN, M.E., “New Directions in Cryptography”, IEEE
Transactions on Information Theory IT-22, (1976) p.644-654.

EKERT, A. k., “Qunatum Cryptography Based On Belles’s Theorem”, Physical
Review Letters, Vol.67 no.6, (5 August 1991), p.661-663.

FORD, James, “Quantum Cryptography Tutorial”,
http://www.cs.dartmouth.edu/~jford/crypto.html , 1996.

FRANSON, 1.D., JACCOBS, B. C., “Operational System for Quantum
Cryptography”, Elec. Letters, vol. 31, 1995.

GISIN, Nicolas., RIDORDY, Gregoire., TITTLE, Wolfgang., ZBINDEN, Hugo,
“Quantum Cryptography”, Reviews of Modern Physics, Vol. 74, (January 2002), p.
145-195.

GOLDENBERG, Lior , VAIDMAN, Lev, “Quantum Cryptography Based on
Orthogonal States”. Physical Letters Review, Vol. 75 NO 7, (14 August 1995),p.
1239-1243.

GORMAN, P. M., TAPSTER, P.R., and RARITY, J. G., “Secure free-space key
exchange to 1.9 km and Beyond”, Journal of Modern Optics, Vol. 48, (2001),
p-1887-1901,.

GROVER, L. K., “A framework for fast quantum mechanical algorithms”,
Proceedings of the 30" annual ACM Symposium on the Theory of computing, (1998)
p. 53-62.

HUGHES, R.J, LUTHER, C.G., MORGAN, G.L., PETERSON, C.G., SIMMONS,

C., “Quantum Cryptography over underground fibers”, Proceedings of Crypto 1996,
Lecture Notes in Computer Science, Vol. 1109, (1996) p.329.

106



KOLLMITZER Ch. , MONYK, CH., PEEV M., SUDA M. “An Advance towards
Practical Quantum Cryptography”, Austrian Research Centers (2002),
http://www.arcs.ac.at/quanteninfo

MagiqTech Navajo White Paper, “Perfectly Secure Key Management System Using
Quantum Key Distribution: Code-Name: Navajo”. http:/magiqgtech.com/, 2003

MagiqTech. Backgrounder, “MagiqTech Corporate Backgrounder 20027.
http://magigtech.com/, 2002

MAYERS, Dominic, “Unconditionally secure quantum bit commitment is
impossible”, Physical Review Letters, Vol. 78, No. 17, (April 1997), p. 3414-3417.

MAYERS, Dominic, “Unconditional Security in Quantum Cryptography”, Journal of
the ACM, Vol 48, No. 3, (May 2001).

Molin , Richard A. An Introduction to Cryptography, Chapman & Hall/CRC 2001.

MULLER, A., ZBINDEN, H., and GISIN, N., “Quantum Cryptography over 23 km
in installed under-lake telecom fibre”, Europhysics Letters, Vol. 33, 1996.

“Quantum Cryptanalysis”. hitp://www.milketoast.com/school/cryptanalysis.htm,
(October 25, 2002).

RARITY, J. G., OWENS, P. C. M, and Tapster P.R., “Quantum random-number
generation and key-sharing”, Journal of Mod. Opt. Vol.41 (1994), p. 2435-2444

RIEFFEL ,Eleanor and POLAK, Wolfgang., “An Introduction to Quantum
Computing for Non-Physicists”, ACM Computing Surveys, Vol 32 No. 3, (September
2000), P.300-335.

SCHNEIER, Bruce, Applied Cryptography: Protocols, Algorithms and Source Code
in C Second Edition, Wiely 1996.

SCHULMAN, L. J. and VAZIRANI, U., “Scalable NMR Quantum Computation”,
Los Alamos Physics Archive, 1998.

SHOR, P.W., “Algorithms for quantum computation: Discrete log and factoring”,
Proceedings of the 35™ annual symposium on foundations of Computer Science,
(Nov. 1994) p.124-134.

SHOR, P.W., “Polynomial-time algorithms for prime factorization and discrete

logarithms in a quantum computer”, Society for Industrial and Applied Mathematics
Journal of Computing, Vol. 26 no. 5, (1997),p. 1484-1509.

107




TOWNSEND, P.D., RARITY, J. G. and TAPSTER, P. R,, “Enhanced Single photon
fringe visibility in a 10 km-long prototype quantum cryptography channel”,
Electronics Letters, vol. 29, (8 July 1993), p.1291-1293.

