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Abstract

Autonomic Computing is emerging as a significant new approach Jor the design of
computing systems. Iis goal is the production of systems that are self-managing, self-healing,
self-protecting and self-optimizing. The high-tech industry has spent decades creating
computer systems with ever-mounting degrees of complexity to solve a wide variety of
business problems. Ironically, complexity itself has become part of the problem. This is
actually the core of the autonomic computing dilemma. The question is how to provide such
a promising system with the least possible level of complexity in order to avoid going into the
same circle of infinitely cascaded complexity? Another important issue is that the Jate of all
the multi billon sofiware products and modules that are already produced by large sofiware
companies or being used by large businesses in the IT-industry and even non IT. -industry, is
going 10 be determined by the planned design direction that is going to be pursued in the
autonomic computing industry. One important question is whether the intended design
direction is going 1o easily integrate the already developed and existing software products
and solutions into the upcoming autonomization revolution or not!

This research work realizes the autonomic computing complexity from a different
dimension, which does not completely solve the previously mentioned dilemmas, but it
proposes a solution that might lead to a flexible approach for dealing with the problem. As
the main goal of autonomic computing is to deliver a system that is capable of self-
management, it actually means that each autonomic system should have the capabilities,
skills, and experience to maintain each of those properties appropriately. Most probably
such a system will implicitly denote a large and complex set of subsystems and this is what
leads to the complexity of the provided solutions. In this research effort we propose a new
notion to the autonomic computing architecture known as the property manager. The
autonomic properly manager is an autonomic manager thai is capable of maintaining the
management of any of the autonomic computing properties. For each property of the
autonomic system an autonomic property manager will be dedicated (o handle the duties of

this property, i.e. a property keeper. In this research work we also present a brief description




Jor our proposed design of one autonomic property manager, namely the resource
optimization property manager, which is responsible for managing the resource optimization
of all the modules registered under its domain. By setting a specialization for each
autonomic manager we can expect better performance and details abstraction. This research
work also proposes some solutions to other critical issues that the autonomic systems will
have to handle such as: the ability to provide goal specification and policies at the system
management level for each property and to support high level goals at the business level. By
providing a hierarchy of policy definitions at the system level that is controlled by a global
system policy for each group of systems, we are able to reach a high-level policy definition

that matches the business goals.

We conducted five practical experiments, which include some scenarios that test the
validity of the proposed design for the autonomic property manager using the prototype
implementation of the resource optimization property manager. The experiments demonstrate
the ability of the resource optimization property manager to make decisions based on the
predefined policies that contribute to the enhancement of the performance of the high-level
system definition. The definitions were included in one of the policy files to specify the
desired response time for the website used in our experiments. They also demonstrated the
Jacilities that the resource optimization property manger can provide to the other registered
systems by using the resource allocation mechanism to get more resources whenever possible
in addition to the other services it provides. Both the architecture chapter and the
experimental work chapter include the details of the used architecture and the conducted
experiments throughout this research work, which finally proves the effectiveness of our

proposed approach.
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Chapter 1. Introduction




Resource Optimization Property Manager For Autonomic Computing

1.1 The Autonomic Era.

Computing systems will soon become too massive and complex for even the most skilled
system integrators to install, configure, optimize, maintin, and merge. When they do reach
such a level of complexity, there will be no way to make timely decisive response to the
rapid stream of changing and conflicting demands. Also the need to integrate several
heterogeneous environments into corporate-wide computing systems, and to extend that
beyond company boundaries into the Internet, introduces a new level of complexity [28]. The
most lucrative alternative at such a time will be the adoption of autonomic computing. The
term autonomic is derived from human biology. The autonomic nervous system monitors our
heartbeats, checks our blood sugar level and keeps our body temperature close to 98.6 °F,
without any conscious effort on your part. In much the same way, autonomic computing
components anticipate computer system needs and resolve problems with minimal human
intervention [1]. Autonomic computing systems will be able to manage themselves given
high-level objectives from administrators. Thus it will alleviate the administration
complexities from the shoulders of the system administrators and will introduce more robust
and efficient systems to the business. At present there is no single specific technology
known as autonomic computing but in general any autonomic system should be able to
maintain Self-management, which means a system that functions well without our regular
interference to provide a simplified user experience. That system should possess the
following features or characteristics:

e Self Configuration
o Self Optimization
e Self Healing

e Self Protection

Only recently IBM has introduced major initiatives in leading the autonomic computing
research towards formalizing a clear vision of the autonomic computing design and
framework by defining the major properties of an autonomic system. Many rescarchershave
contributed to the autonomic computing field by introducing proposed designs and

frameworks for the autonomic computing in an cffort to rcach a completely sclfmanaged




Resource Optimization Property Manager For Autonomic Computing

autonomic system. However, it seems that the proposed models and frameworks are stll

faraway from forming a perfect and a complete autonomic system.

1.2 Problem Definition

The high-tech industry has spent decades creating computer systems with ever
mounting degrees of complexity to solve a wide variety of business problems. Ironicall,
complexity itself has become part of the problem [1]. This is actually the core of the
autonomic computing dilemma. The question is how to provide such a promising system
with the least possible level of complexity in order to avoid going into the samecircle of
infinitely cascaded complexity? Another important issue is that the fate of all the multi
billon software products and modules that are already produced by large software companies
or being used by large businesses in the IT-industry and even non IT-industry, is going to be
determined by the planned design direction that is going to be pursued in the autonomic
computing industry. One important question is whether the intendeddesign direction is going
to easily integrate the already developed and existing software products and solutions into the
upcoming autonomization revolution or not! On one hand most of the conducted research
work in the field of autonomic computing is either focusing on the software models and
patterns that can be used to produce an autonomic system from scratch or it provides an
autonomic mode! which only fits one property of the autonomic system properties. On the
other hand most of the tools that are produced by some of thc companies to help in
accomplishing an autonomic system are software specific products, which arc not intcnded to
cover other competitive products. All these factors together develop the need for additional

research work in this area in order to provide new ideas and models that can scrve the

autonomic field.

1.3 Research motivation and objective

This research work realizes the autonomic computing complexity from a diffcrent
dimension, which does not completely solve the previously mentioned dilemmas, but it
proposcs a solution that might lcad to a flexible approach for dealing with the problem. As
thc main goal of autonomic computing is to deliver a system that is capable of scltmanaging,

sclf-hcaling, sclf-protecting and sclf-optimizing, it actually mcans that cach autonomic
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system should have the capabilities, skills, and experience to maintain each of those
properties appropriately. Most probably such a system will implicitly denote a large and
complex set of subsystems and this is what leads to the complexity of the provided solutions.
In this research effort we propose a new notion to the autonomic computing architecture
known as the property manager. The aim of the property management concept is to represent
each autonomic property separately by an autonomic property manager, which is capable d
maintaining and handling the duties of the property 1t represents. The net result 1s that we can
decompose the embedded complexity of any autonomic system and reach a more powerful
system that is easier to maintain and run. This research work also propase some solutions to
other critical issues that the autonomic systems will have to handle such as: the ability to
provide goal specification and policies at the system management level for each property and
to support high level goals at the business level By providing a hierarchy of policy
definitions at the system level that is controlled by a global system policy for each group of
systems, we are able to reach a high-level policy definition that matches the business goals.
Finally, the real motivation behind this research is to join the ongoing efforts and contribute
to the autonomic computing era by introducing the new autonomic architecture of the

autonomic property manager to the autonomic computing field.

1.4 Research results

In our proposed design we were seeking an approach that would simplify some of the
complexities imposed by the nature of the autonomic computing system. The notion of the
property manager was seen to guarantee the knowledge and profcssionalism of
specialization. What this means is that each property manager will be responsible and
capable of maintaining one of the autonomic properties appropriately by enclosing the
required knowledge and tools to do so. This way a group of property mangers, cach
maintaining its respective role, can cooperate together to form an autonomic system, which is
capable of maintaining the set of autonomic properties together. This overall sctup would
finally lead to a self management-capable system. In this rescarch work we proposc a flexible
architecture for the autonomic property manager, which offers one possiblc sctup that

satisfies most of the required features to compose a selfmanagement capable system.
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Since it is very difficult (in terms of the time frame and available resources) to design and
implement each of the four basic autonomic property managers which together form the Self
Management autonomic property (Configuration Manager, Self Healing Manager, Security
Manager, Optimization Manger), we implemented a basic prototype for the resource
optimization property manager as a proof of concept for the efficiency of our proposed
model. Our resource optimization manager was prototyped using an architectural model,
which can just as well be used by any of the property managers. The resource optimeation
manager deals mainly with two subsystems, which fit under its management: A web server
and an application server. Together they form the abstract level of a website resource
optimization management team. In general a policy definition is provided fa each registered
subsystem. As for our prototype a policy definition is provided for the HTTP server, and
another one for the application server. The same could be applied to any other subsystem
which is part of the high level system (i.e. the website in our case) or any system, which the
resource optimization manager will be managing. This way the resource optimization
manager can dig out through the different layers from which the main system is composed
and abstract those details at the very first level in which the business goals are defined. /in
the case of the website, the highest level of goal definition could include the definition of the
desired average response time of the website. The required actions to be taken upon the
violation of the defined goal, are included in the policy files. We conducted five practical
experiments, which include some scenarios that test the validity of most of thc above
concepts about the autonomic property manager notion. Since our main focus is on the
resource optimization manager as a proof of concept, our experiments were only dealing with
the implemented prototype of the resource optimization property manager.

The experiments demonstrate the ability of the resource optimization manager to
make decisions based on the predefined policies that contribute to the enhancement of the
performance of the high-level system definition. The definitions were included in onc of the
policy files to specify the desired response time for the website which was used in our
cxperiments. They also demonstrated the facilities that it can provide to the other registered
systems by using the resource allocation mechanism to get more resources whenever possible

in addition to the other services provided the property manager. Both the architecture chapter
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and the experimental work chapter include the details of the used architecture and the

conducted experiments.

1.5 Document Organization.

The organization of this research work is as follows. Chapter one is an introductory
chapter, in which we present a brief overview of the autonomic computing systems and
provide a summary for the autonomic problem definition. Then we mentioned the motivation
behind our research and finally we presented a brief description for the research results.
Chapter two contains a brief description concerning the autonomic computing background
and a survey of the most recent and related work that we referred to during our work. Chapter
three presents the problem that this research work addresses and introduces the proposed
solution to the addressed problem. In this chapter we provide a detailed description of our
proposed design model and used technologies that were used in our prototype
implementation and experimental work. Chapter Four presents the experimental work and
analysis of results of work in details. Finally chapter five concludes the thesis work, and

discusses the current limitations and directions for future work.
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Chapter 2. Background And
Related Work
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2.1 Background.

Imagine if you could describe the business functions that you want your system to provide
and it just took care of itself! For example all your needed software would be located,
installed, and configured automatically. Resources would become available when they are
needed and are freed when they aren't [12]. As networks and distributed systems grow and
change, they can become increasingly hampered by system deployment failures, hardware
and software issues, not to mention human error [1]. Such scenarios in turn require further
human intervention to enhance the performance and capacity of IT components. This drives
up the overall IT costs even though the technology component costs continue to decline. As a
result, many IT professionals seek ways to improve their return on investment(ROI)* in their
IT infrastructure, by reducing the total cost of ownership (TCO)* of their environments while
improving the quality of service (QoS)* for users. We do not see a slowdown in Moore ’s
law* as the main obstacle to further progress in the IT ndustry. Rather, it is our industry ’s
exploitation of the technologies that have arisen in the wake of Moore ’s law that have led us
to the verge of a complexity crisis [1]. Software developers have fully exploited a four to-six
order-of-magnitude increase in computational power by producing ever more sophisticated
software applications and environments. There has been an exponential growth in the number
and variety of systems and components in recent years. The value of database technology and
the Internet has fueled significant growth in storage subsystems, which are now capable of
holding petabytes of structured and unstructured information. Networks have interconnected
our distributed, heterogeneous systems. Our information socicty presently creates
unpredictable and highly variable workloads on those networked systems. And today, these
increasingly valuable, complex systems require more and more skilled IT professionals to
install, configure, operate, tune and maintain. Autonomic computing helps addres these
complexity issues by using technology to manage technology. The idea is not ncw, many of
the major players in the industry have developed and delivered products based on this
concept. The term autonomic is derived from human biology. The autonomic nervous
system monitors your heartbeat, checks your blood sugar level and keeps your body
temperature close to 98.6 °F, without any conscious cffort on your part. In much the same

way, autonomic computing components anticipatc computer system nceds and rsolve
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problems with minimal human intervention. However, there is an important distinction
between autonomic activity in the human body and autonomic responses in computer
systems. Many of the decisions made by autonomic elements in the body are involuntary,
whereas autonomic elements in computer systems make decisions based on tasks you choose
to delegate to the technology. In other words, adaptable policy rather than rigid hard coding
determines the types of decisions and actions autonomic elements make n computer systems.
Autonomic computing can result in a significant improvement in system management
efficiency, when the disparate technologies that manage the environment work together to
deliver performance results systemrwide. For this to be possible in a multi-vendor
infrastructure, however, IBM and other vendors must agree on a common approach to
architecting autonomic systems [1][28][33].

Therefore, in mid-October 2001, IBM released a manifesto [33] observing that the main
obstacle to further progress in the IT industry is a looming software complexity crisis. The
company cited applications and environments that weigh in at tens of millions of lines of
code and require skilled IT professionals to install, configure, tune, and maintain. The
manifesto pointed out that the difficulty of managing today’s computing systems goes well
beyond the administration of individual software environments. The need to integrate several
heterogeneous environments into corporate wide computing systems, and to extend that
beyond company boundaries into the Internet, introduces new levels of complexity.
Computing systems’ complexity appears to be approaching the limits of human capability,

yet the march toward increased interconnectivity and integration rushes ahead unabata [1].

This march could turn the dream of pervasive computing with trillions of computing
devices connected to the Internet into a nightmare. Programming language innovations have
extended the size and complexity of systems that architects can design. Relying solely on
further innovations in programming methods will not get us through the present complexity
crisis. As systems become more interconnected and diverse, architects are less able to
anticipate and design interactions among components, leaving sich issues to be dealt with at
runtime. Soon systems will become too massive and complex for even the most skilled

system integrators to install, configure, optimize, maintain, and merge. And there will be no
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way to make timely, decisive responses to the mapid stream of changing and conflicting

demands. Here comes the option of Autonomic computing [28].

The term autonomic computing is emblematic of a vast and somewhat tangled hierarchy of
natural self-governing systems, many of which consist of a myriad of interacting, self-
governing components which in turn comprise large numbers of interacting, autonomous,
self-governing components at the next level down. The enormous range in scale, starting
with molecular machines within cells and extending to human maikets, societies, and the
entire world socioeconomy, mirrors that of computing systems, which run from individual
devices to the entire Internet. Thus, we believe it will be profitable to seek inspiration in the
self-governance of social and economic systems as well as purely biological ones. Clearly
then, autonomic computing is a grand challenge that rcaches far beyond a single
organization. Its realization will take a concerted, longterm, worldwide effort by researchers
in a diversity of fields. The main properties that every autonomic system is expected to

satisfy are as follow [7] [28][33]:

e  Self Management

The essence of autonomic computing systems is selfmanagement, the intent of which is to
free system administrators from the details of system operaion and maintenance and to
provide users with a machine that runs at peak performance 24/7. In extreme cases, if a
system is not able to satisfy the assigned policies for some reason, human intervention will be

called upon.

e  Self Configuration

Installing, configuring, and integrating large, complex systems is challenging, time
consuming, and error-prone even for experts. Most large Web sites and corporate data
centers are haphazard accretions of servers, routers, databases, and other technologies on
different platforms from different vendors. It can take teams of expert programmers months
to merge two systems or to install a major e-commerce application such as SAP. Autonomic
systems will configure themselves automatically in accordancc with highlevel policies

representing business-level objectives, for example, that specify what is desired, not how it is
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to be accomplished. When a component is introduced, it will incorporate itself seamlessly,
and the rest of the system will adapt to its presence much like a new cell in the body or a new

person in a population.

e  Self Optimization

Complex middleware, such as Web Sphere, or database systems, such as Oracle or DB2,
may have hundreds of tunable parameters that must be set correctly for the system to perform
optimally, yet few people know how to tune them. Such systems are often integrated with
other, equally complex systems. Consequently, performance tuning of one large subsystem
can have unanticipated effects on the entire system. Autonomic systems will continally seek
ways to improve their operation, identifying and seizing opportunities to make themselves

more efficient in performance or cost.

e  Self Healing

IBM and other IT vendors have large departments devoted to identifying, tracing, and
determining the root cause of failures in complex computing systems. Serious customer
problems can take teams of programmers several weeks to diagnose and fix, and sometimes
the problem disappears mysteriously without any satisfactory diagnosis. Autonomic
computing systems will be expected to detect, diagnose, and repair localized problems
resulting from bugs or failures in software and hardware, perhaps through a regression tester.
Using knowledge about the system configuration, a problem diagnosis component (based on
a Bayesian network, for example) would analyze information from log files, possibly
supplemented with data from additional monitors that it has requested. The system would
then match the diagnosis against known software patches (or alert a human programmer if

there are none), install the appropriate patch, and retest.

e  Self Protection

Despite the existence of firewalls and intrusion-detection tools, humans must at present
decide how to protect systems from malicious attacks and inadvertent cascading failures.
Autonomic systems will be sclfprotecting in two senses. They will defend the system as a

whole against large-scale, correlated problems arising from malicious attacks or cascading

11
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failures that remain uncorrected by self-healing measures. They will also anticipate problems

based on early reports from sensors and take steps to avoid or mitigate them.

The autonomic computing vision is the analogous situation for IT. Autonomic computing
allows people to focus on the big picture because the low level tasks can be "taught" to
monitor and manage themselves [12]. Alan Ganek, IBM vice President of Autonomic
Computing, explained in a session at developeWorks live, that autonomic does not just mean
automated. An automated system might simply specify that this server is assigned to a
particular task between the hours of 4 and 7 and to a different task the remainder of the day.
This specification may be correct and it may help to have it in place in your system. On the
other hand, you may want a more business oriented rule being enforced. Your rule may be
that gold-level customers can expect a response to be generated within two seconds while
silver customers can expect a response to be generated within six seconds [12][33].
Although autonomic computing is not far away, Ganek recommends a step-by-step approach
to evolve the infrastructure of any company in that direction. First you need to assess where
you are in the continuum. Then you need to decide which area of complexity to tackle first.
Ganek reminded the audience that "the complexity is at every level of the system. Autonomic

is hardware, software, and system management." [12].

Ganek outlines five levels that run the gamut from manual to autonomic. He says that most
organizations are at level 1. This basic level requires that the IT staff install, monitor,
maintain, and replace each system clement. The second level, the managed stagc, can at
present be implemented using many of the tools that IBM and other vendors provide. The
tools help the IT staff analyze system components and use the results to decide which actions
to take. Ganek says that many state-of-the-art customers are currently at this level. Each level
replaces some area of human intervention and decisionrmaking. The predictive fevel
provides additional features, which are built on the monitoring tools added in the previous
level. At this third level, the system can correlate measurements and make recommendations.
The IT staff looks to approve the recommendations and takc actions. This lcads to faster and
better decision making. At level four, the staff becomes less involved in viewing the

recommendations and taking actions. This is the adaptive level and features the ability of the
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technology to make more of the decisions automatically. Staff members spend most of their
time setting the policies and managing the controls. In many ways the technology at the
autonomic level (fifth level) is similar to that introduced at level four. The difference is that
the IT services are now integrated with business rules. This is where you stop defining IT
rules in terms of the components and tuning parameters. Now the policies are set in terms of
business logic, and the IT staff focuses on tuning the system and the rules so they best
support the company bottom line. As an example, if a Web site supports free content and
subscriber-only content, then a rule might specify that resources should be allocated so that
the user experience for subscribers is at a certain level even if that means degrading the

experience for non-paying site visitors [12][19].

While autonomic systems will assume much of the burden of system operation and
integration, it will still be up to humans to provide these systems with policies, the goals and
constraints that govern their actions. The enarmous leverage of autonomic systems will
greatly reduce human errors, but it will also greatly magnify the consequences of any error
humans do make in specifying goals. The indirect effect of policies on system configuration
and behavior exacerbates the problem because tracing and correcting policy errors will be
very difficult. It is thus critical to ensure that the specified goals represent what is really
desired. Two engineering challenges stem from this mandate: ensure that goals are specified
correctly in the first place, and ensure that systems behave reasonably even when they are
not. In many cases, the set of goals to be specified will be complex, multidimensional, and
conflicting. Even a goal as superficially simple as “maximize utility” will requie a human to
express a complicated multi-attribute utility function. A key to reducing error will be to
simplify and clarify the means by which humans express their goals to computers. The
second challenge ensuring reasonable system behavior in the face of erroneous input is
another facet of robustness: Autonomic systems will need to protect themselves from input
goals that arc inconsistent, implausible, dangerous, or unrealizable with the resources at
hand. Autonomic systems will subject such inputs to cxta validation, and when self-
protective measures fail, they will rely on deep-scated notions of what constitutes acceptable
behavior to detect and correct problems. In some cascs, such as resource overload, they will

inform human operators about the naturc of the problem and offer alternative solutions [28].
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controller design agent that uses optimal control theory to derive a feedback control
algorithm customized to that server, and a run-time control agent that deploys the feedback
control algorithm in an on-line real-time environment to automatically manage the Web
server. The designed autonomic feedback control system is able to handle the dynamic and
interrelated dependencies between the tuning parameters and the performance metrics with
guaranteed stability from control theory. The effectiveness of the AutoTune agents is
demonstrated through experiments involving variations in workload, server capacity, ad
business objectives. The results also serve as a validation of the ABLE toolkit and the Aute

Tune agent framework.

The Agent Building and Learning Environment (ABLE) [24][25] is a Java based toolkit for
developing and deploying hybrid intelligent agent applications. It provides a comprehensive
library of intelligent reasoning and learning components packaged as Java beans (known as
AbleBeans) and a lightweight Java agent frame-work to construct intelligent agents (known
as Able-Agents). The AbleBean Java interface defines a set of common attributes (name,
comment, state, etc.) and behaviors (standard processing methods such as init(), reset(),
process(), and quit()), which allows AbleBeans to be connected to form AbleAgents. A Java
Swing-based GUI, AbleEditor, is also provided for creating and configuring AbleBeans, and
for constructing and testing the AbleAgents built from them. For most AbleBeans, the user
interface is through a GUI component known as a “Customizer” that allows the user to set
and view parameters related to the bean. The base AutoTune agent is a functionspecific
Able-Agent for autonomic computing. Inspired by human biology, the AutoTune agent is
based on an architecture, which combines several elements that are useful in building
systems to react to a dynamic environment. The AutoTune agent contains two basic building
blocks (AbleBeans): the AutotuneController bean and the AutotuneAdaptor bean, as shown
in Figure 2.1. The AutotuncController bean defines control strategies (such as leaning the

behavior of the target system or providing actions to amend abnormal situations).




Resource Optimization Property Manager For Autonomic Computing

ACh e 0 s base Ao T e sgent

AUTume AGENT

setTurngContrally

: Tl T

Figure 2.1: Architecture of the Bas AutoTune Agent [41]

Its Customizer GUI allows the system administrator to configure the control strategy n
advance or on the fly. The AutotuncAdaptor bean interfaces with the target system to get the
service level metrics and to set the tuning parameters. Another Customizer GUI is provided
for the system administrator to manually set the tuning parameters (fa example, for testing
purposes, or when the AutotuneController is inactive). This decoupling allows the same
AutotuneController to be used with a variety of systems, simply by choosing the appropriate
AutotuneAdaptor to interface with the respective system. The execution of the
AutotuneController and AutotuneAdaptor beans is managed by the AutoTune agent through
the Agent Administrator. In particular, the Agent Administrator handles the timer facility and
asynchronous cvent processing function, which allow the AutotuncController and
AutotuncAdaptor to run autonomously, by periodically processing control functions and
communicating with the target system. The AutoTune agentleve]l Customizer allows the
system administrator to scparately sct the control interval (used by the AutotuncController
bean) and sample interval (used by the AutotuncAdaptor bean), which can be different from

cach other. A sct of AutotuncMetric classes is defined to represent the state/performance of
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the target system (service-level metrics), the tuning parameters of the target system (tuning
control metrics), and the parameters of the control strategy (configuration metrics). These
metrics can be read or written by the AutotuneController or AutotuncAdaptor. They are
managed as a collection by the AutoTune Metric Manager for interactions between the two
component beans, and can also be selectively saved to a historical data repository. ABLE and
the AutoTune architecture were designed to be extensible and to allow rapid deployment of
agent based solutions. They indicate that their experience with using this infrastructure

validates the usefulness of this architecture and the ABLE toolkit [27][41].
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2.2.2 Autonomia.

