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Abstract

Approximations of 1-D and 2-D signals are important for noise reduction and signal
space compression. Current techniques address the approximation process either in the
signal space or in its transform space but not in both. A moment-preserving constraint

can couple both spaces for better evaluation of approximations at nodal signal points.

In this thesis, we start by examining the effect of using the moment-preserving piecewise
approximation technique on 1-D signals and we compare it against the Interpolation
piecewise technique. On Linear, Quadratic and Cubic Spline polynomial method, the

moment-preserving constraint proves to be a better approximation technique.

The second experiment examines the moment-preserving constraint effect on the
approximation of 2-D closed boundaries and the results again are promising on the
Linear, Quadratic and Cubic Spline polynomial level when compared to the Interpolation

technique.

Thirdly, we examine the moment-preserving constraint on the Digital images

approximation and it is successful as far as comparison with the Discrete Cosine

Transform technique for image compression is concerned.
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Finally, we experiment the effect of the moment-preserving piecewise approximation
technique on 2-D Surfaces. The moment-preserving linear piecewise approximation

technique excels over Bilinear Interpolation with much better result.

Index Terms — Signal Processing, Image Processing, Pattern Analysis, Moments,

Piecewise Approximation.
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Chapter 1

Introduction




| 1. Introduction

1.1. Introduction

Signal Processing is concerned with the sequence of operations carried out on a
signal to simplify its analysis and storage. This makes approximation techniques
an important aspect of signal processing. For example, an approximation for the
analog signal represents it with a digital signal instead of the original analog one.
Electronic voice mail messages and photographic X-ray images are often digitized
to reduce its storage and transmission costs. Approximation and encoding are
small segments of the field of signal processing which also includes scaling,
filtering, encoding, structural pattern recognition, feature extraction, scene
analysis, motion detection and Image understanding. [17] This makes

approximation an interesting field for focus through this thesis.

The process of approximating digitized 1-D signals and images has always been a
regular practice when there was a need for noise reduction or signal space lossy
compression. A linear approximation technique can be used to remove
undesirable noise from the actual signal as in [13], [15], [21], [8] and [9].
Unfiltered noisy signals can lead to misinterpretation of data and this is illustrated
through a case in [3]. There, a boundary detection algorithm was applied to a

radiograph of a chest in which the accurate detection of the rib was almost

impossible due to unfiltered noise.




In the 1-D signals case, the noisy signals have been considered as functions f(x)
sampled at distinct points {xi,1=0,1, .. n}. The purpose of approximation in
such case is to find an approximation function g(x) defined as a set of distinct
nodal points {z; ,j=0,1,...., m} such that m<n, subject to a certain error
minimization criteria. These nodal points are then joined using one of the
interpolation techniques giving an approximation of the original signal. This
methodology is also applied to 2-D signals and images when approximation is

needed.

The approximation problem is relevant to many applications in signal processing,

pattern analysis and image processing. Hence, a considerable amount of research

has been advanced in this area.

1.2. Existing Approximation Approaches

Existing well-known approaches derive the approximations either through
constraints in the signal domain or in the transform domain. Thai Nguyen presents
a full survey of existing approximation techniques, with experiments illustrating

their performance in his master thesis. [12]

1.2.1. Approximation in Signal Domain:

Some distinct nodal points are chosen on the original signal. Regenerating

the signal, we take those chosen nodal points and apply one of the




interpolation methodologies. The resulting signal is an approximation of
the original signal. In the signal domain, examples of approximation
approaches are Interpolation (Piecewise Approximation technique), [4],

[18], [16] and others.

1.2.2. Approximation in Transform Domain:

The original signal is transferred from signal domain to the frequency
domain. In the frequency domain, we ignore the low amplitude
frequencies and track only the high amplitude frequencies to preserve the
main features of the signal. Converting these tracked frequencies from the
frequency domain to the signal domain returns an approximation of the
original signal. In the signal domain, examples of approximation

approaches are Fourier Transform, Discrete Cosine Transform and others.

1.3. Moment-Preserving Piecewise Approximation

This method was first introduced by Professor Oommen and his student Nguyen
in 1994 and it was published in an IEEE conference in 1997 by the same
authors.[12] They introduced the method and applied it only on the piecewise
linear approximations case. Their main motivation was that this method is, unlike
the already existing methods that derives the approximation in either the signal

domain or the transform domain, utilizes the approximation in both domains. It




derives the approximation in the Signal Domain while preserving'a finite number
of geometric moments that are related to its Fourier Domain. In the present work,

we extend Thai’s work by using high order polynomials on 1-D and 2-D signals.

1.4. Thesis Objective

The thesis contribution, presented in this work, the extension of the moment-
preserving method for 1-D Signals, 2-D Closed Boundaries, Digitized Images and
2-D Surfaces through higher order polynomials. Specifically, we aim to derive the
theory of the moment preserving approach for linear, quadratic and cubic spline
polynomials for 1-D Signals and 2-D Closed Boundaries, the linear and quadratic
polynomials for Digitized Images and the linear polynomial for 2-D Surfaces will
be presented. The computational results obtained from the derived theory are to

be compared with the usual interpolation approximation methods.

1.5. Thesis Outline

The thesis is divided into eight chapters. Chapter two demonstrates the
background of approximation as a research topic. In Chapter three, we develop
the theory that is needed for applying the moment-preserving approximation
method. We also introduce the mathematical formulation for Piecewise Linear,
Quadratic and Cubic Spline approximations that are applied on 1-D Signals and 2-
D Closed Boundaries. Chapter four demonstrates the effect of Moment-Preserving

Piecewise Approximation technique compared to Interpolation on 1-D Signals.




Chapter five is similar to chapter four but for 2-D Closed Boundaries. Chapter six
handles the experimentation of Moment-Preserving technique on Digitized
Images and the seventh chapter experiments the method on 2-D Surfaces. The

last/eighth chapter concludes the thesis and briefs the expected future work.

Part of the present work has been published as a full paper [1] in the proceeding

of the international Conference CCCT’03.
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Chapter 2

Approximation Methods for 1-D and 2-D Signals




2. Approximation Methods for 1-D and 2-D Signals

2.1. Introduction

There are various methods that are used for 1-D and 2-D signal approximation.
They utilize the approximation technique in either the Signal Domain or in the
Transform Domain. In the next subsections, we are introducing examples of
existing approximation technique, some constraints approximation in the Signal
Domain and others constraint approximation in the Transform Domain. The effect
of the Moment-Preserving constraint is demonstrated in the coming sections. We
compare the Moment-Preserving piecewise approximation technique with

Interpolation and DCT.

2.2. Signal Domain Approximation Techniques

Given a 1-D signal f(x) in its signal domain (x), the approximation techniques
introduced in the following subsections calculate its approximation, g(x), by
directly using the given values of x and f(x). This is why they are considered to be

approximation methods in the actual signal domain.

2.2.1. Subsampling Approximation

In many signal-processing applications, it is necessary to convert an

analog signal to a discrete sequence of numbers. The conversion process is




commonly done as explained in [12] by sampling the continous analog
signal, f(x) at regular intervals Ax to produce a sequence
S ={f(x), f(x), f(x;)5err f(x,.,)} Where x; =X, +iAx and x, is some
given starting value. There are special cases where the sampling rate is not
regular and in such a case, both the x and the value of the signal at that
particular x have to be specified. The work in [16] is an example of a
proposed subsampling scheme. This type of approximation is easy to
apply and relatively inexpensive due to its low computational complexity.
However, the lack of computational complexity introduces aliasing
problem, which causes the signals to lose their high frequencies and the

signals to be very inaccurate.

2.2.2. Least Square Polynomial Approximation

Least Square Polynomial is a well-known approximation technique that is
based on Legendre’s principle of least squares which states that “when the
available data in the domain D are either exact of equal reliability, then the
‘best approximation’ over D is that one for which the aggregate (sum or
integral) of the squared error in D is Jeast” [7] This technique is not
practical when applied on high polynomial orders due to the
computational cost and the many local minima, maxima and inflection

points which inherently exists in polynomials.




2.2.3. Piecewise Approximation

By piecewise approximation, we mean dividing our signal into segments
and approximating each and every segment separately. Then the resulting
segments are recombined to come up with the whole approximated signal.
This is a common method that helps when we have a highly complicated
signal, and it is better to handle one segment at a time to reduce the
complexity of the operation. Usually the point at which the resulting
segments are joined is called ‘knot’ points. As mentioned previously,
Linear Piecewise approximation is a common practice for noise reduction
asin in[13], [15], [21], [8] and [9]. They assume that each and every
pair of points over the signal are joined by a straight line. Among the most
famous Piecewise Approximation technique currently in use 1is

Interpolation.

2.2.3.1. Interpolation

Provided that approximation takes place either on the whole signal or
piecewise, Interpolation is the most famous technique used in piecewise

approximation (which is the approximation style we are interested in).
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Interpolation is the process used to estimate values that lie between known
data points. Conceptually, the interpolation process has 2 stages:
1.  Fit an interpolating function to the data points provided.

2. Evaluate the interpolating function at the target point x.

Interpolation operates on various polynomial orders. The higher the
polynomial order, the more the number of points needed for interpolation;
i.e. Linear interpolation needs 2 points while Quadratic interpolation needs 3

points. However, this does not necessarily mean higher accuracy.

The interpolation orders we are interested in through this thesis are Linear,

Quadratic, Cubic Spline and Bilinear interpolation.

Interpolation utilizes the approximation process in the Signal Domain.

2.2.3. Polynomial Spline Approximation

The difference between this approximation technique and the piecewise
approximation technique is that in piecewise approximation, the resulting
signal is not necessarily smooth due to the transitions from one segment to
another at the knot points. The polynomial spline approximation
smoothens the segment at the knot points hence resulting in a smooth

segment. [8] is an example of an application for spline approximation.

11



2.3. Transform Domain Approximation Techniques

The approximation techniques introduced in the following subsections calculates
the approximation for f by transforming it into another function F, approximating
F and then an inverse transformation is applied to obtain the approximation of f
which we call g. The approximation technique works on the transformed function

and in the domain of the transformed function. That is why it is called Transform

domain approximation.

2.3.1. Karhunen-Loeve Transform

Karhunen-Loeve Transform (KLT) is based on statistical propertics of
vector representation. In [21], it is explained as follows. Consider a

population of random vectors of the form

[ x, |
x 2
2.1
_x’l J
The mean vector of the population is defined as
m_ = E{x} 22)

where E{arg} is the expected value of the argument, and the subscript of

m is associated with the population of X.

12



The covariance matrix of the vector population is defined as

C, = E{(x—m,)x-m)"} 23)

where T is the vector transposition. Because x is n dimensional, C, and
(x—mx)(x—mx)T are matrices of order n X n. Element ¢, of C, is the
variance of x,, the ith component of the x in the population, and ¢; of C,
is the covariance between elements x, and x; of these vectors. The matrix

C, is real and symmetric. If elements x, and x,are uncorrelated, their

covariance is zero and therefore, ¢, = ¢;=0.

For M vector samples from a random population, the mean vector and

covariance matrix can be approximated from the samples by

m,=—9Y x (2.4)
M; ¢
and
C . l i T A\ T
x = 5, ‘xkxk —m.m, (25)
k=1

In [28] a summary of the KLT is presented. It concludes that KL.T is an
optimal transform because it completely decorrelates the signal in the
transform domain, minimizes the MSE in bandwidth reduction or data
compression, contains the most variance in the fewest number of

transform coefficients and minimizes the total representation entropy of

13



the sequence. This method is mainly used as a measuring tool against sub

optimal transforms and it is not often applied because it is dependent on

the input data.

2.3.2. Discrete Fourier Transform (DFT)

Fourier’s theorem states that for any function f(x) defined in the interval
— o0 < X < 400 , it is possible to express it as a summation of a series of
sine and cosine terms of increasing frequency. The Fourier transform of
the function f(x), F(w), describes the amount of each frequency term that

must be added together to make f(x). It is often described as [21],[20] as,

F) =3 £ (e 2.6)

Eq. 2.6 has a very high complexity because of a lot of multiplications and

additions involved. The complexity reaches N >, Hence, a proper
decomposition of Eq. 2,6 can make the number of addition and
multiplication operations proportional to N lg N. The decomposition
procedure is called Fast Fourier T ransform (FFT) algorithm. Eq. 2.6 is

written in the form
l N-~-1
Fu) = %Z FOWy 2.7
x=0

where

14



W, =e /""" (2.8)

2.3.2. Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) is the most famous technique used for
Images Lossy Compression techniques including JPEG and MPEG.
Although it is not as optimal as Karahunen-Loeve transform, it is more
efficient in an energy-packing sense than most of the other transform
techniques such as Fourier transform and others. The main advantage of
DCT is its less complexity that makes it fast in operation. It is defined in
[21] as

(2x+ 1)u7r} 2.9)

N-1
Cu)=0o(u x)cos
)= a( );f( ) [ N
In DCT, an image is divided into 8X8 blocks. Most of the block
information is scattered near its corner, so what happens is that it starts
from the left upper corner moving in a zigzag line along the cells, it saves
only the first 4 cells from the zigzag path and chops the rest of the 60

cells. Hence, it reduced the image size by 1/16 of the original with almost

same information.

Discrete Cosine Transform is a Transform Domain approximation

technique.

15



A summary of some of the approximation techniques has been given by [12]

among these is the Moment-Preserving method which is the focus of the present

work. The summary is given in the following table:

Table 2.1.: Comparison of different approximation techniques

Approximation Type of original type of knot Domain of
Method function values operation

Linear Split [19] Continous/Discrete | Non-Uniform Signal
Split-and-Merge Continous/Discrete | Non-Uniform Signal
[14]
Nearest-Neighbor Discrete Uniform Signal
[24]
Hologram-Like[17] Discrete Uniform Signal
DFT Discrete N/A Transform
DCT Discrete N/A Transform
Moment- Continous/Discrete Uniform Signal/Transform
Preserving

All of the above mentioned approximation techniques are 1-D approximation

techniques. Approximation in 2-D for planar curves and digitized images, which

is still an important aspect of pattern recognition, image processing and graphics

applications, has received a lot of attention by many authors such as {21], [9], [18]

and many others. The results of the researches noted that the 2-D approximation

16




techniques are in a way based on the 1-D techniques presented above. The same
approach is followed through this thesis when the approximation for 2-D Surfaces

and digitized images approximation are concerned.