TOWNSEND, Paul D., “Simultaneous Quantum cryptographic key distribution and
conventional data transmission over installed fibre using WDM?”, Electrical Letters,
Vol. 33, (1997).

WITTENBERG, David K. “Reducing the Randomness Requirements for Quantum
Money”. Technical Report, CS Department, Brandeis University, (23 January 1995).

XU, ZHOU, “An introduction to Quantum Key Distribution”,
www.comp.nus.edu.sg/~xuzhou/reports/quantum-crvntograohv-survev-xuzhou- 11-
2002.pdf, (October 2002)

7ZBINDEN, H. , GISIN, N., HUTTENR, B., MULLER, A., TITTLE, W. “Practical
Aspects of Quantum Cryptographic Key Distribution”. Journal Of Cryptography Vol.
13 (2000) p. 207-220.

108



Appendix A

Tables and Graphs



Appendix A: Tables and Graphs

This appendix contains a set of tables and graphs that were obtained by running
both the standard and the enhanced algorithms on different key values with different
parameters. These tables and graphs are referred to in chapter 6 “Test Results and
Assessment” and they are the basis for the comparison graphs 6-4, 6-5, 6-6, 6-10,
6-11and 6-12.
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Table A-1 Standard Algorithm (2000 Bits — 80 Errors) with basic block size =10

0.733735784

"82.733736

4.136686789

10 5 13 807 1193 333 | 1.478314746 73
10 10 15 729 1271 345 | 1.743484225 73 | 9.081574035 | 82.081574 | 4.104078702
10 15 14 660 1340 347 | 2.03030303 73 | 10.55065072 | 83.550651 | 4.177532536
10 20 15 650 1350 370 | 2.076923077 74 | 9.061458528 | 83.061459 | 4.153072926
10 25 17 646 1354 381 | 2.095975232 73 | 7706736935 | 80.706737 | 4.035336847
10 30 14 609 1391 376 | 2.28407225 74 | 9.741041582 | 83.741042 | 4.187052079
10 35 15 607 1393 383 | 2.294892916 74 | 8574525024 | 82.574525 | 4.128726251
10 40 16 599 1401 381 | 2.338898164 70 | 7.407217692 | 77.407218 | 3.870360885
10 45 14 574 1426 374 | 2.484320557 73 | 1048840515 | 83.488405 | 4.174420257
10 50 17 606 1394 399 | 2.300330033 74 | 9.309116687 | 83.309117 | 4.165455834
10 55 16 586 1414 387 | 2.412969283 72 | 8.633354221 | 80.633354 | 4.031667711
10 60 20 609 1391 398 | 2.28407225 67 | 6.71275063 | 73.712751 | 3.685637531
10 65 16 599 1401 408 | 2.338898164 73 | 8.413076862 | 81.413077 | 4.070653843
10 70 20 613 1387 408 | 2.262642741 71 | 7.301390919 | 78301391 | 3.915069546
10 75 21 614 1386 410 | 2.25732899 73 | 9.699631715 | 82.699632 | 4.134981586
10 80 19 615 1385 420 | 2.25203252 73 | 8.580441591 | 81.580442 | 4.07902208
10 85 22 640 1360 435 2.125 73 | 7.806972117 | 80.806972 | 4.040348606
10 90 26 612 1388 399 | 2.267973856 68 | 7.322305937 | 75.322306 | 3.766115297
10 95 27 623 1372 419 | 2.184713376 66 | 5337892999 | 71.337893 | 3.56689465
10 100 25 628 1372 415 | 2.184713376 69 | 7.010762661 | 76.010763 | 3.800538133
2000 Bits, 80 Errors, Initial Block Size=10
3
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Figure A-1 Standard Algorithm (2000 Bits — 80 Errors) with basic block size =10
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Table A-2 Standard Algorithm (2000 Bits — 80 Errors) with basic block size =20