Another related research project, which is concerned with the autonomic compuing
environmert, is the Autonomia [36] research project. Autonomia provides dynamically
programmable control and management services to support the development and deployment
of smart (intelligent) applications. The AUTONOMIA environment provides the apgication
developers with all the tools required to specify the appropriate control and management
schemes to maintain any quality of service requirement or application attribute/functionality
(e.g., performance, fault, security, etc.) and the core autonomi middleware services to
maintain the autonomic requirements of a wide range of network applications and services.
The researchers claim that they have successfully implemented a proofof-concept prototype
system that can support the selfconfiguring, self-deploying and self-healing of any
networked application. The architecture consists of three main modules: Application
Management Editor (AME), Autonomic Middleware Services (AMS), and Application
Delegated Manager (ADM). The AME provides users with thesoftware tools to describe the
strategies to be used to achieve the required autonomic properties. The AMS provides a
common set of autonomic services (e.g. selfconfiguring, self-healing, self-protecting, self-
defining, etc.). The ADM is a software agent responsible to configure, deploy, run and
maintain the autonomic properties of the application at runtime. The objective of this project
is to automate deployment of mobile agents that have self manageable attributes. The
architecture of Autonomia is based on two previous projects: Adaptive Distributed Virtual
Computing Environment (ADViICE) and CATALINA - A Proactive Application Control and
Management System [35]. The Autonomia environment provides application developers
with all the tools required to specify the appropriate control and management schemes,
deploy and configure the required software and hardware resources, run applications, and to
provide on-linc monitoring and management facilities to maintain desired autonomicity. The
architecturc of Autonomia is shown in the Figure 2.2 [36]. As a result of our contact with the
researchers of this project we found out that it is no longer continued and we could not get a
version of the implemented prototype. All the available information about this projed is
found through few published papers, which made it very difficult to decply investigate the

detatled architecturce of this research work.
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Figure 2.2: AUTONOMIA System Architecture [36]
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2.2.3 An architecture for Autonomic Personal Computing Systems

In a research paper related to personal autonomic computing, the researchers [3] refer to
some of the properties of autonomic computing as they are shared with personal computing
such as easc of use and flexibility. The intention of thar paper, is to identify the unique
demands and opportunities of autonomic computing with personal devices. The ground rules
that they seek to achieve, are the autonomic behavior of a personal computing system,
personal computers (PCs) and their peers, networks, and servers not just the PC alone. They
also presented some general considerations for an architecture that supports autonomic

personal computing [11].

They introduced a categorization of autonomic function in terms of where it gets
implemented. An Autonomic function can be implemented locally, drawing on locally
maintained measurements and knowledge. It can be implemented among members of a peer
group, sharing measurements and knowledge particular to that group. It can also be
implemented using globally available network-resident resources, in which case,
measurements and knowledge are maintained for all clients. In the most general case,
autonomic functions are implemented in all three ways, with different functions having a
preferred implementation.

The architecture of an autonomic system, including that of a personal computing system,
begins with the general architecture for autonomic systems. The building block of autonomic
systems 1s depicted in Figure 2.3, which shows the architecture of an auonomic element
(AE). Each AE consists of an autonomic manager (AM) and a set of managed components.
Each managed component is responsible for communicating its events and other
measurements to the local AM. In turn, based on the input received from each nmnaged
component, the AM makes decisions taking into account its policy, facts, and rules (stored

locally in a database) and communicates the directives and hints to the managed component.
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Architeciure of an autonomic element

REMOTE AUTONONMIC MANAGED
AUTONOMIG | MANAGER COMPONENT |2
MANAGER WEB -

SERVICE | [

upDI
SERVICE

", .

LOCATE
HEE«@TE ,E%‘%EQES
MEMAGER | Hled B
AHAGER (-
RULES

Figure 2.3: The Architecture Of An Autonomic Element [11]

The figure makes a distinction between self-contained autonomic behavior (within the large
gray box on the right) and autonomic management involving explicit communications with a
remote manager. The interfaces between an AM and its managed component are an
important part of the architecture. This interface must be discoverable and dynamically
bound so as to support self-configuration of autonomic systems; it must also be secure and
private. The figure shows a remote autonomic manager implementing a Web service, located
via the Universal Description, Discovery, and Integration (UDDI) service registry. We scc
Web services as a foundation technology because they provide standard ways to locate,
communicate (via XML), compose, and interact with network-based services. But because
personal systcms arc often mobile and occasionally disconnected, the interface must support
a disconnccted (offline) mode of use as well. Figure 2.4 shows the architecture of an

autonomic system consisting of autonomic clements connected to onc another at local, peer,
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and network levels. Resources are shown as boxes, AMs as diamond shapes, peer groups as
dashed ellipses, and physical resources, servers and clients as circles. Arrows represent the
control exerted by AMs (e.g., S controls W). At the local level, there is a single AM (e.g., A)
that is capable of independent decision-making. At the peer level, each AM interacts and
shares knowledge and information with its peers and may act cooperatively, as though a
virtual autonomic manager (e.g., W) is present. Only one AM is ever in direct control of a

resource [11].
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Figure 2.4: An Example of Two Hierarchies Of Autonomic Control [11]

2.2.3.1 Directions toward an autonomic framework

The researchers [11] define an autonomic framework that brings togcther disparate
computing clements. The key clements of the autonomic framework are the autonomic
manager and the clements to be managed. The goal of the framework 1s to specify the

interfaces and protocols for clements to exchange information and data to cnablc collective
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autonomic behavior. According to the researchers [11], to achieve this goal, we need to
rethink the structure of the system and the application software (and the tools that help build
them) so as to identify and expose relevant and accurate indications of the state of each
element, and provide standard interfaces to affect an element state with minimal side effects.
Each element will need an element-specific autonomic manager to monitor and control the
element. This coupling of element and specific manager represents the lowest level of
autonomic behavior. Elements may be isolated in virtual machines to limit undesirable
interactions between them. Element specific autonomic managers will eport to a system-
wide autonomic manager in a standard way. The system-wide manager is responsible for

achieving end-user goals in accordance with an established policy.

2.2,3.2 Autonomic managers

The elements under control of an autonomic manager must te observable and controllable.
Current computing systems maintain a wealth of data about themselves in repositories and
logs. Some of these data are redundant and confusing, and some are not even accurate. Thus
the information relevant to decision-making is a challenge to obtain from these data sources.
Similarly, many points of control exist, but their relationship to the desired behavior of the

system is unclear [11].
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2.2.4 An architectural blueprint for autonomic computing

In the recently published paper by IBM [1], IBM has presented an outlinc for the
prospected architecture and framework of the autonomic computing during the coming
phase. That architectural blueprint for autonomic computing is an overview of the basic
concepts, constructs and behaviors for building an autonomic capability into an on demand
computing environment. The blueprint also describes an initial set of core capabilities for
enabling autonomic computing and discusses technologies that support these core
capabilities. Each of these technologies is being developed or is undergoing further
refinements. It also discusses industry standards, emerging industry standards and new areas

for standardization that will make autonomic computing an open system architecture.

The blueprint states that the autonomic computing architecture starts from the premise that
implementing self-managing attributes involves an intelligent control loop. This loop collects
information from the system, makes decisions and then adjusts the system as necessay. An
intelligent control loop can enable the system to do such things as:

* Self-configure, by installing software when it detects that software is missing

* Self-heal, by restarting a failed element

* Self-optimize, by adjusting the current workload when it observes an increase in
capacity

* Self-protect, by taking resources offline if it detects an intrusion attempt.

Figure 2.5 illustrates that these control loops can be delivered in two different ways:

* The loop can be implemented by various combinaions of management tools or products.
In the diagram below, the three examples are the configuration manager, workload manager
and risk manager. These tools use the instrumentation interfaces (for example, a Simple
Network Management Protocol management information base [SNMP MIB ])provided by IT
system components that make them manageable. This interface is referred to as the

manageability interface in the diagram.
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« A control loop can be provided by a resource provider, which embeds a loop in the

runtime environment for a particular resource. In this case, the control loop is configured

through the manageability interface provided for that resource (for example, a hard drive).In

some cases, the control loop may be hard-wired or hard-coded so it is not visible through the

manageability interfaces.
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Figure 2.5: Intelligent Control Loops in An Autonomic System {1]

The architecture for autonomic computing defines three different layers of management.

Each layer involves implementing control loops to enable the self-management in three

different decision-making contexts or scopes:

1.

The resource element context is thc most basic, because its elements, networks,
servers, storage devices, applications, middleware and personal computers manage
themselves in an autonomic environment.

The resource elements are grouped into a composite resources decision making

context. These groups can be represented by a pool of servers that work together to
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dynamically adjust workload and configuration to meet certain performance and
availability thresholds; or they can be represented by a combination of
heterogeneous devices, such as databases, Web servers and storage subsystems,
working together to achieve common performance and availability targets.

3. At the highest layer, the composite resources are tied to the business decision
making context, such as a customer care system or an electronic auction system.
The business solution layer requires autonomic solutions that will comprehend the

optimal state of business processes based on policies, schedules and service levels.

These different management levels define a set of decision-making contexts that are used to
classify the purpose and role of a control loop within the autonomic computing architecture.

The architecture organizes the control loops into two major elements:

1- A managed element

2- An autonomic manager

A managed element is what the autonomic manager is controlling. An autonomic manager
is a component that implements a particular control loop. The managed element is a
controlled system component. There can be a single resource (a server, database server or
routerjor a collection of resources (a pool of servers, cluster or business application).The
managed element is controlled through its sensorsand effectors:

* The sensors provide mechanisms to collect information about the state and state transition
of an element. To implement the sensors, you can either use a set of “get “operations to
retrieve information about the current state, or a set of management events (unsolicited,
asynchronous messages or notifications)that flow when the state of the element changes in a
significant way.

* The effectors are mechanisms that change the state (configuration)of an element. In other
words, the effectors are a collection of “set “commands or application programming
interfaces (APIs) that change the configuration of the managed resource in some important

way. The combination of sensors and effectors form the manageability interface that is

26



Resource Optimization Property Manager For Autonomic Computing

available to an autonomic manager. The architecture dissects the control loop into four parts

that share knowledge:

1.

The monitor part: provides the mechanisms that collect, aggregate, filter, manage
and report details (metrics and topologies)collected from an element.

The analysis part: provides the mechanisms to correlate and model complex
situations (time-series forecasting and queuing models, for example). These
mechanisms allow the autonomic manager to learn about the IT environment and
help predict future situations.

The plan part: provides the mechanisms to structure the action needed to achieve
goals and objectives. The planning mechanism uses policy information to guide its
work.

The execution part: provides the mechanisms that control the execution of a plan

with considerations for on-the-fly updates.
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Figure 2.6: The Functional Details for An Autonomic Manager [1]

The four parts work together to provide the control loop functionality. Figure 2.6 shows a

structural arrangement of the parts not a contol flow. The bold line that connects the four
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parts should be thought of as a common messaging bus rather than a strict control flow. In

other words, there can be situations where the plan part may ask the monitor part to collect

more or less information. There could also be situations where the monitor part may trigger

the plan part to create a new plan. The four parts collaborate using asynchronous

communication techniques, like a messaging bus [1].

Another important section that is relevant to this research area is a section, which describes

an initial set of core capabilities that are needed to build autonomic managers. These core

capabilities include:

1.

Solution knowledge: From an autonomic systems perspective, lack of solution
knowledge inhibits important elements of self-configuring, self-healing and self-
optimizing. A common solution knowledge -capability eliminates these

complexities.

Common system administration: Autonomic systems require common console

technology to create a consistent human-facing interface for the autonomic managers

for the elements of the IT infrastructure.

2.

Problem determination: The capability to be able to extract high quality data to
determine whether or not a problem exists in the managed element.

Autonomic monitoring: Autonomic monitoring is a capability that provides an
extensible runtime environment for an autonomic manager to gather and filter data
obtained through sensors. Autonomic managers can utilize this capability as a
mechanism for representing, filtering, aggregating and performing a range of
analyses of sensor data.

Complex analysis: Autonomic managers need to have the capability to perform
complex data analysis and reasoning on the information provided through sensors.
Policy for autonomic managers: An autonomic computing system requires a
uniform method for defining the policies that govern the decision-making for

autonomic managers.

Transaction measurements: Autonomic managers nced a transaction
measurements capability that spans system boundarics in order to undergand how

the resources of heterogeneous systems combine into a distributed transaction

execution environment.
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Technologies that deliver these capabilities will accelerate the delivery of autonomic

managers that can collaborate in an autonomic system [1].
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2.2.5 E-Model Framework.

In [10], Crawford and Dan describe a novel, flexible framework, eModel , designed to
address the runtime requirements of autonomic computing: online workload measurement,
analysis, and prediction. The e-Model architecture was developed using a platform
independent technology (XML and Java) to allow for maximum portability while also
allowing for ease of integration with existing measurement and system management tools.
The e-Model toolkit consists of a GUI based model buildertool, a data base deployment tool,
a runtime tool, and an analysis tool. In addition to the toolkit, the eModel design provides a
runtime architecture which can be deployed directly without using any interaction with the
GUI. The architecture is flexible enough to allow for incorporation with models of various
complexity, including modeling techniques that require a hierarchical approach to attain
reasonable accuracy. According to Crawford and Dan [10], the traditional focus on tooling
has been on developing sophisticated offline or online tools capturing as much of the details
of an environment as possible. Integrating these types of tools as runtime components of a
system demands that we pay as much attention to the integration framework as to the models
themselves. Ease-of-use continues to remain an important issue, however, not necessarily
only as an issue in running the tool by a human operator but also as an issue in setting up the
tool for system development/deployment. Their work in [10] introduces a flexible
architecture for such a modeling framework, and demonstrates diverse usage scenarios for
different objectives and/or environments and demonstrates how an emodel can play different
roles in an autonomic environment. An autonomic system componenttypically monitors and
reconfigures itself to comply with service level agreements* [17] on its usage, as cstablished
with the clients of this system. SLAs are established by clients with the service systems in
order to receive a guarantee on various service level objectives, €.g., average response time
for supported throughput level during certain time periods, availability of services, etc. The
e-Model architecture is used during all phases of a SLA lifecycle: creation, deployment and
runtime monitoring & enforcement. Different usage and roles that the an eModcl can play
as defined 1n [10] are:

1. SLA Advisor: In order to establish an SLA,a client nceds an understanding on its

expected workload, perhaps predicated from past workload history. The data may
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be available in predefined formats (i.e., as a file or database table). However, when
such data are not available a-priori or an SLA needs to be renegotiated to reflect
changing needs, the data may be collected from a running system. As the data
collection occurs, workload models are built and new SLAs can be constructed by

the SLA advisor.

2. Risk Analyzer: From a service provider perspective, during deployment and/or for
making a commitment to a client SLA, the system needs to understand its available
capacity, and analyze its risk in accepting this SLA. So, in this case an EModel

tool framework can be used as a Risk Analyzer.

3. SLA Monitor: During actual service invocation, the e-Model framework can be
used to measure and monitor runtime performance, and predict potential violations
of service level objectives. This usage of eModel framework is referred to as SLA
Monitor. In addition sophisticated SLA monitoring may involve both computation
of aggregated run-time parameters via metric composition (e.g., computing average
from individual response times) and/or online prediction of future values of

composed or component parameters.

4. Resource Monitor: The e-Model framework (by introducing the resources
monitor) can also be used to further monitor an individial or a collection of
resources, to watch for (current or predicted) problem states, e.g., high utilization,

system bottlenecks, etc.

5. Finally, observed service performance data and/or observed customer workload can

be used to adjust risk analysis, and/or to trigger renegotiation of existing SLAS.

The three main objectives in the e-Model system design are as follows:

1. Ease-of-use: The framework should be easy to use for both the model provider and

the modcl user.
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2. Flexibility: The e-Model runtime architecture should also be flexible enough to

adapt to improving modeling techniques.

3. Scalability: The e-Model architecture should also be able to track and forecast
multiple workloads of multiple types (of both service level and application request

type) from possibly several remote locations.

In order to incorporate all of these design goals, the emodel provides a rich yet concise
language to describe the workload to be estimated. For instance, that language is able to
collect information that have answers to the following questions:

1- what quantities need to be measured and how often the online samples should be taken.

2- what are the important features in the time-series (workload) we are modeling (i.e.

periodicity).

3-what is the input and output as well as necessary parameters for the models that are being

used.

4- what type of prediction horizon and confidence interval should be used in data
forecasting, and should we take any action based upon a prediction (i.e. alert or event
generation).

The researchers [10] employed an architecture for an emodel toolkit which adheres to a
more general architectural concept as shown in Figure 2.7. In this figure, they illustrate how
user-input is transformed into XML [39][40] descriptors and database table entries and
ultimately into Java runtime objects. This concept is used extensively in any container based

object oriented architecture. The advantages of such a paradigm are clear:

1. The user is guided through a parameter input step (GUI based) and does not need

to have any knowledge of XML or DB schematics.
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2. At runtime the application developer only works with Java objects, again no
knowledge of XML or DB is required.

3. The data is preserved if the system experiences some failure while the eModel
toolkit is tracking data, the data has been preserved in a DB so that a model which
improves with historical data need not start from default initial conditions which

may result in deteriorated accuracy.
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Figure 2.7: The eModel XML-Base Model Building Process [10]

Finally the authors (C.H Crawford & A. Dan [10]) have presented several examples that
illustrate the e-Model as a capacity planning tool as well as an augmentation to autonomic
system management in an effort to highlight the technological gaps that the eModel
framework is capable of bridging. Existing complementary model building tools can be
integrated into the e-Model architecture such as the Agent Building Learning Environment

(ABLE) Toolkit and that will be expected to ease the process of model building [26].

33



Resource Optimization Property Manager For Autonomic Computing

2.2.6 AutoMate

The overall objective of the AutoMate [31] project is to investigate key technologics to
enable the development of autonomic Grid applications that are context awarc and are
capable of self-configuring, self-composing, self-optimizing and self-adapting. Specifically,
it will investigate the definition of autonomic components, the development of autonomic
applications as dynamic compositions of autonomic components, and the design of key
enhancements to existing Grid middleware and runtime services to support these

applications. Specific issues addressed include:

1. Definition of Autonomic Components: The definition of programming
abstractions and supporting infrastructure that will enable the definition of
autonomic components. In addition to the interfaces exported by traditional
components, autonomic components provide enhanced profiles or contracts that
encapsulate their functional, operational, and control aspects. These aspects
enhance the interfaces to export information and policies @out their behavior,
resource requirements, performance, interactivity and adaptability to system and
application dynamics. Furthermore, they encapsulate sensors, actuators, access
policies and a policy-engine. Together, aspects, policies, and policy enginc allow
autonomic components to consistently configure, manage, adapt and optimize their
execution.

2. Dynamic Composition of Autonomic Applications: The development of
mechanisms and supporting infrastructure to enable autonomic applications to be
dynamically and opportunistically composed from autonomic components. The
composition will be based on policies and constraints that are defined, deployed and
exccuted at run time, and will be aware of available Grid resources (systems,
services, storage, data) and components, and their current states, requirements, and
capabilities.

3. Autonomic Middleware Services: The design, development, and deployment of
key services on top of the Grid middleware infrastructure to support autonomic

applications. One of the key requirements for autonomic behavior and dynamic
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compositions is the ability of the components, applications and resources (systems,
services, storage, data) to interact as peers. Furthermore the components should be
able to sense their environment. In this prgject, the authors extend the Grid

middleware with:

(1) a peer-to-peer substrate.
(2) context aware services.

(3) peer-to-peer deductive engines for composition, configuration and management of

autonomic applications.

An active peer-to-peer control network combines sensors, actuators and rules to configure
and tune components and their execution environment at runtime and to satisfy requirements

and performance and quality of service constraints.

The overall research objective of the AutoMate [31] project is to develop and deploy the
AutoMate framework for enabling autonomic Grid applications. The used technical approach

is built on three fundamental concepts:

1. Separation of policy from mechanism distilling out the aspects of components and
enabling them to orchestrate a repertoire of mechanisms for responding to the
heterogeneity and dynamics, both of the applications and the Grid infrastructure.
The policies that drive these mechanisms are specified separately. Examples of
mechanisms are alternative numerical algorithms, domain decompositions, and
communication protocols; an example of a policy is to select a latency-tolerant

algorithm when network load is above certain thresholds.

2. Context, constraint and aspect based composition techniques apgied to applications
and middleware as an alternative to the current processes for translating the
application’s dynamic requirements for functionality, performance, quality of

service, into sets of components and Grid resource requirements.

35



Resource Optimization Property Manager For Autonomic Computing

3. Dynamic, proactive, and reactive component management to optimize resource
utilization and application performance in situations where computational
characteristics and/or resource characteristics may change. For example, if adaptive
mesh refinement increases computational costs, we may negotiate to obtain

additional resources or to reduce resolution, depending on resource availability and

user preferences.
\{m;,‘—.m} R A ,.] e g.,vw«_..’w% R N Mﬂaw AW“‘ Wf {_“E
[ Appliatin }dJ } Apptication | f [ Appladion {}§ Autunomic Application Composition. E
| Acorss Rek: At | Conemt el Opportunistic Interactions b !
‘ Wt T Compon iRt Ao ¥ ;
'._'_I : ; T R bonoaie Apgliations, i
B £ ) - AuloMate Component Layer §
= . g BFes) Autonorsic Cotpgronant *
_é ’ 'ga ; % Contponret Access Costrol Apent , E >
+ 1 e
g S 15 4 i
; . = i
g' Aoars i ‘g Rk Agedd 1 g 1B .(i:h:ﬁ‘__‘ : f i~
3 : : 3
< - 5 LoE
> [an] E ; Dascovery, Factory, Lifecycle, Metadata, }
g 1o ; Monitering, Inferaction, Context Services
: ; v z Compunent Services j
A — ! Si et Somantic P2P Messaging, Fuants, {
Acozs ! ; ot SystemiCordext Apents f“,
| o ‘ Grid Middleware (OGSA) |
i
AutoMate Architecture Diagram

Figure 2.8: AutoMate Architecture Diagram [31]

Building on these fundamental concepts, AutoMate addresses fundamental issucs and
provides key solutions in the autonomic formulation, composition, and runtime management
of applications on the Grid. A schematic of the overall architccture is presented in Figure 2.8.
AutoMate builds on the emerging Grid infrastructure and extends the Open Grid Scrvice

Architecture (OGSA)[34]. AutoMate is composed of the following components:
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1. AutoMate System Layer: The AutoMate system layer builds on the Grid
middleware and OGSA and extends core Grid services (securty, information and re-
source management, data management) to support autonomic behavior. Furthermore,
this layer provides specialized services such as peerto-peer semantic messaging,
events and notification.

2. AutoMate Component Layer: The AutoMate component layer addresses the
definition, execution and runtime management of autonomic components. It consists
of AutoMate components that are capable of self configuration, adaptation and
optimization, and supporting services such as discovery, factory, lifecycle, context,
etc. (which builds on core OGSA services).

3. AutoMate Application Layer: The AutoMate application layer builds on the
component and system layers to support the autonomic composition and dynamic
(opportunistic) interactions between components.

4. AutoMate Engines: The AutoMate engines are decentralized (peer-to-peer) networks
of agents in the system. The context-awareness engine is composed of context agents
and services and provides context information at different levels to trigger autonomic
behaviors. The deductive engine is composed of rule agents which are part of the
applications, components, services and resources, and provides the collective decision
making capability to enable autonomic behavior. Finally, the trust and access control
engine is composed of access control agents and provides dynamic contextaware

control to all inter-actions in the system.

In addition to these layers, AutoMate portals provide users with secure, pervasive (and
collaborative) access to the different entities. Using these portals users can access resource,
monitor, interact with, and steer components, compose and deploy applications, configure

and deploy rules, etc [31].
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2.2.7 Business Workload Manager Prototype (BWLM).
The Business Workload Manager (BWLM) Prototype [9] is a technology presented by

IBM, which enables the instrumentation of applications with Application Response
Measurement (ARM) in order to monitor the performance of transactions across a distributed
environment. This ARM-based performance information is used by BWLM to monitor and
adjust the allocation of computing resources on an ongoing, splitsecond basis. Planned
functions include the ability of BWLM to detect changes in its environment and decide
which resources (system, network, load-balancing patterns) to adjust in order to enable a
network of systems to meet end-to-end performance goals. When middleware (or, in this
prototype, an application) is instrumented with ARM, it is expected to take advantage of
products such as BWLM and participate in IBM's autonomic computing initiative. The
prototype allows one to observe and build upon the instrumented application using the ARM
4.0 (pre-approval version) standard to handle workload management for better transaction
flow across systems and applications. This technology will provide significant value in
understanding response times and transaction flow for the following [9]:

* Improved service-level management based on performance policies

¢ Determining where transactions hang.