2.4. Signal/Transform Domain Approximation T. echniques

The thought of combining both domains for better approximation results has been
addressed by few authors [15] [25]. Both addressed the problem of noise removal
from over images. The first required that the image be band limited and the band
limits be known. However, this constraint is not required in [25]. The removal of
data in the second example is based on Projection onto Convex Sets (POCS)

algorithms that use frequency and spatial domain information

In the present work, we choose the Interpolation method to be our benchmark.
The reason for that is that it is the most famous technique for Piecewise
Approximation. In addition, it is a signal domain technique and our proposed
Moment-Preserving technique operates in the domain of the original signal
though it utilizes both domains. As for digitized images, our benchmark is on

DCT, being the most famous technique for image compression.

2.4. Moment-Preserving Piecewise

17



The properties of geometric moments have been addressed by many researchers
including [27], [29] and [5] to perform pattern recognition and classification.
Because of the close relationship between the geometric momgnts and Fourier

transform, they are considered to be operating in the transform domain.

Moments, by their geometric nature, go deeper into the function extracting its
features rather than just considering its superficial surface features. They are

considered to be the pillars upon which a function is built.

Moment-Preserving Piecewise approximation is a method introduced in 1994 by
Professor John Oommen and his student Nguyen [13]. It has been experimented

only on the Piecewise Linear case. This method relies on the idea of Moments.

Unlike the already existing approaches, the method utilizes the approximation of
signals in both the Signal Domain and the Transform Domain. A paper about it

was published in an IEEE Conference on 1997 [12].

18



Chapter 3

Moment Preserving Theory
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3. Moment-Preserving Theory

3.1. Relationship between Fourier Transform and Moments

In signal theory, it is well known that the characteristic function of a random
signal is the Fourier transform of its density function p(x)(with a reversal in sign),

1.e.

#iv) = Exlexp(vx)] =

= Jexp(jvx) p(x) dx = T {p(x)} 3.1

[f Sy represents the kth geometric moment of a function p(x), then

S = Efx] = [x* p(x) dx = (5)* d*gGv)/dv 1o (3.2)

Suppose that the characteristic function has a Taylor-series expansion, then

Hjv) = S dgGVY/AvE T v=0 VK =i Sk Gv)*/ k! (3.3)

Therefore, if the characteristic function has a Taylor-series expansion valid in
some region about the origin, it is uniquely determined in this interval by the

geometric moments. If the moments do uniquely determine the characteristic

function (and hence the Fourier transform of the density function) then they also

20



uniquely determine the density function. The consequence of this uniqueness is

that a moment-preserving approximation to the function p(x) in the x-domain will

also serve as an approximation constraint in the v-domain.

3.2. General Theory Proposed for Moment-Preserving

Approximation

Consider the kth moment of the variable x over the finite interval (i,)) of the

function f(x) to be Sk(i,)) = EJx; ; - Let o be a scale reduction factor so that x =

oy and hence we define a scaled moment as

oui) = o & Sii) = iy y* o) dy = Ealy'Tis (3.4)

With the function f(x) specified by a finite set of discrete points {xi,1=0,1,..
n}, the scaled moment o is the sum over all (n) segments (i,i+1) covering the

above domain:

o = Ziciitl) , i=0,1,...,n-1 (3.5)

On the other hand, if we seek an approximating function g(x) defined at a set of

distinct nodal points {z; ,j=0,l ,..., m}, then over the interval between two

nodal points (p,q) we obtain scaled moments (p,q) whose sum over the nodal

21



intervals gives the scaled moments [ix. For the moment preserving approximation,

we require that

Ok = Mk for k=0,1,.,m (3.6)

The above moment-preserving constraint leads to a system of m+1 equations

6=E.G (3.7)

where E is an m+1 by m+1 square matrix of coefficients depending on the

approximating polynomial, and G is a column vector representing the

approximations g(z) to the function f(x) at the nodal points {z ,j=0,1,....,m}.

22



3.3. 1-D Piecewise Approximation Mathematical Formulas

Derivations

3.3.1. Piecewise Linear Approximation

Assuming that between the nodal points z, and z4 the function is piecewise linear,

we use Lagrange’s classical formula.
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o) = — )/ (e = 30)g () + (v = 30) (e — 3,)8(a) 2

= — )/ — y0)g (@) = 0 - )/ (s — y2)g(04)

=1/s = yln = )g(@) ~Or - V)g(@n) | (3-8)
If we assume 1/(yi— yp) & g(09») & g(0gq) are constant values

P
and k= (x'(k“)Sk( )= J Vg (V)Y = Hy, ]5
q

P p

11 (2 D) = 80— 3 [ ¥ 0 = 1)y = @(@8n) [0 = 30) [ ¥ O = ¥)y
q q9

Substitute y with t inthe integral

= (@) - ) [ (1, -1t = gloy) =) [ 111, -t

=g(a)(— yp){tjtk dt— Tt"”.dt} —g(@n)/ (v —yp){t,jt* At~ }Izt"“.dt}

q q q

P
LetD, ()= j ¢ de=(" — ) (n+1)

q

. = (o)t — 1)t DX, K) ~ DXt + 1) — g() /(ta = 1:)(€, DX, K) = DAt k + 1))
- D, t0)=t, -1,
= g(a)/ D, (1,00, DXt, ) — DXt + 1)) — g(09)/ Dy (1,08, DXt ) — XL, k+1)

Suppose Bq(bk,t)={t, Dpq(tk)-Dpq(t.k +1)}/ Dpq(t,0)
1, (,9)=8(,)B,(g:k,y) — g(ay,)B,(p: k. ) (3.9)
For nodal points {z ,j =01 ,...., m}, then the scaled moments for the m

segments will be:

w(0.1) = g(ayg) Bi(Lky) - g(oy1) Bi(0,ky)

g(ayy) Bx(2,ky) - g(0y2) Bo(Lky)

1

Hi(1,2)

It

u(m-1,m) = g(Cym.1) Bu(mk,y) - 8(CYn) Brn(m-1.ky) (3.10)
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Let us define a function

Bi(Lkt) forj=0
Ci(k,t) = Bii(j+1.kt) — Bi(j-1.k.t) forj=1,.,m-I (3.11)
-Bu(m-1,k,t) forj=m

Hence, the total scaled moment can be expressed as a vector L with elements

e =% Ciky)glay) . Jj,k=01..m (3.12)

Notice that in the above equation, the values of y; represent the scaled coordinates
of the nodal points. When the scaled coordinates of the actual function points are

used, then we obtain the actual scaled moments vector G. Accordingly, moment

preservation (i = ¢) leads to the system
G=E'.o (3.13)

where the elements of the square matrix E are given by

e(k,j) = Ci(ky) (3.14)

3.3.2. Piecewise Quadratic Approximation
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Here, we use equally spaced nodal points with an internal point z between the
points z, and z,. With A = (z,-2, ) = (24 - zr ), Lagrange’s formula can be written

in the form: |

208 goal%) = (x - 2,) (X -2,) 8(2,) = 2 (x - 2) (X - 24) g(z) +

+ (x 'Zp) (x-z) g(zq) (3.15)

With  1u(p.q) = Jpg ¥* gpa(®) dy, we repeat steps similar to the ones illustrated

in the piecewise linear approximation while adjusting the differences,

wp.q) = gloyy Bpg(r.q.ky) =2 g(oy,) Bpylp.q.ky) +

+ g(ayy) Bpy(p.r.ky) (3.16)

where B,g(ij.kt) = [2/ D%pg(t.0)] { Dpgltk+2) —

- (t; + 1) Dpg(t.k+1) + t; t; Dpg(t.K) } (3.17)

Similar to the method used for the piecewise linear approximation, we may write

e =% Ciky) gloyy) , j,k=01,..m,meven (3.18)
where
( Bo2(1,2,ky) forj=0,
2 Bi.1j+10-1j+Lky) for j odd,
Citky) = Bj2j(-2J-1.ky) + Bjj+2G+1,j+2.ky) forj even,
9 Bon.om(m-2,m-1,k.y) forj=m (3.19)
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As before, the elements of the matrix E are e(k,j) = Citky)

3.3.3. Piecewise Cubic Spline Approximation

Lagrange’s formula for the piecewise linear interpolation in the interval between

z,and z, may be written in the form:

8palz) = a g(zy) +bg(zy (3.20)

with  a = (z,—2)/(z4 - 2) and b = (z - 2p)/(zq - z)=1-a
In a cubic spline approximation, we add a cubic polynomial whose second
derivative varies linearly over the (p,q) interval and with zero values at zp and z,

leading to

Zoa(2) =ag(z) +bglzg) Tcg'(z) +dg"(z) (3.21)

where

¢ = (1/6) (@-a)(z,-2,)° and d = (1/6) (-b)(z -z,)°

Hence, the interpolating polynomial can be expressed as:

() = [(Vq -y A g(ayy) + [V -yp)/ A gloyy) +

27



+ P(ay) + O(ay) (3.22)

where A, =Yg -¥p »

Ploy) = [(vg—3)° - & g = )] (&/64,) @, (3.23)

(@) = [(v-y,)’ - &y 0 -y,)] (F/64)) ¢, (3.24)

@, and @ are the second derivatives at the two nodal points.

Let Uk(p.q) = Jpg ¥ [P(09) + Q(09)] dy, so that

dp.q) - Up.q) = g(0p) By(q.ky) - g(ayy) By(p.ky) (3.25)

where Bg(bk,t) is as defined for the linear case. Therefore, the problem is

similar to the linear case except for the term Uk(p,q). Evaluation of this term gives

Uip.g) = Dpg.%) [ Bo(@) - % Bo®)] +

+ Dpo(vk+1) [1 Bi(@) = % Bip)] +

+ Dy k+2) [ Bo(@) - % BoP)] -

- Dpg(y.k+3) [V - Wl (3.26)
where % = (Q2/64,) @, Boli) =¥'i- Ky yi . Bi) = &y =350,

(i) = 3 yi

1t follows that
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te-Ue =5 GCly)gloy) . J k=01..m (3.27)

where Uy = % Uy(j-1,j) ,j=12,...m

Accordingly, moment preservation (4 = 0) leads to the system

G=E". (6-U,+ Uy (3.28)

In the above equation, E and o are respectively the coefficient matrix and
moments vector for the piecewise linear approximation, while the vectors Uy and
U, are computed using the nodal points and the actual function points,

respectively.
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Chapter 4

Moment-Preserving Results for 1-D Signal
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4. Moment-Preserving Results for 1-D Signal

4.1. Introduction

The moment-preserving method has been applied to obtain piecewise
approximations for various 1-D signals f(x). For a given approximation, nodal
points {z, j = 0,1,...., m}were chosen to be evenly spaced across the x-space. The
vector of approximants G at those points was computed using the linear, quadratic
or cubic spline methods outlined above and an approximation g(x) to the function
is obtained by the respective interpolation method. For comparison with usual
interpolation techniques, an approximation h(x) was also obtained using the
function values f(zj). We have used the mean-squared error (MSE) as a measure

of the error norm between f(x) and each of the approximations g(x) and h(x).

As an example, we show here the results for the function

f(x) = 2sin(0.2 x) + 5c0s(0.3 x) + w*r 4.1)

where r is a uniformly distributed random noise {0,1} and w is an amplitude
factor. For the above example, we have used an x-domain covering 10 blocks
with 161 function points and 5 nodal points in each block (i.e. one nodal point

every 40 function points). For more accuracy and to reduce the need for
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reconditioning the matrices in the inversion process, we have used a scale factor o

= Xp-1-

4.2. Piecewise Linear Approximation

Fig.4.1. Demonstrates the results of applying the traditional Linear
Interpolation method and the suggested Moment-Preserving

method.

Piecewise Linear Approximation

s “q J wu ‘!‘L,ﬁ i

Z45¢

35

25 ! 1 1 L
0

Fig.4.1.Piecewise Linear Approximation for 1-D Signal.

MP: Moment-Preserving. Int:Interpolation

32



The figure shows the original function with noise, the linear
Interpolation method is represented using the dotted line and the

Moment-Preserving method is the black line.

It is obvious that the Moment-Preserving approximation is closer
to the original function while the linear Interpolation method 1s

very inaccurate compared to the original function.

This is because Linear Interpolation considers the points on the
surface of the function and the Moment-Preserving method

considers the weight of the function in terms of its Moment.

In such graph, the noise level is of high amplitude over the
function and trying to take the nodal points on the surface of the
function causes the result to be very inaccurate. The Moment-

Preserving method takes the nodal points and does not just join.
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4.3. Piecewise Quadratic Approximation

Fig.4.2. demonstrates the results of applying the traditional
Quadratic Interpolation method and the suggested Moment-

Preserving method.

Piecewise Quadratic Approximation
45 r T ; .

T

35

T

25

15

1
19 20 21 22 23 24

Fig 4.2 Piecewise Quadratic Approximation for 1-D Signal

MP: Moment-Preserving. Int:Interpolation
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The figure shows the original function with noise, the Quadratic
Interpolation method is represented using the dotted line and the

Moment-Preserving method is the black line.

The Moment-Preserving approximation is closer to the original
function while the Quadratic Interpolation method is results in a

distorted signal compared to the original function.

4.3.1. Zoom In Piecewise Quadratic Approximation

The Piecewise Quadratic Approximation is the experimented for
the first time in the present work. The paper that introduced the
Moment-Preserving technique in 1997 focused only on Linear

Approximation. Here, we show that the method is successful also

for higher order (Quadratic) polynomial.

Fig4.3. shows the effect of various noise levels on
Quadratic Interpolation and Moment-Preserving Piecewise

approximation method.
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Piecewise Quadratic Approximation
0.18 T T . r

0.16} .
014} MP S

012 B :l B
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0 0.2 04 06 0.8 1
Noise Level

Fig.4.3. Mean Square Error versus Noise Level for Piecewise Quadratic

Approximation for 1-D Signal.

MP: Moment-Preserving. Int:Interpolation
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4.4. Piecewise Cubic Spline Approximation

Fig.4.4. demonstrates the results of applying the traditional Cubic

Spline Interpolation method and the proposed Moment-Preserving

method.
Piecewise Cubic Spline Approximation
-05 . . . . ,
I | S— INT . §
MP ) "1
e
_'] 5 o ) l}1 | 4

W

'

g

()]
Y

= 20 ]
M

llli { \ “ illl] 'x; Y

IH | lynhl,]'n ‘

|

L

_35 L 1 1 1 i
9 10 11 12 13 14

X

Fig.4.4. Piecewise Cubic Spline Approximation for 1-D Signal.

MP: Moment-Preserving. Int:Interpolation

37

15



The figure shows the original function with noise, the Quadratic
Interpolation method is represented using the dotted line and the

Moment-Preserving method is the black line.

Again, it is clear that the Moment-Preserving approximation is
closer to the original function while the Quadratic Interpolation

method is not as close to the original function.