31,3804

20 10 15 729 1271 345 1.743484 73 8.380431 3 | 4.06902

20 30 17 630 1370 383 2.174603 71 6.915772 | 77.91577 | 3.895789
20 50 16 589 1411 386 2.395586 71 8.000511 | 79.00051 | 3.950026
20 70 19 598 1402 398 2.344482 71 8.498276 | 79.49828 | 3.974914
20 90 20 601 1399 408 2.327787 71 7.609736 | 78.60974 | 3.930487
20 110 26 623 1377 409 2.210273 69 7.375224 | 76.37522 | 3.818761
20 130 32 634 1366 423 2.154574 64 4.44395 | 68.44395 | 3.422197
20 150 22 605 1395 417 2.305785 71 7.939276 | 78.93928 | 3.946964
20 170 24 581 1419 400 2.442341 67 8.171251 | 75.17125 | 3.758563
20 190 27 617 1383 431 2.241491 69 6.878253 | 75.87825 | 3.793913
20 210 20 595 1405 415 2.361345 72 9.258178 | 81.25818 | 4.062909
20 230 24 630 1370 446 2.174603 71 7.573861 | 78.57386 | 3.928693
20 250 23 585 1415 410 2.418803 67 7.469407 | 74.46941 | 3.72347
20 270 26 564 1436 386 2.546099 66 7.820693 | 73.82069 | 3.691035
20 290 26 602 1398 424 2.322259 68 7.356466 | 75.35647 | 3.767823
20 310 28 576 1424 392 2.472222 61 5.694139 | 66.69414 | 3.334707
20 330 30 641 1359 452 2.120125 70 6.831593 | 76.83159 | 3.84158
20 350 34 672 1328 487 1.97619 69 5.435459 | 74.43546 | 3.721773
20 370 34 642 1358 462 2.115265 70 6.801919 | 76.80192 | 3.840096
20 390 27 542 1458 381 2.690037 60 6.255961 | 66.25596 | 3.312798

Evaluation

2000 Bits, 80 Errors, Initial Block Size=20
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—0; Series 1J

Figure A-2 Standard Algorithm (2000 Bits — 80 Errors) with basic block size =20
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Table A-3 Enhanced Algorithm (2000 Bits — 80 Errors) with basic block size =10

1.489841986 6.703724291 | 66.703724 | 3.335186215
10 10 13 707 1481 189 | 2.09476662 56 | 6.256809339 | 62.256809 | 3.112840467
10 15 13 634 1557 192 | 2.455835962 56 | 6.256809339 | 62.256809 | 3.112840467
10 20 14 584 1604 189 | 2.746575342 54 | 6.033351862 | 60.033352 | 3.001667593
10 25 15 547 1635 183 | 2.989031079 54 | 6.033351862 | 60.033352 | 3.001667593
10 30 14 504 1659 164 | 3.291666667 48 | 5.362979433 | 53.362979 | 2.668148972
10 35 15 479 1676 156 | 3.498956159 46 | 5.139521957 | 51.139522 | 2.556976098
10 40 16 498 1689 188 [ 3.391566265 56 | 6.256809339 | 62.256809 | 3.112840467
10 45 16 446 1701 148 | 3.813901345 46 | 5.139521957 | 51.139522 | 2.556976098
10 50 16 489 1707 197 | 3.490797546 58 | 6.480266815 | 64.480267 | 3.224013341
10 55 16 467 1717 185 | 3.676659529 56 | 6.256809339 | 62.256809 | 3.112840467
10 60 17 460 1721 182 | 3.741304348 52 | 5.809894386 | 57.809894 | 2.890494719
10 65 17 460 1728 189 [ 3.756521739 56 | 6.256809339 | 62.256809 | 3.112840467
10 70 17 418 1732 151 | 4.14354067 44 491606448 | 48.916064 | 2.445803224
10 75 18 413 1733 147 | 4.196125908 44 4.91606448 | 48.916064 | 2.445803224
10 80 19 459 1737 197 | 3.784313725 58 | 6.480266815 | 64.480267 | 3.224013341
10 85 20 424 1743 168 | 4.110849057 50 | 5.586436909 | 55.586437 | 2.779321845
10 90 20 467 1742 210 | 3.730192719 62 | 6927181768 | 68.927182 | 3.446359088
10 95 21 432 1744 177 | 4.037037037 52 | 5.809894386 | 57.809894 [ 2.890494719
10 100 22 432 1747 180 | 4.043981481 54 | 6.033351862 | 60.033352 | 3.001667593
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FigureA-3 Enhanced Algorithm (2000 Bits — 80 Errors) with basic block size =10
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Table A-4 Enhanced Algorithm (2000 Bits — 80 Errors) with basic block size =20