¢ Active workload management for better capacity use.

¢ Understanding bottlenecks for better capacity planning,

The prototype demonstrates instrumentation of an application (in this case, a
PlantsByWebsphere EJB) using ARM APIs, which could otherwise have been achieved by
instrumenting a middleware such as WebSphere. The use of service classes to define
performance policies is also shown. The pre-approval ARM 4.0 standard supports both C and
Java applications and will allow developers to instrument applications so that they collect
performance data. This technology is intended to drive the first significant ARM
instrumentation in commercial middleware [9]. The basic prototype offers the following
features:

¢ Admunistrative application.
¢ Management server and BWLM agent for collecting ARM data.
e Simple reporting.

e Server class reporting.
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e Service class drill-down reporting.

* High-level server statistics.

2.2,7.1 eWorkload Management overview

eWLM, which is part of the BWLM toolkit, allows you to gather and monitor performance
statistics across a network of systems in a cross-platform environment. Figure 2.9 shows a
sample environment to demonstrate how eWLM monitors transactions. In this sample
environment, a light grey box indicates a system; in this case, a pSeries. All of tle systems in
this environment use the AIX platform on a pSeries server and have been set up to be
managed by eWLM. The inner box (purple in color or dark grey in non colored version)
indicates an application environment that runs on the server. All transadions begin in the
Apache application environment. Once a transaction is submitted, it is classified into a
service class and, optionally, a report class. In this example, the transaction is classified into
a service class and, optionally, a report class when it enters the Apache application
environment, since this is the first application environment that can recognize that a
transaction has been submitted. The transaction may continue to the WebSphere application
environment or the Local ARMed application environment in order for it to be completed.
eWLM does not determine how the transaction will be processed; however, it does monitor

the work as it flows through the environment.

AIX A

Figure 2.9: eWLM Sample Environment [9]
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2.2.7.2 Management environment

The eWLM is designed to monitor response time and other goals that are set across
multiple systems networked to a management server. A server and its networked systems
form a domain. Using the eWLM Administration Console on a PC, one can define
performance objectives, called policies, for various classes of users and applications. The
preferred policy can then be activated across the entire domain. A domain can include
different machine types and operating system platforms. One can create multiple domaing
and manage each domain’s workload by using a single policy that is appropriate for that
domain. The management server identifies which systems belong to each domain. An eWLM
domain is a group of one or more systems networked through a management server. The
management server compares the goals in the active policy with reaktime analysis of the data
streaming from the various servers to achieve an end-to-end view for reporting and analysis.

The user interface lets one monitor and report the performance nformation [20].

All the work that runs in the domain is divided into workloads. For example, all the work
that is created by a development group, or all the work that is started by an application or that
resides in a subsystem could be a workload. Within a workload, one groups the work that
has similar performance characteristics into service classes. One creates a service class for a
group of work with similar performance goals. A policy can have one or more workloads,
and a workload consists of one or more service classes. The service class specifies how to
handle incoming work using a goal. There are four types of goals that one may specify. They
are: Percentile response time, average response time, velocity, and discretionary. Usually a
service class is created for a group of work with similar performance goals. For example one
can create a service class for long-running work and a service class for short-running work.
You will specify the service class to use for each type of work when you create an
application environment’s classification rules. An application environment can represent a
programming environment such as middleware (for example WebSphere), an important
application (for example Apache Web Server). The application environment uses flters for

assigning the product’s transactions to service classes and report classes. Each product
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defines its own filters by using the ARM APL. The eWLM Administration Console also
provides filters that can be used with any application, such as System Nane [20].

We have installed the trial version of eWLM prototype provided by IBM [9] to do some
testing for the previously described features. Some of the toolset architectural model were
really inspiring for our proposed architectural model. However, the eWLM is only a good
tool for system monitoring and performance reporting, since the ARM interface merely
allows data collection and classification. In fact the ARM interface itself imposes a limitation
in the toolset usage, since each of the monitored systens should make an explicit call to the
ARM APIs inside the application code in order to log the application transactions by the
managed server. IBM claims that the full version will be completely different from the
provided prototype and will contain more practical features and efficient management GUI
but unfortunately the full version has not been released until the writing of this work. With
reference to the current prototype we can conclude that it does not yet fully satisfy the

prospective of an autonomic system.

2.2.8 Summary and Discussion of Related Work

In this chapter we summarized the research works and products that were found in the
literature on autonomic computing technology. Some of the research works like Autonomia
[36], AutoMate [31], and the E-Model framework [10] presented useful autonomic software
design models. Other research works such as the AutoTune agents [41] took a different
approach to present a product specific autonomic solution (i.e. the autotune agents for the
apache server). On the other hand some vendors like IBM provided useful research work
directions in the autonomic computing field by presenting useful publications such as the
architectural blueprint for autonomic computing [1] or produced tools like the BWLM [9] to
help in the management of an autonomic system.

The AutoTune research work proposed an efficient model for managing the Apache
WebServer dynamically. However, the CPU and Memory utilization range needs to be
specified statically and supplied by the admmistrator. Actually, because the Auto-tune agent
does not have a more general overview of the overall system/machine resources in which it
resides and is not aware of the other applications/servers that might share the same resources,

it will not be able to determine the best range of resource utilization in which it can operate
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dynamically. This information has to be supplied by the system administrator in order to be
able to distribute the available resources consistently among all the running systems. Again,
every time the administrator decides to redistribute the amount of resources consumed by the
server in order to give more resources to a higher priority system, he will have to do this job
manually. Certainly, such a job is a tedious one that requires continuous and close monitoring
for all the systems in order to make the best utilization of all the utilized resources. Another
important issue regarding this model is the inability to express goals or policies at different
managerial levels. For example, the administrator should be able to specify the policies at
one level from the business point of view and again at a lower level from the technical point
of view which should also server the business level policies.

With respect to the Autonomia research paper, it does not provide enough details about the
project implementation or detailed design. However we can conclude that the scope of the
research does not cover the autonomization of the already running or used systems,
programs, and packages in both the IT and Non-IT industries. This model is only exposed to
the newly created applications that should implement or use the Autonomia model in order to
design and implement an autonomic system. Such an assumption imposes a limitation on the
usage of this model. In addition, this model also has a management scope problem since it is
not fully aware of the entire system environment or the other running systems and application
in order to make accurate corrective decisions when needed.

With regards to the personal autonomic computing research work which presented a
hypothetical model for both autonomic personal computing and autonomic systems in
general, the authors emphasized the importance and the need for the autonomic manager that
will be able to manage all the allocated resources for a specific system. The aim of the
autonomic manager in their work is to provide a sort of centralized management for a group
of managed elements (such as Personal Computers). As mentioned in their manuscript the
management could be at different levels (e.g. Local Manager, Group Manager, and Remote
Manager). The researchers do not specify whether these managers take care of more than
one management activity at the same time or not (i.e. handling security updates,
configuration updates, etc at the same time) and if they do, it is not clear whether they

coordinate these activities at the same time. The researchers also did not propose a detailed
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approach for the implementation of the autonomic managers within the personal canputing
environment nor provide enough details to the proposed model.

The blueprint for autonomic computing research work presented very useful directions and
guidelines for any researcher who wishes to propose a model for the autonomic computing
since it provides a definition for most of the basic features that should be included in any
autonomic system. They also provide the control loop model, which is one of the core
components of any autonomic system. Actually, we have partially integrated this modelin
our proposed architecture of the autonomic property manager as explained in the design and
architecture chapter of our research work.

The e-model toolkit presented in the research work, can play different roles, which range
from SLA advisor to system resource monitor. However this tool is a passive monitoring
tool. In other words it cannot take any corrective actions based on events or condition
evaluation. So it can only do system monitoring and reporting which of course imposes a
limitation in the tool usage.

In a very similar manner the BWLM prototype provides a comparable functionality to the
one provided by the e-Model toolkit. So again this tool can only do system monitoring and
reporting and is not able to take any corrective actions.

The AutoMate research project provides an infrastructure or a sort of middleware for a set
of autonomic services on top of the Grid services infra structure to enable the development of
autonomic Grid applications which are context aware and are capable of selfconfiguring,
self-composing, self-optimizing and self-adapting. In other words it attempts to facilitate the
development of autonomic applications as dynamic compositions of autonomic components,
and the design of key enhancements to existing Grid middleware and runtime services to
support these applications. Even though this research work tackles the autonomic computing
field from an approach that is different from our approach, it provides some useful ideas

concerning the layering of the different services provided by the autonomic middleware.

In Summary, each research work tackled the autonomic computing dilemma from a
different approach and each of them has really presented new and useful ideas to the field of
autonomic computing and to this work. However, none of them provide a complete solution

to the problem yet. This fact implies that there are still more challenges on the road towards a
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flexible model for the autonomic computing and this is what this research aims to contribute

in while following a different perspective from those of the above mentioned research efforts

44



Resource Optimization Property Manager For Autonomic Computing

Chapter 3. Proposed

Architecture for the Autonomic

Property Manager
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3.1 Introduction

The purpose of this chapter is to present a detailed description of the proposed system
architecture for a generic autonomic property manager. This architecture was validated
through the Resource Optimization Property Manager prototype implementation, which was
used in all the experimental work for this research (described in detail in chapter 4).Since the
architecture is a means of achieving the requirements of the system [8], the motive behind the
presented architecture is to satisfy the autonomic system requirements. This architecture is
consistent with our new perspective for the notion of autonomic computing. In our intended
design we were seeking an approach that would simplify some of the complexities imposed
by the nature of the autonomic computing systems. The notion of the property manager was
seen to guarantee the knowledge and professional expertise of specialization. What this
means is that each property manager will be responsible and capable of maintaining one of
the autonomic properties appropriately by embodying the required knowledge and tools to
handle it. In this way also a group of property mangers, each maintaining its respective role,
can cooperate together to form an autonomic system, which is capable of maintaining the
whole set of autonomic properties. The overall setup would finally lead to a self
management-capable system. One important issue that this proposed architecture took care
of, is the ability of integrating the already developed and existing software products and
solutions into the policy definition of any of the autonomic property managers which in turn
would avoid going into the process of reinventing the wheel. Hence, we were also concerned
with providing the most generic autonomic property manager architecturc in which any of
the property managers can fit by replacing some of the modules that add the functiorality and
specialization of each property manager. In the next section we will give a description for
our overall conceptualization of the whole autonomic model with its different levels. We will
also specify the level, which our architecture model targes and that will provide a good

reasoning for the methodologies behind this architecture

3.2 Autonomic Levels
First we present a diagram for the Autonomic Computing model, on which we built most
of our assumptions for this research work. In Figure 3.1 we assume that therc are thrce

different hierarchal levels at which the autonomic computing propertics could be
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implemented. The very first (lowest) level, which is partially out of the scope of this
research, is mainly concerned with the implementation of Autonomic Systems/Managers that
could autonomically manage a certain resource or system. The AutoTune agent [41], which
was implemented to manage the performance of the Apache web server, is one example for
the scope of this level. In this example the AubTune manager was only concerned with
handling the optimization property of the Web Server; however we could have another
manager at the same level, which is concerned with more than one autonomic property. In
general, at this level the management is concemed with low-level details of the managed
system. At this level also the autonomic manager is aware of all the system handling
parameters, sensors, and effector functions through which it can manage the system
efficiently. At the second level, which is the focal point of this research, the Autonomic
property manager is represented. At this level each property manager is concerned with
managing all the registered subsystems with respect to the property it represents. For
example, an autonomic property manager, which represents the optimization property, (i.e.
The Optimization Autonomic Property Manager) is only concerned with managing all the
supervised subsystems in the best optimum way with respect to a predefined set of policies. It
is mainly concerned with the supervision, and enforcement of all the optimization related
policies. So we could have as many properties managers as we need, having each property
manger representing one single autonomic property. For example, we could have a Security
Manager, a Recovery Manager, and an Optimization Manager. This model gives the
flexibility of representing any newly added property according to the need of the autonomic
model, which can be achieved by creating a new property manager to represent the new
property. The third hypothetical level, which is also out of the scope of this research, is the
level at which the global manager resides (that is the brain of the autonomic environment).
Mainly this manager is concerned with managing and solving all the problems hat could not
be handled by the other autonomic managers. Other managers also reference it as a
consultant to some problems, which could not be solved by any of the property managers.
The exact roles of the global manager is out of the scope of this reseacch as mentioned earlier
as it needs further research by itself; however assuming its existence is necessary in order to
coordinate between the different property managers and to provide a conflict resolution

strategy when needed. Actually the property managers should be capable of escalating
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problems directly to system administrators or invoking certain interfaces that are provided by
the Global manager to trigger certain actions or to provide the type of desired help. Hence,
by reaching this point, we have defined the scope and level of operation (Level 2) that the
autonomic property manger will cover in constructing a fully autonomic and dynamic system

model.

48



Resource Optimization Property Manager For Autonomic Computing

Giohal
Autonormiic Manager

& % !
| |
]
Security Manager P Optirmzstion Marags: ! i Resisnvns 0l aupes
; f

-

First Level

Syglem Specific Autonomic ba

i
]
J
; T WAy
{ Congnupication
; !
| 5 5
i
e s S L
// M N Y - AN
£ $od N/ Oracle 3 / = 5
{ sever | | DB ) [ rpahe )
Sdanager // \\ Manager § y R /
\\.../"'/ " e ‘\\—Y_f/(
i
i
i
i
i
i
|
b

O 232

]

Figure 3.1: Levels Of Autonomic Representation
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3.3 Architecture Essence.
3.3.1 Top Down Architecture Description.

Throughout our architecture description, we will use a top-down design approach.
Hence, we first start by describing the system from the user’s point of view. Starting from the
GUI description level including all the related use cases, then we gradually move to the
subsequent layers on which the property manager core functionalities are built. Our
architecture is simply based on the clientserver model (i.e. we have a client side and a server
side). The server side is the place where all the property managers are placed and running,
and that could be a dedicated machine or a machine hosting and running other applications.
The client side is where the controlled application/system or the autonomic managa resides
L.e. where the managed element exists. So we will start by describing the functionalities that
the system administrator needs to perform in order to easily manage and control an

autonomic system and this is illustrated in the next section.

3.3.2 GUI Description

The use case diagram shown in Figure 3.2 describes the major functionalities that are
provided to the autonomic system administrator. Some of these functionalities include adding
a new system to be managed by one of the property managers Defining a new system entails
that the system administrator will have to provide a set of certain parameters that are related
to the new system and are of great importance to the property manager. An example for such
kind of information is the system name, policy file name and location, system priority,
system address, run frequency, and optionally a system description. The snapshot shown in
Figure 3.3, presents the GUI used by the system administrator to define a new system, which
is to be monitored by one of the property managers. The system name defines the unique
name for the system, whereas the system address indicates the place at which the system
resides and that could simply be an IP address or a machine name, which is defined within
the network. So all we care about in the provided system address is that it should be
reflecting a machine name or an IP address that really exists in the corporate network in

which the system will run.

50



Resource Optimization Property Manager For Autonomic Computing

Autonaric Property Manager

SystemAdigistrator

Defire Property
Mereger Rriority

Adivae System
NMointor

Figure 3.2: Autonomic Property Manager Use Case
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The policy file fields are provided to supply the physical path of the system policy files
and their names. A detailed description of the policy files purpose and structure will be given
in the subsequent sections. A priority level has to be assigned to the system in order to
specify the order in which the system will receive any shared event notifications among the
different systems. A detailed description for the event notification mechanism will also be
given in the up coming sections. The run frequency specifies the number of times that the
sensors, inside the main system policy definition files, will run per time unit. For example the
system shown in Figure 3.3, will run 10 times each minute. The unit could be specified as
hours, minutes, days, months, etc. Finally a system description section is provided to write
down any important notes or description about the defined system. Figure 3.4 provides
another snapshot for the GUI window, which is used by the system administrator during a
new subsystem definition. This window is very similar to the one used for the main system
definition, however some of the fields such as the run frequency and system priority are
removed since subsystems could only be triggered by main systems and they have tle same
priority assigned to their main systems. Additionally the parent system field is added in order
to define the parent system or the owner system of the newly defined subsystem. The system
administrator also provides a definition for the peak times ofcach system and these are the
times in which the running system are having high loads, consequently they are critical
operation times in which the system cannot tolerate to give some of its used resources. In fact
during its peak time operation a system might need extra resources. This type of information
is particularly important for the resource allocation manager to check out during the resource
allocation look up process, which will shortly be explained in detals. Figure 3.5 provides a
snapshot of the GUI provided for the system administrator through which he/she can define
the peak operation times for each system. All the provided data for each system are stored

permanently in a database server so they can be retrieved or modified at any time.
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The ER diagram and the tables used in the system database are shown Figure 3.6. The
figure shows the field names, defined tables, and their relationship. In our prototype
implementation we used the MS database SQL server to implement the mentioned tables and
store all the necessary data. Using a database server is more practical then using XML files to
store the given data as data manipulation, processing, and retrieval is much easier using a
database server. The database server also provides a higher level of security, and remote
access mobility and above all it is more reliable with maintaining the data. Also as the
_number of registered systems increase, it will be much easier and faster to handle a large
amount of data by a database server rather than by storing them in a large number of fles.
Finally Figure 3.7 presents a snapshot for the administration console where a full tree
definition for a registered website to be managed by the optimization property manager is
shown in the left pane. We can easily tell the system hierarchy depictedin the left pane by
the simple interface provided to the system administrator to manager all of the systems that
are managed by an autonomic property manager. The figure shows that the website system
consists of three subsystems, which are an http server, application server, and a database

server and they are displayed in a hierarchal tree shape.
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3.3.3 Sensors (Actuators) and Effectors

The AMTS policy engine, which is a part of the ETTK [15], uses two major notions
throughout the system policy definitions, which are known as sensors and effectors. We will
provide a brief definition for these two notions as prescribed in the AMTS manuals [13-15],
since we will be using the same terms throughout our architecture description. Sensors
provide an autonomic manager with the ability to determine what is occurring around it.
They connect the manager to the underlying element it is managing, as well as to aher
autonomic elements and other resources in the environment. Effectors allow the autonomic
manager to control things by coupling the managed element to its controls, as well as
permitting the element to interact with other autonomic elements and other esources in the
environment. Th ere is only one type of effector that may return a fact.

Sensors (Actuators) do not intentionally change the state of the element they are sensing.
Sensing may create a load or other measurable effect on the managed element but should not
cause a change in other ways. Sensors fall into two broad categories, active and passive.
Passive sensors return a fact when they are called. Passive sensors effectively act as proxies
to the actual data source, doing any work needed to access and format data and presenting it
back to their callers as autonomic facts. Active sensors (alternatively called polling sensors),
as their name implies, operate independently. They schedule timers so they can poll
underlying resources, or are subscribed to an external source of events. Active sensors
evaluate the current value they are sensing, and depending on the details of their
implementation, generate a new event to notify interested entities in the system. There is no
one-to-one correspondence between a sensor or effector and a single fact. Some sensors will
provide many facts, and others may only provide one. Some effectors may accept only a
single fact; others may require many as inputs. Sensors and effectors have sensor or effector
descriptions. When a sensor or effector is created, the creator must place its description in the
knowledgebase, so other components can locate and use it. When a sensor is created, by the
focus, or a subordinate part, an AutonomicSensorDescription is created. This cscription
includes the sensor's name, whether the sensor Is active or passive, any required input facts
for the sensor and the set of possible Autonomic facts that the sensor generates. Sensors and

cffectors are usually referenced in the system policy files definition [14].
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3.3.4 Policy Files
Our architecture model depends on the Autonomic Manager Toolset (AMTS) policy

engine, which is provided by IBM as part of the Emerging Technologies Toolkit for policy
evaluation and execution. Accordingly we are wsing the standard policy file format and
structure used by the AMTS policy engine since we are actually creating an instance of the
policy engine for each newly added system. We did some modifications to the way the
engine handles the policies, in order o overcome some of the problems, which are not solved
in the current engine release in addition to extending some of the engine functionalities. The
AMTS policy engine is built on top of ABLE toolset, which is also provided by IBM [3].
The AMTS (Autonomic Manager Toolset) policy framework uses a Data Logic and Control
(DLC) design model. This model specifies that an application consists of three major
conceptual entities: the Data (input/sensor and output/effector data information, and the
mechanism to create/obtain such data information), Logic (rules expressed as policies) and
Control (triggering of rules, ruleset flow logic, etc). This design model requires that each of
these components be separated. The Data contains only application data; it containsno logic
nor any control or flow information. The Logic component contains only the Logic that uses
the Data as input/output information; it has no knowledge of what the data will be and where
to obtain them. Furthermore, it does not know how each individual policy (or rulesets) should
be connected and when to trigger the policies (rulesets). The Control entity is responsible for
the high-level application logic that links a series of logic modules (in the form of policies)
together to form an application, and for the triggering mechanism to enable and invoke a
sequence of policies. The design pattern with the AMTS policy framework supports the clean
separation of data and logic. This design pattern promotes code reuse and simplicity; it also
encourages the reuse and modularity of logic expressed as policies [14]. When an
application developer uses the AMTS policy framework and programming model to create an
application, the emphasis is on externalization of logic at various points in the application
where logic and data can be cleanly separated. The design of the policy part of the autonomic
manager toolkit is mainly based on the following model [14]:

e A policy in XML, which is based on the AMTS Policy schema

(AMTSPolicy.xsd) and, together with the associated resource-mapping file (also
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in XML based on the extension of AMTS Policy Schema
(AMTSPolicyExtension.xsd) is created either by an authoring tool or GUI. The
Current version of AMTS does not provide such tools. Both the AMTS policy
schema (AMTSPolicy.xsd) and its extension (AMTSPolicyExtension.xsd) are
available in the AMTS package: “com.ibm.autonomic.policy.shema”.

In AMTS, the policy framework uses a pluggable architecture. The components
needed to create an instance of policy execution are separated, developed

separately and reused.

In general, to create a policy instance, the following components are needed [14]:

A file or Java object (Document etc.) to represent the policy.

A file or Java object (Document etc.) to represent resources (description of data)
used in executing the policy.

An underlying execution mechanism to execute the policy (a rule engine, or
native Java).

A translator, which translates the policy and mapping information into executable
code appropriate for the underlying execution mechanism.

An optional Knowledge Base (KB) where data can be retrieved, either through

event subscription or through direct access to the Knowledge Base.

In AMTS, there are two ways in which a policy can be used [14]:

A Consultative Policy is used when an application at a decision point directly
consults a policy to obtain information or generate actions with some input data.
The control of when to trigger the policy execution is solely the responsibility of
the application itself. The input data can be provided in the form of direct inputs
from the application or through the input Knowledge Base.

An Event Driven Policy is used when an application at a decision point allows
external events to trigger a policy to obtain information or generate actions based
on the information provided by the triggering events. The Event Driven Policy
instance must subscribe to the Knowledge Base for the specific information it

wishes to receive.
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In a typical application, it is possible to have multiple instances, and both types (Consultative
and Event Driven) of policy usage working together. In subsequent versions of the AMTS,
the ability to trigger an episode of policy execution by another policy will be available. Based
on the current AMTSPolicy schema, a policy document @ml) includes [13-14]:
¢ A main Policy Document Element where information such as version and
discipline are specified.
* A Condition Section which contains all condition definitions used in the policy
document.
* An Action Section which contains all action defmitions used in the policy
document.
* A Policy Section which contains all the policy rules used in the policy document.

e At least one Policy Group which contains at least one policy rule.

The current AMTS policy grammar is based on an early draft of a stancird AC (Autonomic
Computing) policy grammar being developed by Heiko Ludwig and the Autonomic
Computing Policy team. They intend to convert the current AMTS policy language to the
standard as one becomes available. It is important to note the transient naure of the current

AMTS policy grammar, and changes are likely in future AMTS releases [13-14].

3.3.5 Knowledge Base

The knowledge base acts to provide an isolation layer between knowledge creators
and knowledge consumers. It exposes two sets of interfaces, one aimed at components, which
provide knowledge, and one at those which consume knowledge. This permits users of
knowledge stored in the knowledge base to access it uniformly, while the knowledge can be
provided transparently from a broad set of compaments. The knowledge base acts as a
publish/subscribe service, permitting components within an autonomic manager to subscribe
to changes in knowledge held within the knowledge base. The knowledge base will provide
basic support for structuring knowledge in terms of ontology, specialization and aggregation.