Lincar Piecewise Approximation and Cubic Piecewise
Approximation are very similar in the concept. The difference
between them appears at the knot points. The Linear Piecewise
Approximated curve is sharp at the nodal points while the
application of Cubic Spline makes the curve smoother and this

makes the curve look better.
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4.5. Comparison between the 3 Approaches

Piecewise Moment-Preserving Approximation
04 T L) T

0.35

——————— Linear ¢
03} Quadratic ,’/ .
___ _ Cubic Spline /

0.25

0.2

MSE

0.15

0.1

0.05

Noise Level

Fig.4.5. Comparison between 3 approaches for 1-D Signal
Linear: MP Piecewise Linear Approximation
Quadratic: MP Piecewise Quadratic Approximation

Cubic Spline: MP Piecewise Cubic Spline Approximation

Fig4.5. illustrates a comparison between Moment-Preserving Piecewise Linear,

Quadratic and Cubic Spline Approximation.
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As shown in the graph, that the Quadratic method gives the least percentage of
error followed by Cubic Spline. The least accurate results happen to be when

applying the Piecewise Linear Moment-Preserving approximation.

This does not denounce the effectiveness of Linear Moment-Preserving
approximation when compared to the Linear Interpolation traditional method.

However, it is the least efficient when compared to Moment-Preserving higher

order polynomial approximations.
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Chapter 5

Moment-Preserving Results for 2-D Closed

Boundary

41



5. Moment-Preserving Results for 2- D Closed Boundary

5.1. Introduction

Approximation of 2-D Closed Boundaries works as a method for the recognition
and classification of deformable shapes. In our present demonstration, the
deformation comes in the form of noise. The removal of noise extracts the actual
shape of the boundary; hence, the comparison between objects, the searching of
an object in a database or the classification of the approximated object into a

globally consistent interpretation can take place.

The present method, Moment-Preserving piccewise approximation, has always
been tested on noisy closed binary boundaries by obtaining their r(0) signatures
and computing the approximations for the resulting 1-D signatures. After
approximating the 1-D signatures, treating the signature as a signal, the boundary

is brought back from the approximated signature.

The 0-space, normalized to {0,2m}, is divided into 8 sectors. In each sector, one

nodal © point is selected every 40 points.
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5.2. Piecewise Linear Approximation

Piecewise Linear Approximation Piecewise Linear Approximation

2
151
n
0.5
ob
-0.5
“1E
151
24 3 2 1 o 1 2 3 4 24 3 2 1 o] 1 2 3
Fig.5.1.a Int. Piecewise Linear Approx. Fig.5.1.b MP Piecewise Linear Approx

for 2-D Closed Boundaries for 2-D Closed Boundaries

Fig.5.1.a. shows a sample of the results obtained from a noisy closed boundary
when applying the Linear interpolation. Fig5.1.b. shows the boundary resulting

from the approximation using the moment-preserving method.

The problem with using the linear piecewise approximations without moment
preservation is very clear in the presence of significant noise levels. Values of the

function at the nodal points could be the extreme points of noise amplitude

leading to severe fluctuations.
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5.3. Piecewise Quadratic Approximation

Piecewise Quadratic Approximation Piecewise Quadratic Approximation

Fig.5.2.a Int. Piecewise Quadratic Approx.  Fig.5.2.b MP Piecewise Quadratic Approx

for 2-D Closed Boundaries for 2-D Closed Boundaries

Fig.5.2.a. shows a sample of the results obtained from a noisy closed boundary
using Quadratic interpolation. Fig.5.2.b. shows the boundary resulting from the

approximation using the moment-preserving method.

The next sub-section takes a closer look at the quadratic piecewise approximation
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MSE

0.18
0.16
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0.02
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5.3.1. Zoom In Piecewise Approximation

A typical dependence of the MSE on the noise level in a boundary
is shown in Fig.5.3. It can be seen that imposing the moment-
preserving criteria leads to a significant reduction in the MSE

resulting from a high level of noise on the boundary.

Piecewise Quadratic Approximation of a Boundary

T

0 0.2 o4 06 08 1
MNoise Level

Fig5.3. Mean Square Error versus Noise Level for Piecewise Quadratic

Approximation for 2-D Closed Boundary

Int: Interpolation; MP: Moment-Preserving
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5.4. Piecewise Cubic Spline Approximation

Piecewise Cubic Spline Approximation

INT

Piecewise Cubic Spline Approximation

—

Fig.5.4.a Int. PiecewiseCubic-Spline Approx. Fig.5.4.b MP Piecewise Cubic-Spline Approx

for 2-D Closed Boundaries

for 2-D Closed Boundaries

Fig.5.4.a. shows a sample of the results obtained for a noisy closed boundary

using cubic spline interpolation. Fig.5.4.b. shows the boundary resulting from the

approximation using the moment-preserving method.
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5.5. Comparison between the 3 Approaches

It should be noted that the degree of accuracy of moment-preserving
approximation for noisy boundaries does not depend strongly on the degree of the
approximating polynomial. The figures of the results show clearly that the MSE
for the same noise level will not differ significantly between linear, quadratic and
cubic spline approximations. Therefore, a low order polynomial with moment
preservation can serve to define the skeleton of a noisy shape to a degree of

accuracy significantly higher than the usual piecewise interpolation techniques.
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Chapter 6

Moment-Preserving Results for Digitized Images
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6. Moment-Preserving Results for Digitized Images

6.1. Introduction

An image, considered as a matrix of pixel values, can be approximated to achieve
lossy compression. The most efficient technique used so far is the Discrete Cosine
Transform (DCT), which operates in the frequency domain rather than the spatial
domain of the image. The usual method for applying the DCT is to process image
blocks of size 8 x 8 pixels using a 2-D DCT. A zigzag mapping is used to
preserve DCT coefficients of maximum variance while setting the rest of the 64
coefficients to zero. Beside its low computational complexity, the advantages of
using the DCT is that it packs the information in the maximum variance
coefficients and that it minimizes the boundary discontinuities between the

blocks.

In order to apply moment-preserving techniques to a digitized image, we have to
use a piecewise approximation in the spatial domain. Block processing can be
used after mapping the block pixels into a 1-D vector from which nodal points can

be selected for the approximation process using the methods developed in the

present work.

We have experimented with different sub-image geometries and have selected

column processing as the block processing method. In this case, a block is chosen
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to be a sub-column with a number of pixels depending on the degree of variance
in the column. As an example, we have used a block size of 17 pixels with 5
nodal points (one nodal pixel every 4 pixels). The image whose results are show

here is a 256 grey level image of size 256 x 256 pixels.
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6.2. Linear & Quadratic Piecewise Approximation

Fig. 6.1.a. shows the original image. Using usual linear interpolation and moment-
preserving linear approximation, the resulting images are shown in Fig. 6.1.b. and
Fig. 6.1.c. respectively. Table 6.1. gives the MSE for these two cases. It can be
seen that the use of the moment-preserving approximation significantly enhances
the quality of the image relative to the usual interpolation method. Similar
conclusions can be derived from the use of higher approximating polynomials, as

shown in Figs. 6.2.a. and 6.2.b. and Table 6.1. for the case of quadratic

approximation.

(b) Linear Int, (c) Linear MP.

Fig.6.1.
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(a) Quadratic Int.  (b) Quadratic MP.

Fig.6.2.

Table 6.1. MSE for Image Linear & Quadratic Approximations (x 10 )

Moment-
Method Interpolation | Preserving
Linear 33 24
Quadratic {37 23

In order to compare the present spatial approximation method with frequency
domain processing, we have used the DCT with a block size of 8 x 8 pixels and
preserving the highest variance K coefficients of the zigzag mapped 64

coefficients for each block. We have also processed the blocks after adding N
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nodal coefficients from the remaining (64 — K). These nodal points have been
samples every 4 coefficients and their values have been determined by a moment-
preserving quadratic method. With K = 12, and N = 3, the packing ratio is

approximately comparable to the case of spatial processing shown above.

Fig.6.3. shows the reconstructed images using the above parameters, and Table

6.2. gives the MSE for different values of K and N.

(a) DCT (b) DCT with MP

Fig. 6.3.

Table 6.2. MSE of DCT Processing for Different Packing Parameters
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It is to be noted that the MSE of 0.0023 obtained for quadratic spatial processing
(see Table 6.1.) is quite close to the value of 0.0022 obtained from the DCT with
K = 12 and N = 3 moment preserving quadratic nodal points. This indicates that
moment-preserving approximations of images in the spatial domain can compete
with transform methods such as the DCT as far as packing efficiency is
concerned. However, we must recognize the advantage of low computational
complexity offered by the DCT relative to moment-preserving spatial processing.
This is in view of the latter methods being dependent on matrix inversion

computations that increase their computational cost for image approximations.
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Chapter 7

Moment-Preserving Results for 2-D Surfaces
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7. Moment-Preserving Results for 2-D Surfaces

7.1. Introduction

Through this chapter, we demonstrate the effect of applying the moment-

preserving constraint on approximation of 2-D Surface. We compare the result

with the Bilinear Interpolation technique.

In Bilinear Interpolation, we need four points on the corner of a square like shape

to interpolate. So, a mesh of knot points over the 2-D surface is chosen and

bilinear interpolation is applied.

The moment-preserving constraint treats the 2-D Surface as a sct of lines in row
and a set of lines in column. Moment-Preserving technique deals with each row as
a signal and approximates each and every row of the 2-D Surface “i.e. represented
by 2-D Matrix”. The same procedure is then repeated for every column. The
result of rows approximation and the result of columns approximation are then

averaged together to give us the resulting approximation matrix.
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We experiment the method on 3 Surfaces as shown below. The surfaces as:

[ 20,7,
1. f(x’y):sin_x_ui
VX +y* +eps

2. fny) = pir WEEY TP
. )y p \/‘2—_—2'
x +y° +eps

3. f(x,y) = peaks(row(x))

In the case of the above-mentioned 3 functions, we take 5 nodal points on each

row and 5 nodal points for each column. Hence, for a matrix of nXn, we have a

mesh of 25 nodal points.
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7.2. 2-D Surface

Shown below the results of applying the moment-preserving constraint on 2-D
surfaces. The figures illustrate the results of using the above functions
respectively. Figures 7.1.a., 7.2.a.and 7.3.a. represent the 3 pure surfaces that we
will demonstrate on. Figures 7.1.b., 7.2.b.and 7.3.b. are the surfaces after random
noise has been added to them. Figures 7.1.c., 7.2.c.and 7.3.c. show the effect of
moment-preserving constraint when applied on the noisy surface for
approximation in purpose of extracting the pure original surface while Figures
7.1.d., 7.2.d.and 7.3.d. are the result of applying bilinear interpolation to the same

noisy surfaces.
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Noisy Surface
Original Surface LT

z-label

x-label y-label 0o

x-label

Fig. 7.1.a. Original Surface Fig.7.1.b. Noisy Surface

MP Suface Int. Surface

wlabel ylabel 00 xlabel

Fig. 7.1.c. MP Surface Fig.7.1.d. Int.Surface
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Noisy Surface

Original Suiface

ylabel 0o «labet ytabel

x-label

Fig.7.2.a.0riginal Surface  Fig.7.2.b. Noisy Surface

MP Surface Int. Surface

y-label 8o x-label

x-label

Fig.7.2.c.MP Surface Fig.7.2.d. Int. Surface.

61



Original Suface

Noisy Surface

2-label

z-label

y-label 00 xlabet y-label 00

x-labet

Fig.7.3.a.Original Surface ~ Fig.7.3.b. Noisy Surface

Int. Surface
MP Surface )

z-label
z-label

y-labet 00

x-label

y-label oo

x-fabel

Fig.7.3.c.MP Surface Fig.7.3.d. Int. Surface
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The above 3 illustrative examples show the effect of applying linear piecewise moment-
preserving approximation relative to bilinear interpolation. By the naked eye, it is clear
that moment-preserving technique demonstrates a much better result than bilinear
interpolation. Fig. 7.4. reinforces this idea by demonstrating the MSE relative to noise
level for both Bilinear Interpolation and Linear Piecewise Approximation. The Bilinear
interpolation appears as a dotted line while the Moment-Preserving appears as the black

line.

Piecewise Linear Approximation
01 T T T T T T T T T
— MP
0.09+|---- Int R

0.08 P

T
~
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0.06 /_

3 0.05
=

T
.‘\
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~
1 1

0.04 -

003+ /"’ .

0.02 - |

001 --__-“-—__’ - ..,-""/“. —

1 1 i i 1 1
0 0.05 01 015 02 025 03 035 04 04 05
Noise Level

Fig.7.4.Mean Square Error versus Noise Level for Bilinear Interpolation and Linear MP
Piecewise Approximation for 2-D Surface.

Int: Interpolation. MP: Moment-Preserving
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8. Conclusion and Future Work

8.1. Summary and Conclusion

In the present work, experimentation of the potential of using the moment-
preserving constraint as a technique for signals and images approximation is
demonstrated. Its ability to combine the Signal Domain and the Transform

Domain makes it an attractive technique for experimentation.

Through this thesis, deriving the mathematical formulas as well as experimenting
them on the Moment-Preserving Piecewise approximation technique was
illustrated in:
= 1-D Signals using the Linear, Quadratic and Cubic Spline polynomial
orders,
= 2.D Closed Boundaries using the Linear, Quadratic and Cubic Spline
polynomial orders,
» Digitized Images using the Linear and Quadratic polynomial orders and

= 2-D Surfaces using the Linear polynomial order.

In the case of 1-D Signals, the Moment-Preserving Piecewise Approximation
performance is much better than Interpolation on the 3 experimented polynomial
orders. On the other hand, the higher the Moment-Preserving polynomial order,

the better was the accuracy of the resulting signal. The Moment-Preserving
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Piecewise Quadratic approximation is the best performer among the 3

demonstrated polynomial orders.

In the case of 2-D Closed, the Moment-Preserving Piecewise Approximation
performance is much better than Interpolation on the 3 experimented polynomial
orders. However, unlike the 1-D signals, the 3 illustrated polynomial orders gave

almost the same result when applied in Moment-Preserving Piecewise

approximation

As for Digitized Images, Moment-Preserving Piecewise approximation gave
results as close in accuracy as that achieved by the Discrete Cosine Transform.
Since Discrete Cosine Transform is the most famous technique for Image
compression, this means that the effect of Moment-Preserving Piecewise
technique is promising. However, Moment-Preserving Piecewise techniques lag

behind Discrete Cosine Transform as far as time is concerned.

An interesting observation is that the behavior of Moment-Preserving compared
with Interpolation on various polynomial levels is not the same. This is clear from
the difference between the efficiency of Quadratic Moment-Preserving piecewise
approximation over the Linear Moment-Preserving piecewise approximation,

which is a reversed result in the case of Interpolation.
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The Linear Moment-Preserving piecewise approximation experiment on 2-D
Surfaces added more credit to the method since again it proves its successfulness

over the Bilinear Interpolation for various surfaces.

