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Abstract
Wireless communication networks are emerging fast with a lot of challenges and

ambitions. Requirements that are expected to be delivered by modern wireless net-

works are complex, multi-dimensional and sometime contradicting. In this thesis, we

investigate several types of emerging wireless networks and tackle some challenges of

these various networks. We focus on three main challenges. Those are Resource Opti-

mization, Network Management, and Cyber Security. We present multiple views of

these three aspects and propose solutions to probable scenarios. The first challenge

(Resource Optimization) is studied in Wireless Powered Communication Networks

(WPCNs). WPCNs are considered a very promising approach towards sustainable, self-

sufficient wireless sensor networks. We consider a WPCN with Non-Orthogonal Multi-

ple Access (NOMA) and study two decoding schemes aiming for optimizing the per-

formance with and without interference cancellation. This leads to solving convex and

non-convex optimization problems. The second challenge (Network Management) is

studied for cellular networks and handled using Machine Learning (ML). Two scenar-

ios are considered. First, we target energy conservation. We propose an ML-based ap-

proach to turn Multiple Input Multiple Output (MIMO) technology on/off depending

on certain criteria. Turning off MIMO can save considerable energy of the total site con-

sumption. To control enabling and disabling MIMO, a Neural Network (NN) based

approach is used. It learns some network features and decides whether the site can

achieve satisfactory performance with MIMO off or not. In the second scenario, we

take a deeper look into the cellular network aiming for more control over the network

features. We propose a Reinforcement Learning-based approach to control three fea-

tures of the network (relative CIOs, transmission power, and MIMO feature). The pro-

posed approach delivers a stable state of the cellular network and enables the network

to self-heal after any change or disturbance in the surroundings. In the third challenge

ii



(Cyber Security), we propose an NN-based approach with the target of detecting False

Data Injection (FDI) in industrial data. FDI attacks corrupt sensor measurements to de-

ceive the industrial platform. The proposed approach uses an Autoencoder (AE) for

FDI detection. In addition, a Denoising AE (DAE) is used to clean the corrupted data

for further processing.
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Chapter 1

Introduction

Wireless communications have become a necessity in all fields of modern life. We need

wireless communication in personal lives, education, industry, and luxury. Commu-

nication systems are everywhere around us. For instance, Wireless Sensor Networks

(WSNs) are used in industry, surveillance, health care, smart homes, etc. Additionally,

mobile networks are used for cell phones, smartphones, smart TVs, outdoor internet,

etc. Moreover, WiFi is used to create small networks and indoor internet connection.

From another perspective, Internet of Things (IoT) is used in home automation, trans-

portation control, agriculture, industry, etc. Many more communication systems can be

found serving all fields of life.

The applications of wireless communications are endless. However, a lot of chal-

lenges threaten the success of the wireless communication process between two nodes.

From these challenges are the fading nature of the wireless channel, the undetermin-

istic complexion of the Transmitter/Receiver connection, the interference from other

nodes, and so on.

Moreover, as the applications of wireless communications grow bigger and more

vital, new challenges emerge. For instance, energy conservation has become a global

interest, and reducing the carbon footprint is of great necessity. This leads to more

innovative ideas, such as Radio Frequency Energy Harvesting (RF EH) for WSNs or

1



Chapter 1. Introduction

energy management in mobile networks. These ideas have created a whole new world

of research use cases and optimization problems. One more challenge is the human

control of wireless networks. This might have worked previously. However, with

the proliferation of wireless communications applications and the intense data rates,

coverage and connection requirements, human control will be too error-prone to fulfill

the expected performance in near future. This leads to the necessity of self-managed

networks.

Nevertheless, mobile networks have undergone a great evolution from voice-only

services into complex, interconnected, multiple services providing high-speed access

for a huge number of subscribers and machines [1]. The significant growth in wireless

traffic has had a huge impact on mobile network architectures. Such architectures are

required to deliver perfect connectivity among an increasing number of connected

devices and extremely high data rates with reasonable cost, and optimized energy

consumption [1–4].

From another perspective, the evolving IoT technologies have created absolute

connectivity and turned common objects into connected devices (Machine to Machine

(M2M)). This infrastructure has been very attractive not only to consumers but also

to the industrial domain due to its flexibility and efficiency. With the IoT making its

way through industrial applications, we find the emerging paradigm of Industrial IoT

(IIoT). However, IIoT is facing many challenges regarding energy efficiency, real-time

performance, and security[5].

One promising approach to solve the challenges of modern wireless communication

systems is Machine Learning (ML). Most of the above challenges can not be dealt

with using classical approaches. The scale of these challenges is huge and it is very

hard to device good analytical models to capture systems’ dynamics. To address

these complex, multidimensional challenges, ML comes into rescue. ML is a design

2



Chapter 1. Introduction

methodology that substitutes the human knowledge and expertise of the problem

under consideration with a large number of training data. It is mainly a data-driven

design methodology that can solve model-free problems. The main idea is to use

historical data to train the machine to enable it to extract features from the data and take

decisions based on the extracted information. ML can be very useful in communication

systems in problems that lack a clear defined model. For instance, ML can be used in

proactive resource allocation in WSNs or IoT [6], [7]. It can also be used for channel

detection and decoding at the receiving end [8], [9]. Moreover, ML can be very useful

in cognitive radio applications such as scheduling and channel status prediction [10],

[11], [12]. Nevertheless, it can be used in content cashing to predict the content of high

demand at certain times [13], [14]. Furthermore, the need for self-managed networks -

as mentioned earlier- creates great opportunities for ML to deliver this requirement.

Other applications can be found in literature as well [15], [16].

In this thesis, our objective is to study different types of networks/technologies

(WPCNs, cellular networks and IIoT) to show how diverse wireless communication

applications are. We present some approaches to tackle some of the challenges that

wireless communications face in various recent applications. We tackle three main axes:

Resource optimization, Network Management, and Security Requirements.

1.1 Resource Optimization Challenge

To study resource optimization, we consider a Wireless Powered Communication Net-

work (WPCN) with Non-Orthogonal Multiple Access (NOMA) [17]. WPCNs depend

on RF EH for energy management. NOMA provides a multiple access technique in the

power domain, where all nodes use the same time slot and the same frequency band.

RF EH occurs in a certain time slot, while data transmission of all nodes occurs in a
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separate time slot.

We aim for reaching an optimal time and power allocation for successful energy

harvesting and data transmission. We target two different formulations; in the first one

(max-sum), the resource allocation is optimized such that the sum-throughput of all

users is maximized. In the second one (max-min), and targeting fairness among users,

we consider resource optimization aiming for maximizing the min-throughput of all

users. Under the above two formulations, two NOMA decoding schemes are studied,

namely, Low Complexity Decoding (LCD) and Successive Interference Cancellation

Decoding (SICD).

1.2 Network Management Challenge

To study this challenge, we focus on cellular networks. We use ML to gain control

over the cellular network features. We target management of the network from two

perspectives:

• Energy conservation by controlling the scheme of Multiple Input Multiple Out-

put (MIMO) [18]. As mentioned earlier, energy conservation is a global direction

towards a sustainable future. In cellular networks, one of the features that con-

sumes a lot of energy is MIMO although it has a great influence on enhancing the

network performance. We consider the problem of energy optimization in mo-

bile networks by enabling the MIMO feature only when necessary. We employ

ML-based approaches to decide on whether a Single Input Single Output (SISO)

scheme can achieve the required Quality of Experience (QoE). If SISO can satisfy

the target QoE, the base station can decide to switch the MIMO feature off which

can result in considerable energy savings.
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• Delivering a self-healing network by using Reinforcement Learning (RL) to gain

control over the network features [19]. In this work, we propose a framework

to fulfill the cellular network needs to sustain a balanced performance while

facing continuous growth and endless changes. The motivation behind this is

to switch from the manual management of the network which is costly, time-

consuming and error-prone. We suggest a ML-based system that manages the

cellular network to reach a stable state and gain more immunity towards everyday

changes. The presented approach is a deep RL scheme that enables the network

manager to learn a policy that delivers a stable state of the network such that the

network sum throughput is maximized and the number of blocked users and the

consumed energy are minimized. Moreover, the presented algorithm deals with

hybrid action space in a layered fashion.

1.3 Security Challenge

As mentioned above, IIot faces cybersecurity challenges. In this thesis, a specific attack

which is the False Data Injection (FDI) is the main focus [20]. The FDI attacks aim to

mislead the industrial platforms by falsifying their sensor measurements. We present a

novel method of FDI attack detection using Autoencoders (AEs). We exploit the sensor

data correlation in time and space, which in turn can help identify the falsified data.

Moreover, the falsified data are cleaned using the denoising AEs (DAEs).

1.4 Thesis Contribution

In this thesis, we study diverse types of wireless networks and try to solve various

use-cases that represent major challenges in these networks/paradigms. The main

contributions of this thesis are listed as follows:

5
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• Presenting an approach for the allocation of time and power in WPCNs with

NOMA such that the performance is optimized. Two decoding schemes are

studied (LCD and SICD). Maximizing the sum-throughput of the network is

characterized (max-sum) to find the optimal transmission durations and powers

for both decoding schemes. The fairness aspect is also studied by characterizing

the maximization of the minimum throughput of the network (max-min) for LCD

and SICD [17].

• Applying ML-based approaches in cellular network management, specifically

energy conservation. The target is saving the energy consumed by the MIMO

feature if it is unnecessary. We create a Neural Network (NN) and train it using

historical data drawn from realistic SISO cells. This training results in a network

that can emulate the behavior of a SISO site. When the training phase is complete,

the machine is subjected to MIMO site features and it emulates the performance

of the SISO scheme to decide whether SISO can achieve a satisfactory QoE. If

the machine decides that SISO is enough, then MIMO can be turned off to save

energy [18].

• Applying an RL framework for cellular network management. The presented

framework aims to control some network features. The target is learning a policy

that maximizes the network sum throughput and delivers a stable state of the

network. The features under control are relative CIOs, transmission powers (both

are selected from a continuous action space) and MIMO feature on/off (selected

from a discrete action space). Thus, the presented RL framework is a layered

approach that enables the agent to take decisions extracted from a hybrid action

space [19].

• Proposing the use of AEs as classifiers to detect false data injection attacks in
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IIoT. AEs can learn hidden correlation structures in the data that enable them

to detect attacks by assessing how far the correlation structure of the corrupted

data is from the expected correlation structure. Our proposed scheme has the

potential of detecting other types of attacks (not only FDI) without the need for

any modifications to it. Additionally, we propose the use of DAEs to retrieve clean

data from the corrupted data, by recovering the expected correlation structure

[20].

1.5 Thesis Organization

• In Chapter 2, we present a brief technical background for the concepts, algorithms,

and methodologies utilized in this thesis.

• In Chapter 3, we study the WPCN with NOMA and present an approach towards

optimal resource allocation. We study two decoding schemes (LCD and SICD)

that optimize the performance of the WPCN.

• In Chapter 4, we switch to cellular networks and present two ML-based ap-

proaches to control the MIMO scheme aiming for energy conservation. We use

NN to emulate the behavior of cellular site to take the decision of turning MIMO

on/off.

• Chapter 5 focuses also on cellular networks. We present a deep RL-based network

management scheme. A deep RL framework is proposed to learn a policy that can

control some features of the cellular network and a novel algorithm is proposed

to handle hybrid action spaces in a hierarchical fashion.

• In Chapter 6, we migrate to the cybersecurity challenge in IIoT. An ML-based

approach is presented, which can detect FDI attacks and recover the corrupt data.
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We use Autoencoders (AEs) as classifiers based on the correlation among data to

detect corrupt data.

• Chapter 7 draws the thesis conclusions and presents some directions for future

work.
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Chapter 2

Background

In this chapter, we present a brief background of the methodologies utilized in this the-

sis. In Chapter 4, we use two types of Neural Networks (NN), namely Multi-Layer

Perceptron (MLP) and Recurrent Neural Network (RNN). An overview of these two

NNs is presented in Section 2.1 and Section 2.2. In Chapter 5, we propose a Reinforce-

ment Learning (RL) framework for cellular network management. Section 2.3 presents

a brief explanation of RL. In Chapter 6, we use Autoencoders (AEs) and Denoising Au-

toencoders (DAEs) for cyber-attacks detection and data recovery, respectively. We also

compare the performance of AEs to Support Vector Machines (SVMs). An overview of

AEs, DAEs, and SVMs can be found in Sections 2.4, 2.5, and 2.6.

2.1 Multi-Layer Perceptron (MLP)

One of the Machine Learning (ML) mechanisms utilized in this work is the MLP. It is

a type of feed-forward artificial NN [21]. As shown in Fig. 2.1, an MLP consists of at

least three layers of nodes: an input layer, a hidden layer(s), and an output layer. Each

node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised

learning technique called back-propagation for training [22].
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FIGURE 2.1: An Example of a Simple Multi-layer Perceptron

Generally, the output of the neural network can be represented as:

y = hθ(x), (2.1)

where x = [x1 x2 · · · xn]T is the input vector, hθ is the feedforward propagation

function and θ is the set of weights and biases to be learned by the network during

the training phase. The training phase is done by setting the output to be the target

values provided by the training data. Therefore, for a certain hθ, the only unknown in

the equation is θ.