[13,18]
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Figure 3.8 presents a snapshot for the condition section of a sample policy file
whereas figure 3.9 presents a snapshot for the action section. Both figures are shown again
in the experimental work chapter (chapter 4) since they are used in one of the experiments.
The AMTS [13-15] documentation contains the detailed description of the AMTS rules and

mechanism. The reader may refer to it for more details.
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3.3.6 Extension Policy File

The current version of the AMTS policy engine included in ETTK 1.1 [15] does not
support all the mentioned features in the toolset manual. Many of the important £atures such
as the ability to trigger an episode of policy execution by another policy is not implemented
yet. Another missing feature is the ability to call a sensor function inside a consultative
policy, as this is only allowed in polling sensors, which are defined in event driven policies
only. The current version does not also support the parameterized sensor function call for any
sensor type. That means functions that take no parameters are the only type of functions
allowed to be attached to a sensor, which is definitely not a practical manner. Additionally, in
the current version the sensors and effectors that are defined in the XML files should be
explicitly hardwired in the code during compile time, which is a procedure we want to avoid.
Actually we want to completely separate the implementation from the given data, as the
system administrator should not need to write or modify or recompile any piece of code order
to register or monitor any of his systems. This is not the case in the current verspn. All the
previously mentioned problems generated the need to create a mechanism to be used as a
work around solution for these problems.

We finally arrived at what is labeled the policy extension file to be a practical
solution for most of the above mentioned problems. We first explain the syntax of the file
and then we will move to the semantic description. We had to set our own file structure in
order to guarantee the most flexible and practical form. We divided the extension file into
two scctions. The Sensors section, which starts with the “Sensors:” keyword and an effector
section, which starts with the “ Effectors:” keyword. We used the “#” sign to precede any
comments in the file. The file can include as many empty lines and spaces as necessarysince
the parser skips all the empty lines and spaces. The new line sequence character however
separates any declaration of a sensor or effector within the file (i.e. one declaration per line).
The single declaration can span more than one line provided that they arc not separated by
the new line sequence. All declared parameters are either declared as of type value or
method. Inside the condition section of the AMTS policy file definition, the creator can use
any variable name on both sides of the operabor. For example you can writc * IF

MeasurcValue > 10” or you can write “IF MeasuredValue > ThresholdValue”. Actually the
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engine assumes that the two values are defined within the knowledgebase; otherwise it will
throw an exception during policy evaluation. The AMTS policy engine does not provide any
tool to define the associated values with each declared variable in the policy dynamically.
Unfortunately the only possible way to achieve this is to explicitly add those variables into
the engine KB within the code and then compile it. So the work around that we have figured
out for this problem is to declare the initial value of all the variables used inside the policy
files in the policy extension file. Hence, the user declares the previously mentioned variaties
as follow:

o  “value;MeasuredValue;10; ”

o  “value; ThresholdValue;100;”

What actually happens is that the parser parses the extension file of each defined
policy before the main policy file is uploaded into the engine, and it detects all the declared
value parameters then starts to add them up into the knowledgebase. Thus they can be
referenced by any of their corresponding policies when needed. This mechanism helped in
externalizing the variable declaration, which was not possible in the current AMTS polcy
version. The second type of variable declaration is the method. As mentioned earlier,
function based sensors could only be defined as polling sensor in the AMTS policy engine
and they can only be associated with non-parameterized functions. This means that the sensor
function cannot accept any parameters and can only be defined in event driven policies.
Alternatively we hatc provided the capability of defining parameterized function calls inside
consultative policies by declaring them in the correspondng extension policy file. Actually
sensors that are going to be associated to a function call have to be declared twice inside the
policy extension file. The first time to indicate its default value inside the KB and the second
time is to declare the associated function call. Each defined parameter value and its
associated function call is stored in a hash table, and whenever the policy is consulted our
policy server module goes through all the defined sensors of that policy and starts calling
their associated functions to update their values in the KB. An example for a declaration of
the sensor called “MeasuredValue”, which is associated to a function call, is shown below.
As noted, we first mention that this sensor declaration is of type method associaion sensor.
Then we mention the address of the machine to which this function call should go (c.g. the

remote machine name shown in the example is “TestX”). Then we mention the name of the
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sensor “MeasuredValue” then the function return type “int” preceded by the package name
and class name “AutonomicPackage.ProbingStation” which contains this function. Then the
function name itself “GetServStatus”. Finally we mention the entire parameter list for the
function itself each parameter separated by a “,”.

o method; TestX;MeasuredValue;int|AutonomicPackage. ProbingStation|GetServS

tatus|localhost,/manual/misc/FAQ. html#name,cls, false,|;

The above shown example presented a call to an external function associated with a
certain sensor. What we mean by an external function is that the intended function or batch
resides in a remote machine. Additionally, as will be explained later, a sensor could be
associated to a local function call. The next example shown below presents the syntax used to
call a built-in funetion called “GetCpuUsage” which retrieves the current CPU usage of the
intended machine. What is meant by a builtin function is the set of functions that are
provided by the property manager as readymade functions that the user can make use of in
his policies without providing an implementation for. Each property manager will have his
own set of built-in functions and that should facilitate the process of building useful policies
by the system administrator. In our prototype we have implemented the “GetCpuUSage”
function, which retrieves the current CPU utilization reading of a running machine or of a
certain process. The sensor shown below is called “CPU_USAGE” and is associated with
the built-in function *GetCpuUsage” which takes two parameters the first one indcates the
delay between each reading iteration and the second indicates the number of iterations that
should be averaged and returned back to the user as an average CPU utilization. Hence, the
function returns the average of five readings each separated by a one second reading. The
class name of this function is called “PerfCounter” which contains other useful functions
such as memory and disk space readings. Again the address of the machine in which the

function will run is called “TextX”.
o method;TestX; CPU_USAGE;Builtln|PerfCounter|GetCpuUsage|l1000,5,|;

As promised by IBM the upcoming versions of the AMTS policy engine will support

parameterized function calls in all type of policies. So in the near future we should be able to
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give up some of the above mentioned workarounds as they will already be implemented
(Please refer to Appendix C for a list of all the implemented workarounds). The last option
that we have provided through the policy extension file, is the ability to identify a sensor
which is actually a pointer to another sensor defined in a different policy. The example given
below is a sensor definition that is included inside the security policy file. It defines a sensor
called “MeasuredValue” which is actually a “sensor listener * associatedto a sensor with the
same name defined in the policy called “WebSiteP”. Then we assign a priority to that sensor
to indicate the order in which all the registered polices will get the notification about the
sensor value change. So if the sensor is assigned a certain priority in the security policy
which is higher than the one assigned to it in the Website policy, the security policy will
always be notified about the sensor value change before the website policy. Throughout this
mechanism we provide a more efficient approach to the sensors definitions and reusability in
more than one policy.

o Notify;measuredValue;SensorListener,WebSiteP,7,;

For the effector section things are much simpler than they are in the sensor section as the
current AMTS policy version supports the call of a parameterized function effector.
Fortunately this has relieved a great amount of work which could have been similar to the
one achieved in the sensor part. The only problem concerning the effector part is that it
should also be defined explicitly in the code to be recognized by the policy engine whenever
the action section is executed. To overcome this problem we defined a default effector
function called “sendAlertEffector”. This function accepts two parameters. The first
parameter specifies the call type. The supported types are either a function call or a policy
call, which is also not supported by the current AMTS version. The second parameter cither
specifies the function name and its calling parameters in case it is a function cdl or the policy
name in case it is a policy call. The example shown below is for effector declaration syntax
inside the policy cxtension file. Definitely the effector function could be named anything
other than “SendAlertEffector” provided that this nameis used inside the AMTS policy files.
Figure 3.10 provides a snapshot for a function call effector in the policy action section, which
makes a call to a function named “AllocateResrouce”, whereas Figure 3.11 provides a policy
call cffector, which makes a call to a policy named “HTTP”.

o Method; TestX;sendAlertEffector;
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3.3.7 Event Notification

The AMTS toolset provides an event notification mechanism that would have been very
useful if it was fully implemented. Unfortunately some parts of this mechanism are not yet
supported in the current version (ETTK 1.1) however we were able to make the best use of
the implemented part and to implement some work around to simulate some of the missing
parts. The toolset is largely event-driven. An element’s objects spend most of their existence
waiting for events to happen. When the element handles a request, events begin flowing
through the components. Event flows fall into two categories, synchronous and
asynchronous. Many of the event flows are synchronous, with a request leading to a
response. Some internal flows are asynchronous, often when one component sends a
notification to another component as part of its processing. The manager generates many of
the events that flow through it. Timer-driven sensors actively poll the environment, and when
they detect changes they drive events into other portions of the element. Some policies
require the active, regular evaluation of the element's environment, and the regular evaluation

of the policies. Timer events trigger these policies [14].

3.3.7.1 Event subscription

Components in an autonomic manager request notification of relevant everts by
subscribing to the components that generate these events. When component A wants to be
notified when another component B changes state, it creates an event subscription on
component B. Component A passes to component B the request for events, with iself as the
event listener. As long as the subscription is in place, B will call A whenever B changes state.
Event subscription and delivery is a structured process. Components use two forms of cvent
subscription. The first is used by components that wantto know an event has occurred but do
not take direct action based on the event. This form is used by components such as loggers,
monitors and debuggers. The second form of event subscription is used by components that
take actions based on events. These subscriptions are ordered by priority, and called in
priority order. When the event listener completes its processing, it can return one of three
possible results to the notifying component. It can rcturn the event, unchanged, indicating

that the event listener should continue notifying lower priority listeners. It can return a
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modified version of the event, which the event notifier will pass on to the lower priority
listeners. It can return a null event, indicating that it has fully processed the event, andno

lower priority listeners should be notified of the event [14].

s
Lever Listenst A Usterer B Listener €
f’—'_J -
Level 4 wstenct D H Lstener E J
N

Figure 3.12: Event Delivery Chains [14]

3.3.7.2 Delivery Chain example

In Figure 3.12 we show five event listeners at two separate priority levels, where level 1
has a higher priority than level 4 in receiving the incoming events. The event will be
propagated first to listener A, then B, then C, followed by D and E. Each listener may
perform exactly three actions. They may consume the event, propagate the event or aniptate
and propagate the event. For example, Listener A could propagate the event to listener B,
which would annotate it with additional information. Listener C would receive the annotated
event, and could further annotate it. Listener D would receive the twice-annotated event, and
could consume it, thereby terminating the processing for the event, in which case, listener E

will never receive any version of the event [14].

3.3.7.3 Priorities

The AMTS uses an extension of the normal java event listening model. The AMTS
extends the model in two ways. The model introduces priorities to event delivery. In
addition, it permits event listeners to influence what lower priority listeners receive,

including the prevention of the delivery of the event to lower priorty listeners. Event

68



Resource Optimization Property Manager For Autonomic Computing

delivery is done in priority order, from 1 to the maximum value held in an integer. Within a
priority level, there is no guarantee of delivery in a specified order. So, in figure 3.12,
Listeners A, B and C, having registered at priority 1, are ensured they will be called before
any listeners at lower priorities (D and E) but they can make no assumptions about which of

them will be called first [14].

3.3.7.4 Missing features

The current version of the AMTS policy engine can only rturn the event, unchanged,
indicating that the event listener should continue notifying lower priority listeners when it
completes its processing. Event modification or complete event consumption is not yet
supported in the current version. In our architecture we are making use of prioritized event
notification mechanism to be used among the different property managers and the different
policies. As more than one property manager might be interested in the same event
notification, each according to its priority, the concerned property manager should either
consume that event after handling it or pass it over to the next property manager in case it is
not interested in it. For example, if the security property manager and the optimization
property manager are both concerned with the website response time value change,
consequently both of them will register to the same related event notification with a different
priority. The security manager will have a higher priority since it is more important to verify
the security concerns before starting an optimization investigation. So the security manager
will be the first to be notified about the response time value change. We will assume that it
has discovered a security problem with the web site and it was able to handle it. So the
security manager should have consumed the event notification, as it is not necessary any
more to pass it to the optimization manager. Unfortunately this scenario is not supported in
the current version so the event will always be passd to the optimization manager, which
creates a sharing violation, as the optimization manager will start to handle the event at the
same time that the security manager might still be working on the problem. In order to
temporarily over come this issue, until the full solution is hopefully implemented in the
coming version of the AMTS cngine, we have created what is known as Global Locks.

Global Locks are similar to the semaphores, and monitors multithreading OS solutions. The

69



Resource Optimization Property Manager For Autonomic Computing

first property manager receives a shared event notification, sets the lock on to indicate that it
is working on the problem. Once it is done it releases the lock so that other property
managers can proceed with handling the event. This work around was implemented in the
resource optimization property manager and presented in Experiment 4 in the experimental
section of our work Chapter 4). This work around has provided a solution to the event
notification sharing violation, which might lead to more complex problems during policy
handling. As we mentioned above once the AMTS new release is ready, we will abandon

this work around.
3.3.8 Messaging Using JMS.

As mentioned earlier our architecture is clientserver based architecture, however in they
do not communicate directly to each other. There is an intermediate communication layer,
which adds more robustness, reliability, anc'l‘ availability to the communication and that is
achieved throughout the use of the messaging service known as Java Messaging Service
(JMS). Actually the JMS is a standard by itself but more than one vendor has provided an
implementation for the JMS standard. Specifically we have used the JMS server provided by
Sun, which is included in the J2EE package. The JMS server APIs provided by sun are easy
to use and to hook up applications to. We will give a brief description for the java messaging
service concepts and benefits. Additionally the reader can refer back to [29] for more details.

Messaging is a method of communication between software components or applicatons.
A messaging system is a peer-to-peer facility: A messaging client can send messages to, and
receive messages from, any other client. Each client connects to a messaging agent that
provides facilities for creating, sending, receiving, and reading messazes. Messaging enables
distributed communication, which is loosely coupled. A component sends a message to a
destination, and the recipient can retrieve the message from the destination. However, the
sender and the receiver do not have to be available at he same time in order to communicate.
In fact, the sender does not need to know anything about the receiver; nor does the receiver
need to know any-thing about the sender. The sender and the receiver need to know only
what message format and what destination to use. In this respect, messaging differs from
tightly coupled technologics, such as Remote Method Invocation (RMI), which require an
application to know a remote application’s methods. Messaging also differs from electronic

mail (e-mail), which is a method of communication between pcople or between software
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applications and people. Messaging 1s used for communication between software
applications or software components [30].

The Java Message Service is a Java AP1 that allows applications to create, semrl, receive,
and read messages. Designed by Sun and several partner companies, the JMS API defines a
common set of interfaces and associated semantics which allow programs written in the Java
programming language to communicate with other messaging implemertations. The JMS
API minimizes the set of concepts that a programmer must learn in order to use messaging
products but provides enough features to support sophisticated messaging applications. It
also strives to maximize the portability of JMS applicationsacross JMS providers in the same
messaging domain. The JMS API enables communication, which is not only loosely coupled
but also [31]:

« Asynchronous. A JMS provider can deliver messages to a client as they arrive; a client

does not have to request messages in order to receive them.

« Reliable. The JMS API can ensure that a message is delivered once and only once.
Lower levels of reliability are available for applications that can afford to miss messages

or to receive duplicate messages.
In our architecture we use the point to point messaging provided by the JMS server rather

than the Publish/Subscribe Messaging since it is more suitable to our intended design as will
shortly be explained. A point-to-point (PTP) product or application is built around the
concept of message queues, senders, and receivers. Each message is addressed to a specific
queue, and the receiving clients extract messages from the queue(s) established to hold their
messages. Queues retain all messages sent {0 them until the messages are consumed or until
the messages expire. PTP messaging has the following characteristics and is illustrated in

Figure 3.13.
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Figure 3.13: PTP Messaging [31]
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» Each message has only one consumer.

« A sender and a receiver of a message have no timing dependencics. The recetver can
fetch the message whether or not it was running when the client sent the message.

« The receiver acknowledges the successful processing of a message. PTP messaging is

usually used when one consumer must process every sent message successfully.

In order to facilitate the communication between the server side and the different clients,
the property manager creates one messaging queue per client machine named after the
machine address. This means that if more than e managed application is running on the
same client machine, they will all share the same messaging queue. Also if more than one
property manager is communicating with the same client machine, they will also use the
same messaging queue named after the machine address. Thus the messaging queue is
created per hosting machine not per running application. Figure 3.14 depicts an overview for
the property manager overall architecture. The entire architecture model was designed and
implemented within this research work and the AMTS policy engine was integrated into it.
On the server side the Command Dispatcher/Receiver module takes care of sending all the
outgoing property manager messages to the different clients, and it also handles all the
incoming messages and redirects them to the caller. All the IMS messages hold timestamps
and extra flags that enable the sender to specify the receiver and consequently the receiver to
recognize the message sender. On the client side the command receiver/executer module
takes care of all the incoming messages and it routes them accordingly, collects the result
back, and finally sends them back to the appropriate J MS queue. This mechanism extremely
smooths the communication between the client and the server side, and it inceases the
flexibility of adding or removing clients transparently without affecting the server side,

which makes the client/server sides loosely coupled.
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3.4 The Server Side.

Figure 3.14 presents a general overview for the different components, which together
formulates the structure of the autonomic property manager. It illustrates the components that
exist on both the server and client sides in addition to the communicaton medium (JMS
server) through which the two parties communicate. Figure 3.15 presents a class diagram for
all the classes that build up the autonomic property manager and the packages that are used
by the member classes. All the shown classes were implemented within this research work
except for the ready-made packages that are provided by the integrated technologies. The
“J2EE JMS package” [21] includes all the important JMS server APIs which both the
“CommandDispatcher” and “CommandReceiver” classes use to communicate with the JMS
server. The “AMTS Policy Engine Package* is the package that contains all the AMTS
policy engine APIs used by the “PolicyServer” class to build up the property manager
policies. The last package is the “PropertyManagerPack” which contains all the property
manager specific functions such as the “GetCPU” function that is used to retrieve the CPU
utilization of a certain machine or process. It can also contain any additional functions that
are property manager specific. Any call o one of the built-in functions provided by the
property manager (i.e. included in the package), is resolved dynamically from the used
function name in the corresponding policy file during runtime.  For example, the
administrator can use the built function “GetCPU” in any of the managed systems policy files
as a sensor name. Actually, this is where the strength of this model stands. This mechanism
means that we can add a set of new functionalities provided by a new property managcr, by
simply adding the new classes into that package directory. Or we can even replace one of the
old functionalities by replacing the old class with the new one, which contains the new
functionality. Hence, there is no need to recompile or generate any code parts in order to
support new functionalities in the system. The class diagram shown in Figure 3.15 does not
show the attributes and member functions of each class due to the space limitation to include
all the details in one diagram. The detailed diagram of cach class is induded in the Appendix
D. Initially we explain how these classes communicate together and the role of cach class.
Upon the very first time of the system start up, the “Global Manager” class creates an

instance of the “Property Manager” class for each propaty manager. It then calls the “Start
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system can use its own KB instance. All our experimental work was conducted using one
shared KB instance, since there was no need to use more than one instance. The sequence

diagram shown in Figure 3.16 depicts the above mentioned property manager initialization

and startup sequence.
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3.4.1 Command Dispatcher

In this section we explain the mechanism by which the “policy server” class
communicates with the command dispatcher once it triggers a sensor or an effector call as a
result of a policy evaluation. Initially when a sensor or an effector call is invoked, the policy
server calls the member function “CommandClassifier” which takes two parameters. These
parameters are the sensor or effector name, and the type of the call (i.e. is it an effector or
sensor). If it is an effector, it sends the call right away to the command dispatcher since all
the needed information is already included in the call itself (remember the current AMTS
version support parameterized function calls for effectors only). On theother hand if it is a
sensor call, this function will retrieve the full parameterized function call associated with the
supplied sensor name included in the extension policy file. Then it sends the full information
to the command dispatcher. The command dispatcher verifies whether this is a local call or a
remote call. If it is a local call it does the execution, collects the result back, and sends it to
the caller. In case it is a remote call, it dispatches it to the corresponding JMS queue and
collects the result back for sending it to the caller. The Command Dispatcher State Diagram

shown in Figure 3.17 illustrates the previously mentioned scenario.

3.4.2 Resource Allocation

The resource allocation class is one of the major modules that formulate theresource
optimization manager. Any resource request call, which is embedded in one of the systems
policy files are redirected and handled by this class. This class follows a certain mechanism
that will be explained shortly in order to allocate some of therequested resources if possible.
It does not guarantee that it will always be able to allocate the requested resource since the
final decision is actually made by the autonomic manager managing the resource itself.
However it does some preprocessing in order to allocate the best candidate system that can
give up some of the requested resource at the request time. As the Resource Allocation server

class receives a request from a certain system, which requires additional allocation for a
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specific resource (the requester system name and required resource type are provided as

parameters), it does the following:

(Fire Sensor/Effector )

@p Sensor/Effector Name To Function NamD\

Execute Function Call

Remote Call]
\\ [ \fSend CallTo JMS Queue
N\ ,

{Local Call]

A
Execute Local Call [N
S,
e,
Result v
Returned

Policy Server Command Dispatcher

Figure 3.17: Command Dispatcher Activity Diagram

e It runs a query that looks for all the systems that are currently using the same
resource, operating out of their peak hours, and have lower priority than the
requesting system.

e It loops on these systems to update their resource counter readings by calling the
appropriate function associated with each system to ensure that the current

readings reflect the latest counter updates.
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e The systems arc sorted according to their priority and updated resource
consumption.

e It starts to call the first system resource acquisition defined function, which
informs the managed resource about the resource acquisition request.

e If a system returns a Zero it means that it accepts the donation and consequently
the resource is released; otherwise the system continues looping on the rest of the
systems. If this function succeeds in finding some resource it will return a (zero)
otherwise it will return (~1) to indicate a failure.

The previously explained sequence is illustrated through the sequence diagram shown in
Figure 3.19. We recall here the ER diagram in Figure 3.6, which shows the
“AUT_ResourceConsumption” table in which all the resource acquisition functions, and
counter readings of each system are stored. Other useful information is also stored in the
table such as the average resource consumption for the system, the current resource
consumption, and the last update to the value reflected in the current resource consumption.
All resource allocation transactions, which succeed or fail are stored in the table called
“AUT_ResourceTransaction” where the requesting system name, donor system name,
requested resource, and transaction time are all stored. This data could be used for statistical
and analysis reporting and for graph generation. It could also be used for transaction rollback
when needed or transaction forward look up tables, which can helpin allocating resources in
the future, but these features are not supported in the current version. However they will be
useful for future enhancements. Finally there is a view called “V_AUT_PeakTimes “ which
is created in the database server to constantly hold all the systems that are working on their
peak times to be excluded from the resource-giving list during resource allocation system

search. Figure 3.18 displays a snapshot for the previously mentioned view.

ij S0L Server Enterprise Manager = [Z:Design View ¥
(“fy Console \Window  Help

e s e ! W 2 %

€ * (all Ezilumns) -
v OvwmerSysiD
v ScheduleID

FromDate e
Tolaks Y
<! 1
S
| Column | Alias | Table | output  {Sort Type | Sark Order | Criteria |or...
Coaner Sy sIo AT _PeakTi v

== FrombDate

L Fr RO
<= Tolate

SchedulzI0 AT _FeakTi (v
4 ER O

U S -

SELECT Cnarer SysI, SchedulelD
FROM dbe . AUT _PeakTimes )
WHHERE (4 Fr NOW() b == FromDate) AMD O Fr f(OW(0 <= Tobate)




Resource Optimization Property Manager For Autonomic Computing

Figure 3.18: Off Peak Time view
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Figure 3. 19: Resource Allocation Activity Diagram
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3.5 The Client Side

Finally we come to the description of the client side components or classes. As was shown in
figure 3.14 there is a command receiver/executer class, which takes care of receiving all the
incoming messages that are related to the machine in which it resides. Once it receives the
message it does a filtration process in order to check if the coming message holds a built in
command that is supported by the property manager package or is an external call to a local
class or batch. It executes the call accordingly and then returns the result back through the
JMS server. As We had mentioned earlier the receiver supports the call to any class, function,
and system batch or script that are contained in the hosting machine as long as the full and
correct path has been provided in the message call. The command receiver state diagram is

shown in figure 3.20
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Figure 3.20: Command Receiver Activity Diagram
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3.6 Resource Optimization Property Manager Implementation.

According to IBM’s definition of the Self Optimization property: “Autonomic systems will
continually seek ways to improve their operation, identifying and seizing opportunities to
make themselves more efficient in performance or cost [1]”.  Within the scope of this
research, this statement is interpreted to mean that the Resource Optimization Manager
enhances the performance of the managed systems according to a set of predefined policies
which control its behavior in addition to the resource management functionality. This
ultimately leads to the optimization of the managed systems according to the policies
supplied by the systems administrators. Hence, it is important to clarify here that air
proposed Resource Optimization Manager is built on a rulebased optimization strategy
rather than a resource optimization function.