Moment-Preserving piecewise approximation technique, tested in various
experiments, proves to be an excellent method for approximation serving the
purpose of noise-reduction and signal-space compression. However, this higher
accuracy in approximation has its price, which is paid in terms of the time
consumed to perform the approximation process. Aside from that, Moment-

Preserving piecewise approximation is a great performer for approximation.

Performance is an issue of concern that is observed during generating the
experimental results. The aim of the mathematical derivation is to find the
approximation function G. This requires dealing with a system of m+1 equations
(i.e. m is the number of chosen knot points), which requires matrix operations to
solve it. The operations of matrices lengthens the running time because its
complexity is almost O((m+1)"2) which highly increases as m increases in value.
However, in this type of problem i.c. approximation of signals, usually a
compromise between Time and Quality is a question. In our case, the addresses
Quality more than Time; the fact that makes it beneficial to safety critical cases

like the medical case we referred to earlier.
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8.2. Future Work

My original inclination when I started working on this thesis was to extend the
Moment-Preserving. constraint to 3-dimensional space. In 3-D space, Moments
are expected to be of great help. This is because of the synchronization process it
is expected to provide when viewing a 3-D object from various angles. Hence, it

is promising when approximating 3-D objects.

The achieved results and the future work could be applied on medical images. We
could not put that in the thesis time plan due to the huge time consumption in the
mathematical derivations, which, together with the implementation of the theories
for demonstrating the strength of the Moment-Preserving method, were very
challenging. Though it is time consuming compared to other present techniques.

Medical images could be highly enhanced using our method.

In medicine, diagnosis of diseases is a serious issue. Without an accurate
approximation technique, wrong diagnosis could happen which affects the life of
human being. So, we expect consumption of time not to be an obstacle in similar

critical fields.
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Moment-Preserving Piecewise Approximations
for 1-D and 2-D Signals

Amr Goneid and Soha AbuSeif
Computer Science Department, The American University in Cairo

ABSTRACT

Approximations of 1-D and 2-D signals are important for noise
reduction and signal space compression. Current techniques
address the approximation process either in the signal space or
in its transform space but not in both. A moment-preserving
constraint can couple both spaces for better evaluation of
approximations at nodal signal points. We present results for
applying moment-preserving piecewise approximations of 1-D
and 2-D signals using Linear, Quadratic and Cubic Spline
polynomials. Results demonstrate higher accuracy of the
method compared to approximations obtained without moment
preservation.

Keywords: Signal Processing, Image Processing, Pattern
Analysis, Piecewise Approximations

1. INTRODUCTION

The process of approximating digitised 1-D signals and images
has always been a regular practice when there was the need for
reducing noise or for the purpose of lossy compression of the
signals. In the 1-D case, the noisy signal is considered to be a
function f(x) sampled at a set of distinct points {x; ,i=0,1, ..
n}. The objective of an approximation method is to find an
approximating function g(x) defined at a set of distinct nodal
points {z ,j=0,1,...,m}, m <n, subject to a certain error
minimization criterion. The approximated values can be joined
using some interpolation technique. Obviously, this
methodology also applies to 2-D signals or images.

Because the approximation problem is relevant to many
applications in signal processing, pattern analysis and image
processing, a considerable amount of research has been
advanced in this area. Existing well known approaches derive
the approximations either through constraints in the signal
domain or in its transform domain but not in both. In the signal
domain, several simple sub-sampling techniques have been
commonly used, e.g.[1] beside the more complex least squares
polynomial methodology. Other approaches utilize piecewise
linear approximations, e.g. [2] as well as the smoother
polynomial splines, e.g. [3]. In the transform domain, common
approaches are the FFT, DCT, and KLT transforms [e.g. 4,5,6].
More recently, a method developed in [7] approaches the
problem by deriving the approximation in the signal domain
while preserving a finite number of geometric moments that are
related to its Fourier domain. The method has been applied to
piecewise linear approximations. In the present work, we
extend the moment-preserving method for 1-D and 2-D signals
to higher order polynomials. Specifically, we present the
derivation of the moment preserving method for linear,
quadratic and cubic spline polynomials. We also present results

of applying this technique to 1-D signals, closed binary
boundaries and images.

2. THEORY

2.1 General

In signal theory, it is well known that the characteristic function
of a random signal is the Fourier transform of its density
function p(x), i.e.

¢Gv) = E[exp(ivx)] =
= exp(jvx) p(x) dx = 7 {p(x)} M

If S, represents the kth geometric moment of a function p(x),
then

S = E[x=[x* p(x) dx = (-)* d“¢gGv)/dv*] o 2

Suppose that the characteristic function has a Taylor-series
expansion, then

AGV) = Z dgGVIAVE ] o VY K =2, S, V)7 K! 3)

Therefore, if the characteristic function has a Taylor-series
expansion valid in some region about the origin, it is uniquely
determined in this interval by the geometric moments. If the
moments do uniquely determine the characteristic function (and
hence the Fourier transform of the density function) then they
also uniquely determine the density function. The consequence
of this uniqueness is that a moment-preserving approximation to
the function p(x) in the x-domain will also serve as an
approximation constraint in the v-domain.

2.2 Moment-Preserving Approximation

Consider the kth moment of the variable x over the finite
interval (i,j) of the function fx) to be S,(ij) = EJx"); j- Letabe
a scale reduction factor so that x = oty and hence we define a
scaled moment as

oi(ij) = o “ D S (i4) = [i; ¥* flay) dy = Eqo,[y"];; e

With the function f(x) specified by a finite set of discrete points
{x;,1=0,1,..n}, the scaled moment o is the sum over all (n)
segments (i,i+1) covering the above domain:

O = Lio(iitl) ,i=01,..,n1 )

On the other hand, if we seek an approximating function g(x)
defined at a set of distinct nodal points {z; ,j=0,1,..., m},
then over the interval between two nodal points (p,q) we obtain
scaled moments p(p,q) whose sum over the nodal intervals
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gives the scaled moments f. For the moment preserving
approximation, we require that

Oy = My for k=0,1,..,m (6)

The above moment-preserving constraint leads to a system of
m+1 equations

c=E.G N

where E is an m+1 by m+l square matrix of coefficients
depending on the approximating polynomial, and G is a column
vector representing the approximations g(z;) to the function f(x)
at the nodal points {z; ,j=0,1 ,....,m}.

3. PIECEWISE LINEAR
APPROXIMATION

Assuming that between the nodal points z, and z, the function is
piecewise linear, we use Lagrange’s classical formula

2oq(0y) = (Yq = YV(¥q - ¥p) &(0y,) +
+ (Y - Yp)(¥q - ¥p) g(0Y,) ®

to compute the kth scaled moment over that region:

H(p.q) = o “‘;” Si(p.a) =
= J‘P,q y gpq(ay) dy = an[yk]p,q

With Dy(tn) = [, " dt= (t™" —t,""") A(n+1) then evaluation
of the integral gives

w(p.q) = glory,) Bo(ak.y) - gloyy) Bo(pky) )]

where By(b,k,0) = {t, Dpg(t,k) - Dyg(tk+1)} / Dye(t,0)

For nodal points {z ,j= 0,1 ,...., m}, then the scaled moments
for the m segments will be:

m(0,1) = g(ayo) Bi(Lkyy) - glayy) B (0.k.y)
m(1,2) = gloy)) Ba(2ky) - gloyz) Bo(1kyy)

“k(m"1 ’m) = g(a}'m-l) Bm(m’kay) - g(a}'m) Bm(m'lak,y)

Let us define a function

B,(1,kt) forj=0
Gkt =| Bu(+lk)-BG-1kt) forj=1,..m-l
- B,(m-1k1) forj=m (10)

Hence, the total scaled moment can be expressed as a vector p
with elements

e =% Gky) glay) 5 j,k=01,...m (11)
Notice that in the above equation, the values of y; represent the
scaled coordinates of the nodal points. When the scaled
coordinates of the actual function points are used, then we
obtain the actual scaled moments vector 6. Accordingly,
moment preservation ( L = & ) leads to the system

G=E'.c (12)

where the elements of the square matrix E are given by
e(ky) = Ci(k,y)

4. PIECEWISE QUADRATIC
APPROXIMATION

Here, we use equally spaced nodal points with an internal point
z, between the points z, and z;. With A= (z,- 2, ) = (z, - % ),
Lagrange’s formula can be written in the form:

2A2 gpq(x) = (X - Zr) (X - Zq) g(zp) -2 (X - Zp) (X - Zq) g(zr) +

+ (x - 7p) (x - 2)) 8(2g) (13)
With  p(p,@) = Jpq ¥Y* gp(ty) dy one obtains
dpq) = g(ayy) Byg(r,a:ky) - 2 glay,) By o(p.g.ky) +
+ g(ayy) By o(porkoy) (14)

where By, (i k,t) = {2/ szq(t,O)] { Dpqg(tk+2) -
- (t; + ) Dpg(tk+1) + 1, Dpg(tk) }

Similar to the method used for the piecewise lincar
approximation, we may write

e =L Gy gloy) 5 3,k=0,1,...,m, meven

where Bo(1,2,ky) forj=0,
-2 By ju(-1ijt1lk.y) forj odd,
Cj(k,}’) = Bj~2,j(j'21j'l ,k,)’) + Bj,j+2(j+1 »j+2,ka)')

forj even,

Bnaom(m-2,m-1k,y) for j=m (15)

As before, the elements of the matrix E are e(k,j) = C(k,y)

5. PIECEWISE CUBIC SPLINE
APPROXIMATION

Lagrange’s formula for the piecewise linear interpolation in the
interval between z, and z, may be written in the form:

gpq(2) = a g(z,) +b glz,)

with a=(zg-2)/(zq-2,) and b=(z-Z))(zg-2,) =1 ~2a

In a cubic spline approximation, we add a cubic polynomial
whose second derivative varics linearly over the (p,q) interval
and with zero values at z; and z, leading to

2q(2) = 2. 8(zp) +b g(z) + ¢ g7(z,) + d g7(z,)

where
c=(1/6) (@*-a)(z,-z,)’ and d=(1/6)(b>b)(z,- z,)

Hence, the interpolating polynomial can be expressed as:
gpq(ay) = [(Yq - )’)/ Ay] g(a}'p) + [(Y - yp)/ Ay] g(aYQ) +

+P(ay) + Q(ay) (16)

where Ay =yq-y, , .
P(aty) = [(a—Y)’ - A%, (¥g — )] (¢/6A,) @,
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Qo) = [(y - y,)* - A%y (v - ¥p)] (0€/64,) 9
@, and @, are the second derivatives at the two nodal points.

Let Uy(p,q) = Jpq ¥ [P(ay) + Q(oy)] dy, so that

1 (p.q) - Un(p,q) = 8(0ty,) Bo(q.k.y) - 8(0yg) Bo(p:kyy)

where  By(b)k,t) is as defined for the linear case. Therefore,
the problem is similar to the linear case except for the term
U(p,q). Evaluation of this term gives

Uk(p7q) = qu(y’k) [‘Yp BO(q) - Yq BO(p)] +
+ qu(y’k'ﬂ) [Yp BJ(CI) - Yq Bl(p)] +
+Dpg(yk+2) [, B2(a) - Yo B2(p)] -

- Dpg(ykt3) [, - Yol an
where Yp = (a2/6Ay) ‘pp ’ BO(I) = y3i - Azy Yio» ﬁl(l) = Azy -3 yzi ’
B()=3y;

It follows that

W - U =% Cky) gloyy)  »j,k=01,...m (18)
where U, =Z; Ui(G-1.) ,j=12,...m

Accordingly, moment preservation (= 6 ) leads to the system
G=E'.(6-U,+Up) 19

In the above equation, E and ¢ are respectively the coefficient
matrix and moments vector for the piecewise linear
approximation, while the vectors U, and U are computed using
the nodal points and the actual function points, respectively.

6. EXPERIMENTAL RESULTS

6.1 1-D Signal Approximation

The above moment-preserving method has been applied to
obtain piecewise approximations for various 1-D signals f(x).
For a given approximation, nodal points {z, j = 0,1,...., m}were
chosen to be evenly spaced across the x-space. The vector of
approximants G at those points was computed using the linear,
quadratic or cubic spline methods outlined above and an
approximation g(x) to the function is obtained by the respective
interpolation method. For comparison with usual interpolation
techniques, an approximation h(x) was also obtained using the
function values f(z). We have used the mean-squared error
(MSE) as a measure of the error norm between f(x) and each of
the approximations g(x) and h(x).

As an example, we show here the results for the function

f{x) = 2sin(0.2 x) + 5¢c0s(0.3 x) +wr (20)

where r is a uniformly distributed random noise {0,1} and w is
an amplitude factor. For the above example, we have used an x-
domain covering 10 blocks with 161 function points and 5 nodal
points in each block (i.e. one nodal point every 40 function
points). For more accuracy and to reduce the need for
reconditioning the matrices in the inversion process, we have
used a scale factor o0 =x,.;.

As an example, Fig.(l) compares the obtained piecewise
approximations without and with moment-preserving constraint

Piscewise Linear Approximanon Piecewise Quadratc Approdmation

Fig.(1) Piecewise linear, quadratic and cubic spline
approximations.
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Fig.(2) MSE at different noise levels (Quadratic)

for the linear, quadratic and cubic spline approximations.

Fig.(2) shows the MSE as a function of noise level for the

quadratic approximation. The solid (MP) and dotted (INT)
curves relate to moment-preserving and usual interpolation
MSE, respectively. The above figure shows the expected result
that the MSE increases by increase of the noise level and also
clearly illustrates how the MSE is significantly decreased, even
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Fig(3) MSE for the different ~moment-preserving
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at high noise level, by imposing moment preservation. Similar
results are obtained for linear and cubic spline approximations.
In Fig.(3), we show the results for the MSE obtained for the
different moment-preserving approximations at different noise
levels. The shown results indicate that the quadratic
approximation is better than the other two. Although cubic
splines produce smoother approximations, higher accuracy is
obtained with the quadratic approximation.

6.2 2-D Closed Boundaries

We have also applied the present methodology to noisy closed
binary boundaries by obtaining their r(8) signatures and
computing the approximations for the resulting 1-D signatures.
The 6-space, normalized to {0,2n}, is divided into 8 sectors. In
each sector, one nodal 0 point is selected every 40 points.

Piecewise Linear Approximation
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Fig.(4) Interpolation approximation for a boundary

A sample of the results obtained for a noisy closed boundary
using usual interpolation is shown in Fig(4) for linear,
quadratic and cubic spline approximations. The problem with
using such piecewise approximations without moment
preservation is quite clear in the presence of significant noise
levels. Values of the function at the nodal points could well be
extremum points of noise amplitude leading to fluctuations
between these points.