The steps of the learning process (back-propagation) can be summarized as follows:

1. Initialize weights and biases (usually random).

2. Use the feed-forward direction (from input to output) to calculate the output.

3. Calculate the error function (a measure of the difference between the actual output

and the target output). This error is a function of all the contributing errors from

all connected neurons.

10
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4. Use the error function, in the backward direction, to update the weights and

biases using the equation:

∆θi = −α ∗ δE
δθi

, (2.2)

where ∆θi is the update of the ith weight/bias, α is the learning rate and E is the

cumulative error function from all the previous contributing layers.

5. Repeat until the output converges.

2.2 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs), as shown in Fig. 2.2, are distinguished from

feedforward networks by a feedback connection to their past decisions, taking their

own outputs moment after moment as inputs. In other words, RNNs have memory.

Adding memory to NNs allows to track the information in the sequence itself, e.g. time

correlations, trends, etc.

FIGURE 2.2: An Illustration of a Simple Recurrent Neural Network

Generally, the output of an RNN can be given as:

yt = f(Wyh · ht), (2.3)
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where yt is the output at time t, f is the activation function of the output layer, Wyh is

the set of weights and biases between the hidden layer and the output layer, and ht is

the hidden layer output. This part is not different from the feed-forward NN. However,

the output of the hidden layer can be given as:

ht = g(Whx · xt +Whh · ht−1), (2.4)

where ht is the output of the hidden layer at time t, g is the activation function of the

hidden layer, Whx is the set of weights and biases between the input layer and the

hidden layer, xt is the input at time t, Whh is the set of weights in the feedback loop of

the hidden layer and ht−1 is the output of the hidden layer at time t− 1.

The training phase is done in a similar way to the feedforward networks. However,

the calculation of the cumulative error and its gradient is done differently. Details for

the interested reader can be found in [23].

2.3 Reinforcement Learning (RL)

Reinforcement learning (RL) is a process in which an agent learns to make decisions

(apply actions), observes the impact of its decisions on the surrounding environment,

and adjusts its strategy -based on its observation- to achieve a certain goal in the

long run (maximize a certain specified reward) [24]. RL can be modeled as a Markov

decision process (MDP) in which, at each time step t = 0, 1, 2, ..., the agent receives

some representation of the environment (a state, S(t), that belongs to a state space, S).

Depending on that state, the agent selects an action, (A(t) from a predetermined set of

actions,A). Next, the agent receives the consequence of its action. That is: a numerical

reward r(t+ 1) and a new state S(t+ 1) [25]. MDP formulation is suitable for the tasks

in which the agent knows the long-run goal but doesn’t know how exactly to reach
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FIGURE 2.3: The Process of Reinforcement Learning

that goal (goal-oriented tasks). Furthermore, the agent doesn’t have training data. The

process is illustrated in Fig. 2.3.

We can say that the objective of the decision-maker (agent) is to reach the sequence

of actions (policy) that maximizes the expected reward function eventually [26]. This

objective can be characterized as:

max
π

lim
L→∞

L∑
t=0

E[λtr(t)], (2.5)

where, r(t) is the reward function, λ is the discount factor that determines the signifi-

cance of the reward future expected values, and π is the policy to be learned.

The nature of the action space can be:

• Discrete Action Space: Actions are selected from a finite countable set of actions.

• Continuous Action Space: Actions are selected from a bounded interval.

• Hybrid Action Space: Some actions are taken from continuous space while the

others are taken from discrete space.
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To solve the aforementioned MDP using RL, there are several variants of RL tech-

niques [25]. There is the basic Q-learning technique that works with a discrete set of ac-

tions. Here, the agent constructs a table of the Q-values corresponding to each state-

action mapping pair. The Q-value can be defined as a measure for the quality of the de-

cision at a certain state. These Q-values are updated based on the interaction with the

environment. There is also the Deep Q-Network (DQN) technique in which a deep neu-

ral network can be used to approximate the Q-values. The Double-DQN (DDQN) tech-

nique is an extension of DQN in which two different neural networks are implemented

for action selection and action evaluation [27]. More techniques exist in literature as

well.

For a continuous set of actions, various RL techniques can be used. One way is to

use Soft-Actor-Critic methods which are explained in detail in [28]. Another way is to

use Policy Gradient methods (and their extensions like TD3) which can be understood

from [29].

For hybrid action spaces, there are some parametrized approaches in literature to

handle this mixed type of action spaces [19, 30–32].

2.4 Autoencoder (AE)

An AE is a fully connected, unsupervised NN algorithm that applies back-propagation.

As can be noticed from Fig. 2.4, an AE consists of an input layer, one or more hidden

layers, and one output layer. Generally, by letting bold letters represent vectors, the

output of the neural network is represented as:

y = hθ(x), (2.6)
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FIGURE 2.4: Architecture of an Autoencoder with One Hidden Layer

where x = [x1 x2 · · · xn]T is the input vector, hθ is the full-forward propagation

function and θ is the set of weights and biases to be learned by the network during the

training phase. This learning process is done by setting the target values at the output

to be the same as the input values (i.e., y = x):

hθ(x) = x. (2.7)

AE works as an unsupervised learning algorithm that applies back-propagation.

Unsupervised learning means that during the training phase, only raw features are

required with no labeling. Meanwhile, back-propagation means that the error between

the predicted output and the target output propagates backward from the output to

each neuron in the network to update the weights based on some learning rate (α):

θi+1 = θi + ∆θi, (2.8)

where i is the index of the training epochs and ∆θi is the weights update, and is

calculated as

∆θi = −α∂E
∂θi

, (2.9)
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and E is the cost function.

AEs can learn the structure of the data and the relationship among entries. Origi-

nally, they were used as a data-compression model. They encode a given input into

a representation of smaller dimension. A decoder is then used to reconstruct the in-

put back from the encoded compressed version. The main idea behind the compres-

sion and decompression capabilities of AEs is the fact that AEs can exploit the corre-

lation between data entries. The more the correlated data entries are, the more com-

pressible they become. To achieve this compression/decompression, the number of

neurons in the hidden layer is constrained to be less than the number of neurons in the

input/output layer. The output of the hidden layer is the compressed (encoded) version

of the input, while the final output is the retrieved version.

Correlation among data entries is not only used for data compression but it can also

be used for the detection of cyber-attacks that would disrupt the correlation model of

the data entries and hence AEs will declare an attack.

2.5 Denoising Autoencoder (DAE)

Another type of AEs is the Denoising Autoencoder (DAE). As introduced in [33], it has

the same architecture as AEs. However, the principle behind DAEs is to be able to

reconstruct data from an input of corrupted data. We train a DAE by corrupting the

data sets and feeding them into the neural network. During the training phase, the

target values at the output are set to be the original data, while inputs are the corrupted

version of the data:

target output of hθ(x̃) = x, (2.10)

where x̃ is the corrupted set of input readings and hθ(x̃) is the DAE output. DAE

minimizes the cost function E(x, hθ(x̃)), where E(., .) is some error measure. A DAE
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must undo the corruption rather than simply replicating their input at the output, and

in doing so it captures only the most significant features of the training data. This

training enables the DAE to recover the correlation among input readings.

2.6 Support Vector Machine (SVM)

An SVM is a classification technique that defines decision planes to separate data points

from different classes. This can be visualized in Fig. 2.5 which shows an illustration of a

2-D example (for simplicity of illustration). The objective of the SVM is to maximize the

width of the "street" separating the two classes. H0 represents the boundary (hyperplane)

that divides the street into two halves; H1 and H2 are the two planes (parallel to H0)

that touch the nearest points from each class to the boundary. These planes are given

by

H0 : wTx + b = 0,

H1 : wTx + b = 1,

H2 : wTx + b = −1,

(2.11)

where w is the weight vector, x is input vector and b is the bias. The distance between

the planes H0 and H1 is given by |w · x|/||w||= 1
||w|| . Hence, the distance between H1

and H2 is 2
||w|| .

To maximize the margin, we, therefore, need to minimize ||w||, with the condition

that there are no data points between the planesH1 andH2. This results in a constrained
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FIGURE 2.5: Support Vector Machine Illustration

optimization problem that can be formulated as

min
w

1

2
||w||2

subject to :

yi(w · xi + b)− 1 ≥ 0,

(2.12)

where yi is the label of each data point xi (yi is +1 for one class and -1 for the other class)

and i is the data point iterator. Note that the constraint can be split into:

w · xi + b ≥ +1 when yi = +1 (class A)

w · xi + b ≤ −1 when yi = −1 (class B).
(2.13)

The above optimization problem is a quadratic convex optimization problem with

linear constraints, which can be solved using any quadratic programming solvers [34,

Chapter 4].

SVMs can be extended to achieve a nonlinear classification by applying a kernel to

the input data, mapping the input to some high-dimension feature space.

As opposed to AEs, SVMs are supervised learning-based algorithms. This means

that the label of every point must be provided. Given a set of training points, each
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belonging to a class, an SVM training algorithm builds a non-probabilistic model that

classifies new data points to one of the two classes. Based on the optimization problem

described above, an SVM model represents data entries as points in a high-dimension

space and finds a hyperplane to separate the classes such that the distance between the

nearest data points belonging to each class to the decision boundary is maximized.
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Chapter 3

Towards Optimal Resource Allocation

in Wireless Powered Communication

Networks with Non-Orthogonal

Multiple Access

In this chapter, we study the resource optimization challenge in wireless networks.

Here, the optimal allocation of time and energy resources is characterized in a Wireless

Powered Communication Network (WPCN) with Non-Orthogonal Multiple Access

(NOMA).

In WPCN, the users harvest wireless energy from a dedicated Energy Rich (ER)

source in the Downlink (DL), and then use it in the Uplink (UL) to send data to the

Access Point (AP) [35]. This work considers the ER and AP as separate entities to

accommodate a general setting, in contrast to a large body of the literature where they

coincide. Time and power allocations are jointly optimized over a finite horizon of

T > 1 slots. NOMA exploits an approach of user multiplexing in the power domain

[36], [37].
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The main contributions of the work in this chapter [17] can be summarized as

follows:

• Two decoding schemes are studied, namely: Low Complexity Decoding (LCD)

and Successive Interference Cancellation Decoding (SICD). The two schemes

aim at optimizing the performance of a WPCN with and without interference

cancellation.

• Maximizing the sum throughput of the network is studied (max-sum). Since LCD

leads to a non-convex problem, an iterative approach is introduced to solve two

sub-problems in an alternating manner. On the other hand, the convexity of the

max-sum problem with SICD is established and the problem is characterized to

find the optimal transmission durations and powers.

• The fairness aspect is also studied and the optimization problem to maximize the

minimum throughput of the network (for LCD and SICD) is characterized (max-

min). Again, the problem is shown to be non-convex and an iterative algorithm is

introduced to find an approximate solution that is close to the global optimum.

3.1 Literature Review

There has been a growing interest, recently, in studying new technologies for pro-

longing the lifetime of mobile devices [38]. RF Energy Harvesting (EH) is consid-

ered a promising solution towards an unlimited power supply for wireless networks.

However, it adds more complexity to system design and optimization [39], [40].

There are two main paradigms in RF EH [41]; Simultaneous Wireless Informa-

tion and Power Transfer (SWIPT) and Wireless Powered Communication Networks

(WPCN).

In SWIPT, Wireless Energy Transfer (WET) and Wireless Information Transmission

(WIT) occur simultaneously, in which energy and information are transmitted in the

21



Chapter 3. Towards Optimal Resource Allocation in Wireless Powered

Communication Networks with Non-Orthogonal Multiple Access

same signal [42]. In [43], Boshkovska designs a resource allocation algorithm for SWIPT

systems. The algorithm design is formulated as a non-convex optimization problem

for the maximization of the total harvested power at the EH receivers subject to the

Quality of Service (QoS) constraints. In [44], Ng and Schober study a resource allocation

algorithm design for secure information and energy transfer to mobile receivers. In

[45], multiple source-destination pairs communicate through their dedicated energy

harvesting relays. A power splitting framework using game theory was developed to

derive a profile of relays’ power splitting ratios. Additionally, to overcome the problem

that energy harvesting circuits are unable to harvest energy and decode information

simultaneously, there are two proposed receiver designs in [46]: time switching and

power splitting. By using the time switching setting, the receiving antenna periodically

switches between energy harvesting and information decoding phases. On the other

hand, under the power splitting, the received signal is split into two streams; one for the

energy harvesting circuitry and the other is for information decoding. The application

of SWIPT to Non-Orthogonal Multiple Access (NOMA) networks is investigated in

[47], where Liu, et al. propose a new cooperative SWIPT-NOMA protocol in which

users close to the source act as relays for far users’ transmission.

WPCN has been studied in various works. A cooperative technique was studied in

[48] and [49] to overcome the doubly near-far phenomenon. A WPCN with heteroge-

neous nodes (nodes with and without energy harvesting capabilities) was studied in

[50] and it was shown how the presence of non-harvesting nodes can enhance the sum

throughput. [51] departed from the strong assumption adopted in [35] - [50], where the

energy harvested in a slot is used completely in that slot, and, hence, embraces a long-

term optimization framework. Additionally, [52] extended the long-term maximization
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of the half-duplex case in [51] to the full-duplex scenario. Conventional TDMA wire-

less networks were generalized in [53] to a new type of wireless networks: generalized-

WPCNs (g-WPCNs), where nodes are equipped with RF energy harvesting circuitries

along with energy supplies. It was shown that both conventional TDMA wireless net-

works and WPCNs with only RF energy harvesting nodes constitute lower bounds

on the performance of g-WPCNs in terms of the max-sum throughput and max-min

throughput.