Since it will be difficult (in terms of the time frame and available resources) to design
and implement each of the four basic autonomic property managers which together form
the Self Management autonomic property (Conﬁguration Manager, Self Healing
Manager, Security Manager, Optimization Manger), we implemented only a prototype
for the resource optimization property manager as a proof of concept for the efficiency of
our previously proposed architecture. In reality the resource optimization manager should
be communicating with an autonomic manager (at level 1), which is controlling a
managed resource such as an HTTP or Application server. However since we were not
able to get any of the already existing autonomic managers implementation such as the
AutoTune agent [41], we were directly communicating with the managed element in our
implemented model. We developed a set of dasses and batches through which we can
communicate and invoke some of the HTTP apache server [5] and WebShpere
application server [37-28] functionalities. For example, we devcloped a class, which
provides an interface for the apache HTTP server and through which we can retrieve or
set the value of any tuning parameters in addition to the ability to stop or restart the
apache server. We also developed batches that can stop or restart a selected web
application, which is hosted by the WebSphere applicationserver. All of the implemented
tools were efficiently used throughout the experimental work to provide a simulated
communication mechanism between the autonomic property manager and the autonomic

manager.
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3.7 Used Technologies.

3.7.1 Emerging Technology Toolkit (ETTK)

With regards to the programming language, tool kits, and technologies that were used
in the development and prototyping process, we decided to use the Java programming
language and some of the emerging technology tools provided by IBM paticularly for
the autonomic managers development. We chose the Java language, for its platform
independence, which provides more flexibility in terms of both implementation and
mobility feature in addition to the other known benefits of the java programmirg
language as an object oriented programming language. We also used the Autonomic
Manager Tool Set (AMTS), which is part of the Emerging Technologies Toolkit (ETTK)
[15] provided by IBM. The ETTK provides a runtime environment, as well as demos,
examples, and additional tools to design and showcase emerging technologies. The
toolkit also provides introductory material for developers to easily get started with
Autonomic Web Services and Grid-related applications. The Toolkit prototypes emerging
technologies and allows developers to experiment with creating their own applications
and demos [13]. The ETTK evolved from the package formerly known as the Web
Services Toolkit (WSTK). With the renaming of the WSTK package to ETTK, the scope
of technologies has been expanded. In addition to Web services, emerging autonomic and
grid technologies are now being integrated into the package. With this new direction, the
toolkit has also changed the way it is packaged (i.e. it is now composed of separate
components or tracks which can be used separately). Related technologies are now
grouped together into "tracks”. The track that we are mainly concerned with is the
Autonomic Manager Tool Set track. The Autonomic Manager toolset (AMTS) is
designed to aid in the creation of the management portion of Autonomic Elements. The
toolset can be used to build a wide variety of elements, ranging from simple components
which monitor low level resources, to complete autonomic elements managing large
complexes of distributed computing middleware. In this toolset a set of components are
provided which can be used in a variety of ways to yield many diffcrent solutions. The

toolset includes a “skeleton” which combines the toolset's components into one very
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specific style of an autonomic element, but this style is not required, nor will it be
appropriate for all autonomic elements. The toolset consists of several sorts of
components. Some components are essentially standalone and orthogonal to the rest of
the toolset [14]. Other components leverage each other more extensively. Each
component can be replaced, or used in parallel with a similar component, but often at the
expense of limiting the usability of other parts of the toolset. Whenever possible,
interfaces are provided to permit complete substitution of componenis by other
components with similar capabilities. The current release of the toolkit represents a first,
incomplete effort at separating the toolset clements from the framework. Subsequent
releases are expected to improve this separation. The toolset includes support for a
preliminary form of a policy enforcement point, and an early experience version of a
policy engine for evaluating policies. We had previously mentioned some of the AMTS
fundamentals in section 3.3.4, as it is a core component of our architecture. If the reader
wishes to obtain more detailed information about the AMTS component please refer to
the ETTK [18] documentation.

3.7.2 Intended Platform And Users.
We used Windows 2000 Professional and Windows XP Professional as the intended

design and testing platforms. IBM provides a windows OS version for all the needed toolkits
as well as other platforms. However we prefer to use the windows platform for ease of use
and familiarity of the OS structure. ~The users tha our model is addressing are primarily
system administrators, who can use the policy definition language to provide information
about their systems and to register systems into the property manager that they select. In
addition we address the programmers who need to define a model which they can use to
build their own property managers for any new emerging property that they believe is
important to be defined in an autonomic system. Many different business branches and IT
induétries will benefit from this model, such as data centers in large companies in providing a
more robust system with the maximum resource utilization and minimum down times, by

employing a more complete autonomic model.
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3.8 Autonomic Property Manager Architecture Wrap-up

The intention of the provided architecture is to provide an efficient, flexible, and
extensible model that will satisfy most of the autonomic system requirements and
consequently provide a self-management-capable system. In our model a property manager
will usually contain a set of default built in monitoring functions that are related to its
specialization (the property that it represents). For example the resource optimization
property manager will contain default functions that monitor the CPU usage, memory usag,
and storage usage for a specific machine, system, or process and some other default monitor
metrics, which fit the functionality of the concerned property manager. What we provide in
our model is a flexible approach to enhance and extend the monitoring capability of any
property manager. In other words, a means to define new monitoring functions, that are not
built into the property manager and are supplied by an external party. These new monitoring
functions will be in the form of a set of supplied classes, which could be instantiated from the
property manager through the policy files (i.e. included as sensors and effectors), and hence
be called to return the required inputs. Using an external tool or executable program, which
could be called to return an input in a certain file format, provides other form of extensibility.
For example, a log translator, a probing station program, etc.. In addition, each property
manager will contain some fixed logic, which is related to the job it performs. For example
the resource optimization property manager has the ability to look for extra resource
allocation when a system is in need of extra resources. As previously illustrated, property
managers are managed through a graphical management console through which thesystem
administrator can administer and monitor all the registered systems effectively. For example,
the system administrator will be able to use this console to change the priority of a certain
system, or even stop or start a certain system. This way a goup of systems can easily be
administrated concurrently. Finally we conclude that that proposed architecture provides a
model in which any system can fit and together they form an autonomic system which is
capable of managing itself. The whole architecture was developed within this research work
and the AMTS policy engine was only integrated as a readymade component. A full
prototype was implemented for the ROPM architecture. The same architecture can be used to

provide the basis for building the architectures of any of the other property managers.
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Chapter 4. Experimental Work

and Analysis of Results.
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4.1 Introduction
The purpose of this experimental work is to demonstrate the practicality of the

proposed design work of the autonomic property manager notion. All the experiments
described in this chapter were conducted using the prototype implementation of the Resource
Optimization Property Manager (ROPM). In this chapter we present a complete analysis and
description for each experimental test case as well as the full environment and parameter
settings used during that experiment and finally a conclusion is drawn out for each
experiment.
4.2 Experimental Environment Setup

Since our main focus is on the Resource Optimization Property Manager (ROPM) asa
proof of concept, our experiments were all focused on this model of the implemented
prototype. All experiments were conducted on Microsoft Windows 2000 professional and
Windows XP professional as the testing platform. We also used the IBM Apache HTTP
Server 1.3.26 [5] for windows as the HTTP experiment based server and IBM WebSphere
Application Server 5.0 [38] for windows as the experiment base application server. Both
servers are available as free trial versions on IBM website [37]. In our prototype
implementation we used the Autonomic Manager Tool Set (AMTS) which is part of the
Emerging Technologies Toolkit (ETTK 1.1) provided by IBM on their website [15] also as a
free download trial version. The Autonomic Manager toolset (AMTS) is designed to aid n
the creation of the management portion of Autonomic Elements. The toolset can be used to
build a wide variety of elements, ranging from simple components that monitor low level
resources, to complete autonomic elements managing large complexes of distrituted
computing middleware. In this toolset a set of components are provided which can be used
in a variety of ways to yield many different solutions. The detailed documentation of the
toolset can be found on [15]. The java programming language was used in the prototype
development in order to make use of its portability feature in addition to the other known
benefits of the java programming language as an object oriented programming language. We
used JSDK 1.3.1 [22] for the JVM implementation and the sun Java Messaging Server (JMS)
(included in j2sdkecl.3.1 [21]) to be the communication server between the different
property manager clients and the property manager server itself. As for the programming

IDE, we used Oracle JDeveloper 9i [23], which is freely provided by Oracle. Finally, we
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used the Open System Testing Architecture (OpenSTA 1.4) [32] which is an open source
tool, as the Application Server/ HTTP server stress testing and load generation tool. The
details of using this tool are found on [32]. We conducted different experiments to simulate
the different scenarios for the major features of the resource optimization property manger
(ROPM) in addition to one experiment, which included a simulated interaction between the
security and optimization property manager. For simplicity, from this point onwards we will

refer to the Resource Optimization Resource Manager as ROPM.

All of the performed experiments were conducted using three different machines. All of
the machines platforms used the Internet Explorer 6.0 as a web browser. The first machine
runs windows XP professional. It has an Intel based PII 750 processor with 512 MB of
RAM. This machine is referred to as the “Client Machine” throughout the different
experiments. The second machine, which we will always refer to as the “Server Side
Machine”, has a P III 900 Intel based processor and 640 MB of RAM and runs windows
2000 professional based OS. The third machine, which is referred to as “The probing station
machine”, runs windows 2000 professional OS based on PII 333 Intel processor with 128
MB of RAM. Each machine has a 10/100 Mbps Fast Ethernet card and they were all
connected using a 10/100 Mbps switch.

4.3 Experiment One
4.3.1 Experiment Objective

The objective of this experiment is to simulate two basic scenarios. The first
scenario simulates the normal behavior of the IBM apache HTTP server’s performance and
improvement in response (0 changing the value of the apache tuning parameter
“ThreadsPerChild” which controls the number of concurrent worker processes that handle
the incoming HTTP requests. The second scenario simulates the high level CPU utilization
effect on the apache server average response time as the tuning parameter “ThreadsPerChild”
is incremented. The valuc associated with the tuning parameter “ThreadsPerChild” in the
“httpd.conf” file, (one of the apache configuration files) indicates the number of concurrent
worker processes that the apache server will create to scrve the incoming requests. In theory

as the number of “ThreadsPerChild” is increased, the response time of the apache scrver
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improves since the average waiting time of the incoming requests will decrease and
consequently the end user average response time will improve. However in this experiment
we prove that there are other controlling factors in addition to thc number of worker
processes that can affect the response time. Because of the close relationship between this
tuning parameter and the performance metrics of the machine on which the apacheserver
runs (CPU and Memory usage in our case), changing this parameter will proportionally affect
these metrics (i.e. increasing the number of the apache concurrent threads usually means an
increase in the CPU and Memory consumption). In fact this changeimposes a limitation on
the response time improvement that can be reached with respect to the increase in the number
of concurrent threads that are bound to the CPU and Memory utilization levels as will be
illustrated in Test 2 of this experiment. As the available apache server version does not
support dynamic parameter change recognition (i.e. the change in the tuning parameter
“ThreadPerChild” during run time, is not done by the Apache server until it is restarted), we
had to restart the Apache server during some of the mentioned tests each time we changed
the tuning parameter. Restarting the apache server is a different process from stopping and
starting the server over again. Restart is a less harmful process since it actually pauses the
server and refreshes most of the configuration parameters and resumes the server operation.
Actually this work around slightly affected the test results by appearing as sharp edge drops
in the server response time in most of the resulting graphs. However this did not dfect the
total results of the performed tests. Most of the conducted tests in this experiment were run

for an average period of two to three minutes.

4.3.2 Test Case Environment Setup & Result Analysis

This experiment consists of three tests. In all the tests, we used the stress and load
generating tool (OpenSTA) to generate a load by a number of virtual users which run a set of
recorded scripts. Each recorded script simulates a set of requests for static pages, which
reside in the apache server. We used the default manual pages provided by the apachce server

as the script based static pages.
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4.3.3 Test One

HTTP Apache
s - Server
E oo Clnt : Threads Per
.0 Clien )
600 Virtual Users Cm‘?osoet to

Figure 4.1: Apache Server Test 1

In this test the apache server tuning parameter “ThreadsPerChild” was adjustedto 100
concurrent threads and a stress load of 600 simulated concurrent virtual users were generated
from the client side. The test ran for a period of almost two minutes. The overall test setup is

illustrated in figure 4.1.

The graph in figure 4.2 reflects the number of virtual users used during the test elapsed
time (i.e. the graph reflects the load imposed on the apache server). The maximum number of
users reached during the test as seen in the Y axis is 600 concurrent virtual users. The graph
in figure 4.3 reflects the HTTP requests response time in milliseconds against the test elapsed
time. We observe that the response time reaches a peak of about 9500 ms at the beginning of
the test and then fluctuates around 2000 ms during the rest of the test andreaches a zero at
the end of the test and that is where the requests are completely stopped. The explanation for
the high response time at the beginning of the test is that the rate at which the 600 virtual
users are started is relatively high and this causes a sort of a panic state for the apache scrver

during the very few seconds of the test.
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The graph in figure 4.4 indicates the number of HTTP returned errors against the number
of concurrent HTTP requests. We notice that the number of errors reaches a peak of about
400 errors per 380 concurrent requests. The graph in figure 4.5 reflects the number of HTTP
errors during the test elapsed time and we notice the sharp upslope curve, which started after

almost 100 seconds of the test starting time.
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Figure 4.4: HTTP Errors Vs Concurrent HTTP
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Figure 4.5: HTTP Errors Vs Elapsed Time
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4.3.4 Test Two
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Figure 4.6: Test Environment Setup

Test two runs with the same settings as test one, but we increased the number of the

apache tuning parameter “ThreadsPerChild” up to 800 concurrent worker process in order to

improve the response time.
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Figure 4.7: HTTP Active Users Vs Elapsed Time
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Figure 4.8: HTTP Response Time Vs Elapsed Time

The graph in figure 4.7 reflects the number of virtual users during the test elapsed
time (load graph), whereas the graph in figure 4.8 reflects the HTTP response time in ms
during the test elapsed time. We notice here the improvement in the response time shown in
this graph relative to the one shown in figure 4.3 of test one. The maximum response time
shown in figure 4.8 reaches a value of nearly 2000 ms and the rest of the test fluctuates
within the range of 1000 to 1500 ms, whereas the peak value of the response time in test one

had reached 9000 ms and the average value was about 2000 ms.
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Figure 4.10: HTTP Errors Vs Elapsed Time

In conclusion, as we increase the number of “ThreadsPerChild” in the Apache HTTP

Server, we obtain a better response time and a decreased number of errors for a higher

number of concurrent requests. Thus keeping the CPU load on the hosting machine at a

constantly low load rate.
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4.3.5 Test Three
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Figure 4.11: Test Three Environment Setup

In this test, as shown in figure 4.11, we used the same settings and test case scenario as
the one used in Test 2. Additionally we increased the CPU imposed load during the
experiment elapsed time to reach a CPU utilization level of about 95%. We noticed that both
the average response time, and the number of errors against the number of concurrent HTTP
requests has increased. We used a program that runs a number of infinite loops to consume
most of the CPU time during the test elapsed time and in this way we simulated a synthetic
high CPU utilization. We also raised the tuning parameter “ThreadsPerChild” from (100) to
(800) after the first minute of the test, thus keeping a constant load of (600) virtual users
during the whole test. The whole test ran for an average period of 2 minutes.

Figures 4.12 and 4.13 present two important graphs which provide us with some useful
information concerning the performance behavior of the Apache server in response to the
increment in the number of working threads (i.e. changing the tuning parameter
“ThreadsPerChild”) during an excessive CPU utilization on the running machine. The graph
in figure 4.12 reflects the server response time during the different phases of the test. As we
notice after the first minute of the test running time, the apache server was restartel to
increase the number of worker threads “ThreadsPerChild”. Actually this is reflected in the
response time curve’s sharp edge drop down at the value of ncarly 1 minute on the xaxis.
What causes the sharp and sudden incline in the responsc time curveis that the server gocs
into the panic state for a few scconds after it had just started up. However a few scconds

later, it stabilizes near the value of 10000 milliseconds. So despite the fact that we increased
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the tuning parameter value of “ThreadsPerChild”, we got poorer response time in

comparison to the one we got in test 2.

The graph in figure 4.13 reflects the number of generated HTTP errors against the
number of Concurrent HTTP requests. It also indicates the increase in the error numbers that
are generated during the test elapsed time relative to the number of errors generated in test
two and shown in figure 4.9. In the case of test two the number of errors reached a peak of
180 errors per 305 concurrent requests, whereas in this test it reached a maximum value of
250 errors per 260 concurrent requests. Averaging the increment in the number of errors, we
reach an average percentage increment of about 39% increase. Hence, what the two graphs
indicated is the effect that the high CPU utilization have on the apache server performance

improvement despite the positive change in the “ThreadsPerChild” tuning parameter.
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Figure 4.12: HTTP Response Time Vs Elapsed Time
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Figure 4.13: HTTP Errors Vs Concurrent HTTP Requests

4.3.6 Experiment Conclusion

Tests 1 and 2 of this experiment have shown that the normal behavior of the HTTP
Apache server as simulated in our testing environment, is important to verify that all the
subsequent experiments’ results would also simulate a real environment outcome. Test 2
mainly demonstrated that as we increase the number of “ThreadsPerChild” in the Apache
HTTP Server, we obtain a better response time and a reduced number of errors for a higher
number of concurrent requests provided that the CPU utilization load on the hosting machine
is not too high. The purpose of test three was to highlight the effect of the CPU utilization on
the Apache server during the change in the tuning parameter “ThreadsPerChild”. We have
shown that increasing the number of serving threads of the apache server during a high CPU
utilization will not have the same effect as when it is done during a normal CPU utilization
load. This was obvious in the average response time and number of HTTP errors of teg 3 in
comparison to test 1 & 2, since the gained improvement in the server response time was not
immense due to the high level of CPU utilization.

The Auto-Tune agents project which was conducted by a group of researchers [41]

from the IBM rescarch labs, was concerned with studying the problem of controlling CPU
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and memory utilization of an Apache ® Web server [5] using the applicationrlevel tuning
parameters MaxClients and KeepAlive, which were exposed by the server. However, their
dynamic model is bascd on thc assumption that the system administrator will provide fixed
values for the CPU and memory utilization levels. The MaxClients parameter is the exact
equivalent of the “ThreadsPerChild” tuning parameter in our experiments. In fact, there is
more than one concern about this assumption. One of these concerns is about the way in
which we can guarantee that the server will be able to reach the level of specified utilization,
since it can only control its process utilization and does not have control over the rest of the
systems sharing the resources. Another concern is about changing the required utilization
levels dynamically according to the current system need. In other words, the apache
utilization model might have been set to a certain utilization level that requires a change in
the tuning parameter value “ThreadsPerChild” whereas the current available resources do not
allow the achievement of this value. Consequently the apache utilization level should be
readjusted in accordance to the available resources. In the given model [41], the
administrator has to specify the required utilization levels statically and then the dynamic
model embedded in their system changes the tuning parameters to reach the specified
utilization levels. Hence we could see that model lacks the flexibility of changing the
utilization levels dynamically and according to the need. In the coming experiments will
illustrate how the Autonomic Property Manager will help in overcoming some of these

problems.
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4.4 Experiment Two

4.4.1 Experiment Objective

In this experiment we present a demonstration for the use of the Resource
Optimization Property Manager prototype. The experiment demonstrates that according to a
predefined set of policies that are preset by the system administrator inside the policy
definition files, the system responds to the specified sensors evaluation and triggers the
proper policy actions/effectors. As was mentioned earlier in the design section, policies are
normally defined at different levels in order to abstract the business layer. For example in this
experiment there are two levels for the policy definition. At the first high level, we define a
WebSite policy which includes the definition of the desired response time threshold specified
by the business need regardless of all the subsequent layers. The policy files for this level
includes the measurement of the average response time from a probing station against a
defined threshold value which fires a certain policy action whenever this level is exceeded.
The action section for this policy includes a call to the next policy definition level, which in
our case is the HTTP server policy. Figure 4.14, and Figure 4.15 present a snapshot for the

WebSite policy precondition and action sections.

The HTTP policy defines two event driven sensors, CPU usage reading sensor and an
apache tuning parameter reader sensor (that rcads the “ThreadsPerChild” valuc in our case).
A CPU usage threshold value is also defined in the system policy. The corresponding sensa
reading should always be below this value otherwise the related action policy will be fired.
In addition to a threshold value for the retrieved tuning parameter a value for the Apache
server (ThreadsPerChild) is also defined. The action part of the polcy includes a call to a
remote system function which increases the apache tuning parameter value
“ThreadsPerChild” as required and then restarts the server in order for it to be recognized by
the server. Figure 4.16 and figure 4.17 present a snapshot forthe HTTP Policy definition and

action sections, respectively.
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4.4.2 Test Case Environment Setup & Result Analysis

As shown in figure 4.18, we used three different machines in this test (Named machine
A, B, and C). Machine A hosts the Resource optimization manager and the stress load
generation tool (OpenSTA). Machine B hosts the probing station. Machine C hosts the
Apache HTTP server and a resource optimization manager client to receive the incoming
messages. In this test the stress testing tool starts to generate a load of 700 concurrent virtual
users as shown in step one. As the resource optimization manager is constantly calling the
probing station to evaluate the returned response time value against the defined threshold
(steps 2,3,4), it finds out that the returned value exceeds the threshold and consequently t
fires the defined policy action which increments the apache server tuning parameter
“ThreadsPerChild” (step 5). After a while the response time returns a value below the

defined threshold, and consequently the policy action is never triggered again.

Figure 4.18: Test 1 Environment Setup
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The graph in figure 4.19 indicates the number of virtual users during the test elapsed
time (load graph) and we notice that it has reached a peak value of 700 concurrent users. The
graph in figure 4.20 reflects the response time improvement as a result of incrementing the
apache tuning parameter “ThreadsPerChild” from 80 to 400. In fact we can notice that this
action has taken place almost three minutes after the test start time. While the whole test
period remained for about six minutes. What actually happened is that the Resource
Optimization manager detected a value for the probing station sensor (that actually represents

the apache HTTP server response time), which exceeds the defined threshold value. As a
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The graph in figure 4.19 indicates the number of virtual users during the test elapsed
time (load graph) and we notice that it has reached a peak value of 700 concurrent users. The
graph in figure 4.20 reflects the response time improvement as a result of incrementing the
apache tuning parameter “ThreadsPerChild” from 80 to 400. In fact we can notice that this
action has taken place almost three minutes after the test start time. While the whole test
period remained for about six minutes. What actually happened is that the Resource
Optimization manager detected a value for the probing station sensor (that actually represents
the apache HTTP server response time), which exceeds the defined threshold value. As a
result, it fired the corresponding policy action which in our case has incremented the apache

tuning parameter “ThreadsPerChild” and resulted in a better response time value.
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Figure 4.20: HTTP Response Time Vs Elapsed Time

4.4.3 Experiment Conclusion

As mentioned earlier, this experiment demonstrated the capability of the Resource
Optimization Property Manager (ROPM) to make decisions and corrective actions based on a
predefined set of policies, which include threshold values definition for a set of different
parameters/sensors. This experiment also illustrated the capability of the property manager
to make calls for external tools, built functions, external functions as we did for the CPU
usage utilization measurement sensor (built in function), the probing station sensor (external
function call), and finally executing the effector which actually called on a tool to execute the
apache server parameter adjustment (externad function call in addition to an apache tool call).
We have also demonstrated the capability of a hierarchical policy call and high level policy
definition represented in the WebSite and HTTP policy definitions. The very high level goal
of the system (Website response time) was defined inside the WebSite policy, and that policy
was able to call other lower level policies when the set precondition (exceeding the threshold
value) was violated. We recall here the Auto-Tune agents project [1] that has a limifation on
the scope of system monitoring which is bound to the apache server process and restricted

resource control or reallocation. In our model the CPU utilization level can be changed
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dynamically by invoking the effectors within the action policy secton in addition to the
higher scope of resource monitoring and utilization that can be obtained by the ROPM for all
the managed systems. Thus a better level of resources manipulation and utilization can be

achieved and that will be further illustrated in the coming experiments.
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4.5 Experiment Three

Machine A

Optimization Manager

4q
%,
% o
v gg? Machine B
&
&
Machine C
; 3 ¢ 35 =
‘ml, HTTP =
-t - [l E
PrOblng HTTP Apache Server WebSphere Application Server

Station ThreadsPerChild=100

~ R 3 -
A
z S

Opent STA
25 Virtual Users
For Plant Shop

Application

Opent STA
25 Virtual Users
For Pet Store
Application

Machine A Machine A

Figure 4.21: Experiment Three Environment Setup
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4.5.1 Experiment Objective
The purpose of this experiment is to demonstrate the way in which we can make use

of some of the provided features by the resource optimization property manager. In this
experiment the resource allocation manager was triggered by one of the policies when extra
resource allocation was needed. The job of the resource allocation manager is to checkthe
feasibility of allocating a percentage of the needed resources at the request time by revisiting
all the registered systems current consumption. The detailed mechanism of the resource
allocation manager is mentioned in the design section. At the begnning of this experiment
the HTTP policy is triggered as a result of the returned feedback value of the probing station
sensor. The HTTP policy concludes the need for extra CPU resource allocation.
Consequently the resource allocation server is consulted and by going through the full logic
cycle of the resource allocation, it decides to temporarily stop one of the WebSphere running
web applications (Pet Store application) which was consuming a great amount of the CPU
time, while it has a lower priority and was operating in its off peak time. So this application
is stopped, and more CPU resources were released. As a result, an improvement in the

response time and number of errors of the monitored node (Plant Shop) is reflected.