2340179042

46.34017904

559 . 2.317008952
16 417 1768 186 4.239808153 | 42 2.233807267 | 4423380727 | 2.211690363
15 363 1810 174 4.986225895 | 40 2.127435492 | 42.12743549 | 2.106371775
16 329 1832 162 5.568389058 | 38 2.021063718 | 40.02106372 | 2.001053186
17 293 1842 136 6.28608942 | 32 1.701948394 | 33.70194839 | 1.68509742
20 110 18 302 1853 156 6.135761589 | 36 1.914691943 | 37.91469194 | 1.895734597
20 130 20 299 1857 157 6.210702341 | 36 1.914691943 | 37.91469194 | 1.895734597
20 150 19 342 1862 205 5.444444444 | 46 2.446550816 | 48.44655082 | 2.422327541
20 170 20 279 1862 142 6.673835125 | 32 1.701948394 | 33.70194839 | 1.68509742
20 190 21 299 1865 165 6.237458194 | 38 2.021063718 | 40.02106372 | 2.001053186
20 210 21 302 1869 172 6.188741722 | 38 2.021063718 | 40.02106372 | 2.001053186
20 230 22 302 1866 169 6.178807947 | 40 2.127435492 | 42.12743549 | 2.106371775
20 250 23 282 1866 149 6.617021277 | 34 1.808320169 | 35.80832017 | 1.790416008
20 270 22 308 1869 178 6.068181818 | 40 2.127435492 | 42.12743549 | 2.106371775
20 290 23 315 1869 185 5.933333333 | 42 2.233807267 | 44.23380727 | 2.211690363
20 310 24 296 1876 173 6.337837838 | 40 2.127435492 | 42.12743549 | 2.106371775
20 330 24 316 1876 193 5.936708861 | 44 2.340179042 | 46.34017904 | 2.317008952
20 350 25 312 1876 189 6.012820513 | 42 2.233807267 | 44.23380727 | 2.211690363
20 370 36 274 1879 154 6.857664234 | 36 1.914691943 | 37.91469194 | 1.895734597
20 390 26 306 1879 186 6.140522876 | 42 2.233807267 | 44.23380727 [ 2.211690363
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Figure A-4 Enhanced Algorithm (2000 Bits — 80 Errors) with basic block size =20
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Table A-5 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =20

tal

20 5 14 1741 3259 | 444 1.871912694 | 98 5518770923 | 107.5187709 | 2.15037
20 10 13 1415 3585 | 459 2.533568005 | 97 936674707 | 106.3667471 | 2.127334941
20 20 14 1191 3800 | 470 3.198152813 | 97 8335477061 | 105.335478 | 2.106709559
20 30 15 1079 3021 | 469 3.633920297 | 96 8673063066 | 104.673064 | 2.093461279
20 40 5 1029 3971 | 494 3.859086492 | 99 0.653986366 | 108.6539864 | 2.173079727
20 50 15 1016 3084 | 527 3.921259843 | 99 8.10873843 | 107.1087384 | 2.142174769
20 60 14 946 4054 | 495 4285412262 | 98 0.077419076 | 107.0774191 | 2.141548382
20 70 14 919 4081 | 491 1.440606400 | 94 8262601423 | 102.2626014 | 2.045252028
20 80 14 919 4081 | 510 4.440696400 | 97 0.022432057 | 106.0024321 | 2.120448641
20 90 16 920 4080 | 519 4434782609 | 97 846902426 | 105.4600243 | 2.109380485
20 100 17 948 4052 | 557 4274261603 | 97 7412793825 | 1044127938 | 2.088255877
20 110 14 883 4117 | 510 4662514156 | 98 10.17066784 | 108.1706678 | 2.163413357
20 120 16 014 1086 | 543 4.470459519 | 96 7.965576562 | 103.9655766 | 2.079311531
20 130 15 903 4007 | 542 453709856 | 99 0.291842016 | 108.2018429 | 2.165836858
20 140 20 973 3027 | 593 4138746146 | 97 6715152001 | 103.715152 | 2.07430304
20 150 14 859 A141 ] 513 4.820721769 | 99 1091062007 | 100.910621 | 2.198212419
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Figure A-5 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =20
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Table A-6 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =30