NOMA was introduced in WPCNs in [54] to enhance the power-bandwidth effi-

ciency. It was shown in [55] that NOMA improves the spectral efficiency relative to

orthogonal multiple access schemes. In [54], optimizing the time allocations was the

main concern to maximize the sum throughput of the slot-oriented case (all the har-

vested energy in a slot is also consumed in the same slot). Hence, Diamantoulakis, et

al. introduced a sub-optimal policy for time allocations. Yuan and Ding investigated,

in [56], the application of NOMA for the uplink (UL) of WPCNs. They maximize the

sum rate by jointly designing the time allocation, the downlink (DL) energy beamform-

ing, and the receiver beamforming. In [57], two NOMA-based decoding schemes were

introduced to maximize the sum throughput of the network. Due to the difficulty of

solving the optimization problem, an approximate iterative approach was proposed to

solve a sub-problem and reach a sub-optimal solution. Chingoska and Nikoloska tack-

led, in [58], the doubly near-far effect in WPCNs by setting the decoding order signals

received at the base station (BS) to be the inverse of the distances between the users

and the BS.

23



Chapter 3. Towards Optimal Resource Allocation in Wireless Powered

Communication Networks with Non-Orthogonal Multiple Access

3.2 System Model

Consider a WPCN composed of one AP, one ER node, and K users1 Ui, i = 1, 2, ..., K

(see Figure 3.1). All nodes in the network are equipped with single antennas and

operate over the same frequency. Only the ER node is equipped with a constant energy

supply. It broadcasts DL wireless energy to the K users in the network. Users receive

energy and use the accumulated energy to send UL data to the AP.

Slotted time is considered and the slot duration is assumed to be normalized to

one (without loss of generality). Each slot t = 1, 2, ..., T is divided into two phases: τ0,t

during which the ER broadcasts wireless energy on the DL to recharge the batteries of

the devices and 1− τ0,t during which all users transmit data to the AP independently

and simultaneously over the UL. Note that all radios are half-duplex.

FIGURE 3.1: System Model

Users are randomly distributed around ER. dUi−ER is the distance between Ui and

ER, and dUi−AP is the distance between Ui and AP. Locations of all nodes are assumed

to be known a priori, and therefore their average channel gains can be estimated. The

DL channel power gain from ER to Ui and the UL channel power gain from Ui to AP,

1The symbol that represents the number of nodes in a wireless network might be different from one
chapter to another.
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during time slot t, are denoted by hi,t and gi,t, respectively. Hence, the harvested energy

by Ui in the DL phase can be expressed as [57]:

Ei,t = ηihi,tPBτ0,t = γi,tτ0,t, (3.1)

where ηi denotes the energy harvesting circuitry efficiency [59], PB is the average

transmit power by ER within τ0,t and γi,t
def
= ηihi,tPB.

3.3 Max-Sum Throughput Optimization

In this section, the time and power allocation constrained optimization problem is

formulated such that the sum UL throughput of the network is maximized. Two

NOMA decoding schemes are studied, namely, LCD and SICD. The main objective is

to formulate the problem of maximizing the achievable sum throughput over a finite

horizon of T time slots subject to some constraints.

3.3.1 Max-Sum Problem Formulation with Low Complexity Decod-

ing

Under the LCD scheme, the AP uses a single-user decoder to detect the signals received

from all users without performing interference cancellation. Each signal suffers from in-

terference from all other users. Thus, interference from other users is treated essentially

as noise.

The achievable throughput of user Ui, in time slot t, can be expressed as:

Ri,t = (1− τ0,t) log2(1 + xi,t), (3.2)

where xi,t is the average SINR at the AP for Ui in time slot t.

In LCD, xi,t is given by:

xi,t =
gi,tEi,t

σ2(1− τ0,t) +
∑K

j=1,j 6=i gj,tEj,t
, (3.3)
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where Ei,t is the amount of energy used by Ui in time slot t and σ2 is the noise power at

the AP. It is worth noting that, under LCD, the interference term (i.e., the summation)

in the denominator includes interference from all users other than user Ui.

The sum throughput maximization problem can be formulated as:

P1LCD : max
τ0,E,x

T∑
t=1

K∑
i=1

Ri,t,

subject to: Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

0 ≤ τ0,t ≤ 1, ∀t,

Ei,t ≥ 0 ∀i,∀t,

where τ0, E, and x are vectors whose elements are the harvesting time duration, the

consumed energy by each user, and the average SINR at the AP for each user over the

finite horizon of T slots, respectively. The role of the energy causality constraints is

to guarantee that, in slot t, only the energy harvested in slots ≤ t can be used. The

decoding constraints highlight the fact that if the SINR xi,t falls under a predefined

threshold Sthi , decoding will not be possible.

The objective function (sum throughput) of P1LCD is non-convex because it has a

Hessian matrix that is not positive semidefinite. Hence, the problem is a non-convex

optimization problem [60]. However, we exploit the problem structure and propose

an efficient approach for solving this rather complex problem via splitting it into

two separate subproblems, P1LCD(given τ0) and P1LCD(given E), that can be solved

iteratively. The first is for a given harvesting slot duration τ0 and the latter is for a

given energy allocation vector E. The proposed solution in this section is to solve these

two sub-problems iteratively, alternating between a given τ0 to get optimum energy

allocation vector for the first sub-problem and then, for the obtained energy allocation
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vector, get the optimum harvesting slot duration in the second sub-problem, and so on

alternating back and forth between the two sub-problems until convergence is attained.

The First Sub-problem:

The first sub-problem given τ0 is formulated as:

P1LCD(given τ0) : max
E,x

T∑
t=1

K∑
i=1

(1− τ0,t) log2(1 + xi,t),

subject to: Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

Ei,t ≥ 0 ∀i,∀t.

The objective function can be expressed as:

T∑
t=1

K∑
i=1

log2(1 + xi,t)
(1−τ0,t). (3.4)

Maximizing (3.4) is equivalent to maximizing the expression:

T∏
t=1

K∏
i=1

(1 + xi,t)
(1−τ0,t), (3.5)

or to minimizing the expression:

1∏T
t=1

∏K
i=1(1 + xi,t)(1−τ0,t)

. (3.6)

.

Hence, the first sub-problem can now be written as:
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P1LCD(given τ0) : min
E,x

1∏T
t=1

∏K
i=1(1 + xi,t)(1−τ0,t)

,

subject to: xi,t ×
σ2(1− τ0,t) +

∑K
j=1,j 6=i gj,tEj,t

gi,tEi,t
≤ 1, ∀i,∀t,∑t

n=1Ei,n∑t
n=1 γi,nτ0,n

≤ 1, ∀i,∀t,

Sthi x
−1
i,t ≤ 1, ∀i,∀t,

Ei,t ≥ 0 ∀i,∀t.

All constraints are expressed in the standard form for a Geometric Program (GP)

except the last one (Ei,t ≥ 0 ∀i, ∀t). The objective function of P1LCD(given τ0) is a

ratio between two posynomials, thus, P1LCD(given τ0) is a nonconvex complementary

GP [60]. Solving complementary GPs directly is NP-hard. Therefore, an approximate

approach is used [57]. The denominator of the objective function, denoted by f(x),

is approximated with a monomial function f̃(x). In this case, the new approximate

optimization problem becomes a standard GP that can be solved iteratively using

standard techniques [34, chapter 4].

f̃(x) is chosen to be:

f̃(x) = c
T∏
t=1

K∏
i=1

(xi,t)
yi,t(1−τ0,t), (3.7)

where,

c =

∏T
t=1

∏K
i=1(1 + xi,t)

yi,t(1−τ0,t)∏T
t=1

∏K
i=1(xi,t)

yi,t(1−τ0,t)
, (3.8)

x is the solution of the approximate GP in the previous iteration, and

yi,t =
xi,t

1 + xi,t
, ∀i,∀t. (3.9)

Starting with an initial x, we can obtain c and yi,t from (3.8) and (3.9), respectively. With

these values, we solve the approximate geometric program. The obtained solution

can be used to get new values of c and yi,t. The procedure is repeated until the sum

throughput converges to a pre-specified accuracy. It is worth mentioning that the used
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approximation satisfies the Karush-Kuhn-Tucker (KKT) conditions of P1LCD(given τ0)

and thus is guaranteed to be a local optimal solution for P1LCD(given τ0). Moreover,

satisfying the KKT conditions guarantees that xi,t ≥ 0 and this directly means that

Ei,t ≥ 0 (last constraint) [57].

The Second Sub-problem:

The second sub-problem given E is formulated as:

P1LCD(given E) : max
τ0,x

T∑
t=1

K∑
i=1

(1− τ0,t) log2(1 + xi,t),

subject to: Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

0 ≤ τ0,t ≤ 1, ∀t.

Note that, by using (3.3), xi,t can be substituted and removed from the problem. All

constraints are affine and it can be verified that the objective function has a Hessian

matrix that is positive semidefinite. Therefore, the problem P1LCD(given E) is convex

and, hence, can be solved using standard convex optimization tools.

The algorithm to solve P1LCD iteratively, using the two sub-problems discussed

above, is given in Algorithm 1.
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Algorithm 1 Solving P1LCD

1: repeat

2: procedure SOLVE P1(GIVEN τ0)

3: Initialize x

4: Compute c and yi,t using (3.8) and (3.9)

5: repeat

6: Solve the approximate P1(given τ0)

7: Update c and yi,t using (3.8) and (3.9)

8: until Sum throughput converges

9: Find sub-optimum Rsum and E.

10: end procedure

11: procedure SOLVE P1(GIVEN E)

12: Use standard convex optimization solver: SDPT3.

13: Find sub-optimum Rsum and τ0.

14: end procedure

15: until The maximized sum converges to a pre-specified accuracy

3.3.2 Max-Sum Problem Formulation with Successive Interference

Cancellation Decoding

The LCD scheme, despite its highly complex computations (since it yields a non-convex

optimization problem), has a simple implementation because interference is simply

treated as noise. However, the performance is modest due to ignoring the structure

of interference. This leads to a lower sum throughput because each user suffers from

interference from all other users. This motivates us to look at more sophisticated

interference cancellation techniques to enhance the sum throughput performance. In

this sub-section, a Successive Interference Cancellation Decoding (SICD) scheme is
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introduced whereby interference can be partially canceled out. The associated sum

throughput optimization problem is also formulated.

The SINR of Ui in time slot t, after interference cancellation, can be expressed as:

xi,t =
gi,tEi,t

σ2(1− τ0,t) +
∑K

j=i+1 gj,tEj,t
, ∀i. (3.10)

The ability of the SICD scheme to better capture interference compared to the LCD

scheme hinges on its ability to remove the interference from the already decoded

users’ signals on the remaining signals. Therefore, in (10), the interference term in

the denominator includes interference from all users that will be decoded after the

signal of user Ui. As a result, the first user’s signal to be decoded will still suffer from

interference from all other users’ signals. However, successively, this will be improved

until decoding the last user signal, which will not suffer from any interference from

any other user (as all interference should have been successively canceled at this stage).

The achievable throughput for Ui can be expressed as in (3.2) while substituting for the

SINR xi,t, from (3.10). Therefore, the achievable sum throughput over all K users under

SICD, which is independent of the users decoding order, can be derived as follows:

Rsum = (1− τ0)
(K−1∑

i=1

log2

(
1 +

giPi

σ2 +
∑K

j=i+1 gjPj

)
+ log2

(
1 +

gKPK
σ2

))

= (1− τ0)
(K−1∑

i=1

log2

(
σ2 +

∑K
j=i giPi

σ2 +
∑K

j=i+1 gjPj

)
+ log2

(
σ2 + gKPK

σ2

)

= (1− τ0) log2
(K−1∏

i=1

σ2 +
∑K

j=i giPi

σ2 +
∑K

j=i+1 gjPj
× σ2 + gKPK

σ2

)
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= (1− τ0) log2
(
σ2 +

∑K
j=1 giPi

σ2 +
∑K

j=2 gjPj
×
σ2 +

∑K
j=2 giPi

σ2 +
∑K

j=3 gjPj
× ...×

σ2 +
∑K

j=K−1 giPi

σ2 + gKPK
× σ2 + gKPK

σ2

)

= (1− τ0) log2
(
σ2 +

∑K
j=1 giPi

σ2

)
= (1− τ0) log2

(
1 +

∑K
j=1 giPi

σ2

)
= (1− τ0) log2

(
1 +

∑K
j=1 giEi

σ2(1− τ0)

)
.

The SICD sum throughput optimization problem can then be formulated as:

P1SICD : max
τ0,E,x

T∑
t=1

K∑
i=1

Ri,t,

subject to: Eq.(3.10),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

0 ≤ τ0,t ≤ 1, ∀t,

Ei,t ≥ 0 ∀i,∀t.

Recall that for a general function, f(x), which is concave, its perspective function

g(x, t) = tf(x
t
) would also be concave [34]. By using t = 1− τ (t)0 , the sum throughput

R
(t)
sum is the perspective function of the concave function log2

(
1 +

∑K
i=1 g

(t)
i E

(t)
i

σ2

)
. There-

fore, R(t)
sum is a concave function in [τ

(t)
0 , E

(t)
1 , ..., E

(t)
K ]. Note that a non-negative weighted

sum of concave functions is also concave, then the objective function of P1SICD which

is the non-negative weighted summation of R(t)
sum, ∀t, is a concave function in (τ0,E).