4.5.2 Test Case Environment Setup & Result Analysis.

As shown in figure 4.21, we used three machines (Named machine A, B, and C).
Machine A hosts both the Resource Optimization Property Manager and the stress generation
tool. Machine B hosts the Apache HTTP server and the WebSphere Application server.
Machine C hosts only the probing station. We used the two sample web applications Pet
Store and Plant Store, which are freely shipped with the IBM WebSphere application server.
Both applications resemble E-Commerce shopping stores. As their names indicate one
application serves as an E-Pet shopping store and the other serves as a E-Plant shopping
store. Detailed descriptions for the sample application structures could be found in the
WebSphere application server documentation. In this est we used a set of generated scripts,
which simulate the user actions during the E-shopping process using each of the E-stores.
Each application runs on a separatc web application container that can be started, stopped,
restarted, and it consumes some of the resources allocated for the Application server.

Consequently it affects the performance of the rest of the applications as they arc served by
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one Application server and share the same resources. We can notice in figure 4.21
that a load of 25 virtual users is generated for each of the Pet Store and the Plant store
concurrently. In order to accurately calculate the response time of each application, we have

separately measured the metrics of each application.

As the Resource Optimization Property Manager calls the probing station sensor to
measure the response time of the Plant store application, it finds out that the response time
exceeds the defined threshold in the Web Policy file, so it fires the HTTP policy as the
defined effector. As the ROPM evaluates the preconditions of the HTTP policy, it matches
one of the defined preconditions (a snapshot of the preconditions is shown in figure 4.22),
which indicates that the CPU usage utilization level has exceeded 75% and that the number
of the apache concurrent threads “ThreadsPerChild”, is set to a value higher than 80
processes. Accordingly, it fires the corresponding actions, which are shown in figure 4.23
(the fired action is defined as action “a2” in figure 4.23). This action consults the resource
allocation manager to request an allocation for additional CPU resources. The resource
allocation manager in this experiment decides to shutdown one of the Web Applications
hosted by the application server which is the Pet store in our case as it is found o be the least
priority running application with the highest CPU resource consumption. As the pet store
application stops, an improvement in the Plant store responsc time is sensed and

consequently the required response time is achieved.
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The graph in figure 4.24 depicts the number of virtual users during the test elapsed
time, whereas the graph in figure 4.25 presents the Plant shop responsc time improvement
right after the Pet store application was stopped which is almost one minute after the stress
test had started. The previously mentioned conclusion can be observed in figure 4.25, where
a drop in the response time curve took place after almost one minute to change from @
average response time of 6000 ms to an average response time of 3000 ms. Figure 4.26
depicts the response time depreciation that took place in the Pet store response time and that
ends up at a zero response time after almost 1 minute as a result of the gpplication complete
stop. This fact is also reflected in Figure 4.27 where it illustrates the incremental number of
HTTP errors returned from the Pet store during the test elapsed time which has reached a

peek of 2000 and again that indicates the completestop of the application server.

4.5.3 Experiment Conclusion

This experiment illustrates the capability of the ROPM to provide some built in
functions such as resource allocation consultancy, which can be used inside the policy
definitions when needed. Actually this experiment demonstrates the dynamic capabilities that
can be provided by the ROPM in detecting one of the run time optimization problems and
enables it to solve it dynamically by using the predefined set of policies. In fact this model is
not restricted to the optimization property manager only. Any other property manager can
actually use it, and this is the whole point of the autonomic computing work. It is the system
capability of self-management (i.e. it detects the violations and it initiaes the appropriate

actions to handle those violations) and this is what this experiment proves.
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For simplicity what the security manager actually does in this experiment is that it sleeps
for sometime to simulate the task of performing some actions, which will consume
sometime. After a while, it releases the global lock and sets its threshold value for the
probing station sensor to a very high value so that the policy precondition is never satisfied
again. Figure 4.28 presents a snapshot of the security policy precondition, whrh evaluates
the probing station’s measured value sensor against the defined security threshold value.
Figure 4.29 presents a snapshot of the action policy section where the security manager
unlocks the global lock by setting its value to zero and then sds the security threshold value

to an infinite value so that the action is never triggered again.
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4.6.2 Test Case Environment Setup & Result Analysis

Figure 4.30 illustrates the experimental run sequence and test environment settings. The
environment setup is the same as experiment three’s setup. Additionally an instance of the
security property manager is running on fthe same machine in which the resource
optimization manager is running (Machine A). The first step is to start generating the stress
testing load imposed by the Open-STA tool. Then after 15 seconds from the test starting
time, we start the whole property manager application, which starts up both the resource
optimization mahager, and security manager. The whole test lasts for almost 2 minutes. As
the ROPM evaluates the incoming readings of the probing station sensor (shown as step 2),
the probing station starts to probe the HTTP server (step3) and it returns the result back to the
ROPM, but it first notifies the KB about its value change (step 4). Consequently the KB
notifies all the registered subscribers according to their priority. Since the Security malager
has a higher priority than the optimization manager, it receives the notification handle and
starts evaluating the entire event based policies. After a period of 30 seconds the security

manager releases the event to be handled by the next subscriber.

This experiment consists of two tests each presents a different scenario. Figure 4.31
illustrates the first test case used in this experiment where the security manager is not
involved at all. In this test a load of 300 virtual users is generated and the apache tuning
parameter value “ThreadsPerChild” is raised from 50 to 400. The response time plotted curve
illustrates the improvement in the response time which took place after nearly 35 seconds of
the test elapsed time due to restarting the apache server after increasing the value of the
“ThreadsPerChild” apache tuning parameter. This action took place in accordance with the
preconditions evaluation, which is defined in the HTTP policy file and monitored and

exccuted by the resource optimization property manager.
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Figure 4.32 illustrates the second test case, which has the same settings as the first test in
addition to the involvement of the security manager. Far simplicity what the security
manager actually does, is that it takes hold of the event notification by setting on the global
lock for a delay of about 30 seconds and then it release it back. In figure 4.32 we notice a
time shift in the response time improvement of almost 30 seconds relative to the
improvement shown in figure 4.31, which is the delay time imposed by the security manager
as it locks the global lock until it runs its simulated checks. Then the ROPM is able to hold
the notification and take the corrective actions. We also notice the abrupt changes in the
graph shown in Figure 4.32, which reaches the value of zero more than once. This behavior
is actually due to two factors. The first one is the limitation of the used stress load generation
tool (Open STA) in terms of the frame capture separation intervals, as the current version
does some frame dropping during the performance snapshot which results in a sharp and
abrupt change in the plotted curve and this of course means an acceptable errorpercentage in
the graph. The second reason is due the tuning of the recorded test script itself, as it is not
continuously producing an equivalent and homogenous load all the time. This produces a
sharp edged and fluctuated response time curve as the one shown in most of the figures. This
side effect could be minimized by, continuously tuning and adjusting the test scripts. In fact
we did some minor test tuning and adjustment to minimize the mentioned effects. But we
also kept in mind that our main purpose is to focus on illustrating the delay imposed by the
security manager. Test tuning and optimization is a whole research area by itself, which is

out of scope for this rescarch.
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4.6.3 Experiment Conclusion

In this experiment we have shown the feasibility of establishing a close cooperation
between two type of autonomic property managers. This was demonstrated by the
interrelationship between the resource optimization property manager and the security
property manager. The experiment also illustrated the flexibility, simplicity, and reusability
of any of the implemented sensors by more than one property manager at the sane time by
using the subscription/Notification mechanism provided that the systems with higher priority
are notified before systems with lower priority. Once more, this model could be expanded to
include all the different property managers, which can coopeate together and finally
establish a self-management capable system, which is the foundation of an autonomic

system.
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4.7 Experiment Five

4.7.1 Experiment Objective.
The purpose of this experiment is to illustrate the benefits, and information can be

obtained from the application generated log files. It also illustrates that by analyzing these
results; the administrator can obtain some useful information about the efficiency of the
parameters used in each policy in order to be able to tune them efficiently. In this experiment
we used the same settings as experiment four, with some changes to the response time
threshold values, as will be explained. All the given charts and analysis in this experiment are
extracted from the application log file of whicha snapshot is provided in figure 4.33. In the
first test of this experiment we set the response time parameter for the website policy to 60
ms, which is a very small value that leads to more frequent calls to the assigned policy

action. In this experiment specifically it means more frequent calls to the HTTP policy.

Invokation Type, Timestamp,Policy Name,Function Name,Return value
sensor,28-03-2004 21:46:36,websitepr,measuredvalue, 200
sensor,28-03-2004 21:46:41,websitepr,measuredvalue, 181
effector,28-03-2004 21:47:01, security, Functioncall,Policyserver.sSetkBvariable
sensor,28-02-2004 21:47:28,HTTP,CPU_USAGE, 9
sensor,28-03-2004 21:47:29,HTTP,NumberofProcess, 90
effector, 28-03-2004 21:47:30, security, FunctionCall, PropertyManagerprack.apacher
effector,28-03-2004 21:47:30,websiter,Policy,HTTP
effector,28-03-2004 21:47:30,Security,Funct1onca11,Po]icyserver.SetKBvariabIe
sensor,28-03-2004 21:47:31,websitepr,measuredvalue, 451
sensor,28-03-2004 21:47:38,HTTP,CPU_USAGE, 18
sensor,28-03-2004 21:47:39,HTTP,NumberofProcess,400
effector,28-03-2004 21:47:39,wWebsiter,pPolicy,HTTP
sensor,28-03-2004 21:47:39,wWebsitepP,measuredvalue, 70
sensor,28-03-2004 21:47:46,HTTP,CPU_USAGE, 20
sansor,28-03-2004 21:47:46,HTTP, NumberofProcess, 400
effector,28-03-2004 21:47:46,websiter,Policy,HTTP
sensor,28-03-2004 21:47:47,websiterP,measuredvalue,121
sensor, 28-03-2004 21:47:53,HTTP,CPU_USAGE,18
sensor,28-03-2004 21:47:-54 ,HTTP, NumberofProcess,400
effector,28-03-2004 21:47:54,websitep,policy, HTTP
sensor,28-03-2004 21:47:55,wWebsiter,measuredvalue, 70
sensor,28-03-2004 21:48:00,HTTP,CPU_USAGE, 16
sensoar,28-03-2004 21:48:01,HTTP, NumberofProcess,400
effector, 28-03-2004 21:48:01,websiter,Policy,HTTP
sensor,28-03-2004 21:48:02,websiter,measuredvalue, 80
sensor,28-03-2004 21:48:08, HTTP,CPU_USAGE, 19
sensor,28-03-2004 21:48:09,HTTP, NumberofProcess,400
effector,28-03-2004 21:48:09,websiter,Policy,HTTP
sensor,28-03-2004 21:48:10,websitepr,measuredvalue, 70
sensor,28-03-2004 21:48:16,HTTP,CPU_USAGE, 24
sensor,28-03-2004 21:48:16,HTTP, NumberofpProcess,400
effector,28-03-2004 21:48:16,websiter,Policy, HTTP
sensor,28-03-2004 21:48:17,websiterP,measuredvalue,150
sensor,28-03-2004 21:48:23,HTTP,CPU_USAGE, 20
sensor,28-03-2004 21:48:24 ,HTTP, NumberofProcess, 400
gffector,28-03-2004 21:48:24 ,Websitep,Policy,HTTP
sensor,28-03-2004 21:48:25,websitep,measuredvalue, 80
sensor,28-03-2004 21:48:30,HTTP,CPU_USAGE, 23
sensor,28-03-2004 21:48:31,HTTP, NumberofProcess,400
effector,28-03-2004 21:48:31,websitepr,Policy,HTTP

Figure 4. 33: Application Log File
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4.7.2 Experiment Analysis

Figure 4.34 reflects the number of calls made for each policy. So in the graph we notice
that for cach 22 calls to the Website policy sensor, there are 40 calls to the HTTP policy
sensor. Actually we have to divide the number of HTTP policy calls by the number of
sensors in the precondition section for that policy. What actually happens is that each time a
sensor inside the policy is evaluated, a transaction log is generated for that sensor call. So if
we have an “IF” condition inside a policy that has more than one sensor operand “ANDED
“together, each call for each sensor generates a transaction in the log file to indicate the name
of the invoked sensor and the invoking policy. Since we have two sensors in the HTTP
policy, we have to divide the given number by two. Hence, we get a total of 20 calls for the
HTTP policy, which almost means that each time the Website policy is fired, the HTTP
policy is also called and that imposes an overhead on the Resource Property Manager without
an actual benefit out of these calls. We can also notice that the security policy effecor was

invoked twice with no security sensor call! But we should remember that in fact the security
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policy does not have any sensor, since it depends on the value returned by the Website policy

sensor (the measured response time).
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Figure 4.35: Number of Calls Made Per Policy In Test 2

In test 2 we increased the response time threshold up to 200 ms, and the outcome is
depicted in figure 4.35, where the chart indicates a drop in the number of calls to the HTTP
policy against the number of calls to the Website policy. We notice for the 24 visits of the
Website policy that there are only 4 calls for the HTTP policy. So we can simply conclude
that the used response time threshold value was not the optimum value, since it caused too
many unnecessary policy invocations. This way we notice how simple it is to do some

parameters tuning from the log files data analysis and charting.

Figure 4.36 depicts the plotted graph that can be generated from the log files to reflect

different sensor readings during a snapshot of the test clapsed time. In this chart also the CPU
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usage, measured response time, and the value of the apache tuning parameter
“ThreadsPerChild” are all depicted. Such values and data analysis are useful in tracing the
sensor data fluctuations during the test time, which helps in achieving policy tuning and
improvement. For example the chart indicates that as we increased the “ThreadsPerChild”
apache tuning parameter from 90 to 400 processes, we were able to enhance the response
time as it dropped from 250 ms to an average of 100 ms. At the same time the value of the
CPU utilization was not affected by that change and this indicates the efficiency of the used

policy.
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4.7.3 Experiment conclusion

We demonstrated in this experiment some of the methods by which the generated logs
can be used to enhance, tune, and analyze the written policies or even come out with more
efficient policies that will smooth the work of the system administrator and consequently
serve the business goal. The provided log analysis and charts in this experiment are just an
example of the possible methods in which the log file data can be manipulated, whereas the
system administrator is free to use whatever convenient method to gain the most out of the
produced data. In this experiment we have simply used excel pivot tables and charts to
analyze the log files data and come out with presented results. These data can be furtha

loaded into a database server to give a more complex analysis and longterm tracking.
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Chapter 5. Summary and
Conclusion
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5.1 Work Summary

In conclusion, this research work proposes a new notion to the autonomic computing
architecture known as the property manager. The aim of the property manager is to represent
cach autonomic property separately by an autonomic manager that is capable of maintaining
and handling the duties of the property it represents. This architecture provides the flexibility
of adding any number of autonomic properties to the existing system without having to do
any major modification to the system architecture. In addition, it provides us with a
specialized type of autonomic managers that are goal oriented. For example, in ourresearch
work we presented the resource optimization property manager, which characterized the
optimization autonomic property in terms of operation and duties. The resource optimization
property manager handled the optimization management of a web serverand an application
server to illustrate the efficiency that it can provide to both systems when one specialized
manager manages them. The resource optimization manager also demonstrated the capability
of resource reallocation among the different systems that strive for consuming resources by
distributing the available resources among the different systems with respect to a set of
predefined policies and priorities that are defined according to the business needs. In our
provided resource optimization manager we used the java language as the programming
language and intcgrated the policy engine provided by IBM in the Autonomic Manager
toolset (AMTS) package, which is a part of the ETTK [15], to generate our policies and rules
that controlled the behavior of the optimization manager. In our experimental work we
demonstrated the performance enhancement of the managed systems (Web Server and
Application Server) before and after introducing the property manager to the system, and the
flexibility that it introduces to the system by allowing more systems to join the environment
casily. Finally we provided an example to illustrate the cooperation that can take place

between the different property managers based on their priority definition on handling event

notifications.

5.2 Contribution

The contributions made by this research work to the autonomic computing field are

summarized in the following statements:

131



Resource Optimization Property Manager For Autonomic Computing

1. It presents a new perspective for the autonomic computing field through which we
propose a solution that might lead to a flexible approach for dealing with the autonomic
complexities and that makes use of the already existing software products and

developed modules.

2. It presents a design model that decomposes the embedded complexity of any enterprise

system into hierarchical layers to form together an autonomic system, which is easier to

maintain and administrate.

3. It proposes solutions to the critical issues that the autonomic systems will have to
handle such as the ability to provide goal specification and polides at the system
management level for each property and to support high level goals at the business

level.

4. It presents the new notion of the autonomic property manager to facilitate the
management of any Enterprise environment autonomically by introducirg a specialized
manager in each autonomic property. The autonomic property manager monitors the
managed systems and ensures the implementation of all the defined system policies for
cach system and provide services to any of the other property managers orautonomic

managers according to its specialization.

5 It demonstrates how the property manager is made aware of both the systems and
subsystems and can directly access and manage any of these subsystems when it needs

to (e.g. take corrective actions or query the system).

6. It provides an implementation for the resource optimization property manager, which 1s
capable of managing the resource optimization of more than one system concurrently

cach according to its predefined policics.
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7. The presented model of the autonomic property manager was shown to help in the
elimination of wrong problem tracking through the use of predefined system policies
and separately specialized property managers (e.g. if there is an attack on a website the
security manager starts working on the problem before letting the optimization manager
investigates the performance issues).

8. Finally, It provides a high level definition for the business goals that are abstracted
through the definition of hierarchical specialized polices associated with each
subsystem (i.e. one can define policies for high level systems such as the corporate
Website in addition to the ability of going deeper to describe subsystems’ policics such

as the Application Server, and the Web Server)

5.3 Problems faced and Concerns

Since autonomic computing is a new research area, it was very difficult to find a good
deal of related research work and published papers. Additionally we had to review many
different fields and technologies before we come out with our design modd since the
autonomic computing field includes more than one technology. Finally we faced great
difficulties in using most of the related packages and software products due to the lack of
documentation and poor support. We specially faced this problem wit the AMTS policy
engine [15] provided by IBM, as the documentation was very limited and insufficient. We
had to post most of our questions through the only available forum provided by IBM but
unfortunately we did not get any replies most of the times! Inthe design chapter of this work
(and Appendix C) we mention the workarounds that we had to implement in order to
overcome the unimplemented features in the used tools after we got the confirmation of the
vendor that those features are not supported in the current version and that they will be
provided in the near future. Most of these workarounds actually consumed lots of time and
effort during the prototype implementation. In the remaining part of this section we mention
some of the concerns, which might come to the reader’s mind and are related to the

architectural model used within this work in the form of questions and answers.

Ql: Are there any overheads going to be imposed on the managed systems duc to the

queries performed by the policy sensors?
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Al: The overheads imposed by the sensors are most of the time of negligible value due to
the fact that they are actually simulating the real load imposed by any normal system request.
For example the sensor query that measures the website response time, is atually imposing
an equal load to the one imposed by the normal user request. In addition, the hierarchical
policy definition minimizes the need for invoking sensors unless needed. Actually if the
system suffered from a performance problem at any point of time, the performance and
response time of all the running systems will be affected and consequently the response time
and performance of the autonomic property manager will be affected just as much as any

running system within with the same environment until it takes a corrective action.

Q2: What about the security precautions that are taken during the clientserver

communication?

A2: We do not have much concern about the used security model and measurements since
the whole system is never exposed to the outside world. It is always working within the
enterprise network. However, the client server communication in our model is done through
the JMS server, which provides its own security model that is based on the J2EE sccurity
model and that provides user authentication mechanism (Please refer back to thc JMS

specification for more details [29]).

Q3: What is the use of the autonomic property manager if the system is already managed

by an autonomic manager isn’t that a sort of redundancy?

A3: Property managers have a more global or let us say a wider vicw to the system as a
whole and this relates to a higher perspective or comprehension of the business objectives
and goals that arc propagated to the lower systems (i.e. autonomic manager) in tcrms of
specific commands. On the other hand the property manager could receive specific requests
that are requested by the autonomic manager such as the request for resource allocation,
which is a matter that cannot be handled by the autonomic manager. Additionally a property
manager provides the advantage and knowledge of specialization in the form of services that

can either be used by the policy author or the autonomic manager itself.
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Q4: How can you guarantee that each property manager will only handle its own problems

“and will not interfere with other property managers?

A4: The prioritized event notification mechanism associated with each system policy
definition guarantees that each property manager will only handle its related problems and

according to the defined order through its priority.

5.4 Limitations and Directions for future work

The current system limitations and future work are very closely related issues since
most of the system limitations are good materials for future work. Actually most of the
limitations imposed on our model are either due to time or tool limitations. The AMTS policy
engine [15] provided by IBM, which we used in our prototype implementation, is still in its
early releases. The current version lacks many critical features hat were mentioned in the
system manuals and design description. Hence, as we expect the new release to come out
soon, we hope it will contain those missing features, which will contribute positively to our
model. Actually most of the future work is closely related to the future development of the
autonomic management tools in general as this will also provide a much easier interface to
the system management that can be integrated within the different autonomic models.
However concerning our provided model we believe that the following points are good

rescarch points for future research as they are system limitations of the current model:

1. Expand the set of built-in functions provided by each property manager to be used
by the systems administrator within his policy design in order to produce more
efficient and practical policies (e.g. GetCpuUsage was the only implemented
built-in function in our model).

2. Much more work has to be done regarding the inte= property manager

communication (i.e. specifying the exact communication protocol between the

different property managers).
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3. More work has to be done regarding the global manager roles and responsibilities
and the communication protocol between the global manager and the property

managers.

4. More research has to be directed towards the validation of the implemented
policies in terms of effectiveness and conflict resolution as the current design does
not validate any of the provided policies before it is applied, however we provide
a mechanism to track down the efficiency of the implemented policies.

5. Another important research area is related to the centralized control of the
property managers and single points of failure. More work can be directed
towards the ability of any of the property managers to startup anoher property
manager to resume its duties when it fails (i.e. property manager recovery
mechanism).

6. One of the current system limitation is the ability to roll back any of the corrective
actions that are taken by one of the property managers. For example if the
resource optimization manager did some optimization actions related to the http
server it couldn’t roll back these actions if it ever wanted to. Actually since the
current system generates detailed log files they can easily be used to implement
the rollback mechanism but it actually involves other important issues that are
more complex than just setting back the old system values.

7 The command receiver module that resides on the client side to receive all the
incoming messages and commands can only handle requests sequentially (i.c. one
at a time). Actually this makes sense as we are using a JMS queue to handle all
the in-coming requests but it also Imposcs some delay in the command exccution
and result return back during high traffic.

8. More work could be done to the GUL of the administration console to facilitate the
job of the system administrator.

9. The rest of the property managers need to be implemented in order to provide the
fully autonomic system that this research is heading for.

10. As the number of managed systems by the property manager increascs, the

environment will get more complicated and the management process will be more

complex which might lead to a change in the shown levels of management
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hierarchical structure. So it will be a good future research direction to validate the
provided structure against a set of complex systems that are managed concurrently.

11. Finally, the Emerging Technologies Toolkit, which is provided by IBM, contains
the AMTS tools in addition to other powerful toolsets, which present different
technologies and techniques to deal with the autonomic computing. Some of these
toolsets use Al based technologies, while others use Neural Network based
technologies. Hence, future work can make use of these tools to extend the
capabilities of the property manager and provide additional service such as the ability
to provide a predictive reasoning for each policy, and constructing a problem solving

knowledgebase.
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Appendix A: Glossary

Autonomic Nervous System
That part of the nervous system that governs involuntary body functions like

respiration and heart rate.

Control Theory

The mathematical analysis of the systems and mechanisms for achieving a desired
state under changing internal and external conditions. Cybernetics A term derived
from the Greek word for “steersman” that was introduced in 1947 to describe the
science of control and communication in animals and machines.