The boundaries shown in Fig.(4) have been approximated with
moment preservation with the results shown in Fig.(5). It can
be clearly seen that moment-preserving approximations are
superior to the usual interpolation methods for boundary
representation.

Piecewise Linear Approximation
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Fig.(5) Moment-preserving approximation for a boundary

A typical dependence of the MSE on the noise level in a
boundary is shown in Fig.(6). It can be seen that imposing the
moment-preserving criteria leads to a significant reduction in
the MSE resulting from a high level of noise on the boundary.

Piecewise Quadratic Approximation of a Boundary

0.18

0.16¢ T
MP B
0.14

012 P
w 01 P
w
=008 . ]
0.06 .-
004} .

0021 L7

[¢] 0.2 04 06 08 1
Noise Level

Fig.(6) Typical MSE graph for boundary approximation.

It should be noted that the degree of accuracy of moment-
preserving approximation for noisy boundaries does not depend
strongly on the degree of the approximating polynomial. The
results we obtained show that the MSE for the same noise level
will not differ significantly between linear, quadratic and cubic
spline approximations. Therefore, a low order polynomial with
moment preservation can serve to define the skeleton of a noisy
shape to a degree of accuracy significantly higher than the usual
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piecewise interpolation techniques. Fig.(7) shows some Figs. (9a) and (9b) and Table (1) for the case of quadratic
examples of skeleton detection using quadratic moment- approximation.
preserving piccewise approximations.

>

15
NP Qued

1

05

(a) Original Image

Fig.(7) Examples of skeleton detection from noisy boundaries
using quadratic moment-preserving approximations.

(b) Interpolation (©) Moment-rcservi

ng

6.3 Approximation of Digitized Images Fig. (§) Image linear approximation
An image, considered as a matrix of pixel values, can be
approximated to achieve lossy compression. The most efficient
technique used so far is the Discrete Cosine Transform (DCT)
which operates in the frequency domain rather than the spatial
domain of the image. The usual method for applying the DCT is
to process image blocks of size 8 x 8 pixels using a 2-D DCT. A
zigzag mapping is used to preserve DCT coefficients of
maximum variance while setting the rest of the 64 coefficients
to zero. Beside its low computational complexity, the
advantages of using the DCT is that it packs the information in
the maximum variance coefficients and that it minimizes the
boundary discontinuities between the blocks.

In order to apply moment-preserving techniques to a digitised
image, we have to use a piecewise approximation in the spatial
domain. Block processing can be used after mapping the block

pixels into a 1-D vector from which nodal points can be selected (b) Interpolation (c) Moment-Preserving
for the approximation process using the methods developed in
the present work. Fig. (9) Image quadratic approximation

We have experimented with different sub-image geometries and
have selected column processing as the block processing

method. In this case, a block is chosen to be a sub-column with Table (1) MSE for Image Linear & Quadratic

a number of pixels depending on the degree of variance in the Approximations (x 10 %)

column. As an example, we have used a block size of 17 pixels

with 5 nodal points (one nodal pixel every 4 pixels). The image Moment-
whose results are show here is a 256 grey level image of size Method Interpolation Preserving
256 x 256 pixels.

Fig. (8a) shows the original image. Using usual linear

interpolation and moment-preserving linear approximation, the Linear 33 24

resulting images are shown in Fig. (8b) and Fig. (80),

respectively. Table (1) gives the MSE for these two cases. It can
be seen that the use of the moment-preserving approximation .
significantly enhances the quality of the image relative to the Quadratic 37 23

usual interpolation method. Similar conclusions can be derived
from the use of higher approximating polynomials, as shown in
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In order to compare the present spatial approximation method
with frequency domain processing, we have used the DCT with
a block size of 8 x 8 pixels and preserving the highest variance
K coefficients of the zigzag mapped 64 coefficients for each
block. We have also processed the blocks after adding N nodal
coefficients from the remaining (64 — K). These nodal points
have been samples every 4 coefficients and their values have
been determined by a moment-preserving quadratic method.
With K = 12, and N = 3, the packing ratio is approximately
comparable to the case of spatial processing shown above.
Fig.(10) shows the reconstructed images using the above
parameters, and Table (2) gives the MSE for different values of
Kand N.

(a) DCT,K=12,N=0 (b) DCT, K=12, N=3

Fig.(10) DCT Processing without and with N moment-
preserving quadratic nodal points.

Table (2) MSE of DCT Processing for Different Packing

Parameters
K 8 8 12 12 16 16
N 0 3 0 3 0 3
MSE
x100% 1 30 26 25 22 19 19

It is to be noted that the MSE of 0.0023 obtained for quadratic
spatial processing (see Table (1)) is quite close to the value of
0.0022 obtained from the DCT with K = 12 and N = 3 moment
preserving quadratic nodal points. This indicates that moment-
preserving approximations of images in the spatial domain can
compete with transform methods such as the DCT as far as
packing efficiency is concerned. However, we must recognize
the advantage of low computational complexity offered by the
DCT relative to moment-preserving spatial processing. This is
in view of the latter methods being dependent on matrix
inversion computations that increase their computational cost
for image approximations.

7. CONCLUSION

Moment-preserving piecewise approximations have been
derived for linear, quadratic and cubic spline polynomials. The
application of such approximations to noisy 1-D signals and to

2-D boundaries has proven to be superior to the use of ordinary
interpolation methods, specially for high level noise content. In
case of 1-D signals, the quadratic moment-preserving
approximation is more accurate than the other two polynomial
approximations. For 2-D boundaries, the accuracy does not
depend significantly on the degree of the polynomial used. High
packing ratios (e.g. 1/40) can be achieved with high
reconstruction accuracy.

For image approximation, spatial moment-preserving methods
can compete with the efficient frequency domain DCT
processing at comparable packing ratios. However, DCT
methods have the advantage of lower computational
complexity.
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Appendix B: The Matlab Code

Figures A, B, C, D, E, F, G, H and I are block diagrams that illustrate how the M files are
connected to each other in the Matlab. The file name is every diagram is listed under the
name of the functionality it performs. The names of the functions are related to the
mathematical derivations shown earlier. So for elaboration on the function of the modules
within the derivation, link the name of the functionality to the names of the variables in

the mathematical derivation.
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» Linear MP Piecewise Approximation for 1-D Signal block diagram is shown in

Figure A.

Nodal and Fn. Pts.

pknots.M

Test Function

pffun.M

MP Approx. Scaled Moments
for 1-D Signal

piccel.M pmomts.M

C-Function B-Function

pcfun.M pbfun.M
E. Matrices

pefun.M

D-Function

pdfun.M
Lagrange Int. Fn.

fvall.M

Fig.A.Matlab Code Block Diagram for Linear 1-D Signal
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General

= Test Function

function F = pffun(X,w);
%PFFUN receives a row vector X of n+l coordinates (x0 .. xn)
% returns a column vector F of n+l values where F = f(x) + w*r

% r is a vector of random noise (0-1.0). w is the noise weight.

[L,m] = size(X');
r = rand(L,m);

F = 2*35in(0.2*X') + 5*cos(0.3*X') + w*r;

= Nodal and Function Points

function [n,X,XK] = pknots(d,x0,R,nk);
%PKNOTS produces a row vector X of n+l coordinates (x0 .. xn)
% in a block,and a row vector XK of nk knot points

% d x-resolution, R = knot point sampling rate (must be integer)

% s = no. of segments in block = n/R = nk-1

n = R*(nk-1);
for i = 1l:n+l
X(i) = %0 + (i-1)*4d;
end
for i = 1l:nk
XK(i) = x0 +(i-1)*R*d;

end
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Linear Approximation

= D-Function

function d = pdfun(z,i,j,k)
%PDFUN receives vector of z-coordinates (% = z0,z1,..,zn), point

% indices i,j (j»>i) and a moment k,

% and returns [z(j)*(k+1l) - z(i)A(k+1)]/(k+1)

d = (Z(j+1)A(k+1l) - Z(i+1)A(k+1))/(k+1l);

» B-Function

function b = pbfun(X,3j,a,k)
%PBFUN receives vector of x-coordinates (X), point indices j,a

% and a moment k, and returns Bj(a,k)

do0 = pdfun(X,3j-1,3,0);

di

pdfun(xlj-lljlk);
daz = pdf‘m(xlj_lljlk+1) i

b = (X(a+l)*dl-d42)/d0;
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« C-Function

function ¢ = pcfun(X,i,n,k)
%PCFUN receives vector of x-coordinates (X), point index i,

1% the total number of segments (n), and moment k, and xreturns Cci(k)

if (i == 0) ¢ = pbfun(X,1,1,k);
elseif (i == n) ¢ = -pbfun(X,n,n~-1,k);

else ¢ = pbfun(X,i+1,i+1,k) - pbfun(X,i,i-1,k);

end

= E Matrices

function E = pefun(X,n)
%PEFUN receives vector of scaled x-coordinates (X),

% and the total number of segments(n),

%and returns scaled matrix E (n+l)x(n+1) where E(k,i) = Ci(k)

E(kk,ii) = pcfun(xlilnlk) 7
end

end
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» Scaled Moments

function [SIG,M] = pmomts(X,F,c,nk)

%PMOMTS receives row vector of point coordinates (X) of size n+l, the

% no. of knot points (nk) and a'scale factor (c¢) .and function column vector F
% and computes the corresponding scaled coordinate vector (Y)

% returns a column vector SIG of the first nk scaled moments.

% Ordinary moments are given by M(k) = SIG(k) * c*k

Y = X/c;
[L,m] = size(Y);
n = m-1;

for kk = 1l:nk

SIG(kk) = SIG(kk) + pcfun(Y,i,n, k)*F(ii) ;

end
SIG = SIG';
for k = 1l:nk
M(k) = SIG(k) * c*k;

end
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= Lagrange Interpolation Function

function GF = fvall(X,XK,R,G)
%FVAL1l evaluates the function at X using 1st order piecewise
% approximation and Lagrange's Formula. XK is the vector of

% knot points of size nk and G is the vector of values at these points.

% R is the sampling rate.

[k,m] = size(X);
nn = m-1;

[k,nk] = size(XK);
e = 0.001;

for i = 1l:nn

s = fix(i/ (R+e))+1;

x1l = XK(s);
%x2 = XK(s+l);
a = (X(i)-x2)/({x1-x2);

b (X(i)-x1)/(x2-x1);

GF(i) = a*G(s) + b*G(s+l);
end

GF (nn+l) = G(nk);
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Piecewise Moment Preserving Approximation

%Piecel Moment Preserving Approximation of a functiom

%

1st order piecewise approximation of a function F = f£(x)+ w*random noise

% over nb blocks using nk knot points (XK) per block sampled at rate R

% %0 = starting x, d = x-resolution, s = no. of segments per block

% X = x0 ...xn, i.e. n+l points, ¢ is a scale factor

% SIG is the vector of scaled momenté, Gl & G2 are the fuction values at

% the knot points using usual interpolation and moment method, respectively.
% GI & GF are the corresponding interpolated function values using

% Lagrange's formula

% msei, msef are the mean square errors. ei,ef are their means over the blocks
% and are plotted against noise magnitude.

clear;

cle;

clf;

nb = input('Enter no. of blocks: '};

nb = 10;

R = input ('Enter Knot Sampling Rate: ');

R = 40;

nk = input ('Enter no. of Knot points: ');

nk = 5; d = 0.1; s = nk - 1;

kw = 10;

rand('seed’,0);

for k = O:kw

~

0; w= 0.1*k; ww(k+l) = w

for 4 = 1:nb
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[n,X,XK] = pknots(d,x0,R,nk) ;

c = X(n+l);

F = pffun(X,w):
FO = pffun(X,0);
[S1G,M] = pmomts(X,F,c,nk);

E = pefun(YK,s);

G2 = pinv(E)*SIG;

GF = fvall(X,XX,R,G2);

Gl = interpl(X,F',XK);

GI = fvall(X,XK,R,G1);

msef (j) = mean((FO0' - GF).*2);
msei(j) = mean((F0' - GI).*2);

x0 = X(n+l);
lend

lef (k+1) = mean (msef);
lei (k+1) = mean(msei):;
lend

plot (ww,ef,ww,ei);
disp (ef);

disp(ei);




» Quadratic MP Piecewise Approximation for 1-D Signal block diagram is shown

in Figure B.
Nodal and Fn. Pts.
pknots.M
Test Function
pffun.M
pa2.M pmu2.M
MP Approx. for 1- Scaled Moments
D Signal
. pmomts2.M
piecec.M
C-Function B-Function
pcfun2.M pbfun2.M
E. Matrices
pefun2.M
D-Function
pdfun2.M
Lagrange Int. Fn.
fval2.M

Fig.B. Matlab Code Block Diagram for Quadratic 1-D Signal
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Quadratic Approximation

= D-Function

function d = pdfun2(z,p,q,k)

%PDFUN2 receives vector of z-coordinates (Z = z0,zl,..,zn), point

indices p,q (g>p) and a moment k,

o°

and returns [z(q)*(k+1l) - z(p)*(k+1)]/(k+1l)

o

d = (Z(q+l)*(k+l) - Z(p+1)*(k+1l))/(k+l);

» B-Function

function b = pbfun2(Z,1i,3j,p,q,k)
%PBFUN2 receives vector of z-coordinates (Z), point indices i,j,p,q

% and a moment k, and returns scaled Bij(p,q,k)

d0 = pdfun2(z,i,3j,0);
d = pdfun2(z,i,j,k);

d1

pdfun2(Z,i,j, k+1);

daz pdfun2(z,i,j, k+2);

a = pa2(Z,p,q);
mu = pmu2(Z,p,q);

b=2* (d2 - a*dl + mu*d) / (d0 * d0);

The function pbfun2 uses the following two functions:

function a = pa2(Z,p,q)
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%PA2 receives vector Z = z0,zl1l,..,zn, returns zp + zq

a = Z(p+l) + Z(g+l):;

function mu = pmu2(Z,p,q)

%PMU2 receives vector Z = z0,zl1,..,2zn, returns zp * zq

mu = Z(p+l) * Z(qg+l);

= C-Function

function ¢ = pcfun2(Z,i,n,k)
%PCFUN2 receives vector of z-coordinates Z = z0,zl1,..,zn,

% point index i, the value of n and moment k and returns Ci(k,Z)

if (i == 0) ¢ = pbfun2(z,0,2,1.2,k)i
elseif (i == n) ¢ = pbfun2(z,n-2,n,n-2,n-1,k);

elseif (rem(i,2) == 1) ¢ = -2 * pbfun2(2,i-1,i+1,i-1,i+1,k);

else ¢ = pbfun2(zZ,i-2,i,i-2,i-1,k) + pbfun2(Zz,i,i+2,i+1,i+2,k);

end
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= E Matrices

function E = pefun2(Z,n)

%PEFUN2 receives vector of scaled z-coordinates (z = z0,zl,..,zn),
% and the total number of segments(n),

%and returns scaled matrix E (n+l)x(n+l) where E(k,i) = Ci(k,2)

E(kk,ii) = pcfun2(Z,i,n,k);
end

end

= Scaled Moments

function [SIG,M] = pmomts2(X,F,c,nk)

%PMOMTS2 receives row vector of point coordinates (X) of size n+l, the

% no. of knot points (nk) and a scale factor (c) and function columm vector F
% computes the corresponding scaled coordinate vector (Y) and

% returns a column vector SIG of the first nk scaled moments.