6.6144105

2.132288200

30 5 13 1697 3303 442
30 10 13 1413 3587 458 2.538570418 | 99 10.36812676 | 109.3681268 | 2.187362535
30 20 14 1163 3837 444 3.299226139 | 96 10.11758137 | 106.1175814 | 2.122351627
30 30 14 1077 3923 476 3.642525534 | 96 9.005653213 | 105.0056532 | 2.100113064
30 40 15 1023 3977 487 3.887585533 | 98 8.582259126 | 106.5822591 | 2.131645183
30 50 14 972 4028 488 4.144032922 | 97 9.640746964 | 106.640747 | 2.132814939
30 60 14 937 4063 486 4.336179296 | 97 9.370717547 | 106.3707175 | 2.127414351
30 70 14 935 4065 507 4.347593583 | 96 9.15647147 105.1564715 | 2.103129429
30 80 16 947 4053 530 4.279831045 | 96 7.97151678 103.9715168 | 2.079430336
30 90 14 919 4081 527 4.440696409 | 97 8.828939944 | 105.8289399 | 2.116578799
30 100 17 945 4055 551 4.291005291 | 96 7.592045159 | 103.5920452 | 2.071840903
30 110 14 897 4103 524 4.574136009 | 99 9.603558407 | 108.6035584 | 2.172071168
30 120 19 975 4025 591 4.128205128 | 96 6.873449358 | 102.8734494 | 2.057468987
30 130 16 898 4102 533 4.567928731 | 98 9.323615305 | 107.3236153 | 2.146472306
30 140 15 874 4126 519 4.720823799 | 97 10.16306586 | 107.1630659 | 2.143261317
30 150 16 900 4100 545 4.555555556 | 95 7.537683934 | 102.5376839 | 2.050753679
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Figure A-6 Standard Algorithm (5000 Bits — 100 Errors) with basic block size =30
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Table A-7 Standard Algorithm (5000 Bits — 200 Errors) with basic block size =20
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Figure A-7 Standard Algorithm (5000 Bits — 200 Errors) with basic block size =20
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ia lated
Al e S . . S .
1.43902439 2345964388 | 206.4596439 | 4.129192878
20 10 15 1791 3209 844 1.79173646 181 24.16106933 | 205.1610693 | 4.103221387
20 20 16 1646 3354 939 2.037667072 | 186 21.54171972 | 207.5417197 | 4.150834394
20 30 17 1594 3406 995 2.136762861 | 183 17.60345792 | 200.6034579 | 4.012069158
20 40 20 1585 3415 1039 2.154574132 | 185 18.04895818 | 203.0489582 | 4.060979164
20 50 21 1575 3425 1076 2.174603175 | 183 17.0333524 200.0333524 | 4.000667048
20 60 21 1581 3419 1114 2.162555345 | 187 18.03984198 | 205.039842 4.10079684
20 70 27 1600 3400 1131 2.125 185 18.70815296 | 203.708153 4.074163059
20 80 31 1600 3400 1134 2.125 186 19.78814384 | 205.7881438 | 4.115762877
20 90 33 1606 3394 1143 2.113325031 | 181 16.68515356 | 197.6851536 | 3.953703071
20 100 35 1626 3374 1167 2.07503075 185 18.47241779 | 203.4724178 | 4.069448356
20 110 39 1659 3341 1193 2.013863773 | 186 18.2965483 204.2965483 | 4.085930966
20 120 41 1671 3329 1205 1.992220227 | 185 17.94180691 | 202.9418069 | 4.058836138
20 130 53 1774 3226 1263 1.81848929 184 15.72864381 | 199.7286438 | 3.994572876
20 140 38 1637 3363 1193 2.054367746 | 177 14.84228982 | 191.8422898 | 3.836845796
20 150 43 1708 3292 1247 1.927400468 | 187 17.75423239 | 204.7542324 | 4.095084648
5000 Bits 200 Errors Basic Block Size =20
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Table A-8 Standard Algorithm (5000 Bits — 200 Errors) with basic block size =30