Feedback Control

A process by which output or behavior of a machine or system is used tochange its
operation in order to constantly reduce the difference between the output and a
target value. A simple example is a thermostat that cycles a furnace or air
conditioner on and off to maintain a fixed temperature.

GRID

Grid is a type of parallel and distributed system that enables the sharing, selection,
and aggregation of geographically distributed "autonomous” resources dynamically
at runtime depending on their availability, capability, performance. cost, and users'
quality-of-service requirements. The key distinction between clusters and grids is
mainly lie in the way resources are managed. In case of clusters, the resource
allocation is performed by a centralized resource manager and all nodes
cooperatively work together as a single unified resource. in case of Grids, each node
has its own resource manager and don't aim for providing a single system view

Grand Challenge

A problem that by virtue of its degree of difficulty and the importance of its solution,
both from a technical and societal point of view. becomes a focus of interest to a
specific scientific community. Grid computing A type of distributed computing in
which a wide-ranging network connects multiple computers whose resources can
then be shared by all end-users: includes what is often called “peer-to-peer’
computing.

Artificial Inteiligence (Al)
The capacity of a computer or system to perform tasks commonly associated with
the higher intellectual processes characteristic of humans. Al can be seen as an
attempt to model aspects of human thought on computers. Although certain aspects
of Al will undoubtedly make contributions to autonomic computing, autonomic
computing does not have as its primary objective the emulation of human thought.
Autoriomic
ting 1o, o contrafied by the aulonomic nervous system.
ing involuntarily; automatic: an autonomic reflex

) “ N ]
P WG or Tl
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Moore's Law

The observation made in 1965 by Gordon Moore, cofouncer of ntel, that the
number of transistors per square inch on integrated circuits had doubled every year
since the integrated circuit was invented. Moore predicted that this trend would
continue for the foreseeable future. in subsequent years, the pace slowed down a
bit, but data density has doubled approximately every 18 months, and this is the
current definition of Moore's Law, which Moore himsdf has blessed. Most experts,
including Moore himself, expect Moore's Law 1O hold for at least another two
decades.

Policy-based Management
A method of managing system pehavior or resources by setting “policies” (often in
the form of “if-then” rules) that the system interprets.

Quality of Service (QoS)
A term used in a Service Level Agreement (SLA) denoting a guaranteed level of
performance (e.g., response times less than 1 second).

Service Level Agreement (SLA)
A contract in which a service provider agrees to deliver a minimum level of service.

Web Services Level Agreement (WSLA)
A framework that defines and monitors SLAS for Web Services.

Web Services
A way of providing computational capabilities using standard internet protocols and
architectural elements. For example. @ database web service would use web

browser interactions 10 retrieve and update data located remotely. Web services use
UDDI to make their presence known.
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Moore's Law

The observation made in 1965 by Gordon Moore, cofounder of intei, that the
number of transistors per square inch on integrated circuits had doubled every year
since the integrated circuit was invented. Moore predicted that this trend would
continue for the foreseeable future. in subsequent years, the pace slowed down a
bit, but data density has doubled approximately every 18 months, and this is the
current definition of Moore's Law, which Moore himsdf has blessed. Most experts,
including Moore himself, expect Moore's Law 1O hold for at least another two
decades.

Policy-based Management
A method of managing system behavior or resources by setting “policies” (often in
the form of “if-then” rules) that the system interprets.

Quality of Service (Q0S)
A term used in a Service Level Agreement (SLA) denoting a guaranteed tevel of
performance (e.g.. response times less than 1 second).

Service Level Agreement (SLA)
A contract in which a service provider agrees 1o deliver a minimum level of service.

Web Services Level Agreement (WSLA)
A framework that defines and monitors SLAs for Web Services.

Web Services

A way of providing computational capabilities using standard Internet protocols and
architectural elements. For example, a database web service would use web
hrowser interactions to retrieve and update data iocated remotely. Web services use
UDDI to make their presence known..
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Appendix B: List Of Symbols

ABLE: Agent Building and learning environment
ADM: Application Delegated Manager

ADVICE: Adaptive Distributed Virtual Computing Environment
AE: Autonomic Element

AM: Autonomic Manager.

AME: Application Management Editor

AMS: Autonomic Middleware services

AMTS: Autonomic Manager Toolset

API: Application programming Interface

ARL: ABLE Rule Language

ARM: Application Response Measurement
BWLM: Business Workload Manager

ETTK: Emerging Technologies Toolkit

eWLM: e-workload management

GUI: Graphical User Interface

JMS: Java Messaging Service

KB: Knowledge Base

MIB: Management Information Base

OGSA: Open Grid Service Architecture

QoS: Quality of service

PTP: Point-To-Point.

ROI: Return of Investment

ROPM: Resource Optimization Property Manager
SLA: Service Level Agreement.

SNMP: Simple Network Management Protocol
TCO: Total Cost of Ownership

UDDI: Universal Description, Discovery, and Integration
WSLA: Web Services SLA

WSTK: Web Services Tool Kit
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Appendix D: Detailed Class diagram

PropertyManager
(fromPropertyManag erPack)
#PropertyManagerName : String S
& Sel_MainSysQuery : String = "SELECT * FROM Autonomic_DB.dbo.Main_System"
& Sel_SubSysQuery : String = *SELECT * FROM Autonomic_DB.dbo.SubSystem where Parent_ID="

$PropertyManager()
$pPropertyManager()

#intializeHashTables()
*Modify()
$SaveSysinfo()
$RetrieveSysFromDB()
GetPolicyKBInstance()
#StartUpSecurity()
@StartUp()

Property Manager Class

FileControler
‘ (fr_omPropertyl\AanagerPack)
- @yFileName : Sting | -
vQCOMMENT SIGN :char="#' ]

DBServer
(fromPropertyManagerPack)

$FileContoler() $Get DB Connection()
$FileContoler() $E xe cuteQuery()
SReplaceTex () $GetQuery Data()
L oadFile()

FileController Class DBServer Class

ParsingServer -
(fromPropertyManagerPa... ‘ GlobalManager
(from PropertyManag erPack)
$ParsingServer()

@|dentify Ty pe() 4GlobalManager()
$GetSeparteWords() $main()
4 GetSeparteWords()

SFindRowlindex()

ParsingServer Class GlobalManager Class
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PolicyServer
(from PropertyM anagerPack)
&KB_Current_Index : int
yKB_NUM :int=5
@pWORD_SEPARATOR : char="
@MAX_FILE_CONTENT : int = 50
#SENSOR_KEYWORD : String = "Sensors.”
@YEFFECTOR _KEYWORD :String = "Effectors:"
@pSENSOR_FUNCT ION_NAME : String = "PM_Sensor”
@DEFAULT_EFFECTOR_FUNC : String = "PM_Effector”
@DEFAULT QUEUE : String = "TestX" :
@EERROR_MESSAGE : String = "NULL"
@yFUNCTIONSEPARATOR : char ='|
@PARAMETERSEPARATOR : char ="/
@pSENSOR_ARRAY_SIZE :int=10
#EXPECTED VALUE: int=15
¢PolicyName : String

$PolicyServer()
4SetkKBVariable ()
$GetPolicyHashTable()
$GetPolicylnstance()
*GetKBlInstance ()
SRunBuiltFunction ()
*LoadPolicy()
aPcreateKnowledge Base ()
$AddPolicyListe ner()
#PLoadKnowledgeBase()
dPcreateConsultativePolicy()
gPcreateEve ntDrivenPolicy()
%cventNotification()
& o adSensorEffectors)
Y¥CmdClassifier()
SCPU_USAGE()
$measuredValue()
#Prolicylnvoker()
4PM_Effector()
#StartPolicy()

PolicyServer Class
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ResourceAllocc ator
(fromPropertyManagerPack)
~DEFAULT QUEUE : String = "TestX'

$ResourceAllocator()
4 CurrentTime()
IntializeHashTable()
:FormatSql()
- ®AllocateResource()

ResourceAllocation Class

CommandReceiver
. (from PropertyManagerPack)
@pqueueName : String = "TestX"
. BpPARAMETERSEPARATOR : char =
| @yFUNCTIONSEPARATOR : char = [’
@yEERROR_MESSAGE : String = "NULL"

®RunCommand()
®StartListener()
*main()

Command Receiver Class

Com mandD ispatcher
(from PropertyM anagerPack)

CommandDispatcher Class
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Appendix E: Code Samples for some important classes

1. PolicyServer.java

package PropertyManagerPack;

import java.io.InputStream;
import java.lang.reflect. Method,;
import java.lang.Class;

import java.util.Collection;
import java.util.Collections;
import java.util. EventObject;
import java.util.Collections;
import java.util.Map;

import java.util. HashMap;
import java.util.List; / Remove if not used
import java.util. Hashtable;
import java.io.FilelnputStream;
import java.util.lterator;

import java.io.*;

import java.text.*;

import java.lang.*;

import com.ibm.autonomic.effector. DefaultEffector;

import com.ibm.autonomic.component.AutonomicException;

import com.ibm.autonomic.knowledge. AutonomicFact;

import com.ibm.autonomic.event. AutonomicEvent;

import com.ibm.autonomic.event. AutonomicEventListener;

import com.ibm.autonomic.component. AMTSLifecyclelnit;

import com.ibm.autonomic.component. AMTSLifecycleStatus;
import com.ibm.autonomic.effector. Effector;

import com.ibm.autonomic.event.AutonomicMessageType; /1%%*8
import com.ibm.autonomic.impl.knowledge.SimpleKnowledgeBasc;
import com.ibm.autonomic.impl.policy. DefaultPolicy Translator;
import com.ibm.autonomic.impl.policy.Policylmpl;

import com.ibm.autonomic.impl.policy.polbyEngine.AMTSPolicyEngineImpl;
import com,ibm.autonomic.impl.policy.resourceMapping.ResourceMappingImpl;
import com.ibm.autonomic.knowledge.Context;

import com.ibm.autonomic.knowledge. DetaultAutonomicFact;
import com.ibm.autonomic.knowledge.KnowledgeBasc;

import com.ibm.autonomic.policy.Policy;

import com.ibm.autonomic.policy.ResourceMapping;

import com.ibm.autonomic.policy. Translator;

import com.ibm.autonomic.policy.policyEngine.AMTSPolicyEngine;
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import com.ibm.autonomic.policy.policyEngine. ConsultativePolcy;
import com.ibm.autonomic.policy. policyEngine.EventDrivenPolicy;
import com.ibm.autonomic.policy.policyEngine. PolicyEngineException;
import com.ibm.autonomic.sensor. DefaultPollingAutonomicSensor;
import com.ibm.autonomic.sensor. PollingAutonomicSensor;

import com.ibm.autonomic.sensor.PassiveAutonomicScnsor;

import com.ibm.autonomic.util. UnitOfTimeMeasure:

public class PolicyServer implements AutonomicEventListener//,Runnable

{
private static KnowledgeBase[] kb;

private static int KB_Current_Index;
// private static ParsingServer PServer;
private static Map PolicyHashTable;
private static CommandDispatcher commandDispatcher;

private EventDrivenPolicy Event_P;

private ConsultativePolicy Consult_P;// it was static
private Map SensorsFunTablc;

private Map TempSensorTable;

private Map SensorNameTolndexMapping;
private Map Function_IP_Mapping;

private Map LocalFunTable

private Map NotificationTable;

private Map SensorsTable;

private Map EffectorsTable;

private ParsingServer PServer;

private Thread runner;

private PollingAutonomicSensor[] valSensor;

private final static int KB NUM = 5;
- private final static char WORD_SEPARATOR =",
private final static int MAX_FILE_CONTENT = 50:
privatc final static String SENSOR_ _KEYWORD = "Sensors:"
private final static String EFFECTOR _KEYWORD = "E]‘fcctom
private final static String SENSOR_FUNCTION _NAME ="PM Scnsox
private final static String DEFAULT EFFECTOR _FUNC = "PM L cctm
private final static String DEFAULT _QUEUE = "TestX"
private final String EERROR_MESSAGE ="NULL";
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private final char FUNCTIONSEPARATOR=;
private final char PARAMETERSEPARATOR ="
private final static int SENSOR_ARRAY SIZE = 10;
private final static int EXPECTED VALUE = 15;

public String PolicyName;
/**************************************************************************
/
public PolicyServer(String RecPolicyName)
{ .
ScnsorsFunTable = Collections.synchronizedMap(new Hashtablc());
LocalFunTablc = Collections.synchronizedMap(new Hashtablc());
NotificationTable = Collections.synchronizedMap(ncw Hashtable());
SensorsTable = Collections‘synchronizchap(new Hashtablc());
EffectorsTablc = Collcctions.synchronizchap(new Hashtable());
Function_IP_Mapping= Collections.synchronizedMap(new Hashtable());
SensorNameTolndexMapping = Collections.synchronizedMap(new Hashtable());
KB_Current_Index = 0; // Set the number of KB to Zero
if (kb == null) kb= ncw SimpleKnowledgeBase[KB_NUM];// Set KB Array to NULL

if (commandDispatcher == nuli)
commandDispatcher = new CommandDispatcher();

if (PolicyHashTable == null)
PolicyHashTable = Collections.synchronizedMap(new Hashtable());

PolicyName = RecPolicyName;
PolicyHashTable.put(RecPolicyName,this);

//System.out.printIn("Constructor Intialized Class Parameters..!");

/*************************************************************************/

public void SetKBVariable(String KeyName,Object OKeyValue)
{
System.out.printIn("<<<............ SetKBVariable is Visited.......... ");
tryy :
Thread.sleep(20000); // This is the simulated sleeping time
jcatch(Exception e){System.out.printin("Slecp Exception");}
ParsingServer TmpPS = new ParsingScrver();
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String KeyValue = OKeyValue.toString();
if (TmpPS.IdentifyType(KeyValue) == 'T')
{

1
kb[0].remove(KeyName,Context. GLOBAL_CONTEXT);
kb[0].put(new DefaultAutonomicFact(KeyName,Context. GLOBAL CONTEXT,
null, new Integer(Integer.parselnt(KeyValue))));

}
clse if (TmpPS.IdentifyType(KeyValue) == 'F')
i

t
kb[0].remove(KeyName,Context. GLOBAL_CONTEXT);
kb[0].put(new DefaultAutonomicFact(KeyName,Context. GLOBAL_CONTEXT,
null, new Float(Float.parseFloat(KeyValue))));
}

else
{
kb{0].remove(KeyName,Context. GLOBAL_CONTEXT);
kb[0].put(necw DefaultAutonomicFact(KeyName,Context. GLOBAL CONTEXT,
null, new String(KeyValue)));
\

|

/*********************************************************************$**/

public Map GetPolicyHashTable()
]

t
return(PolicyHashTable);

v
J

/***************** (]ClpoﬁcyInMﬂncc FUnCﬁOﬂ *******************/

public Object GetPolicylnstance(String PolicyName)
{

t

return(PolicyHashTable.get(PolicyName));

!

]

/*************************************************************************/

public KnowledgeBase GetKBInstance(int KBIndex)
{

1
if (KBIndex <= kb.length )
return(kb[KBIndex]);
-~ else
return(null);
!

t
/*************************************************************************/

public String RunBuiltFunction(String FunctionText)

s
t
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Method ReqMethod = null;

Object ReturnValue = null;

ParsingServer Parser = new ParsingServer();

String PackClass = null;

String MethodName = null;

Class RunX = null;

Object 0 = null;

String FuncParamList[] = null;

String DetailedCallList[] =

Parser.GetSeparteWords(FunctionText, FUNCTIONSEPARAT OR)

try

{

if (Integer.parselnt(DetailedCallList[0]) == 0)
3
1
returnifEERROR_MESSAGE);
\
f .
if(DetailedCallList[ | ].comparcTolgnorcCasc("BuiltIn")== 0 )
{
PackClass = "PropertyManagerPack."+DetailedCallList[2];/" AutonomicPackage "+
Class CurrentClass = this.getClass();
String CurrentClassName = CurrentClass.getName();
CurrentClass.getMethods();
McthodNamc = DctailcdCallList[3];
FuncParamList =
Parscr.GetSeparteWords(DetailedCallList[4],PARAMETERSEPARATOR);
if (PackClass.equalsignoreCase(CurrentClassName))
{
RunX= CurrentClass;
= this;
}

else

{

RunX = Class.forName(PackClass);
0 = RunX.newlnstance();

}
telse / FOR OUTER IF

|
1
return(""NoMatch");

}

153




Resource Optimization Property Manager For Autonomic Computing

Method[] methods = RunX.getMethods();
for (int i=0; i<methods.length; i++)

{
1

if (methods[i].getName().cquals(McthodNamc))
{
1

ReqMethod = methods|i];

break;

f
L//FOR

Object TempObject[] = new Object[Integer.parselnt(FuncParamList[0])];
for (int i=1 ;i<=Integer.parselnt(FuncParamList[0]);i++)
{
char Type = Parser.IdentifyType(FuncParamList[i]);
if (Type =="S'")

TempObject[i-1]= FuncParamList[i];
clse if (Type =="'1)

TempObject[i-1] = new Integer(Integer.parselnt(FuncParamList[i]));
else if (Type =="F")

TempObject[i-1] = new Float (Float.parscFloat(FuncParamList[i]));
else if (Type =='B')

TempObject[i-1] = (Boolcan,valucOf(FuncParamList[i]));
else

System.out.println("%%% Type is not Supported...");
4/ for

ReturnValue = ReqMethod.invoke(o, TempObject);
if (ReturnValue == null )

ReturnValue = "NULL";

System.out.printIn(">>> Return Values is "+ReturnValue.toString());
tcatch(Exception e)
(

1
System.out.println("%%% Exception Happened....");
System.out.println(e.getMessage());
return(EERROR_MESSAGE);

'

return(ReturnValue.toString());
1/ FUNCTION
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/********************************************************************

* Input : A List of Policy Files, Freqency of run of supplied function
* The time unit of the supplied frequency
* Desc: This function upload the Customized Policy File and the other
* two policy files (main,mapping) by calling creatcPolicy fuction.
* @return Void
* @throws NoSuchMethodException
public void LoadPolicy(String[] PolicyFiles,String PolicyName,
int KB_Index,char PolicyType,int Freq,char TimcUnit)

s
[

FileControler FC = new FileControler(PolicyFiles[2]);
String(] FileContent = new String]MAX_FILE_CONTENT];
try{
// Load File
FileContent = FC.LoadFilc();

// Create Parsing Scrver Instance
if (PServer == null) PScrver = new ParsingServer();

//Load Sensor/Effector File withe clear all flag
LoadSensorEffectors(FileContent,truc);

/I Create KB if it does not exsist
try{
creatcKnowledgeBase(KB_Index);
tcatch (Exception e){System,out.println(c.getMessage()); }

// LoadKB KnowledgeBase
LoadKnowledgeBase(KB_Index,PolicyType,Freq, TimeUnit);

// Create a Policy with the kb
String PolicyFile = PolicyFiles[0];
String MappingFile= PolicyFiles[1];
if ( PolicyType =='E')
Event P =
creatcEventDrivenPolicy(kb[KB_Index],PolicyName,PolicyFile,MappingFilc);
clse
Consult_P =
createConsultativePolicy(kb[KB_Index],PolicyName,PolicyFile,MappingFilc);
}
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catch (Exception ¢)

!

t
System.out.printIn("%%% Problem in LoadPolicy Function ...!");
System.out.println(e.getMessage());

}

+// Function

/********************************************************************

* Create a new Knowledge Base, insert the new created KB into the
* array of The Class KB. [F -1 is indicated as the KB_Index a new
* sequence will be generated however if a number is specified that
* number will be used as the index of the created KB
*
* @return KnowledgeBase the created KnowledgeBase
* @throws NoSuchMethodException

ke ok ke ok o e sk ok ke ke ok sk e ok ok ok ok ok e ok ok e ke o ok ok dk s ek ok ok ke ok ke sk ok o ok sk ok ke sk ok dk ok skok sk ok sk ok ok ok ok K Kk Ok ok KOk ok ok ok /

private KnowledgeBase createKnowledgeBase(int KB_Index)

throws NoSuchMethodException

§
1

// create a SimpleKnowledgebase

try
{

// -1 Index means that create next KB Index
if (KB_Index ==-1)
!
[
if (kb[KB_Current_Index] == null && KB_Current_Index<= KB_NUM)
return(kb[++KB_Current_Index] = new SimpleKnowledgeBase());
Vi
else

{
if (kb[KB_Current_Index] == null && KB_Current_Index<= KB_NUM)

return(kb[KB_Current_Index] = new SimpleKnowledgeBase());

}

tcatch (Exception €)
]
t
System.out.printIn("%%% Failed to Create a new kb : "+e¢.getMessage());

}

return(null);
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4// Function

/********************************************************************;

pubiic void AddPolicyListener(String Key,KnowledgeBase KBase,PolicyServer
NotifiedPolicy,int Priority)

!
1

if (KBase != null)

KBase.addNameListener(Key,Context. GLOBAL_CONTEXT,false,this,Priority);
clse
{

t
Object Sensorlndex = SensorNameTolndexMapping.get(Key),
String TmpSensorVal = SensorIndex.toString();
if (SensorIndex == null)

System.out.println("*** Sensor Mapping Index Does not Exist...");
else

valSensor[Integer.parscInt(TmpSensorVal)].addNameListener(Key,

Context. GLOBAL_CONTEXT, false,NotifiedPolicy,Priority);

1
J

|
/
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* Load Knowledge Base, and put inside a sensor, a constant, and an cftector.
* Start the sensor, which will provide a changing value. So there will be four
* things in the knowledge base.