% Ordinary moments are given by M(k) = SIG(k) * c*k

[L,m] = size(Y);
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for kk = 1:nk
k = kk-1;
S1G6(kk) = 0;
for ii = 1l:n+l
i = ii-1;
SIG(kk) = SIG(kk) + pcfun2(Y,i,n,k)*F(ii) ;
end
end
SIG = SIG';
for k = l:nk
M(k) = S1G(k) * c*k;

end
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* Lagrange Interpolation Function

function GF = fval2(X,XX,R,G)
%FVAL2 evaluates the function at X using 2nd order piecewise
% approximation and Lagrange's Formula. XK is the vector of

% knot points of size nk and G is the vector of values at these points.

% R is the sampling rate.

[k,m] = size(X);
nn = m-1;

[k,nk] = size(XK);
e = 0.001;

for i = 1l:nn

fix(i/ (2*R+e) ) +1;

j =

s = 2*%j-1;

x1 = XK(s);

x®2 = XK(s+l);

x3 = XK(s+2);

a = (X(i)-%2)*(X(i)-%3)/ ((x1-x2) * (x1-x3));
b = (X(i)-x1)*(X(1)-%x3)/((x2-x1) * (x2-%3));
¢ = (X(i)-x1)*(X(1i)-x2)/ ((x3-x1)* (%x3-x2));

GF(i) = a*G(s) + b*G(s+l) + c*G(s+2);
end

GF(nn+l1l) = G(nk);
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Piecewise Moment Preserving Approximation

%Pieceq Moment Preserving Approximation of a function

%

%

&°

o°

&®

%

%

2nd order piecewise approximation of a function F = £(x)+ w*random noise
over nb blocks using nk knot points (XK) per block sampled at rate R

%0 = starting x, d = x-resolution, s = no. of segments per block

X = x0 ...xn, i.e. n+l points, ¢ is a scale factor

SIG is the vector of scaled moments, Gl & G2 are the fuction values at
the knot points using usual interpolation and moment method, respectively.
GI & GS are the corresponding interpolated function values using

Lagrange's formula

% msei, mses are the mean square errors. ei,es are their means over the blocks

%

and are plotted against noise magnitude.

clear;

clec;

clf;

nb = input ('Enter no. of blocks: '};

nb = 10;

R = input('Enter Knot Sampling Rate: '):
R = 40;

nk = input (*Enter no. of Knot points: ');
nk = 5;

d = 0.1;

s = nk - 1;

kw = 10;

rand('seed’',0);

for k = O:kw

x0

~.

= 0; w= 0.1*k; ww(k+l) = w
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for j = 1:nb
[n,X,XK] = pknots(d,x0,R,nk);

¢ = X(n+l);

F = pffun(X,w);
FO = pffun(X,0);
[SIG,M] = pmomts2(X,F,c¢,nk);

E = pefun2(YK,s);

G2 = pinv(E)*SIG;

Gs = fval2(X,XK,R,G2);

Gl = interpl(X,F', XK);

GI = fval2(X,XXK,R,Gl1l);

mses(j) = mean((FO0' - GS).*2);

msei(j) = mean((FO0' - GI).*2);
x0 = X(n+1);

end

es(k+1l) = mean(mses);

ei(k+1l) = mean(msei);

end

plot (ww,es,ww,ei);

disp(es);

disp(ei);




» Cubic Spline MP Piecewise Approximation for 1-D Signal block diagram is

shown in Figure C.
Nodal and Fn. Pts.
pknots.M
Test Function
pffun.M
MP Approx. for Scaled Moments
1-D Signal
. pmomts.M
pieceq.M
C-Function B-Function
pcfun.M pbfun.M
E. Matrices
pefun.M
Fn. 28D deriv.
D-Function
deriv2.M
pdfun.M
Lagrange Int. Fn.
Pl-Function
psifun.M
pifun.M

Fig.C. Matlab Code Block Diagram for Cubic Spline 1-D Signal
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Cubic Spline Approximation

= Second Derivative of a Function

function y2 = deriv2(x,y)

%DERIV2

% Given vector x[1l..n],and function values f(x)= yI[l..n]

% returns 2nd derivative £''(x) = y2[l..n] for cubic spline

% £'(x[1l]) = £'(x[n]) = 0 , i.e., natural spline

[L,n] = size(x);
u = zeros(l,n-1);
y2 = zeros(1,n);
%ypl = (y(2)-y(1))/(x(2)-x(1));
ypl = 0;
if (ypl > 0.0)
y2(1) = -0.5;

u(1l) = (3.0/(x(2)-x(1)))*((¥(2)-y (1)) /(x(2)-x(1))-ypl);

end
for i = 2:n-1
sig = (x(d)-x(i-1))/(x(i+1)-x(i-1));
p = sig*y2(i-1)+2.0;
y2(i) = (sig-1.0)/p;
u(i) = (y(i+1)-y(i))/ (x(i+1)-x(i)) - (y(i)-¥(i-1))/(x(i)-x(i-1));
u(i) = (6.0 * u(i)/(x(i+1)-x(i-1)) ~ sig*u(i-1))/p;
end
qn = 0;
un = 0;
%vpn = (v(n)-v(n-1))/(x(n)-x(n-1}));:
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ypn = 0;
if (ypn > 0.0)

gn = 0.5;
(3.0/(x(n)-x(n-1))) *(ypn-(y(n)-y(n-1)) /(x(n) -x(n-1)));

]

un

end

y2(n) = (un - gn*u(n-1))/(gn*y2(n-1)+1.0);

for k = n-1:-1:1

v2(k) = y2(k) * y2(k+l) + u(k);

end
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*« Pi - Functiomn

function z = pifun(y,c,p,i,3.k)
%PIFUN
do = pdfun(y,i,j,0);
for 1 = 0:3
d(1+1) = pdfun(y,i,j,k+l);
end
yi = y(i+l);
vi = y(3+1);

gi = c*c*p(i+1)/d0;

gj = c*c*p(j+1)/d40;

al0i = yi*(yi*yi-do*do);
ali = d0*d0-3*yi*yi;
a2i = 3%*yi;

a0j = yi*{(yj*yj-ao*do);
alj = d0*d0-3*yj*y3j;

a2j = 3*yj;

z = d(l)*(gi*an—gj*aoi)+d(2)*(gi*alj-gj*ali)+d(3)*(gi*a2j—gj*a2i)-d(4)*(gi—

gil;

= Psi - Function

function s = psifun(x,c,nk)
%PSIFUN

%

[m,n] = size(x);
F =pffun(x,0);

p = deriv2(x,F)/6.0;
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y = x/¢;
for kk = 1l:nk
k = kk-1;
sum = 0.0;
for j = 1:n-1
i= 3-1;
sum = sum + pifun(y,c,p,i,i,k);
end
s(kk) = sum;
end
s = 8';
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Piecewise Moment Preserving Approximation

%Piecec Moment Preserving Approximation of a function

o

o°

o°

o°

&°

o

&°

Ccubic Spline piecewise approximation of a function F = f(x)+ w*random noise
over nb blocks ‘using nk knot points (XK) per block sampled at rate R

%0 = starting x, d = x-resolution, s = no. of segments per block

X = x0 ...xn, i.e. n+l points, ¢ is a scale factor

SIG is the vector of scaled moments, Gl & G2 are the fuction values at

the knot points using usual interpolation and moment method, respectively.
GI & GC are the corresponding interpolated function values using

Lagrange's formula

msei, msec are the mean square errors. ei,ec are their means over the blocks

and are plotted against noise magnitude.

clear;

cle;

clf;

nb = input ('Enter no. of blocks: ');

nb = 10;

R = input('Enter Knot Sampling Rate: ');
R = 40;

nk = input('Enter no. of Knot points: ');
nk = 5;

d = 0.1;

s = nk - 1;

kw = 10;

rand('seed',0);

for k = O:kw

x0 = 0; w = 0.1*k; ww(k+l) = w

~
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[n,X,XK] = pknots(d,x0,R,nk);

¢ = X(n+l);

F = pffun(X,w); FO = pffun(x,0);
[SIG,M] = pmomts(X,F,c,nk);

E = pefun(YK,s);

pk = psifun(XK,c,nk); ps = psifun(X,c,nk);
G2 = pinv(E)*(SIG+ps-pk); GC = spline(XK,G2,X);
Gl = interpl(X,F',XX); GI = spline(XX,Gl,X);

msec(j) = mean((F0' - GC).*2);
msei(j) = mean((FO0' - GI).*2);
x0 = X(n+l);

end

ec(k+1l) = mean(msec);

i}

ei (k+1) mean (msei) ;
end
plot (ww,ec,ww,ei);

disp(ec);

disp(ei);
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Comparison Between the Three Approximations

* Usual Interpolation

%Piecei Approximation of a function through usual interpolation

1st & 2nd order and cubic spline piecewise approximation of

o°

% a function F = f£(x)+ w*random noise over nb blocks using nk knot

&°

points (XK) per block sampled at rate R. x0 = starting x, 4 = x-resolution,
% X = x0 ...xn, i.e. n+l points, Gl is the fuction values at the knot points.
% GF & GS and GC are the interpolated function values. msef, mses,msec are the

mean square errors. ef,es, ec are their means over the blocks

o®

and are plotted against noise magnitude.

o®

clear;

clc;

clf;

nb = input('Enter no. of blocks: ');

nb = 10;

R = input('Enter Knot Sampling Rate: ');
R = 40;

nk = input('Enter no. of Knot points: ');
nk = 5;

d=0.1;

s = nk - 1;

kw = 10;

rand('seed',0);
for k = O:kw

%0 = 0; w = 0.1*k; ww(k+l) = w

~

for j = 1:nb

[n,X,XX] = pknots(d,x0,R,nk);
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F = pffun(X,w):

FO pffun(xlb);

Gl = interpl(X,F',XK);
GF = fvall(X,XX,R,Gl);
GS = fval2(X,XK,R,Gl);
GC = spline(XXK,G1l,X);
msef (j) = mean((F0' - GF).*2);

mean((F0*' - GS).*2);

mses (j)

msec (3) mean({(F0' - GC).*2);

% plot (X,F,XK,G1,'o',X,GF,X,GS,X,GC) ;
x0 = X(n+1);

% pause;

end

ef (k+1) = mean(msef);
es(k+l) = mean(mses);
ec(k+1l) = mean(msec);
end

plot (ww, ef,ww,es,ww,ec);
disp(ef);

disp(es);

disp(ec);
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» Moment-Preserving Approximation

%Piece Moment Preserving Approximation of a function

% 1st, 2nd order and Cubic Spline piecewise approximation of a function

% F = f£(x)+ w*random noise over nb blocks using nk knot points (XK) per block
% sampled at rate R. x0 = starting x, d = x-resolution, s = no. of segments per
block

% X = x0 ...xn, i.e. n+l points, c is a scale factor

% SIG is the vector of scaled moments, G1,G2,G3 are the fuction values at

% the knot points using moment method. GF, GS and GC are the interpolated

% function values using Lagrange's formula and spline interpolation

% msef, mses and msec are the mean square errors. ef,es and ec are their means

% over the blocks and are plotted against noise magnitude.
clear;
cle;

clf;

nb = input('Enter no. of blocks: '};

nb = 10;
R = input('Enter Knot Sampling Rate: ');
R = 40;

nk = input('Enter no. of Knot points: ');
nk =

d=0.1; 8 =nk - 1; kw = 10; rand('seed’,0):;
for k = 10:kw

x0 = 0; w = 0.1*k; ww(k+l) = w;

for j = 1:nb

[n,X,XX] = pknots(d,x0,R,nk);

¢ X(n+l); YK = XK/c;

F pffun(X,w); FO = pffun(X,0);
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[SIG,M] = pmomts(X,F,c,nk);

E = pefun(¥YK,s);

Gl = pinv(E)*SIG; GF = fvall(X,XK,R,Gl);
pk = psifun(XK,¢,nk); ps = psifun(X,c,nk);
G3 = pinv(E)* (SIG+ps-pk); GC = spline(XK,G3,X);

[SIG,M] = pmomts2(X,F,c,nk);
E = pefun2(YK,s);
G2 = pinv(E)*SIG; GS = fval2(X,XK,R,G2);

mean((F0' - GF).*2);

msef (3)

mean( (FO' - GS).*2);

mses (j)
msec(j) = mean((FO0' ~ GC).*2);
plot(x,F,'+',x,GF,x,GS,'—',x,GC,'.');
x0 = X(n+l);
pause;
end
ef (k+1) = mean(msef); es(k+l) = mean(mses); ec(k+l) = mean (msec) ;
end
plot (ww, ef,ww,es,ww,ec);

disp(ef); disp(es); disp(ec):
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» Linear MP Piecewise Approximation for 2-D Closed Boundary block diagram is

shown in Figure D.

Nodal and Fn Pts

pknots.M

Sionature

signat.M

Scaled Moments

pmomts.M
MP Approx.
E. Matrices C-Function B-Function
piecepl.M pefun.M pcfun.M pbfun.M

Lagrange Int. Fn.