In addition, all constraints of P1SICD are affine in (τ0,E). As a result, P1SICD is a con-

vex optimization problem, and, hence can be solved efficiently using standard convex

optimization tools.

An efficient, yet simple, way to solve a constrained optimization problem, is to find

its Lagrangian and solve the dual problem. The Lagrangian of P1SICD is given by:
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L(E, τ0,λ,µ) =
T∑
t=1

K∑
i=1

Ri,t +
K∑
i=1

T∑
n=1

λi,n

(
n∑
t=1

(γi,tτ0,t − Ei,t)

)

+
K∑
i=1

T∑
t=1

µi,t(xi,t − Sthi ),

where λi,t, and µi,t are the dual variables associated with the energy causality and

practical decoding constraints. Now, we need to solve the following optimization

problem, namely DSICD, to get the dual function, denoted by, G(λ,µ):

DSICD : max
τ0,E

L(E, τ0,λ,µ),

subject to: 0 ≤ τ0,t ≤ 1, ∀t,

Ei,t ≥ 0 ∀i,∀t.

Consequently, the dual problem will be: min
λ,µ≥0

G(λ,µ).

To solve the dual problem, an algorithm is presented next.

Lemma: Given λ and µ, the optimal time and energy allocations of DSICD are given by:

τ∗0,t = min

1−
∑K

i=1 gi,tEi,t
z∗t σ

2

+

, 1

. (3.11)

E∗i,t =

(1− τ0,t)(gi,t − σ2ai,t)
ai,tgi,t

− 1

gi,t

K∑
j≥i

gi,tEi,t

+

. (3.12)

The variable ai,t is defined as:

ai,t
def
= ln(2)

 T∑
n=t

λi,n + gi,tχ{i ≥ 2}
i−1∑
j=1

µj,tS
th
j − µi,tgi,t

, (3.13)

where χ{.} is the indicator function and (.)+
def
= max{0, .} and z∗t is the unique solution

of f(zt) = b(t), where f(z) and b(t) are given by:

f(zt) = ln(1 + zt)−
zt

1 + zt
. (3.14)
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b(t) = ln(2)
(
σ2

K∑
i=1

µi,tS
th
i +

K∑
i=1

T∑
n=t

λi,nγi,t

)
. (3.15)

Proof: It can be verified that there exists τ0 and E that strictly satisfy all the constraints of

DSICD. Hence, strong duality holds for this problem [34]; therefore, the KKT conditions

given below are necessary and sufficient for the global optimality:

δ

δτ0,t
L = ln

1 +

∑K
j=1 gj,tEj,t

σ2(1− τ0,t

− ∑K
j=1 gj,tEj,t

σ2(1− τ0,t) +
∑K

j=1 gj,tEj,t
− a(t) = 0. (3.16)

δ

δEi,t
L =

gi,t
σ2

1 +
∑K

i=1 gi,tEi,t

σ2(1−τ0,t)

− bi,t = 0, (3.17)

∀i and t, where ai,t and b(t) are given by (3.13) and (3.15), respectively.

By defining zt =
∑K

j=1 gi,tEj,t

σ2(1−τ0,t) , (3.16) can be reformulated as f(zt) = b(t), where f(zt) is

given in (3.14). Since f(zt) can be verified to be a monotonically increasing function of

zt ≥ 0, where f(0) = 0, then there exists a unique solution z∗t that satisfies f(z∗t ) = b(t)

and, hence, τ ∗0,t can be expressed as in (3.11) and by using (3.17), E∗i,t can be expressed

as in (3.12).

In summary, we can say that there is a trade-off between implementation complexity

and performance. When the simple implementation is of interest, despite the resulted

modest performance, then the LCD scheme presents a better choice. On the other hand,

when the system performance is the main objective, then SICD scheme would be the

better option, at the expense of increased system complexity.

3.4 Max-Min Throughput Optimization

In this section, we address the potential unfairness typically exhibited by sum through-

put optimal policies. Under the max-sum throughput formulation, some nodes are

likely to be allocated very little, or no, resources (time and power) in some scenarios,
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such that they achieve almost zero throughput. This can be a serious problem for some

applications. In wireless sensor networks, for instance, in which all sensors need to

periodically send their sensing data to the AP at the same rate, fairness is a necessity.

Nevertheless, in most applications that depend on WSNs (or WPCNs in particular), de-

lay is one of the most important concerns. Minimizing the delay is directly related to

maximizing the service rate which is, in turn, directly related to maximizing the com-

mon throughput among nodes or maximizing the minimum individual throughput.

To address these fairness and delay issues in our problem context, we adopt the max-

min optimization [61], [62]. Next, the problem formulation and solution approach for

maximizing the minimum UL throughput in LCD and SICD is discussed in detail.

3.4.1 Max-Min Problem Formulation with Low Complexity Decod-

ing

The max-min UL throughput problem, with low complexity decoding, can be formu-

lated as follows:

P2LCD : max
τ0,E,x,R

R,

subject to: Ri,t ≥ R,

Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

0 ≤ τ0,t ≤ 1, ∀t,

Ei,t ≥ 0 ∀i,∀t,
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whereR is the minimum throughput to be maximized,Ri,t is the achievable UL through-

put of Ui in time slot t and is expressed in (3.2) and xi,t is the average SINR at the AP

for Ui in time slot t.

This problem differs from the two max-sum problems, studied in Section 3.3, in the

objective function and the first constraint. The objective function is affine but the first

constraint is not convex. Hence, P2LCD is a non-convex problem.

In order to circumvent the non-convexity hurdle of P2LCD, we adopt an iterative

solution approach similar to the one followed in Section 3.3.1 to solve P1LCD. To this

end, we split P2LCD into two sub-problems P2LCD(given τ0) and P2LCD(given E).

The first sub-problem is still non-convex and will be solved using an approximate

iterative method. On the other hand, the second sub-problem is convex and can be

solved using standard convex optimization tools.

The First Sub-problem:

The first sub-problem given τ0 is formulated as follows:

P2LCD(given τ0) : max
E,x,R

R,

subject to: Ri,t ≥ R ∀i,∀t,

Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

Ei,t ≥ 0 ∀i,∀t.

The objective function and the constraints are affine, except for the first constraint which

is non-convex. To solve this problem, an approximate iterative approach is adopted

[63].
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The approach used to solve P2LCD(given τ0) is based on solving a sequence of

strongly convex inner approximations of the problem until a stationary solution of

P2LCD(given τ0) is reached. This solution guarantees, based on the proof and assump-

tions in [63], the feasibility of the solutions in every iteration.

The approach in [63] is based on replacing a non-convex objective function (say

U(x)) by a strongly convex and simple function (Ũ(x;y)) and constraints (gm(x), where

m is the non-convex constraints index) with convex upper estimates (g̃m(x;y)) to create

a sub-problem Py. The sub-problem Py is strongly convex and has a unique solution

x̂(y) (a function of y). By starting from a feasible point y(0), the proposed method,

iteratively, computes the solution of the sub-problem Py, which is x̂(y) and then takes

a step (ζn ∈ (0, 1], where n is the iteration index) from y towards x̂(y).

Note that the point y generated by the algorithm in every iteration is always feasible

for the original problem P2LCD(given τ0). Convergence is guaranteed under mild

assumptions that offer a lot of flexibility in the choice of the approximation functions

and free parameters.

The main problem that affects this approach is the affine objective function. To check

the stationarity of every iteration, we need the objective function to be a function of

y to study its gradient until a stationary solution is reached. To solve this problem,

the objective function R is replaced by a single user throughput (the one that had the

minimum value at the initial search point: Rl,t) and an equality constraint is added to

attain the same target. The objective function must be modified every iteration based

on the minimum achieved value at the new initials (the optimum point of the previous

iteration).

After this modification, problem P2LCD(given τ0) can be formulated as follows:
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P2LCD(given τ0) : max
E,x,R

Rl,t,

subject to: Rl,t = R ∀t,

Ri,t ≥ R ∀i = 1, 2, 3, ...,K, i 6= l,∀t,

Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

Ei,t ≥ 0 ∀i,∀t.

The chosen approximation is given by (3.18) [63]:

Ũ(x; y) = ∇xU(y)T (x− y) + 1

2
|x− y|2. (3.18)

This approximation mimics proximal gradient methods. It can be used if no convexity

whatsoever is present. It is also used for the first two constraints, but we must check

that the approximation g̃m(x;y) is an upper approximate function if the non-convex

constraint is gm(x) ≤ C, where C is a constant and a lower approximate function if

gm(x) ≥ C.

The Second Sub-problem:

The second sub-problem given E is formulated as follows:
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P2LCD(givenE) : max
τ0,x,R

R,

subject to: Ri,t ≥ R,

Eq.(3.3),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

0 ≤ τ0,t ≤ 1, ∀t.

The objective function in addition to all constraints is affine except for the first constraint.

It can be verified that the left-hand side of the first constraint has a Hessian matrix that

is positive semidefinite, hence, it is convex. Therefore, problem P2LCD(given E) is

convex and can be solved efficiently using standard convex optimization tools.

3.4.2 Max-Min Problem Formulation with Successive Interference

Cancellation Decoding

The max-min optimization problem with SICD is formulated in a similar manner as

LCD except for minor differences:

P2SICD : max
τ0,E,x,R

R,

subject to: Ri,t ≥ R,

Eq.(3.10),

t∑
n=1

Ei,n ≤
t∑

n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),

0 ≤ τ0,t ≤ 1, ∀t,

Ei,t ≥ 0 ∀i,∀t.
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Notice that the only difference between P2LCD and P2SICD is the definition of the

SINR which is denoted by x. As mentioned earlier, in LCD, the interference term in

(3.3) includes signals from all other users. On the other hand, in SICD, it includes

only the signals which have not been decoded yet and therefore are not canceled from

interference, as given in (3.10).

Under the SICD scheme, it is important to notice that although the decoding order,

that is, the order by which the users’ signals are decoded at the AP, doesn’t affect the

sum throughput of the network as shown in [64], it will certainly affect the fairness

aspect. To achieve the highest fairness, it can be easily proven that the optimal decoding

order w.r.t fairness is based on the received signal strength that is directly affected by

the channel gain; from the strongest to the weakest signal [58].

The approach used to solve P2SICD is the same as the one used to solve P2LCD.

It is worth mentioning that, for P2LCD and P2SICD, if the optimum solution can be

reached, the max-min throughput would have been the common throughput achieved

by all users. However, since an approximate approach is used, the users do not reach

a common throughput and some variations can be noticed between the throughputs

achieved by individual users.

The formal description of the approach to solving P2LCD and P2SICD is given in

Algorithm 2.
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Algorithm 2 Solving P2LCD and P2SICD

1: repeat

2: procedure SOLVE P2(GIVEN τ0)

3: Initialize n = 0, ζ(n) ∈ (0, 1], y(n) ∈ feasible set.

4: repeat

5: Choose the objective function to be the user throughput with minimum value at

initial point.

6: Approximate non-convex function and constraints.

7: Compute x̂(y(n)), the solution of the sub-problem Py.

8: Set y(n+1) = y(n) + ζ(n)(x̂(y(n))− y(n)).

9: n← n+ 1.

10: until Stationary solution of P2(τ0) is reached

11: Find sub-optimum Rmin and E.

12: end procedure

13: procedure SOLVE P2(GIVEN E)

14: Use standard convex optimization solver: SDPT3.

15: Find sub-optimum Rmin and τ0.

16: end procedure

17: until The maximized throughput converges to a pre-specified accuracy

3.5 Performance Evaluation

3.5.1 Simulation Setup

We consider K single-antenna nodes, where K ranges from 2 to 20. Nodes are dis-

tributed randomly around the ER node in a circular area of radius of 10 meters. A hori-

zon of T timeslots, ranging from 1 to 10, is studied. Nodes receive DL power from

the ER node and send UL data to the AP which is located dER−AP meters from the
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ER. For the UL transmission, the path loss model is gi,t = 10−3d−2Ui−AP . For the DL, we

use the parameters of the P2110 device [59]. The system parameters, used to generate

numerical results, are listed in Table 6.1.

TABLE 3.1: Simulation Parameters

Parameters Definition Values
dER−AP Distance between ER and AP (meters) 0:20:120
σ2 Noise Power -155 dBm/Hz
BW Bandwidth 1 MHz
PB ER Node Transmission Power 3 W
fc Central Frequency 915 MHz
Gr Receiver Antenna Gain 6 dB
ηi Harvesting Efficiency 0.49
Sthi Decoding Threshold (dB) -10:1:0

3.5.2 Numerical Results

Simulations were carried out using the optimization toolbox in MATLAB. The perfor-

mance results presented next revolve around three main thrusts, namely max-sum opti-

mization, max-min optimization, and the fundamental throughput-fairness trade-off

within our problem context.

Max-Sum Performance Results

Recall that, under the max-sum problem formulation, the objective function to be

maximized is the sum UL throughput. The performance of the presented approaches,

namely LCD and SICD, are presented next.

We compare three solutions for the max-sum problem under LCD (P1LCD): i)

Solving a sub-problem given τ0 as in [57], ii) Our proposed near-optimal solution

in Section 3.3.1 which solves P1LCD iteratively, given τ0 (Using the approximation

in [57]) and given E, and iii) The same approach in Section 3.3.1 except for solving

P1LCD(given τ0) using the approximation in [63]. This is shown in Figure 3.2 in which
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the max-sum throughput is plotted vs. the distance between the AP and ER (dER−AP )

for K = 5 and T = 2. The figure shows the superior performance of our proposed

near-optimal solution.