* @return KnowledgeBase the created KnowledgeBase
* @throws NoSuchMethodException

********************************************************************/
private KnowledgeBase LoadKnowledgeBase(int Used_KB_Index,char PolicyType,int
Freq,char Unit)

throws NoSuchMethodException

{

/I Declaration Section
KnowledgeBase Used_KB = kb[Used_KB_Index];
Method SensorMethod[] = new Method[SensomsTable.size()];
valSensor = new PollingAutonomicSensor[ SENSOR_ARRAY_SIZE];
// Make a sensor which just calls getMeasuredValue()

/] mmemm e Normal Sensor Registration Section -«=-mswmemmmmaen-n
for (Iterator it = SensorsTable.keySet().iterator(); it.hasNext(); )
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String key = (String) it.next();
String KeyValue = String.valueOf(SensorsTable.get(key));

if (PServer.ldentifyType(KeyValue) =='T)
Used_KB.put(new DefaultAutonomicFact(kcy,Context. GLOBAL_CONTEXT, null,

new Integer(Integer.parselnt(KeyValue))));

clse if (PServer.IdentifyType(KeyValue) == "F')

Used_KB.put(new DefaultAutonomicFact(key, Context. GLOBAL_CONTEXT, null,
new Float(Float.parscFloat(KeyValuc))));

else

Used_KB.put(new DefaultAutonomicFact(kcy,Context. GLOBAL_CONTEXT, null,
new String(KeyValue)));

}+// For Loop

inti=0;
if (PolicyType =="E")

{
1

/I Create a new polling sensor

for (Iterator it = SensorsFunTable.keySet().iterator(); it.hasNext(); )

{
String key = (String) it.next();
String KeyValue = String.valueOf(SensorsTable.get(key));

/1 This is to get the right funciton within this class
SensorMethod[i]= this.getClass().getMethod(key,null);
try
{
SensorMethod[i], key, null);
valSensor{i] = new DefaultPollingAutonomicSensor(key, this, SensorMahod[i]. key,
null);
SensorNameTolndexMapping.put(key,new Integer(i));
jcatch (Exception e){System.out.println(e.toString()); }

// Tell KB about sensor
valSensor(i].register(Used_KB);

/* Tell sensor to publish into knowledge basc
* Actually this statement will make the sensor (valeSensor) make a call
* to the KB each time the value os the sensorName changes
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* A larger number means higher priority in listening events!!
**/
// This enable the KB to call event notification
valSensor{i].addNameListener(key, Context. GLOBAL_CONTEXT, false,
this, 0);

// This Statement notifies the KB and hence triggers the Policy
valSensorf[i].addNameListener(kcy, Context. GLOBAL_CONTEXT, false, Uscd_KB,
7);
/I Start sensor :
valSensor(i].setPollingRate(Freq, UnitOfTimeMeasure.Minutes); // 10 times per
minute

if ('valSensor[i].start(AMTSLifecyclelnit. INITIAL_LOAD)) {
System.out.printIn("%%% Couldn't start sensor "+key);

35

/1 This is to test how to capture an event as it calls the local function
// kb.addNameListener("measuredValue", Context. GLOBAL_CONTEXT, false, p, 0);

i++;
}// For loop
+ /I IF for Policy Type
I Notification Registration Section ---------------

for (Iterator it = NotificationTable.keySet().iterator(); it.hasNext(); )

{

String key = (String) it.next();
String KeyValue = String.valueOf(NotificationTable.get(key));
/1 Scar for the desired policy first
ParsingServer TmpParseServ = new ParsingServer(),
String [} TmpFuncParamList =
TmpParseServ.GetSeparteWords(KeyValue, P ARAMETERSEPARATOR);

if (TmpFuncParamList[1].equalslgnoreCase("SensorListencr") )
{

t
PolicyServer TmpPolicy = (PolicyServer) GetPolicylnstance(TmpFuncParamList[2]):

TmpPolicy.AddPolicyListener(key,null this,Integer.parselnt(TmpFuncParamList[3)):

}

else
AddPolicyListener(key,Used_KB,this,Integer.parselnt(TmpFuncParamList[3])):
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//Used_KB.addNameListener(key,Context. GLOBAL_CONTEXT, false,this,Integer.parselnt(
KeyValue));

+// For Loop

// Effector Registration Section --=-----v=-venx

Method EffectorMethod=
this.getClass().getMethod(DEFAULT_EFFECTOR_FUNC, new Class[]
{Object.class,Object.class});

[terator it = EffectorsTable keySet().iterator();
String key = (String) it.next();
String KeyValue = String.valucOf(EffcctorsTable.get(key));

Effector eff = new DefaultEffector(key, this, EffectorMcthod, KeyValuce);

/I Register the cffector in the knowledge base
eff.register(Used_KB);

rcturn Usced_KB;
+// Function

Rtk sl sk e ko sk ok okt ok s ks ook ok o ool ok ok R ks R sk ks ok ok bk o sk ek stk ok ok ok stk R
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* Create a consultative policy instance which is connected to a knowledge base.
* (wparam kb the knowledgeBase to be connected by the event driven policy isntance
* @return ConsultativePolicy the ConsultativePolicy created

***********************************************************************f/

private ConsultativePolicy createConsultativePolicy(KnowledgeBase kb,String
PolicyName,String PolicyFile,String MappingFile)
throws PolicyEngineException, PolicyEngineException,

‘FileNotFoundException

{

// Read a policy from the classpath

// Read a policy from the classpath
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InputStream is =(InputStream) new FileIlnputStream(PolicyFile);
InputStream is2 =(InputStream) new FilelnputStream(MappingFile);

// Construct a policy
Policy policy = new Policylmpl(is);
ResourceMapping mapping = null;
try {

mapping = new ResourceMappinglmpl(is2);

}

catch (Exception ¢)

{

System.out.println(e.toString());

// Create a DefaultPolicyTranslator
Translator trans = new DefaultPolicy Translator();

// Create an instance of default PolicyEngine
AMTSPolicyEngine engine = new AMTSPolicyEnginelmpl();
ConsultativePolicy cpolicy = null; // added for testing

try{
// Create an instance of the Consultative policy

cpolicy = engine.createConsultativePolicylnstance(

policy,
trans,
mapping,
PolicyName,
kb);}
catch (PolicyEngineException e)
{
System.out.pr'intln(e. getMessage());
}

return cpolicy;

}

0 Rl ks ok sk ok sk ok bl s o ok ekl ol ol el ksl sk ook e sk st ks ok ol o sk e o o ok o o o s ok ok o o ok ok
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* Create an event-driven policy instance which is connected to a knowledge basc.
* @param kb the knowledgeBase to be connected by the event driven policy isntance

* @return ConsultativePolicy the ConsultativePolicy created
ke ke e ke ke ke she ok ok sk sk ok ok 3k ok oK 3k ok oK oK 3k oK 3k ok ok e ke ke ok sk ok sk o ok st ok ok oK ok ok ok ok ok sk sk sk ok sk sk ok ok oK ok R kKR ok sk sk sk ok kR Ok ok /

private EventDrivenPolicy createEventDrivenPolicy(KnowledgeBase kb,String
PolicyName,String PolicyFile,String MappingFile)
throws PolicyEngineException, PolicyEngineException,
FileNotFoundException

{
// Read a policy from the classpath

InputStream is =(InputStream) new FllelnputStream(PollcyFlle)
InputStream is2 =(InputStream) new FileInputStream(MappingFik);

// Construct a policy
Policy policy = new PolicyIlmpl(is);
ResourceMapping mapping = null;
try {

mapping = new ResourceMappingImpl(is2);

}

catch (Exception ¢)

{

System.out.printIn(e.toString());

// Create a DefaultPolicyTranslator
Translator trans = new DefaultPolicyTranslator();

/1 Create an instance of default PolicyEngine
AMTSPolicyEngine engine = new AMTSPolicyEnginelmpl();

EventDrivenPolicy epolicy = engine.createEventDrivenPolicylnstance(
policy,
trans,
mapping,
PolicyName,
kb);

return epolicy;
}// End Create Policy

/*********************************************************************
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* (Called when an event arrives.)
*

* @param inboundEvent an autonomic event
*********************************************************************/

public AutonomicEvent eventNotification(AutonomicEvent ev) throws AutonomicException

{

AutonomicFact fact = ev.getFact();

System.out.printin("I got the event "+this.PolicyName);
return (ev);

}

/***************** LoadSensorEffeCtorS Function **********************
*Input  : Array of Strings.

* Description : Actually in this function we load three diffeent types of

* sensors to three tables -

* SensorsFunTable : This hash table will contain all external fun calls

* SensorsTable : This hash table will contain all var to be stored in the kb

* LocalFunTable : This hash table will contain all local fun calls

* EffectorsTable : For the effecotrs we use one hash table only.

* @return : Void.
*********************************************************************/

private void LoadSensorEfféctors(String[] FileContent,boolean ClearAll)

{

if (ClearAll)
{
1
SensorsFunTable.clear();
SensorsTable.clear();
LocalFunTable.clear();
NotificationTable.clear();
EffectorsTable.clear();
}
//Create an instance of the parser class
ParsingServer ParsSrv = new ParsingServer();
String Words([] ;
// Locate Sensors: Keyword
int Sensorindex = ParsSrv.FindRowIndcx(FileContcnt,SENSOR_KEYWORD);
/l'Locate Effector Keyword
mt Effectorindex = PursSrv.FindRowlndcx(FilcConlcnl,EFFECTOR_KEYW()RD,);

//' Need to be raised as an exception later
if (Sensorindex ==-1) System.out.printin("%%% No Sensor Section Found !");
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// Loop on Sensors to handle them

for(int i=Sensorindex+1 ;i<Effectorindex;i++)

{

it

/I'IF First Key is method then WORD_SEPARATOR =';'
Words = ParsSrv.GetSeparteWords(FileCOntent[i],WORD_SEPARATOR);
if (Words[1].compareTolgnoreCase("Method") ==0 )
f
1

try{
/* Insert the name of the sensor first ,

* then the function name and its parameters
*/
ScnsorsFunTable.put(Words[3],new String(Words[4]));
Function_IP_Mapping.put(Words[B],Words[Z]);
}
catch(Exception ¢){ System.out.println(c.getMessage()):}
}
/I'IF First Field indicates Value
else if(Words[l].compareTolgnoreCase("Value") ==() )
f
1
SensorsTable.put(Words[2],new String(Words[3])):
/1 TF First Field indicates a Local function call
telse iff Words[ 1 ].compareTolgnoreCase("local") ==0 )
{
it
LocalFunTable.put(Words[2],new String(Words[3]));
//Function__lP__Mapping.put(Words[3],Words[Z]);
telse if(Words[l].comparcToIgnoreCasc("Notify") ==() )
{
i
NotificationTable.put(Words[2],new String(Words[3]));
telse
System.out.printIn("%%% No Such Token Syntax : "+Words[0]);

1// FOR LOOP

/] <memmmman Loop on Effectors to handle them =m--eceeceeeee
int TotalLineNum = Integer.parselnt(FileContent[0])
for(int i=Effectorindex+1 ;i<=TotalLineNum;i++)

{
1

bl

Words = ParsSrv.GetSeparteWords(FilcContent[i],WORD_SEPARATOR);
if (Words[1 J.compareTolgnoreCase("Method") =0 )

'
i

EffectorsTable.put(Words[3],new String(Words(4]));
relse
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System.out.println("%%% No Such Token Syntax : "+Words[1]);
{// FOR LOOP

}// Function

/******************** Scnsor FUnCtiOﬂS ***************‘k***************

* Input : CmdClassifier.
* Descritpion : This function takes a Key Function name and
* hash its equivlant value from one table and gets its Queue/IP name
* then send these info to the Command Dispatcher in order to execute
* it
*
* @return: the result returned back from the command dispatcher.
protected String CmdClassifier(String KcyName,boolcan IsEffector)
{
1

Object KeyValue =null;

String Result =null;

/I We should do hashing on the function name

i (IsEffector)

Result = commandDispatcher.ExecuteCall(DEFAULT_QUIiUlfi,KwName.roString(’));

else

{
1

KeyValue = SensorsFunTable‘get(KeyName); //"measuredValue"

Object QueueName = Function_IPwMapping.get(KcyNamc);

Result =
commandDispatcher.ExecuteCall(QueueName.toString(),KeyValue.toString());

)

/I System.out.println("*****Returned Key Value is: "+KeyValue.toString()):

return(Result);

}

/******************** Scngor Functiong *********************%*********

* Input * Null,
* Descritpion ;
*

* @return:
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public int CPU_USAGE()

{
System.out.println(">>> CPU_USAGE Property Manager Sensor Triggered: "):

int iResult=0;

String Result =CmdClassifier("CPU_USAGE", false);
if(Resu]t.compareToIgnoreCase(”Nu]l")==0)
iResult=0;

clse

iResult = Integer.parselnt(Result);

return(iResult);

)

/3% 3k ok ok s e ok sk st e sk e ke sk ok ok ok ok e Sensor Functiong *******************************

* Input : Null.

* Descritpion :

*

* @return:
********************************************************************/
public int measuredValue(

/I PM_Sensor() '

System.out.printin(">>> MeasuredValue Property Manager Sensor Triggered: ");
int iResult=0;

String Result =CmdClassifier("measuredValue", false):
if (Result.compareToIgnoreCase("Null”)==O)
iResult=0;

else

iResult = Integer.parselnt(Result);

return(iResult); '

f

/********************** Effector FUnCtiOn A6 06 ke ok ok ok st sk sk sk ok ok ok sk st st ol ol s ok of ok ok ok 3k ok o
*
B
X

private void Policylnvoker(String PolicyName)
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try

{
char[] x={'C'};
Object Policylnstance;
Object[] FunctionParameter = new Object[3];//{PolicyName};
FunctionParameter[0] =PolicyName:;
FunctionParameter[ 1] = new Integer(0);
FunctionParameter[2] = new String(x);

Policylnstance = PolicyHashTable.get(PolicyName);
Class PolicyClass = Policylnstance.getClass();
Method[] methods = PolicyClass.getMethods();
Mcthod ReqMethod= null;

for (int i=0; i<methods.length; i++)

{

if(mcthods[i].gctNamc().cquals("StartPoIicy"))
[
1
ReqMethod = methods([i];
break;
}
}

ReqMcthod.invoke(Policylnstance,FunctionParameter);
System.out.println(">>> Fired Policy : "+PolicyName);
Vitry
catch(Exception e){}

}// Function
/********************************************************************%
public void PM_Effector(Object Type,Object Message)

f

1

System.out.print(">>> Property Manager Effector Triggered msg Type :");
System.out.print(Type);

System.out.print(" Message value: ");

System.out.printin(Message);

String PolicyName == (String) Message;

String PolicyType = (String) Type;

String EffectorRetunrValue=null;

167




Resource Optimization Property Manager For Autonomic Computing

if(PolicyType,compareTolgnoreCase(”Policy")== 0)
Policylnvoker(PolicyName);
else if(PolicyType.compareToIgnoreCase("FunctionCall"):z 0)
{
{
EffectorRetunrValue = RunBuiltFunction(PolicyName);
if (EffectorRetunrValue.equalslgnoreCase("NoMatch"))
EffectorRetunrValue= CdeIassiﬁer(PolicyName,truc);
}

System.out.printIn(">>> Effector Returned "+EffectorRetunrValue);

}

/******************** Startpolicy Function *******************************
* Input
* Descritpion :
¥ 'E'here means that it is an event driven policy.
* @return:
********************************************************************/
public void StartPolicy(String SensorName,int KB_Index,String PolicyType)

throws NoSuchMethodException, PolicyEngineException,
InterruptedException

{
try

{
1

TempSensorTable = new HashMap(),
TempSensorTable.clear();

if(PolicyType.compareToIgnoreCase("E") == ())
{
1
if(!Event__P.start(AMTSLifecycleInit.INITIAL_LOAD))
System.out.printin("%%% Couldn't start sensor in StartPolicy");
else
{
1
System.out.println(">>> System Policy Will be Consulted..");

ParsingServer ParseServerlnst = new ParsingServer():

for (Iterator it = this.ScnsorsFunTable.keySet(),iterator(); it.hasNext(); )
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{
13

String key = (String) it.next();
String KeyValue = String.valueOf(this.SensorsFunTable.get(key));
String Result = CmdClassifier(key,false);

AutonomicFact AF = this.kb[KB_Index].get(key);
List XString = AF.getFactDataAsList();
if (Result.equalsignoreCase("null"))
{
1
System.out.printIn("*** ERROR: System Value ["+key+"] Could not be updated
(NULL) I");

|

clse if (ParscServerInst.Identify Type(Result) == 1)
]
t
kb[KB_Index].remove(key,Context. GLOBAL_CONTEXT);,
kb[KB_Index].put(new DefaultAutonomicFact(key,Context. GLOBAL_CONTEXT,
null, new Intcger(Integer.parsclnt(Result))));
L

f
else if (PServer.ldentifyType(Result) == 'F")
{
{ ‘
kb[KB_Index].remove(key,Context. GLOBAL CONTEXT);
kb[KB_Index].put(new DefaultAutonomicFact(key,Context. GLOBAL _CONTEXT,
null, new Float(Float.parseFloat(Result))));

}

else

{
kb[KB_Index].remove(key,Context. GLOBAL_CONTEXT);
kb[KB_Index].put(new DefaultAutonomicFact(key,Context. GLOBAL_CONTEXT,
null, new String(Result)));

;

1// FOR

Consult_P.consultPolicy(Context. GLOBAL_CONTEXT);
y// ELSE

IAMTSLifecycleStatus 1C = p.getStatus();
My
catch (Exception €)
§
t
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System.out.println(" Exception in StartPolicy Section :");
System.out.printin(e.getMessage());
}
/* for (;;) { // forever
/1 Sleep for 1 second
Thread.sleep(1000);
1// FOR*/

+ /1 StartPolicy
1/ CLASS

2. ResourceAllocator.java

package PropertyManagerPack;

import java.sql.*;
import java.util.*;
import java.sql. Timestamp;

public class ResourceAllocator

§
1

private static DBServer dbServ;

private static CommandDispatcher commandDispatcher;
private final static String DEFAULT_QUEUE = "TestX";
private Map RSTable;

/******************************************************************
* Input ;

* @return void

. * @throws
****************************************************************/

public ResourceAllocator()
1]

1
if (dbServ == null)
dbServ = new DBServer();// Creating DB Server Instance
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if( commandDispatcher == null)
commandDispatcher = new CommandDispatcher() ;
// Establish DB Connection and run query
dbServ.GetDBConnection("ULTRA","sa");
RSTable = Collections.synchronizedMap(new Hashtable());

}

/***k**************************************************************
* Input ;

* @rcturn void

* @throws
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static public String CurrentTime()

{

Calendar cal = Calendar.getInstance(TimeZore.getDefault());

String DATE_FORMAT = "dd-MM-yyyy HH:mm:ss";

java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat(DATE_FFORMAT);
sdf.setTimeZone(TimeZone.getDefault());

return(sdf.format(cal.getTime()));

}

/******************************************************************
* Input :
* @return void
* @throws
****************************************************************/
private void IntializeHashTable(Map RSTable)
{
1

RSTable.put("IP","");

RSTable.put("ResourceAcqCMD","");

RSTabie.put("OwnerSysID","");

RSTable.put("ResourcelD","");

RSTable.put("ResourceQuery","");

RSTable.put("CurrentCost","");

RSTable.put("LastQueryUpdate","");

——

/******************************************************************
* Input :
* o 3

@rcturn void
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* @throws

private String FormatSql(String QueryName,String[] Parameters)
{
it

String SQLStmt ="No Query";

String SQLStmtPart0 =" SELECT ";

String SQLStmtPart1 = "RC.OwnerSysID, RC.ResourcelD, RC.ResourceQuery,
RC.LastQueryUpdate, RC.CurrentCost";

String SQLStmtPart2="FROM Autonomic_DB.dbo.AUT_Main_System MS INNER
JOIN"; :

String SQLStmtPart3 =" Autonomic_DB.dbo.AUT_ResourceConsumption RC ON MS.1D
= RC.OwnerSysID";

String SQLStmtPart4 = "",

String SQLStmtPart5 = "";

String SQLStmtPart6 = "",

String SQLStmtPart7 =" AND (MS.parent_id <>0)";

String SQLStmtPart8 = " AND (RC.OwnerSysID NOT IN (SELECT ownersysid FROM
Autonomic_DB.dbo.V_AUT_PeakTimes))";

String SQLStmtPart9 =" GROUP BY RC.OwnerSysID, RC.ResourcelD,
RC.ResourceQuery, RC.LastQueryUpdate, RC.CurrentCost";

String SQLStmtPart10=" ORDER BY MS.Priority DESC, RC.CurrentCost";

SQLStmtPart5 =" WHERE  (MS Priority > "+Parameters[0]+") ;

SQLStmtPart6 =" AND (RC.ResourceType ="'+Parameters[ ] +")";

if (QueryName.equalsignoreCase("InsertTransQuery"))
i
1
String TmpSQL = "INSERT INTO Autonomic_DB.dbo.AUT_ResourceTransaction"
+"(DonorSysID, ConsumerSyslID, ResourceName, TransactionTime)"
+"VALUES("+Parameters[0]+","+Parameters[1]
+", "+Parameters[2]+" "' +Parameters[3]+")";
return(TmpSQL);
}
clse if (QueryName.equalslgnoreCase("UpdateResourceQuery"))
!

1
String TmpSQL1 = "update Autonomic_DB.dbo.AUT_ResourceConsumption sct
LastQueryUpdate ="";

String TmpSQL2=", CurrentCost ="";

String TmpSQL3="where OwnerSysiD=";

String TmpSQL4="and ResourcelD) =",

String FinalSQL= TmpSQL I+Parameters[0]+" "+TmpSQL2+Paramcters| 1]+ "
+TmpSQL3+Parameters[2]
+TmpSQL4+Parameters{3];
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return(FinalSQL);
telse if (QueryName.equalslgnoreCase("ResourceQuery™))

!
1

SQLStmt= SQLStmtPart0+ SQLStmtPartl +",MS.IP "+ SQLStmtPart2 +
SQLStmtPart3 + SQLStmtPart4 +
SQLStmtPart5S + SQLStmtPart6+
SQLStmtPart7 + SQLStmtPart8+SQLStmtPart9+" MS.1P";

telse if (QueryNamc.cqualslgnoreCasc("ResAcqQucery"))

{
1

SQLStmtPart] = "MS.Priority, RC.OwnerSysID, RC.ResourcelD, RC.ResourceQuery,
RC.ResourceAcqCMD, RC.LastQueryUpdate, RC.CurrentCost";

SQLStmtPart9 =" GROUP BY MS.Priority, RC.OwnerSysID, RC.ResourcelD,
RC.ResourceQuery, RC.ResourccAcqCMD, RC.LastQueryUpdate, RC.CurrentCost";

SQLStmt= SQLStmtPart0+ SQLStmtPart! + SQLStmtPart2 +
SQLStmtPart3 + SQLStmtPart4 +
SQLStmtPartS + SQLStmtPart6 +
SQLStmtPart7 + SQLStmtPart8 +
SQLStmtPart9 + SQLStmtPart10;

|

!
return(SQLStmt);
!
)

/******************************************************************

* Input : A string that cotains the supplied ResourceType (e.g CPU)

* and another string that contains the Requsting system name (e.g. Website)
* Desc: This function does a search for all the running systems that

* are using the same supplied resource and that has a lower priority

* and that are not currently working on their peek time.

* @return void

* @throws SQL Exception
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public int AllocateResource(String Reso(lrceType , String RequesterName,boolean Commit)

-
1

String SQL.Stmt =null;

String [ | ParamcterList =ncw String|S];

String Sys[P =null;

System.out.println(">>> ResourccAllocater is visited...");
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try

f

1

String PrimarySQLStmt = "SELECT ID, Priority, IP FROM
Autonomic_DB.dbo.AUT_Main_System MS WHERE (Sys_Name =
"+RequesterName+"")";

ResultSet Main_RS = dbServ.ExecuteQuery(PrimarySQLStmt,falsc);

/* We assume that systems with higher priority number are less important
* Systems. (I.E. Priority | is the highest). We also assume that the

* main systems (i.c. the ones with parent Zero are cxcluded from the query
%/

if (Main_RS.next())

{
ParamcterList[0] = Main_RS.getString(2); / The Returned priority 1D
ParameterList[1] = ResourceType;// Resource Type
ParameterList[2] = Main_RS.getString(1); // The Returned System 1D
ParameterList[3] = Main_RS.getString(3); // The System IP/Queue Name

SQLStmt= FormatSql("ResourceQuery",ParameterList);
yIAF
clse

System.out.printin("**** Returned Result Set is Empty ......");

ResultSet Sub_RS= dbServ.ExecuteQuery(SQLStmt,false);
/ISystem.out.println(SQLStmt);
IntializeHashTable(RSTable);

int RowCount = dbServ.RowCount;

for (int i =0;i<RowCount;i++)
{
// Main Systems Handling
RSTable = dbServ.GetQueryData(Sub_RS,RSTable);
String ResourceCMDQuery = (String)RSTable.get("ResourceQuery");
SysIP = (String)RSTable.get("IP");
String QResult =null;

if (ResourceCMDQuery.equalslgnoreCase("null"))
System.out.printIn("**** Problem : There is no Query for
"+(String)RSTable.get("ResourceQuery")+" system !1");
else

f
1
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QResult = commandDispatcher.ExecuteCall(Sys!P.trim(),ResourceCMDQuery);

if (QResult == null)
System.out.printin("**** Problem : Null Result for
"+(String)RSTable.get("OwnerSysID")+" system Query!!");

// Update DB
String [] ParameterList2 = new String[5];
ParameterList2[0] = CurrentTime();
ParameterList2[ 1] = QResult;
ParameterList2[2] = (String)RSTable.get("OwnerSysID");
ParameterList2[3]= (String)RSTable.get("ResourcelD");
String FinalSQL= FormatSql("UpdateResourceQuery",ParameterList2);
//System.out.printin(FinalSQL);
dbScrv.ExccuteQuery(FinalSQL,true);
\// ELSE
+// FOR LOOP

// Run the same query again but order by priority , resource usage
SQLStmt= FormatSql("ResAcqQuery",ParameterList);
ResultSet NegotiateRSet= dbServ.ExccuteQuery(SQLStmt,falsc);
RowCount = dbServ.RowCount;
// This is to loop on all the candidate systems to give up some resources
for (int i =0;i<RowCount;i++)
{
§
/I Start request from each system to give resources
RSTable = dbServ.GetQueryData(NegotiateRSet,RSTable);
String ResourceAcqCMD = (String)RSTable.get("ResourceAcqCMD");
String QResult =null;
if (ResourceAcqCMD.cqualslgnoreCase("null"))
System.out.printIn("**** Problem : There is no CMD Query for
"+(String)RSTable.get("ResourceAcqCMD")+" system !!");
else ,

{
t

if (Commit) // This to indicate execution mode and not testing mode
{
i
QResult = commandDispatcher.ExecuteCall(SysIP,ResourceAcqCMD);
/' A Zero QResult means the Transaction is successful
if (Integer.parselnt(QResult) == 0)
]
1
String {] TmpParameterList = new String[5];
TmpParameterList[0] =(String)RSTable.get("OwnerSysID");
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TmpParameterList[ 1] = ParameterList[2];
TmpParameterList[2] = ResourceType;
TmpParameterList[3}= CurrentTime();
SQLStmt= FormatSql("InsertTransQuery", TmpParameterList);
dbServ.ExecuteQuery(SQLStmt,true);
//break;
return(0);

/1 QResult

return(99);

{// IF Commit
} // ELSE
1// FOR

Hitry

catch (Exception ¢)

{

1
System.out.println(c.getMessage());
!

f

return(-1);
+// Function

1// CLASS
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