30 5 15 2092 2908 | 847 1.390057361 | 185 3303435868 | 208.0343587 | 4.160687174 |
30 10 15 1839 3161 | 895 718868951 | 187 | 22.24537626 | 209.2453763 | 4.184907525
30 20 16 1648 3352 | 940 2.033980583 | 182 107002303 | 201,7002303 | 4.034004606
30 30 17 1621 3379 | 1025 2084515731 1 192 | 2009561006 | 212.095611 | 4.241912219
30 40 18 1576 3424 | 1043 2.172588832 | 185 18.2876866 | 203.2876866 | 4.065753732
30 50 17 1492 3508 | 1010 2351206434 | 181 19.60012073 | 200.6091207 | 4.012182415
30 60 21 1533 3467 | 1066 2261578604 | 180 17.17458673 | 197.1745867 | 3.943491735
30 70 28 1582 3418 | 1109 2160556258 | 184 | 19.2221326 | 203.2221326 | 4.064442652
30 80 31 1588 3412 | 1121 214861461 | 184 | 18.6954961 | 202.6954961 | 4.053909922
30 90 38 1702 3208 | 1219 1.937720329 | 184 15.17496046 | 199.1749605 | 3.983499209
30 100 3 1650 3350 | 1201 2.03030303 | 182 | 1542664117 | 197.4266412 | 3.948532823
30 110 36 1663 3337 | 1209 2.006614552 | 183 16.26037754 | 199.2603775 | 3.985207551
30 120 41 1667 3333 | 1199 199940012 | 181 16.06065921 | 197.0696592 | 3.941393184
30 130 37 1604 3306 | 1160 2117206983 | 182 | 18.1301603 | 200.1301603 | 4.002603206
30 140 50 1733 3267 | 1255 1.885170225 | 178 13.85887371 | 191.8588737 | 3.837177474
30 150 45 1750 3250 | 1281 1857142857 | 183 14.10868454 | 197.1086845 | 3.942173691
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Figure A-9 Enhanced Algorithm (5000 Bits - 100 Errors) with basic block size =20
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20 5 12 1374 3624 | 219 49
20 10 13 1116 3884 | 219 3480286738 | 49 4120826437 | 53.12082644 | 1.062416529
20 20 14 894 4100 | 224 4.586129754 | 50 2481720927 | 5448172093 | 1.089634419
20 30 14 789 4209 | 227 5.33460076 | 50 271913172 | 5471913172 | 1.094382634
20 40 14 736 4260 | 233 5.788043478 | 48 3.406248049 | 51.40624805 | 1.028124961
20 50 15 696 304 | 237 6.183908046 | 49 3741346636 | 52.74134664 | 1.054826933
20 60 14 688 4311 259 6.265988372 | 49 3.160658084 | 52.16065808 | 1.043213162
20 70 14 640 4357 | 233 6.8078125 | 50 4440783997 | 54.440784 | 1.08881568
20 80 14 629 4370 | 237 6.947535771 | 49 3.853241259 | 52.85324126 | 1.057064825
20 90 16 635 4361 257 6.867716535 | 50 3.883764771 | 53.88376477 | 1.077675295
20 100 17 598 4401 233 7.359531773 | 50 4.675152074 | 54.67515207 | 1.093503041
20 110 14 604 4391 248 726986755 | 50 3.832335716 | 53.83233572 | 1.076646714
20 120 16 596 4400 | 248 7.382550336 | 48 3428767821 | 51.42876782 | 1.028575356
20 130 15 597 4401 255 7371859296 | 49 3730402711 | 52.73940271 | 1.054788054
20 140 15 591 4406 | 252 7.455160745 | 50 4132449574 | 54.13244957 | 1.082648991
20 150 15 573 4427 | 242 772600349 | 50 4416196202 | 54.4161962 | 1.088323924
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Figure A-10 Enhanced Algorithm (5000 Bits — 100 Errors) with basic block size =30
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5 12 1143 3853 48 . .
30 10 12 970 4027 4.151546392 | 50 3.672027155 | 53.67292716 | 1.073458543
30 20 13 792 4207 5311868687 | 48 3120257659 | 51.12025766 | 1.022405153
30 30 14 713 4280 6.002805049 | 50 3238241210 | 53.23824122 | 1.064764824
30 40 14 658 4341 6.597264438 | 49 3.022582621 | 52.02258262 | 1.040451652
30 50 15 642 4354 6.781931464 | 50 2.820001322 | 52.82009132 | 1.056419826
30 60 15 596 4401 7384228188 | 49 3320552352 | 52.32055235 | 1.046411047
30 70 14 609 4387 7.203612479 | 50 2.492505053 | 52.49250505 | 1.049850101
30 80 15 572 4427 773951049 | 50 3.099954493 | 53.09995449 | 1.06199909
30 90 14 545 4453 8.170642202 | 47 2.8940203 | 49.8940203 | 0.997880406
30 100 15 571 4428 7754816112 | 50 2.653900994 | 52.65390999 | 1.0530782
30 110 16 543 4455 8.20441989 | 50 3.535668704 | 53.5356687 | 1.070713374
30 120 17 531 4465 8.4086629 | 50 3.407574898 | 53.4075749 | 1.068151498
30 130 16 541 4454 8.232902033 | 49 2.698674298 | 51.6086743 | 1.033973486
30 140 17 525 4469 8.512380952 | 49 2.853037033 | 51.85303703 | 1.037060741
30 150 18 517 4483 8.671179884 | 48 2.911949898 | 50.9119499 | 1.018238998
5000 Bits, 100 Errors, Block Size=30
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