In Figure 3.3, the max-sum throughput for different values of K at T = 2 is plotted

vs. the distance between the AP and ER (dER−AP ). As noticed, the sum throughput

decreases as the distance increases due to the path loss. As the number of users

increases, the sum throughput increases as well due to the existence of more nodes

contributing to the sum throughput. The figure shows that SICD outperforms LCD,

which is expected due to the merits of SICD successively decoding interfering signals

and canceling them out from the interference to other signals. On the other hand, SICD

adds up more computational complexity to the system.

FIGURE 3.2: Max-sum at K = 5 and T = 2, where ∗ is [57] and ∗∗ is [63]

Moreover, in Figure 3.4, the max-sum throughput for different values of T at K = 5

is plotted vs. the distance between the AP and ER. An increase is observed in the

max-sum throughput, as the time horizon, T , is extended.
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FIGURE 3.3: Max-sum at T = 2

At a dER−AP of 100 meters, the effect of the decodability threshold, Sthi is studied in

Figure 3.5. P1LCD has a solution only for very low values (i.e. low SINR requirements)

of the decodability threshold; that’s why LCD curves stop early in Figure 3.5. Moreover,

the higher the number of users, the sooner P1LCD becomes infeasible, due to elevated

levels of interference. On the other hand, P1SICD is not affected by the decodability

threshold. This is because, with SICD, the average SINR of every user is always greater

than the threshold due to interference cancellation.

FIGURE 3.4: Max-sum at K = 5
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FIGURE 3.5: Max-sum at dER−AP = 100 m

Max-Min Performance Results

In an attempt to enhance fairness across users, the objective function to be maximized,

under max-min, is the minimum user’s throughput. The performance of the presented

approach and comparison to the optimum using exhaustive search are presented next.

In Figure 3.6, the max-min throughput is plotted vs. dER−AP for both LCD and SICD.

The minimum throughput is noticed to decrease as the number of nodes increases. This

is because the same resources are distributed among a larger number of users. The

performance of SICD is superior to LCD due to higher SINRs as a result of interference

cancellation.

To compare the performance of the presented schemes to the global optimum,

we resort to exhaustive search since solving for the global optimum is prohibitively

complex due to problem non-convexity. Since carrying out an exhaustive search is very

complex and time consuming, it is not applicable to carry it out for a large network.

As a result, we carried out an exhaustive search for a small network scenario which

consists of two nodes and 1 time slot (K = 2 and T = 1). The results of this search are
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shown in Figure 3.7.

FIGURE 3.6: Max-min at T = 2

Throughput-Fairness Trade-off

There is a fundamental trade-off between the max-sum and the max-min problems. A

network with max-sum throughput objective will allocate more resources to nodes with

high channel gains (near nodes) to add up to the sum throughput. On the other hand,

a network with max-min throughput objective will balance the resource allocation to

accommodate users with low channel gains (far nodes) to enhance fairness.

To show this behavior, the sum throughput achieved by the optimal max-min

problem is compared to the sum throughput achieved by the max-sum problem. Figure

3.8 confirms the expected behavior whereby the max-min formulation enhances fairness

(as shown in Figures 3.9 and 3.10) at the expense of reduced sum throughput, compared

to the max-sum formulation. On the other hand, and in order to complete the picture,

the minimum user throughput is compared, under both formulations, in Figure 3.9

showing that the max-min formulation is superior to max-sum, due to its fairness

merits.
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FIGURE 3.7: Max-min at K = 2 and T = 1

FIGURE 3.8: Sum Throughput in max-min
and max-sum Problems

Moreover, Jain’s index (a measure of fairness between nodes) is plotted for the max-

sum and max-min optimal policies to show to what extent fairness is accommodated in

each formulation.

Jain’s index [65] is defined as:

(xi) =
(
∑K

i=1 xi)
2

K ·
∑K

i=1 x
2
i

, (3.19)

47



Chapter 3. Towards Optimal Resource Allocation in Wireless Powered

Communication Networks with Non-Orthogonal Multiple Access

FIGURE 3.9: Minimum Throughput in
max-min and max-sum Problems

where, xi is the throughput for user i, i ranges from 1 to K. Jain’s index ranges from 1
K

(worst fairness) to 1 (best fairness), and it is maximum when all users receive the same

allocation.

In Figure 3.10, Jain’s index is plotted vs. the number of users. It is noticed how

Jain’s index in the max-sum problem has the worst-case value ( 1
K

), while it is better for

max-min schemes.

FIGURE 3.10: Jain’s Index (SICD Scheme)
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Finally, it worth noting that Figures 3.8, 3.9 and 3.10 are plotted for SICD. Similar

results can be obtained for LCD.

3.6 Conclusion

In this chapter, we investigate the problem of optimal resource (time and power)

allocation in WPCNs using NOMA. Two different optimization problem formulations

are considered; in the first one, the sum throughput (max-sum) of all users is maximized.

In the second one, the min-throughput (max-min) of all users is maximized. Under these

two formulations, two NOMA decoding schemes are studied, namely, LCD and SICD.

Due to the non-convex nature of the max-sum and max-min optimization problems,

we propose an approximate solution approach, in which the non-convex optimization

problem is approximated by a convex optimization problem, which satisfies all the

constraints of the original problem. The approximate convex optimization problem can

be then solved iteratively. The results show a trade-off between maximizing the sum

throughout and achieving fairness via maximizing the minimum throughput.
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Chapter 4

Machine Learning-Based MIMO

Enabling Techniques for Energy

Optimization in Cellular Networks

This chapter and the next, discuss the cellular network management challenge. This

chapter focuses on conserving energy by the management of turning the MIMO feature

on/off. The next chapter adopts a wider perspective and deeper control of the cellular

network (as will be explained later).

In mobile communications technology, the component with the greatest share

of energy consumption in mobile networks is the Base-station (or eNodeB in LTE

standards) with a share greater than 50% [66]. Therefore, this work focuses on reducing

energy consumption at the eNodeB in mobile networks.

In 4G networks, one of the most energy-consuming features is the use of Multiple

Input Multiple Output (MIMO) scheme. Unlike the Single Input Single Output (SISO)

scheme, the main idea behind MIMO is to use multiple antennas at the transmitter

and/or the receiver simultaneously. This allows for higher throughput and guarantees

faster downloads and higher spectral efficiency [67].

MIMO, despite its multiple advantages, consumes a large amount of energy that
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might not be always necessary. If a certain level of Quality of Experience (QoE) is

achieved by SISO, a lot of energy can be saved by turning off the MIMO scheme at the

eNodeB. Currently, mobile operators do this manually based on some user-defined

schedules. An automated method to turn on/off the MIMO capability, based on the

network performance, is certainly needed to reduce the amount of used energy.

To clarify how controlling MIMO can be effective to save energy, Vodafone Egypt

provided information about the average energy consumption before and after turning

off MIMO. For the MIMO sites, from our test dataset that will be presented later, turning

off MIMO can cause energy saving that ranges from 2.5% to 8.6% of the total site energy

(an average of 5.5% energy saving) resulting from only controlling the radio unit of

the base station. This variation of the energy savings is because sites lie in different

locations and are subject to different conditions, therefore, the total consumed energy

is affected by conditions other than the radio unit.

The main objective of this study [18] is to use Machine Learning, specifically Neural

Networks (NN), to learn some features of the network and decide whether SISO is

sufficient to achieve a satisfactory level of QoE. Based on this, the mobile operator can

decide whether to enable the MIMO capability.

NNs have been gaining a lot of interest recently in the wireless communications

literature [68], [16]. NNs can learn the features of a certain system even if it has no

model to represent it. By subjecting the NN to the data drawn from the system, it will

be able to extract the common features and learn the performance of the system.

The main contribution of the work in this chapter is to use two types of NNs: 1) Fully

Connected NN (also called Multi-Layer Perceptron (MLP)) to learn the features of the

SISO scheme 2) Recurrent NN to track any trends in the data history. Both machines are

trained using historical data drawn from realistic SISO cells1. This data includes several

1All the data used in this work are provided by one of the mobile operators in Egypt.
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network features recorded around the clock. When the training phase is complete,

the machine is subjected to some cell features of a MIMO site and it emulates the

performance of the SISO scheme to decide whether SISO can achieve a satisfactory

QoE. To make this decision, the average DownLink (DL) user throughput is predicted

and monitored as a measure of QoE. If the machine decides that SISO is enough, then

MIMO can be turned off to save energy. Otherwise, the MIMO is kept on to achieve an

acceptable QoE performance.

4.1 Literature Review

Reducing the carbon footprint of mobile networks has been of interest in the literature

recently. For example, [69] discusses the possibility of powering mobile networks

with green energy. It presents an overview of the design and challenges of green

energy-enabled mobile networks.

The authors in [70], [71], and [72] discuss possible techniques to reduce the power

consumption in base stations (BSs) since it is the entity with the highest power con-

sumption in the whole mobile network [66]. They focus on optimizing air conditioning

power consumption and minimizing feeder losses.

The exploitation of Machine Learning (ML) techniques has been of interest in many

research works in cellular networks. In [68], the authors investigate the possible

use cases of machine learning in future cellular networks. They review the basic

concepts of machine learning and propose their use in 5G networks, including cognitive

radios, massive MIMOs, femto/small cells, heterogeneous networks, smart grid, energy

harvesting, and device-to-device communications. On the other hand, in [73], the

authors are interested in cache content optimization in small base stations based on

learning algorithms.
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Using ML for energy saving in base stations has been investigated in the literature

as well. In [74], the authors present a Reinforcement Learning (RL) approach for re-

source allocation in wireless networks. The presented algorithm learns the utility of

performing various tasks over time and uses the application constraints for task man-

agement by optimizing energy usage and network lifetime. From another perspective,

the authors in [75] adopt machine learning in energy harvesting. They propose a strat-

egy learning algorithm that exploits the expected energy and adapts spectrum selection

strategies to maximize the network’s performance. The learning algorithm addresses

how multiple users discover available channels and harvest energy over the network.

The novelty of our proposed approach lies in focusing on the energy optimization

of the Radio part of the BS and not air conditioning or feeder losses. It targets the

power amplifiers which are responsible for 65% of the total BS energy consumption

[76]. Additionally, and to the best of our knowledge, this is the first work to address

machine learning as means for the enabling decision of the MIMO scheme(s) based on

energy saving purposes. The current practice in mobile networks is to have some user-

defined schedules or some other “experience-based” manual approach. These practices

suffer from the fact that they are not real-time and that they are human-driven rather

than data-driven. Our approach allows for real-time data-driven seamless operation

(i.e. it learns features and their relationships, which is not the case in the human-driven

approaches).

4.2 Problem Description and Proposed Approach

As mentioned earlier, the main objective of this work is to exploit Machine Learning

(ML) approaches to reduce energy consumption in the radio part of the base stations.

This is achieved by turning off the MIMO feature if and only if SISO can achieve a
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minimum satisfactory Quality of Experience (QoE), which is measured in our work

by a minimum average DownLink (DL) user throughput2. Our models will follow

regression models to estimate the expected user DL average throughput for a SISO

scheme based on some network parameters as will be explained later. It is worth

mentioning that our algorithm does not provide any service guarantees for any specific

UE. MIMO feature is turned on/off based on the expected average throughput per

user.

4.2.1 Data

The data used for training, validation, and testing are real data shared by Vodafone

Egypt. It includes Key Performance Indicators (KPIs) from 145 SISO sites calculated at

the cell level every hour through a whole duration of two weeks. Based on the operator

expertise, the KPIs that are most relevant (directly or indirectly) to the user DL average

throughput are selected. The KPIs are listed next.

DL Physical Resource Block (PRB) utilization

A PRB consists of 12 consecutive subcarriers for one slot (0.5 ms), and is the smallest

element of resource allocation assigned by the eNodeB. PRB utilization is a measure of

the cell utilization (congestion). As the PRB usage ratio increases, the resources may

not be allocated in a timely and reliable manner to the users of the cell.

Average Channel Quality Indicator (CQI) per cell

This is a measure of the average channel quality in the whole cell. The CQI reported

value is a number between 0 and 15; this indicates the level of modulation and coding

2Our approach presented in this work can be readily generalized to any other measure of users’ QoE.
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the UE can operate at. The CQI value is computed by considering the SINR values

using a precalculated lookup table of the CQI index versus SINR as a reference.

DL Traffic Volume

This is measured in GBytes. It is the total traffic of all users for each cell along the

measuring step (1 hour).

Average number of User Equipment (UE)

That is how many UEs attach to this cell on the average. This is an indicator of the cell

utilization (along with PRB utilization).

Maximum number of UEs

This KPI indicates how many UEs attach to this cell at most. This parameter is required

to avoid underestimation of worst case scenarios.

User DL average throughput

That is the performance metric that the operator adopts to indicate the QoE (that is the

current practice in mobile networks). A QoE is considered satisfactory only if the user

DL average throughput is ≥ 5 Mbps.

MLP takes only the current measurements to predict the DL user average through-

put if SISO is used. On the other hand, RNN tracks the historical trend of the data to

predict the user DL average throughput.