D-Function

fvall. M

pdfun.M

Sig. To Bound. Fn.

shape.M

Join Bound. Ends.

pjoin.M

Fig.D. Matlab Code Block Diagram for Linear 2-D Closed Boundary
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General

= Signature of a 2-D Function

function ¥ = signat(X,xf,a,b,c,w);

%SIGNAT receives a row vector X of n+l coordinates (x0 .. xn)
% normalizes X {0,xf)} to T {2*pi,0} (clockwise)

% returns a column vector F of n+l values where F = D(T)+ w*r
% representing the signature of a parametric function.

r is a vector of random noise (0-1.0). w is the noise weight.

o°

% a,b,c are the parameters of the boundary

[L,m] = size(X):

rand(L,m); T = 2*pi*(1 - X/x£f);

H
i

for i = 1:m

F(i) a*b*abs (sin(T(i)))/sqrt(b*2 * abs(cos(T(i)))4c + a*2 *

abs(sin(T(i)))*c);
end

F = (F + w*r)';

» Boundary from Signature

function [X,Y] = shape(Z,zf,F);

%SHAPE receives a vector Z of n+l coordinates (z0 .. zn)and a vector F

% of n+l values where F = D(T). Normalizes Z {0,zf} to T {2*pi,0} (clockwise)

returns the planar transformation (X,Y)

size(Z); T = 2*pi*(1 - Zz/zf);

[T, m]

for i = 1:m

4

X(i) = F(i) * cosg{T(i));
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Y(i) = F(i) * sin(T(i));

end

» Join Ends of a Boundary

function G = pjoin(G)
%PJOIN
% Averages and equates last value in a row with

% first value in the next row

[nb,nk] = size(G);

for 3 = 2:nb
v = 0.5*(G(j-1,nk) + G(3,1));
G(j-1,nk) = v;
G(i,1) = v;

end

v = 0.5%*(G(1,1) + G(nb,nk));

G(1,1) = v; G(nb,nk) = v;
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Linear Approximation of Noisy Boundary

%PIECPL Moment Preserving Approximation of a closed boundary

1st order piecewise approximation of a noisy boundary

&°

over nb blocks using nk knot points (XK) per block sampled at rate R

o°

% %0 = starting x, d = x-resolution, s = no. of segments per block
% X =x0 ...xn, i.e. n+l points, ¢ is a scale factor

STG is the vector of scaled moments, Gl & G2 are the fuction values at

o°

the knot points using usual interpolation and moment method, respectively.

&

% GI & GF are the corresponding interpolated function values using
% Lagrange's formula. msei, msef are the mean square erxors. ei,ef are their
% means over the blocks and are plotted against noise magnitude.

clear; clc; clf;

nb = input ('Enter no. of blocks: ');
nb =

8;
R = input('Enter Knot Sampling Rate: ');
R = 40;
nk = input('Enter no. of Knot points: ');
nk = 5; nn = R*(nk-1)+1; ux = zeros(nb,nn); uy = ux;

d=1; s = nk - 1; kw = 7; rand('seed’,1943); xf = nb*R*(nk-1);
pl =3; p2=1; p3 = 8;
for k = kw:kw
x0 = 0; w = 0.1*k; ww(k+l) = w;
for j = 1l:nb
[n,X,XK] = pknots(d,x0,R,nk);

c = X(n+l); YK = XK/c;
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F = signat(X,x£f,pl,p2,p3,w); FO0 = signat(X,xf,pl,p2,p3,0);

[SIG,M] = pmomts(X,F,c,nk); E = pefun(¥K,s);

G2 = pinv(E)*SIG; GF = fvall(X,XK,R,G2);
Gl = interpl(X,F',XK); GI = fvall(X,XK,R,Gl);
msef(j) = mean((F' -~ GF).*2); msei(j) = mean((F' - GI).*2);

[x1,y1] = shape(X,xf,F); [x2,y2] = shape(X,xf,GF);
[%x3,y3] = shape(X,x£,GI);
ux(j,:) = x2; uy(j,:) = y2;
plot(xl,yl,'w.'); title('Piecewise Linear Approximation');
hold omn;
x0 = X(n+l);
% pause;
end
ef (k+1) = mean(msef); ei(k+l) = mean(msei);
ux = pjoin(ux); uy = pjoin(uy);
for j = 1:nb
plot (ux(j,:),uy(3,s),'w');
end
pause;
clf;

end

plot (ww,ef, 'w',ww,ei, 'w:'); xlabel ('Noise Level'); ylabel('MSE');
title('Piecewise Linear Approximation of a Boundary');
legend('w-','MP', 'w: ', "INT');

disp(ef); disp(ei);
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» Quadratic MP Piecewise Approximation for 2-D Closed Boundary block diagram

is shown in Figure E.

Nadal and Fn Pte

pknots.M

Qionature

signat M pa2.M pmu2.M

Sealed Moments

pmomts2.M
MP Approx.

E. Matrices C-Function B-Function
piecepl. M pefun2.M pcfun2.M pbfun2.M

Lagrange Int. Fn.

N.Functinn

fval2.M

pdfun2.M

Sig. To Bound. Fn.

shape.M

Join Bound. Ends.

pjoin.M

Fig.E. Matlab Code Block Diagram for Quadratic2-D Closed Boundaries
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Quadratic Approximation of Noisy Boundary

%PIECEPQ Moment Preserving Approximation of a closed boundary

o°

®

2nd order piecewise approximation of a noisy boundary

over nb blocks using nk knot points (XK) per block sampled at rate R

%0 = starting x, d = x-resolution, s = no. of segments per block

X =x0 ...xn, i.e. n+l points, ¢ is a scale factor

SIG is the vector of scaled moments, Gl & G2 are the fuction values at

the knot points using usual interpolation and moment method, respectively.
GI & GF are the corresponding inferpolated function values using
Lagrange's formula. msei, msef are the mean square errors. ei,ef are their

means over the blocks and are plotted against noise magnitude.

clear; clec; clf;

nb = input('Enter no. of blocks: ');

nb = 8;

R = input('Enter Knot Sampling Rate: ');

R = 40;

nk = input(‘'Enter no. of Knot points: ');

nk = 5;

nn = R*(nk-1)+1; ux = zeros(nb,nn); uy = ux;
d=1; s =nk - 1; kw = 5;

rand('seed',1943); xf

nb*R* (nk-1);
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for j = 1:nb
[n,X,XK] = pknots(d,x0,R,nk);
¢ = X(n+l); YK = XK/c;

F signat (X,x£f,pl,p2,p3,w); FO0 = signat(X,xf,pl,p2,p3,0);

[SIG,M] = pmomts2(X,F,c,nk); E = pefun2(YK,s);

G2 = pinv(E)*SIG; GF = fval2(X,XX,R,G2);

Gl interpl(X,F',XK); GI = fval2(X,XK,R,Gl);

msef(j) = mean((F' - GF).*2); msei(j) = mean((F' ~ GI).*2);

shape (X, x£f,F); [x2,v2] = shape(X,xf,GF);

|}

[x1,y1]
[x3,y3] = shape(X,xf,GI);

x2; uy(j,:) = y2;

ux(j,s)
plot (x1,vl, 'w.'); title('Piecewise Quadratic Approximation’');
legend('w-"', '"MP Quad');
hold on;
x0 = X(n+l);
% pause;
end
ef (k+1) = mean(msef); ei(k+l) = mean(msei);
ux = pjoin(ux); uy = pjoin(uy);
for j = 1:nb
plot (ux(j,:),uy(j,:), 'w');
end
pause;
clf;
end
plot (ww,ef, 'w',ww,ei, 'w:'); xlabel('Noise Level'); ylabel('MSE');
title('Piecewise Quadratic Approximation of a Boundary'):;
legend{('w-",'MP', 'ws ', "INT');
disp(ef);

disp(ei);
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Cubic Spline MP Piecewise Approximation for 2-D Closed Boundary block

diagram is shown in Figure F.

Nadatl and Fn Ptc

pknots. M

Qianatura

signat. M

Sealed Maments

pmomts.M
MP Approx.
F Matrices C-Function B-Function
piecepl.M pefun.M pcfun.M pbfun.M

Laeranee Int. Fn.

N _Functinn

psifun2.M Fn. 2P deriv.

pdfun.M

deriv2.M

Sig. To Bound. Fn.

shape.M PI-Function

pifun.M

Join Bound. Ends.

pjoin.M

Fig.F. Matlab Code Block Diagram for Cubic Spline 2-D Closed Boundary
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Cubic Spline Approximation of Noisy Boundary

%P

%

%

o°

o°

&°

TECEPC Moment Preserving Approximation of a closed boundary

Cubic Spline piecewise approximation of a noisy boundary

over nb blocks using nk knot points (XK) per block sampled at rate R

%0 = starting x, d = x-resolution, s = no. of segments per block

X = x0 ...xn, i.e. n+l points, ¢ is a scale factor

SIG is the vector of scaled moments, Gl & G2 are the fuction values at
the knot points using usual interpolation and moment method, respectively.
GI & GF are the corresponding interpolated function values using
Lagrange's formula. msei, msef are the mean square errors. ei,ef are

their means over the blocks and are plotted against noise magnitude.

clear;

clec;

clE;

nb = input('Enter no. of blocks: ');

nb = 8;

R = input('Enter Knot Sampling Rate: ');

R = 40;

nk = input ('Enter no. of Knot points: ');

nk = 5;

nn = R*(nk-1)+1; ux = zeros(nb,nn); uy = ux;
d=1; s =nk - 1; kw = 10; rand('seed',1943); xf = nb*R*(nk-1);
pl = 3; p2 =1; p3 = 2;

for k = O:kw

%0 = 0; w= 0.2*k; ww(k+l) = w;

for j = 1:nb
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[n,X,XK] = pknots(d,x0,R,nk);

c = X(n+l); YK = XK/c; F = signat(X,xf,pl,p2,p3,w);

FO0 = signat(X,xf,pl,p2,p3,0); FK = signat(XK,xf,pl,p2,p3,0);
[SIG,M] = pmomts(X,F,c,nk); E = pefun(¥K,s);

psifun2(F0,X,c,nk);

pk = psifun2(FK,XX,c,nk); ps =
G2 = pinv(E)*(SIG+ps-pk); GF = spline(XK,G2,X);
Gl = interpl(X,F',XK); GI = spline(XK,Gl1,X);

msef (§) = mean((F' - GF).A2); msei(j) = mean((F' - GI).*2);
[x1,v1] = shape(X,xf,F); [x2,y2] = shape(X,x£f,GF);
[x3,v3] = shape(X,xf,GI); ux(j,:) = x2; uy(3,:) = v2;
plot (x1,¥1,'w.'); title('Piecewise Cubic Spline Approximation');
hold on;
x0 = X(n+l);
% pause;
end
ef (k+1) = mean{msef); ei(k+l) = mean(msei); ux = pjoin(ux); uy = pioin(uy);
for § = 1:nb
plot(ux(j,:),uy(3,z),'w');
end
pause;
clf;

end

plot (ww,ef, 'w',ww,ei,'ws:'); xlabel ('Noise Level'); ylabel('MSE');
title('Piecewise Cubic Spline Approximation of a Boundary'):;
legend('w-"', 'MP', 'w: ', "INT');

disp(ef); disp(ei);
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» Linear & Quadratic MP Piecewise Approximation for Digitized

diagram is shown in Figure G.

et Rinel Qize

Images block

Spacial Col.
Proc.

pblks1.M

Fig. G. Matlab Code Block Diagram for Digitized Images

blksize.M
C-Function R-Function
F Matricac pefun2. M pbfun2. M
pefun2. M
D-Function
Get Rlack pdfun2.M
getblk. M
Interpolate
bapprox.M
Put Block
putblk.M
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Linear and Quadratic Digitized Image Approximation

= Block Size

function [np,nb,nt] = blksize(m,nk,R,V);
%BLKSIZE

% m = no. of pixels in an image row,

% nk = no.of nodal points sampled at R pixels
% v = overlap pixels between successive blocks

returns np = no. of points in block, nb = no. of blocks

o

nt = total no. of pixels needed in row

o

np = (nk-1)*R+1;
nb = ceil((m-v)/(np-v));

nt = nb* (np-v)+v;

= Get Block

function B = getblk(X,np,v,3)

%GETBLK

% Get a block (j) from an image row X.

% np = no.of points in block. v is no. of overlap

% pixels between current and previous blocks

(j-1) *(np-v)+1;

0
H

s+np-1;

o
]

B = zeros(l,np);

B = X(s:e);
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= Put Block

function X = putblk(X,B,np,v,J)

%PUTBLK

Given an image row in X, overwrite block (j) with

¢

contents of B. np = no.of points in block.

o

% v is no. of overlap pixels between current and previous blocks

s (3-1) * (np-v)+1;

e s+np-1;

X(s:e) = B;

» Interpolation Block Processing

function y = bapprox(x, £,xk,nk,c,R,u,p,q)
%BAPPROX

% Interpolation of pixels in a block (f) of np points

% using nodal points sampled at R pixels.

o°
H
(]

1:np, £ = block, xk = 1:R:nk, nk = no. of nodal points

x(np), u = pinv(E)

o®
a
1

% p = 0 usual interpolation, p = 1 Moment-Preserving

% q = 1 Linear, g = 2 Quadratic

if (p > 0)
if (¢ == 1)
[s1G,M] = pmomts(x,f',c,nk);
else
[SIG,M] = pmomts2(x,f',c,nk);
end

Gl = u*sSIG;

if (p == 0) G1 = £(xk); end
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if (q == 1)

vy = fvall(x,xk,R,G1);
else

y = fval2(x,xk,R,G1l);
end

= gSpatial Column Processing

%pblksl

% Spatial block processing, of an image, row/column by row/column

% A row is divided into nb blocks, with np points/block

% and v overlap points. Total row length is zero padded to be

&

sampled at R points

&°

exactly nb(np-v)+v points. nk = number of nodal points,

% Linear or quadratic interpolation or moment preserving.