The total number of data points in our data set is 382,456. During our experiments,

70% of the available data was used for training, 20% was used for validation and 10%

was used for testing.
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4.2.2 ML Models Architectures

We now present the models that we use in the two NN methods that we use in this

study as follows.

Multi-Layer Perceptron Architecture

The used MLP consists of:

• 1 input layer containing 12 neurons (ReLu activation function).

• 1 hidden layer containing 8 neurons (ReLu activation function).

• 1 output layer containing 1 neuron (DL average user throughput) (Linear activa-

tion function).

The used optimizer is ADAM, with a learning rate of 0.001 and batch size of 50.

It should be noted that the number of hidden layers, neurons, batch size, optimizer

and learning rate are all hyper-parameters that are selected after several trials.

A layout of the used network architecture can be found in Fig. 4.1

Recurrent Neural Network

The used RNN consists of:

• 1 input layer containing 50 neurons (ReLu activation function).

• 1 hidden layer containing 100 neurons (ReLu activation function).

• 1 output layer containing 1 neuron (DL average user throughput) (Linear activa-

tion function).

• Feedback connection from the previous hidden layer output to the current hidden

layer input to track the historical features of the data.
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FIGURE 4.1: Neural Network Architecture

The used optimizer is ADAM, with a learning rate of 0.001 and batch size of 72.

It should be noted that the available data are KPIs measures at every hour from

different cells. To use these data to train the RNN, we assume that the historical

trend of data does not differ from one site to another. Therefore, we separate the data

from different cells, make sure they are arranged from oldest to newest, and use these

sequences to train the machine cell after cell. After each sequence of data, the trained

machine is used as a starting point for the next sequence drawn from the next mobile

network cell.
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4.2.3 The Algorithm

The proposed scheme is a regression model that takes the available KPIs as inputs to

the Neural Network (NN) and the DL user average throughput as the output. The

main idea is to create an NN that is trained via the SISO data. This results in a network

that has learned the performance and behavior of SISO sites. Eventually, when the

network is fully trained, it can take the KPIs of the MIMO site under consideration and

use its KPIs to predict the DL average throughput using the SISO behavior learned by

the network. If the predicted output is acceptable (i.e. achieves a satisfactory users’

QoE), which means that SISO is good enough to handle the network traffic, then MIMO

can be turned off (temporarily) to save energy. Otherwise, energy must be expended to

keep the MIMO on to maintain a satisfactory users’ QoE.

In our work, we define a satisfactory user QoE as achieving a user average DL

throughput that is not less than 5 Mbps. Therefore, the output of the ML network is

compared to a threshold of 5 Mbps to decide whether SISO can provide an acceptable

QoE. There is a trade-off between the threshold that represents the satisfactory QoE

and the amount of saved energy.

Our proposed algorithm is described in Algorithm 3. This description applies to

both the MLP and RNN architectures.

4.3 Performance Evaluation

In this section, the performance evaluation results of the proposed schemes are pre-

sented.
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Algorithm 3 Using MLP and RNN to save energy in 4G cellular networks by optimizing
MIMO usage: algorithm description

1: procedure PREPARE DATA SET

2: Normalization of the data to the range from 0 to 1.
3: Divide data set into: 70% training, 20% validation and 10% testing.
4: end procedure
5: procedure TRAINING

6: Initialize: Random weights.
7: Input: 5 KPIs provided by the training dataset.
8: Output: DL average user throughput.
9: Back-Propagation Learning Technique:

10: while Validation error is decreasing do
11: for Each training epoch do
12: Monitor the output (DL average user throughput).
13: Compute MAE based on current weights and current input.
14: Update Weights based on the MAE and learning rate.
15: Monitor validation error to avoid overfitting.
16: end for
17: end while
18: Result: A machine that has learned the features (the historical trend in case of RNN) of

SISO scheme.
19: end procedure
20: procedure TESTING

21: Input: 5 KPIs from the testing data.
22: Output: DL average user throughput.
23: RUN NN in feed-forward direction.
24: Compare predicted throughput to actual throughput.
25: while Results are not satisfying do
26: Change hyper parameters.
27: Repeat training phase.
28: end while
29: end procedure
30: procedure APPLICATION

31: Use the fully trained machine to use the KPIs of a certain MIMO cell as inputs and apply
regression to predict the output (DL average user throughput) if SISO scheme is used.

32: If output is satisfying (> 5Mbps), MIMO is turned OFF to save energy. Otherwise,
MIMO is used.

33: end procedure
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4.3.1 Training Phase

The progress of the training and validation error during the training phase is shown in

Fig. 4.2. It can be seen that the training error is slightly lower than the validation error.

Both errors exhibit a decreasing trend. An early halt of the training process occurs

when the validation error starts to increase while the training error is still decreasing

(to avoid overfitting).

FIGURE 4.2: Training and Validation Errors (in Mbps) During the Training
Process of MLP

At the end of the training phase, the performance of the machine is measured via

the loss function. The Mean Absolute Error (MAE) is the chosen loss function during

the training. Since we aim to build a regression model to estimate the user DL average

throughput, it is reasonable to consider MAE as our performance measure. The results

are stated in Table 4.1. The results show that our trained models can achieve very

small MAE errors and that the RNN architecture was able to achieve smaller errors in

general.

60



Chapter 4. Machine Learning-Based MIMO Enabling Techniques for Energy

Optimization in Cellular Networks

TABLE 4.1: Mean Absolute Error for Data Normalized from 0 to 1

Machine Training Phase Validation Phase Testing Phase
MLP 0.0962 0.0985 0.1702
RNN 0.0289 0.0304 0.0993

4.3.2 Testing Phase

When the machine completes the training phase, it is ready to be tested. In the testing

phase, the machine uses new data (different from the training and validation data).

MAE of the testing phase is recorded in Table 4.1.

4.3.3 Testing using data from MIMO sites

To test the machine on MIMO sites, a group of MIMO sites is selected for the testing

process by the service provider. MIMO is turned off in these sites and the DL aver-

age user throughput is recorded. The KPIs of these sites are fed to the proposed ma-

chines to predict the DL average user throughput and compared to the recorded actual

throughput.

The MAE of this test is 0.31 for MLP and 0.26 for RNN. It should be noted that data

were originally normalized to the range from 0 to 1. This is necessary when features

have different ranges, like the case here. To have a look at the error function related to

the original throughput value, normalization must be inverted. After denormalization,

MAE reached the value of 2.75 Mbps for MLP and 1.38 Mbps for RNN.

It is worth mentioning that the sites used for training, validation, and primary

testing are SISO sites. On the other hand, the sites used in this second testing phase are

MIMO sites which are different from the sites used in the previous processes.

Fig. 4.3 and Fig. 4.4 show how close the predicted throughput (output of the

machine) is to the actual throughput (provided by the data). They also show the

absolute error at every point.
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FIGURE 4.3: Actual Throughput, Predicted Throughput and the Absolute
Error During a Portion of the Testing Phase for MLP.

It should be noticed that the considered KPIs are not the only factors that affect

the throughput. For example, the weather conditions, the location of the site, the

interference, and surrounding construction can all affect the achieved throughput.

Considering more features is left for extending the current work.

As mentioned earlier, the threshold for acceptable QoE is chosen to be 5 Mbps.

The percentage of correct decision (to turn MIMO on/off) for both the MLP and RNN

architectures is presented in Table 4.2. This result is important because the main

objective of this work is to take a correct decision to turn MIMO on/off not to predict

the exact DL user average throughput.

TABLE 4.2: Percentage of Correct and Erroneous Decisions

Decision MLP RNN
Correct Decision to turn MIMO on/off 88.21% 90.17%

Erroneous Decision to turn off MIMO 3.61% 2.55%

Erroneous Decision to keep MIMO on 8.18% 7.28%
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FIGURE 4.4: Actual Throughput, Predicted Throughput and the Absolute
Error During a Portion of the Testing Phase for RNN.

4.4 Conclusion

In this chapter, we consider the use of ML-based approaches for energy saving in mobile

networks. More specifically, these approaches help in deciding on the disabling MIMO

schemes if the SISO mode can achieve a network user desired QoE. We propose two

different architectures for ML networks to estimate the user DL average throughput

under SISO base stations, namely, multi-layer perceptron (MLP) and recurrent neural

network (RNN). We compare the estimated SISO user DL average throughput to a

predefined threshold that represents the desired QoE. If SISO can achieve the target

QoE, MIMO schemes are turned OFF, otherwise, MIMO schemes are enabled. We

train our models based on real mobile network data. Results reveal the efficiency

and effectiveness of proposed approaches as they allow for real-time, data-driven

solutions. These are unique features of our proposed solutions as compared to the

current practices in mobile networks.
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Chapter 5

Deep Reinforcement Learning-Based

Management Technique for Cellular

Networks

Cellular networks have been facing a lot of rapid changes lately [77]. For instance,

the number of users varies drastically from time to time depending on the current

events. The coverage requirement varies as well due to fast urban changes. Moreover,

energy conservation has become a universal need in the past decade [78], [79]. Cellular

networks need to be adaptive enough to cope with the rapid ongoing changes and

meet the new requirements. Furthermore, a certain criterion must be set to make sure

that these rapid network changes will not cause disturbance in the network. In other

words, a network equilibrium is a must meet requirement. This will give the network

immunity towards the surrounding environment changes and allow it to self-heal from

any expected problems.

In this chapter, the main target is to reach a stable state in the cellular network after

any variation in the surrounding environment. We measure this stable state by meeting

five main targets (which can be contradicting):

1. Maximize sum throughput of the network.
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2. Achieve load balancing among cells.

3. Minimize numbers of blocked users.

4. Satisfy Quality of Experience (QoE) for users.

5. Minimize energy consumption.

We try to reach this stable state by controlling three parameters/features:

1. Relative Cell Individual Offset (CIO) between eNBs (will be denoted next by

CIOs) which will affect load balancing and user blocking.

2. The eNodeB (eNB) transmission power (will be denoted next by Pn). This param-

eter has a direct effect on all the requirements mentioned above.

3. MIMO feature on/off. This will affect sum throughput, QoE, and energy con-

sumption.

To control these parameters, we use a Reinforcement Learning (RL) based approach

[25]. RL consists mainly of an agent (decision maker) and a surrounding environment.

The process depends mainly on trial and error. The agent selects a decision from a

pre-defined action space and based on the effect of this action on the environment it

updates its decision-making policy. The target of the agent is to explore the action space

as much as possible and to maximize the reward (a pre-determined function) of its

decision in the long run.

To this end, we face two main issues. The first one is the fact that trial and error is

almost impossible in a live cellular network since it will directly impact the QoE of the

end-user. The second issue is the hybrid action space (having a mix of continuous and

discrete control parameters). Pn and CIOs values are selected from a continuous action

space while MIMO on/off action is selected from a discrete action space.
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To solve the first issue, we use a modified version of the simulated cellular network

in [80] using NS3 simulator which is a very powerful tool to simulate a network with

the capability of extracting KPIs. This simulated network will be the environment

for the RL agent (decision maker). The agent will apply its decision to the simulated

cellular network and we can extract KPIs to calculate the reward as feedback to the

agent.

To solve the second issue, we adopt two existing RL algorithms in a layered fashion,

as will be explained later. The first one is the Double Deep Q-Network (DDQN) [27]

which is used for discrete action spaces (MIMO on/off in our case). The second one

is Twin Delayed Deep Deterministic Policy Gradient (TD3) [29] which is used for

continuous action space (Pn and CIOs in our case).

The main contribution of the work in this chapter can be summarized as follows:

• Joint optimization of eNBs’ transmission power, relative CIOS and MIMO scheme

using an RL-based framework to automate network management and train the cel-

lular network to reach a stable state of the network such that the sum throughput

is maximized.

• Present a layered approach to handling hybrid action space. We give a detailed

algorithm to enable the agent to take decisions extracted from discrete and con-

tinuous action spaces and apply them to the environment.

5.1 Literature Review

As mentioned earlier, the main target of this work is to train the cellular network to be

able to reach a stable state from five perspectives: Maximized sum throughput, Load

Balancing, Minimum number of blocked users, User Equipment (UE) QoE, and Energy
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Consumption. This will enable the network to be Self Healing and more immune to the

changes that occur occasionally in the network.

As far as came to our knowledge, this is the first work to address three network

management controls simultaneously. These are: Transmission Power, CIOs, and

MIMO scheme. However, other works in literature have addressed these controls

separately or two of them together.

Power control has been discussed in earlier works in literature. In [81], the authors

discuss a dynamic operation of cellular base stations. That is: switching off redundant

base stations during periods of low traffic. This dynamic operation was proven to

provide significant energy savings in cellular networks. Also, in [82], the authors aim

to design an efficient online scheduling algorithm to minimize energy consumption

while meeting an acceptable end-user experience. Moreover, in [18], the problem of

energy optimization in mobile networks is considered by enabling the MIMO feature

(the most energy-consuming feature) only when necessary. This is done by using a

neural network-based algorithm to learn the behavior of SISO networks and decide

whether or not it will be sufficient to reach a satisfactory user Quality of Experience

(QoE).

Load balancing has been covered in previous works as well. In [83] and [84], the

authors design a machine learning framework for optimizing cell parameters that can

achieve more balance in the traffic. Their target is controlling the CIO of neighboring

cells to force handover from congested cells into lighter load cells. In [80] and [26], the

authors aim to control energy and CIOs simultaneously to achieve load-balancing such

that the DL sum throughput is maximized while the number of uncovered users is

minimized.

Reinforcement learning (RL) has been applied in cellular networks in many previous

works. A survey of the applications of deep RL in cellular networks as an emerging

67



Chapter 5. Deep Reinforcement Learning-Based Management Technique for Cellular

Networks

tool to address various challenges can be found in [24]. In [85], the authors present

an RL-based algorithm to solve a non-convex constrained SINR optimization problem

aiming to enhance the performance in practical cellular environments. The authors

in [86] present an RL-based scheduler that aims to optimally schedule IoT traffic to

dynamically adapt to traffic variation. Moreover, a deep RL approach is considered in

[87] for power control in multi-user wireless communication cellular networks aiming

for maximizing the sum rate of the network by coordinating the inter-cell interference.

In [26, 80, 83, 84], RL was adopted aiming to reach load balancing in the network such

that the sum throughput is maximized.

From another perspective, as mentioned earlier, the action space in this work is a

mix of continuous and discrete sets. Handling a hybrid action space exists in literature

in different settings. For instance, in [30] , the authors are interested in the hybrid

action space of video games. They adopt the Soft-Actor-Critic (SAC) algorithm in a

parameterized way. They duplicate the continuous components that depend on other

discrete components (one for each discrete component) as long as the model dimension

remains reasonable. Another example is in [31] in which hybrid control in Robotics is

the main concern. The authors build on top of the algorithm that is called Maximum

aposteriori Policy Optimisation (MPO). Also in [32], the authors deploy a multi-agent

algorithm with a hybrid action space as an extension of parameterized DQN.

The novelty of this work lies in two main points. First, we aim for controlling three

different parameters/features -simultaneously- to reach a state of "equilibrium" in the

network. Those three features, as mentioned above, are the transmission power, CIOs,

and MIMO status. Most work in literature aims to control one or two features at most.

We, on the other hand, aim to have more holistic control over the network.

The second point is the hybrid nature of the action space. CIO control and Trans-

mission power control belong to a continuous action space. However, turning MIMO
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on/off belongs to a discrete action space. In this work, the hybrid action space is han-

dled in a hierarchical approach. We propose a new RL architecture that allows the

agent to take its decision in two successive stages. This is lacking in the RL literature to

the best of our knowledge. The presented scheme is simple, yet efficient and one of its

main advantages is that it requires no modification in the core of the used techniques

(DDQN and TD3) as will be explained later.

5.2 Problem Description and Proposed Approach

5.2.1 System Model

The model adopted in this study is close to that in [80]. Consider an LTE cellular

network that consists of N eNBs and U User Equipment (UEs)1. It is worth mentioning

that this work is considered as a starting point for using RL to jointly optimize discrete

and continuous network parameters. It can be extended to real network as the scenario

adopted in [84] in which authors used real eNBs locations and real users mobility

model.

eNodeBs:

Each eNB sends its transmission in the DownLink (DL) with a power level Pn ∈

[Pmin, Pmax]dBm, where n = 1, 2, .., N . At time t = 0, 1, 2, 3, ..., each UE measures the

Signal-to-Interference-plus-Noise-Ratio (SINR) of near eNBs and attaches to the cell

that results in the highest one.

1Although this work is applied to LTE cellular networks, our model is general and can be applied to
5G cellular networks and beyond.
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An eNB can be over-utilized or under-utilized. This is determined according to the

value of the eNB utilization ρn:

ρn =

∑Un

i=1Ki,n

Bn/BPRB

, (5.1)

where, Un is the number of UEs served by the nth eNB, Ki,n is the number of Physical

Resource Blocks (PRBs) that serves the ith user in the nth eNB, Bn is the bandwidth of

the nth eNB and BPRB is the bandwidth of one PRB (=180 KHz in LTE). Note that ρn is

the ratio of the total number of required PRBs of nth eNB (to serve the attached users)

to the maximum number of PRBs that it can offer. Therefore, ρn < 1 means that the eNB

is under-utilized while ρn > 1 means that the eNB is over-utilized. Under-utilization

allows the eNB to serve all its attached users with satisfying rates while this will not

happen in case of over-utilization.

Every eNB can have the MIMO feature turned ON or OFF (depending on the

network manager decision). Turning the MIMO feature ON has a big effect on the

gain received at the receiving end, thus, a better Quality of Experience (QoE) can be

achieved at the UE. However, MIMO is one of the most energy-consuming features in

the eNB. When the MIMO feature is turned ON, a scheduler decides whether to use the

multiple antennas to apply Spacial Multiplexing or Transmit Diversity depending on

the CQI of the UE. Nodes with higher CQIs will be assigned Spatial Multiplexing to

give them more enhancement. On the other hand, nodes with lower CQIs (far nodes)

will be assigned Transmit Diversity to increase their SINR and offer them a satisfying

performance.

UEs:

The uth UE moves with a constant velocity vu. It regularly searches for a better cell

(according to the higher SINR) and attaches to the better cell if found. Moreover,
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The channel quality indicator (CQI) φu of the uth UE is reported to the associated cell

periodically. φu is based on the perceived SINR and Block Error Rate (BLER) at the UE.

The CQI is a discrete measure that represents the quality of the channel. φu ∈ 0, 1, , 15.

When φu = 0, this means that the uth UE is out of coverage (blocked) [88]. A higher

CQI value corresponds to higher channel quality [89].

When a certain UE is attached to cell i, it might require handover to another neigh-

boring cell j if [88]:

RSRPj + θj−i > Hys+RSRPi + θ + i− j, (5.2)

where, RSRPi and RSRPj are the measured Reference Signal Received Power from

eNBs i and j respectively. θi−j is the CIO value of the eNB i with respect to eNB j and

θj−i is the CIO value of the eNB j with respect to eNB i. Hys is a hysteresis value to

minimize repeated handover requests that might occur due to minor signal quality

fluctuations.

CIO (θi−j) is a cell-specific parameter that has a direct effect on handover between

cells. If it is set to zero, the UE attaches to a certain cell depending only on RSRP. If

it is set to a different value, it makes the measured RSRP of cell i appear stronger (or

weaker) when compared with the measured RSRP of cell j.

5.2.2 Reinforcement Learning Framework

Assume that the network has a central network manager that takes the role of the

RL agent. The interaction between the agent and the network occurs at discrete time

steps with constant durations. At each time step, the agent observes the state of the

environment and decides to be applied to the environment aiming to maximize a certain

reward function. As a result of the agent decision, feedback from the environment
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gives the agent a hint about the effect of the taken decision. This feedback is the reward

function and a new state of the environment. This process is repeated until the reward

function converges, which means that the agent has reached a policy that maximizes

the predetermined reward function.

The mapping of the RL algorithm to the proposed problem can be explained in brief

as follows:

• Agent: Central network manager.

• Environment: Cellular Network under consideration (simulated).

• State: A subset of the network KPIs which are:

– Resource Block Utilization (RBU) (Bl(t)): The fraction of used PRB blocks

that serve the users of each cell. It is an N-length vector. It is a representation

of how congested each cell is.

– A vector of total DL throughput of each cell (R(t)): It is a representation of the

eNB performance. Each element can be expressed as Rn(t) =
∑Un

un=1Run(t),

where Run(t) is the measured throughput of user un in the nth eNB.

– Number of active users of each cell (C(t)): This measures the number of

users that are not idle in a certain time step.

– Modulation and Coding Scheme (MCS) Matrix (M(t)): It is a matrix that

gives the fraction of users with a certain MCS. It is considered a representa-

tion of the quality of channels.

Finally, we can say that the state is the concatenation of the above vectors (after

reshaping M(t)):

S(t) = [Bl(t)TR(t)TC(t)TM(t)T ]. (5.3)

• Action: The features that the agent has control over:
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– Relative CIO values between every two neighboring cells. θij = −θji =

θi−j − θj−i. This action belongs to a continuous actions space [−θmax, θmax].

– Transmission Power of each eNB Pn. It belongs to a continuous action space.

The agent chooses a value from the set [−Pmax, Pmax] to add to a constant

value of 30 dBm.

– Turning MIMO feature ON/OFF for each eNB mn. The whole MIMO action

is [m1...mN ]. This action is selected from a discrete set of size 2N since each

eNB has a decision of mn = 0 (MIMO OFF) or mn = 1 (MIMO ON).

• Reward Function: The main target of the RL agent is to reach the policy that

maximizes the expected reward function on the long run [26]. That is:

max
π

lim
L→∞

L∑
t=0

E[λtr(t)], (5.4)

where, r(t) is the reward function, λ is the discount factor that determines the

significance of the reward future expected values and π is the policy. The selected

reward function in this work is:

r(t) =
N∑
n=1

Rn(t)− ηR(t)
U∑
u=1

1(φu = 0)− µ
N∑
n=1

mn, (5.5)

where, η and µ are hyper-parameters that are determined by trial and R(t) is the

average user throughput at time instant t. This reward function consists of three

terms. The first term is the sum throughput of the network (to be maximized).

The second term is the sum throughput of the blocked users scaled by a hyper-

parameter. This term is to be minimized (a penalty) that’s why it is subtracted.

This penalty is scaled by η to control how significant it is to the agent. The last
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term is also a penalty. It is the number of eNBs that have the MIMO feature turned

ON. It is also scaled by another hyper-parameter µ.

Thus, we can say that the objective of the agent is to reach the policy (sequence of

action) that maximizes the total network throughput, minimize the number of

out-of-coverage users and minimize the consumed extra energy due to turning

MIMO ON.

Choosing the reward function to be the total throughput with no penalties might

let the agent choose to keep only the users with high rates and alter CIOs or

reduce power levels to cause handover of the edge users to a poorer performance

cell. That’s why putting a penalty on the number of out-of-coverage users is

important. The other penalty is put to limit the consumed energy due to turning

MIMO ON. Without this penalty, the agent would just choose to turn MIMO ON

all the time with no regard to its energy consumption.

The aforementioned RL framework enables us to control power levels, CIOs, and

MIMO feature. These controls have a direct and simultaneous effect on handover

processes, coverage, QoE, and energy consumption. By using the proposed algorithm,

explained next, we can take the cellular network to a stable state: Load balanced,

minimum out-of-coverage users, satisfying QoE and minimum energy consumption

such that the sum throughput of the network is maximized. The main advantage of this

stable state is that it is learned, which means that it can be re-gained after any network

change. This means a more immune cellular network.

5.2.3 Proposed Algorithm

In this chapter, we propose an RL framework that consists of an environment (cellular

network) and an agent (central network manager). The agent observes a state (a subset
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of network KPIs) and consequently, it takes a decision (action) to control some network

features.

The main issue is having a hybrid action space. That is: two actions belong to a

continuous set (relative CIOs and power levels), while one action belongs to a discrete

set (MIMO feature on/off). To solve this issue, the agent takes the decision in two

stages.

• First Stage: The agent observes the state and takes the action of MIMO on/off

based on the DDQN technique [27]. The action is taken from the discrete set

mn ∈ /0, 1/ (for each eNB). Note that the action of the first stage is not applied to

the environment until the end of the second stage.

• Second Stage: The first stage action is augmented with the state being observed

and then it takes the CIO and power level actions based on the TD3 technique.

They are selected from the continuous intervals [−θmax, θmax] and [−Pmax, Pmax]

respectively.

After the two stages, the augmented action Aaug(t) = [AC(t), AP (t), AM(t)] is ap-

plied to the environment. Where: AC(t) = θij (for all neighboring cells), AP (t) =

[P0, P1, ..., PN ]) and AM(t) = [m0,m1, ...,mN ]. Note that as the agent explores the whole

action space, therefore, the effect of the different combinations of the first stage action

(MIMO on/off) and second stage action (Relative CIOs and Power Levels) is learned.

An overview of the proposed scheme can be seen in Fig. 5.1 and it can be described

in more detail in Algorithm 4.

It is worth mentioning that turning on the MIMO feature for a certain eNB doesn’t

mean that spatial multiplexing will be applied for all users attached to this eNB. There is

a scheduler applied for each eNB that decides which users to apply Spatial Multiplexing

(SMux) and which to use Transmit Diversity (TxD) depending on the channel of each
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FIGURE 5.1: An Overview of The Decision Making Process.

user. NS3 has SISO as the default running scheme and it leaves absolute liberty to

the user to turn MIMO modes (SMux or TxD) on or off (i.e. Scheduler doesn’t have

a role in selecting the suitable MIMO mode). The main concern is that turning SMux

for users with low CQI will only make things worse. TxD will be more suitable here

to enhance the channel of less fortunate users. To solve this problem, we created a

simple scheduler that applies SISO when the agent chooses mn = 0 but when the agent

chooses mn = 1, the CQI of each attached user is studied to select SMux for users that

have CQI ≥ 7 and select TxD otherwise. The CQI threshold is determined such that

TxD is applied for users that use QPSK and SMux for users that have higher MCS.