% MSE =Mean Square Error. PSNR = Peak Signal-to-Noise Ratio

clear;

clc;

clf;

fn = input('Enter Image File Name:
[a,map] = bmpread(fn);

X = ind2gray(a,map);

subplot(2,1,1); imshow(X,256);

pause; X = X';

[N,M] = size(X); Y = zeros(N,M);
R = 4;

v =0;

nk = 5;

[np,nb,nt] = blksize(M,nk,R,V);
row = zeros(l,nt);

','s8');
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xk = 1:R:np; s = nk-1;
¢ = x(np); YK = xk/¢;

El = pefun(YK,s); lv = pinv(El);

i

pinv(Eq);

Eq pefun2(YK,s); qv
for i = 1:N
row(1:M) = X(i,1:M);
for j = 1:nb

B

]

getblk (row,np,v,3);:

¢ = bapprox(x,B,xk,nk,c,R,qv,1,2);

row = putblk(row,C,np,v,3):
end
Y(i,1:M) = row(1:M);

end

"
i
e
n

X' Y';

subplot(2,1,2); imshow(Y,256);
MSE = sum(sum((X - Y).42))/(N*M);
PSNR = 10 * logl0(255*255/(MSE+eps));

disp (MSE); disp(PSNR);
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* DCT Block Processing

o 2-D to 1-D Zigzag Mapping

function F = zigzag(B)
%ZIGZAG
% 2-D to 1-D zigzag mapping of an 8x8 block

R=[1 2 6 7 15 16 28 29;
3 5 8 14 17 27 30 43;
4 9 13 18 26 31 42 44;
10 12 19 25 32 41 45 54;
11 20 24 33 40 46 53 55;
21 23 34 39 47 52 56 61;
22 35 38 48 51 57 60 62;
36 37 49 50 58 59 63 64 1;
for i = 1:8
for j = 1:8

end
end

o 1-D to 2-D Inverse Zigzag Mapping

function B = izigzag(F)
%IZIGZAG
% 1-D to 2-D zigzag mapping of an 8x8 block

R=1[1 2 6 7 15 16 28 29;
3 5 8 14 17 27 30 43;
4 9 13 18 26 31 42 44;
10 12 19 25 32 41 45 54;
11 20 24 33 40 46 53 55;
21 23 34 39 47 52 56 61;
22 35 38 48 51 57 60 62;
36 37 49 50 58 59 63 64 1;

for i = 1:8
for j = 1:8
k = R(ilj);
B(i,j) = F(k);
end
end
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o Block Interpolation

function £ = avblki(f,k,R)

%AVBLEKL

% £ is a 1-D vector of length 64 in a block

elements (1 .. k) are unchanged

R = nodal point sampling interval, np = no. of points
(from k+1 to k+np) that will be interpolated

points from k+l4np to 64 are set to zero

returns a linear or quadratic interpolation approximation

o o° of of oF

Gl = y(xk);

%y = fvall(x,xk,R,Gl);

y = fval2(x,xk,R,Gl);
£(k+1l:k+np) = y;

f(k+np+1:64) = zeros(l,64-k-np);

o Block Moment-Preserving Approximation

function £ = avblkmp(f,k,R)

%AVBLKMP

% £ is a 1-D vector of length 64 in a block

% elements (1 .. k) are unchanged

% R = nodal point sampling interval, np = no. of points

% (from k+1 to k+np) that will be interpolated

% points from k+l+np to 64 are set to zero

% returns a linear or quadratic Moment-Presexving approximation

np = 2*R+1;
eros(1,np);

= length(xk); s = nk-1;
= f(k+1:k+np);
= x(np);
YK = xk/c;
%[SIG,M] = pmomts(x,y',c,nk);
%E = pefun(YK,s);
[SIG,M] = pmomts2(x,vy',c,nk);
E = pefun2(YK,s);
Gl pinv(E) *SIG;
%Y fvall(x,xk,R,Gl);
v = fval2(x,xk,R,Gl);
f(k+l:k+np) = y;
£ (k+np+1:64) = zeros(1,64-k-np);
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o DCT Coefficients Interpolation

function y = detmi(x,k,R)

%DCTMT receives an 8x8 block, computes its DCT, retains

% first k zigzag coefficients,then returns the inverse DCT

% For R .= 0, Coef. K+l to 64 are set to.zero. For R > 0 ,

% they are approximated by Linear or quadratic interpolation

d = det2(x);
£ = zigzag(d);
if (R > 0) £ = avblki(£f,k,R);

else f£(k+1:64) = zeros(l,64-k);
end
d
b

izigzag(£f);
idet2(d);

o DCT Coefficients Moment-Preserving

function vy = dctmmp (x,k,R)
%*DCTMMP receives an 8x8 block, computes its DCT, retains
first k zigzag coefficients,then returns the inverse DCT

%

% For R = 0, Coef. K+1 to 64 are set to zero. For R > 0,

% they are approximated by linear or quadratic Moment-preserving
d = det2(x);

£ = zigzag(d);

if (R > 0) £ = avblkmp(£f,k,R);

else f(k+1:64) = zeros(1,64-k);
end
d
Y

izigzag(f);
idet2(d);
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o DCT Image Block Processing

%pblks2

% DCT block processing, of an image, retaining k coefficients
% in each 8 by 8 zizaged block. )

% All remaining coefficients are either set to zero (R = 0)

% or the first 2R+1 of them are approximated using:

% Linear or quadratic interpolation or moment preserving.

% MSE =Mean Square Error. PSNR = Peak Signal-to-Noise Ratio
clear;

clc;

clf;

fn = input('Enter Image File Name: ','s');
[a,map] = bmpread(fn);

X = ind2gray(a,map);

[N,M] = size(X);

R 4;

k 8;

oo~

subplot (2,2,1); imshow(X,256);
pause;

Y = blkproc(Xx,[8 8], 'dctmi',k,0);
subplot (2,2,2); imshow(Y,256);
MSE = sum{sum((X - ¥Y).42))/(N*M);
PSNR = 10 * logl0(255%*255/MSE);
disp(MSE); disp(PSNR);

pause;

Y = blkproc(X,[8 8], 'dctmi',k,R);
subplot(2,2,3); imshow(Y,256);
MSE = sum(sum((X - Y).42))/(N*M);
PSNR = 10 * logl0(255*255/MSE);
disp(MSE); disp(PSNR);

pause;

Y = blkproc(X,[8 8], 'dctmmp',k,R);
subplot(2,2,4); imshow(Y,256);

MSE = sum(sum((X - Y).42))/(N*M);
PSNR = 10 * logl0(255*255/MSE);
disp(MSE); disp(PSNR);
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= Linear MP Piecewise Approximation for 2-D Surface block diagram is shown in

Figure I
- Nodal and Fn.
Engine Ptz Choice
Engine.M
pknots.M
Bilinear Int. Tect Function
fval2.M pffunM
Scaled
MP Approx. for moments
1-D Signal
buildmatrices. pmomts.M
M
C-Function R-Function
pcfun.M pbfun.M
E. Matrices
pefun.M
D-Function
pdfun.M
Lagranee Int.
fvall. M

Fig.I. Matlab Code Block Diagram for 2-D Surface
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E. Linear Piecewise Approximation for 2-D Surface

= Engine

cle;

clear;

%$Initializations

%nb = input('Enter no. of blocks: ');
nb = 1;

%R = input('Enter Knot Sampling Rate:
R = 20;

%nk = input('Enter no. of Knot points:

in results

nk = 4;
d = 0.1;
kw = 5; $noise level
x0 = 0;

%Initializations based on calculations

n = R*(nk-1);
for 1 = 1:n+l
x(i) = (i-1)*4d;
end
Yy = X;
for i = l:nk
xk(i) = (i-1)*R*d;

")

')

more than 6 causes a deformation
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end

vk = xk;

[X,Y] = meshgrid(x.,y);

1

[XK, YK] meshgrid(xk,vk):

[xt,ct] = size(X);

%Generating Plain Surface
Rxy = sqrt(X.”2+4Y.72) + eps;
Z0 = sin(Rxy)./Rxy;

% Z0 = pi*(Rxy."2)./Rxy:

% 7Z0 = peaks(rt);
[Lx, mx] = size(X);
[Ly,my] = size(Y):

r = rand(Lx,my) ;

for k = O:kw

w = 0.1%k;

ww(k+1l) = w;

7 = sin(Rxy) ./Rxy + r*w;

%2

il

pi* (Rxy."2)./Rxy + r*w;

%2

peaks{rt) + r*w;

% 7I Knot Points Surface over the original surface

for i = l:nk

if (i == 1)

elsa
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in =1 + (i-1)*R;
end
for j = l:nk
if (3 == 1)
ou = 1;
else
ou = 1 + (j-1)*R;
end
zI(i,Jj) = 20(in,ou);
end

end

% IXK Knot points surface over the noisy surface

for i = 1l:nk

if (1 == 1)

]
[y

in
else

in = 1 + (i-1)*R;
end

for j = 1:nk

if (j == 1)
ou = 1;
else

ou = 1 + (j-1)*R;
end
IXK(i,3j) = z(in,ou);
end

end

I = interp2(X,Y,Z,XK,YK, 'linear'};
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%This is the part responsible for building U

tempY = Y';

tempZ = Z2';

for i = 1l:n+l
if (1 == 1)
[GF,G2] = buildmatrices (w,vk(1l),d,R,nk,n, tempY(i,:), tempZ(i,:),yk);
elseif (i == 2)

end

for

index = 1 + (i-1)*R;

[GF,G2]) = buildmatrices(w,yk(l),d,R,nk,n,tempY(i,:),tempz(i,:),yk);

else

index = (i-1)*R;
[GF,G2] = buildmatrices(w,yk(l),d,R,nk,n,tempY(i,:),tempz(i,:),yk);
end

U(:,i1) = GF';

Ga(i,:) = G2';

i = 1:n+1
if (1 == 1)

[GF,G2] = buildmatrices (w,xk(1),d,R,nk,n,X(i,:),2(i,:),xk};
elseif (i == 2)

index = 1 + (i-1)*R;

[GF,G2] = buildmatrices (w,xk(1),d,R,nk,n,X(i,:),2(i,:),xk);

else
index = (i-1)*R;

[GF,G2] = buildmatrices (w,xk(1),d,R,nk,n,X(i,:),2(i,:),xk);

end
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end

index 1;
for i = 1l:nk
for j = 1l:nk
Gb(i,:) = G2b(index, :);
end
if (i == 1)
index = 1 + (i-1)*R;
else
index = (i-1)*R;
end

end

index 1;
for i = 1l:nk
for j = 1l:nk
Ga(i,:) = G2a(index, :);
end
if (1 == 1)
index = 1 + (i-1)*R;
else
index = (i-1)*R;
end

end

%GI Knot points surface on the interpolation result
GI = fval2(xk,vk,R,d,nk,I);
%Knot points surface on the MP result

Temp = Ga + Gb;
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G = 0.5*Temp;

Temp = W+U;

V=0.5*Temp;

% Calculating MSE

msef = mean((z20 - V) .72);
msei = mean((zZ0 - GI) ."2);
ef (k+1) = mean (msef);
ei(k+l) = mean(msei);

end

% The resulting surfaces.
% mesh(X,Y,z0);

% figure, mesh(X,Y,Z);

o

figure, mesh(X,Y,V);

o

figure, mesh(X,Y,GI);

At Nodal Points

e

% figure, mesh(XK,YK,ZI);

figure, mesh(XK, YK, IXK);

oe

figure, mesh(XK,YK,G);

o

% figure, mesh(XK,YK,I);

%Percentage of Error Graph
figure, plot(ww,ef,'r',ww,ei,'b');
xlabel ( ‘Noise Level'); ylabel ('MSE');

title('Piecewise Linear Approximation');
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Build Matrices

function ([GF,G2] = buildmatrices (w,x0,d,R,nk,n,X,F,XK);

cle;

C

YK

[SIG,M]

i

nk - 1;
X{n+l);

XK/c;

pmomts (X, F,c,nk) ;

E = pefun(YK,s):

G2

GF

i

pinv(E) *SIG;

fvall(X,XK,R,G2);

Bilinear Interpolation Function

function Resultx

fval2(xk,yk,R,d,nk,I);

point_n = R+1;
n = R*(nk-1);
e = 0.001;
Resultx = [];
for i = l:nk-1

Resulty = []:

for j = 1:nk-1

x1 = xk(i); x2 = xk(i+l);
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end

yl =
z11

z21

[xx,

pl

p2 =

ql

g2 =

zZ

if |

vk(3): yv2 = vk(j+1l);

= I(i,3); 212 = I(i,3+1);

linspace(xl, x2, point_n);

linspace(yl, y2, point_n);

yyl = meshgrid(x, y);

(xx-x1)/(x2-x1) ;

1-pl1;

(yy-y1)/(y2-yl);

1-ql;

z11*(p2.*q2) + 212*(p2.*ql)

j == 1)

Resulty = [zz(:,1:R)];

else

if (3 == (nk-1})

Resulty = [Resulty zz];

else

I(i+l,3j); 222 = I(i+1,3+1);

+ z21*(pl.*qg2) + 2z22*(pl.*ql);

Resulty = [Resulty zz(:,1:R}1;

end
end
if (i ==
Resu
elseif (
Resu
else
Resu

end

1)

1tx = [Resulty(1l:R,:)1;
i == (nk-1))

ltx = [Resultx;Resulty];

ltx = [Resultx;Resulty(1:R,

) 1;
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Appendix C.

Bilinear MP Derivation
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Appendix C: Bilinear MP Piecewise Approximation

Derivation for 2-D Surface

Assuming that between the nodal points x,, Yo ¥c and y J the function is piecewise
linear, such that x lies between x, and x, while y lies between Yy and y 4> We use

Bilinear Interpolation formula

xX—x X—X y-=Jy X—X y-=y
PO . . DA B P & . B B R PGS S TE S ES
Xc ~*a Ya b Xc ~ Xa Ya=Yp Xe=Xaq Vg~V
y—=y
r-—"tay - by, (Eq.2)

Xe—Xq Yg=Vp

to compute the kth scaled moment over that region:

dc
Hyng(@0).(cd)) = [ [ 757z, dxdy (Eq.b)

t"s"

dc
With D(t,s,m,n) = j J dt.ds then the evaluation of the integral gives

5o B —1,)(s,—53)

ﬂ,,,+,,((i D G+Lj+D) =z bn(j+Li+1,m+1, n+)+z ,,bp(j,i+1,m+Ln+1)
bn(j,i,m+1Ln+1)— z,+1]bp(]+1,z,m+ln+l) (Eq.c)

H—l

Where bn(u,v,k,1) = D(t,s,k,}) - s, D(t,s,k,1-1) - t, D(t,s,k-11) + ¢,5, D(t,5,k-1,1-1)

And  bn(u,v.k]l) = D(t,s,k,1) + s, D(t,s,k,1-1) + £, D(t,s.k-1]) - 1,5, D(t,s,k-1,1-1)
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For nodal points {z, ; i=0,1...x & j=0,1...y}, then the total scaled moments for the x*y

segments will be:

Hypn = 2 3, Cim,m)*z;,i=0,1,....x &j=0,1,....,y & m+n=0,1,...x
Joi

Where C,,(m,n) is a function defined as follows:

bn(j+1, i+1, m+1, n+1) for i=0, j=0
bp(j-1, i+1, m+1, n+1 ) + bn(+1, i+1, m+1, nt+1) for i=0, j=1...y-1
bp(-1, i+1, m+1, nt+1) for i=0, j=y

bn(j+1, i+1, m+1, n+1) - bp(j+1,i-1, m+1,n+1) fori=1...x-1,j=0

C;(m,n) 5 -bp(j+l,i-1, m+l, n+1) for i=x, j=0 Eq.d
bn(j-1,1-1,m+1,n+1) + bp(-1, i+1, m+1,n+1) fori=1...x-1,j=y
bn(j-1, 1 -1,m+1,n+1) for i=x, j=y
bn(j-1,1i-1,m+1,n+1) - bp(j+1,i-1, m+1, n+1) for i=x, j=1...y-1

bn(j-1, i -1,m+1,n+1) - bp(+1, i -1, m+1, n+1) +

\bp(j-l, i+1, m+1, n+1) - bn(j+1, i+1, m+1, n+1) fori=1...x-1, 1...y-1
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