5.3 Performance Evaluation

Consider a cellular network consisting of 3 eNBs and 42 UEs as in Fig. 5.2. Each cell

has 10 users centralized around the eNB. On the edges between every two nodes. there

are 4 edge users. The inter-node distance is 500 meters. UEs have a random mobility
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Algorithm 4 Proposed RL Framework
1: Determine Reward Function.
2: Reset all values.
3: repeat
4: procedure STAGE ONE

5: Observe State (S(t)).
6: Select MIMO feature decision (DDQN) (AM (t)).
7: Create a new augmented state (Saug(t) = [S(t), AM (t)]).
8: end procedure
9: procedure STAGE TWO

10: Observe state (Saug(t)).
11: Select relative CIO and power level actions (TD3) ([AC(t), AP (t)])
12: Apply augmented action to the network Aaug = [AC(t), AP (t), AM (t)].
13: end procedure
14: Calculate Reward.
15: Calculate next state.
16: until Reward Function Converges

pattern in boxes around their starting points. UEs are assumed to be active all the time.

The environment, which is represented by the described cellular network, is simu-

lated using NS3 simulator (LENA module) [90]. The agent is simulated using Python

[91]. The interface between the agent and the environment is implemented using

NS3gym [92]. This interface is responsible for:

1. Applying agent actions to the environment.

2. Returning the reward and new environment state to the agent.

After applying the agent action, the environment is simulated using the control

parameters sent by the agent action. The reward is calculated using (5.5).

Simulation parameters are summarized in Table 5.1.

Next, two scenarios are evaluated. The first one is a cellular network consisting

of 3 identical cells. Each contains 10 users close to the eNB (center users Uc). Each

edge between two cells contains 4 users (edge users Ue). The second scenario is a

cellular network consisting of 3 unidentical cells. First cell has Uc = 18 (congested),

second cell has Uc = 9 (medium utilization) and third cell has Uc = 3 (uncongested).
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FIGURE 5.2: Cellular Network Topology (Green Nodes are eNBs and Red
Nodes are UEs)

TABLE 5.1: Simulation Parameters

Parameter Value
Number of eNBs (N ) 3

Inter-eNB distance (dij) 500 m
eNB antenna height 30 m
eNB antenna Pattern Omni-directional
UE mobility model Random walk (3 m/s)
UE antenna height 1.5 ∼ 2 m

Handover hysteresis 3 dB
System bandwidth 20 MHz

Pathloss model COST Hata
UE traffic model CBR (1 Mbps)

Basic eNB transmission power (Pn0) 30 dBm
Penalty on blocked users (η) ∈ [0, 2]

Penalty on applying MIMO (µ) ∈ [0, 10]

Training steps 8,000
Steps per episode 255

Step time 200 ms
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For both scenarios, the target is to find the optimum policy to control relative CIOs,

eNBs transmission power, and MIMO feature such that the network sum throughput is

maximized.

5.3.1 First Scenario: 3 Identical Cells

In Fig. 5.3, the network sum throughput (in Mbps) is plotted against the number of

episodes of the training phase. We compare 2 different settings: RL agent and Baseline

(BL). The RL agent is the proposed approach in this paper. It is evaluated for different

values of the hyper-parameter µ which scales the MIMO energy penalty. It is also

evaluated with MIMO always on and with MIMO always off. BL is the setting in which

the agent has no control over any network feature. It is evaluated with MIMO always

on and with MIMO always off as well. We observe that the sum throughput increases

during the training phase until it converges. It is noticed that as µ increases, the agent’s

desire to turn MIMO on decreases (since it negatively affects the reward function).

Therefore, the sum throughput for smaller µ values is higher. However, reducing µ

means increasing the consumed energy as a result of turning the MIMO feature on.

FIGURE 5.3: Effect of MIMO Energy Penalty (µ) on Sum Throughput
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We can see also that for all values of (µ), the sum throughput is higher than the

Baseline (BL) methodology in which the agent has no control over the network features.

We also note that the RL agent that has control over the MIMO feature outperforms

the RL agent that has MIMO turned off by default (SISO). It also approaches a close

performance to the RL agent that has MIMO turned on by default (but with less energy

as we can see later).

Furthermore, we can see in Fig. 5.3 that turning on MIMO with no other control

on any network feature (BL) gives a higher sum throughput than turning MIMO off

(with and without control over other features). However, our proposed scheme with

µ = 0, 0.5 outperforms BL with MIMO on but it consumes less MIMO energy.

It is worth mentioning that at µ = 10, the sum throughput curve increases at first

and decreases afterward. This is because the first portion of the learning phase is mainly

for the exploration of the action space. This means that the agent is trying most of the

possible actions to examine their effect on the environment. Turning MIMO on in this

case (µ = 10) will probably increase the sum throughput but it will also increase the

penalty (which is scaled by 10). Therefore, the reward will decrease, and eventually, the

agent will learn that turning MIMO off is more beneficial (in this case) to the reward

(penalized sum throughput). Since we plot only part of the reward (sum throughput),

the behavior shown in the curve is logical.

We can see from Fig. 5.4 the percentage of time MIMO is turned on for different

values of (µ) after convergence. Please note that these percentages are considered a

measure of the percentage of consumed energy compared to turning MIMO on as a

default setting.
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FIGURE 5.4: Effect of MIMO Energy Penalty (µ) on Ratio of Time MIMO is
Turned on

We can give more focus on the two extreme cases (µ = 0) and (µ = 10). The first

one is having no energy penalty. The sum throughput approaches the MIMO curve

and MIMO is turned on 97% of time. The second one approaches the SISO curve and

MIMO is turned on 0.9% of time.

From another perspective, we needed to report the minimum throughput and the

number of unsatisfied users to make sure that the proposed scheme works in their

favor as well and not only from a collective point of view. We can see in Fig. 5.5 and

Fig. 5.6 that our system outperforms BL scheme regarding the less fortunate users. It is

worth mentioning that the unsatisfied users in Fig. 5.6 are determined as the users with

individual throughput ≤ 1 Mbps. This threshold is determined based on the nature of

the network, the scenario, the Bandwidth used, and the number of users. It might vary

depending on the criterion determined by the operator.

We need to point out that the fluctuations in the minimum throughput curves are

since this is the worst case, not the sum of a group of users. This worst-case might vary

by a very considerable amount which causes these fluctuations.
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FIGURE 5.5: Effect of MIMO Energy Penalty (µ) on Minimum Throughput

FIGURE 5.6: Effect of MIMO Energy Penalty (µ) on Percentage of
Unsatisfied Users

To study the effect of the blocked users penalty, we varied the hyper-parameter

that scales it (η) and plotted the percentage of unblocked users in the network and

the sum throughput in Fig. 5.7 and Fig. 5.8. We notice here that there is a trade-off

between the sum throughput and the percentage of unblocked users. As (η) increases,
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the percentage of unblocked users increases but the sum throughput decreases. This is

because trying to achieve a higher sum throughput might lead to block users with low

CQIs to other cells (because they will consume resources and will not contribute much

in the sum throughput) and give more resources to users with high CQIs (which will

benefit the sum throughput of the network).

FIGURE 5.7: Effect of Blocked Users Penalty (η) on Percentage of
Unblocked Users

FIGURE 5.8: Effect of Blocked Users Penalty (η) on Sum Throughput
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5.3.2 Second Scenario: 3 Unidentical Cells

Here, we check the performance of the proposed algorithm in another type of network

which consists of 3 Unidentical cells (congested (Uc = 18), uncongested (Uc = 3) and

medium utilization (Uc = 9)). Moreover, Ue = 2 at each edge. We can consider this

second scenario as a change in the number of users in the network due to an event for

instance. The proposed algorithm performs similarly to the first scenario.

FIGURE 5.9: Effect of MIMO Energy Penalty (µ) on Sum Throughput
(Unidentical Cells)

In Fig. 5.9, the sum throughput is plotted vs the training episodes. As expected,

the sum throughput increases during the training phase until it converges. We can

see the effect of the MIMO energy penalty (µ). In this scenario as well, the larger the

penalty, the less the sum throughput (due to less freedom to turn MIMO on). Moreover,

we notice here also the anomaly of the curve at (µ = 10) which increases at first and

decreases afterward. This replicates the case of the first scenario and it is expected due

to the special nature of this extreme case as explained earlier.
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FIGURE 5.10: Effect of MIMO Energy Penalty (µ) on Ratio of Time MIMO
is Turned on (Unidentical Cells)

The ratio of time MIMO is turned on for each value of µ can be studied in Fig. 5.10.

It follows a similar pattern as the first scenario. More energy can be saved by increasing

µ but this leads to less sum throughput.

FIGURE 5.11: Effect of MIMO Energy Penalty (µ) on Minimum
Throughput (Unidentical Cells)
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FIGURE 5.12: Effect of MIMO Energy Penalty (µ) the Percentage of
Unsatisfied Users (Unidentical Cells)

Reporting the minimum throughput of the network and the percentage of unsatis-

fied users for each value of µ can be seen in Fig. 5.11 and Fig. 5.12. The RL agent outper-

forms the BL with the SISO feature for all values of µ and it outperforms the BL with

the MIMO feature for smaller values of µ.
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FIGURE 5.13: Effect of Unblocked Users Penalty (η) on the Percentage of
Unblocked Users (Unidentical Cells)

FIGURE 5.14: Effect of Unblocked Users Penalty (η) on Sum Throughput
(Unidentical Cells)

In Fig. 5.13 and Fig. 5.14 we study the effect of the unblocked users penalty (η). As

expected, η has a positive effect on the percentage of unblocked users but a negative

effect on the sum throughput of the network. This behavior is because focusing on
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covering as many users as possible will probably lead to giving resources to less

fortunate users (low CQIs) which will not contribute to the sum throughput with a

considerable amount.

The results of the second scenario are proof that the proposed scheme delivers the

network to a stable state with a maximized sum throughput after changes that occur in

the network. The proposed scheme has the advantage of reaching a learned policy to

control the network. Learning means that the stable state can be regained again after

probable occurrences.

5.4 Conclusion

In this chapter, we present an RL framework to gain control over three main features

in cellular networks. These are: Relative CIOs, Transmitted Power Levels, and MIMO

scheme. This control allows the network to reach a stable state from the perspective

of load balancing, the number of covered users, QoE, and energy consumption such

that the network sum throughput is maximized. The advantage of this work is that

it enables the network to regain this stable state, without the operator interference,

after any change in the environment. Moreover, this work creates a layered approach

that enables the framework to handle hybrid action space in a relatively easy yet

efficient methodology. The results show that the proposed scheme can achieve higher

sum throughput than the Baseline system (no RL control). Also, larger percentage of

satisfied users is achieved while energy consumption is optimized.
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Chapter 6

Machine Learning-Based Technique for

False Data Injection Attacks Detection

in Industrial IoT

The rapid proliferation of the Internet of Things (IoT) technology in industrial enter-

prises has exposed the vulnerability of critical infrastructure to serious cyber-attacks.

Industrial IoT (IIoT) has helped solve many intractable issues in the industry by al-

lowing system self-controlling and offering real-time response systems. To ensure the

successful roll-out of IIoT applications, security issues need to be well-studied and

addressed for such applications.

Monitoring of industrial systems such as hydraulic, oil, and gas stations against

cyber-attacks has received great attention recently [93]. One of the major types of

attacks that can affect such systems is termed the "False Data Injection" (FDI) attack.

FDI attacks present a serious form of cyber-attacks against industrial infrastructures.

They corrupt sensor measurements to deceive the attacked industrial platform [94].

Machine Learning (ML) has been used in many applications to address security

threats. In this work, we propose to use Autoencoders (AEs) as our ML tool for the

detection of FDI attacks. Recently, AEs have gained a lot of interest to address many
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security issues and cyber-attacks in communication networks. AEs are neural networks

that tend to learn a latent feature representation of the input, normally in a smaller

dimension space. Another attractive feature of AEs is that they do not need "labeled"

data for their training.

Since sensor networks are generally resource-constrained, the use of ML-based

techniques for security purposes provides the additional advantage of optimizing the

resource utilization for this purpose which can extend the network lifetime. Therefore,

in this work, we propose the use of an ML-based technique that uses AEs for the

detection of FDI attacks. The main benefit behind the used ML-based approach is

its ability to deal with data that has no structure and no model can represent it. ML-

based approaches can extract features from raw sensor measurements. As mentioned

earlier, one of the main attractive features of AEs is the fact that they can be trained

in an unsupervised fashion to learn important features of the data. The AEs can

learn latent correlation structures in the data samples. In our work, we exploit the

correlation in two dimensions, namely, time and space (i.e. "time" correlation between

the same sensor data at different times and "spatial" correlations across the sensors).

AEs can learn efficient, reduced-size feature representation of the data. With this feature

representation, attacked data samples will show high dissimilarity between the AE

input and the corresponding output.

The main contributions of the work in this chapter [20], can therefore be summarized

as follows:

• We propose the use of AEs as a classification approach to detect false data injection

attacks. AEs can learn hidden correlation structures in the data in an unsupervised

manner that would allow them to detect corrupted data by assessing how far the

corrupted data correlation structure is from the expected, "learned" correlation

structure. Our proposed AE learns correlation in two dimensions: the time (same
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sensor data at different times) and the spatial (across sensors) dimensions. This

would allow for a better representation of the correlation model at the hidden

layers. To the best of our knowledge, this work is the first to propose the use of

an AE-based scheme to detect SDFI attacks. Additionally, our proposed scheme

has the potential of detecting other types of attacks without the need for any

modifications to it.

• We propose the use of Denoising Autoencoders (DAEs) to clean the corrupted

data, by recovering the expected correlation structure. Our results show the effi-

cacy of our proposed data cleaning DAEs in recovering clean data from corrupted

data. To the best of our knowledge, this is the first work to propose the use of

denoising AEs to clean corrupted (attacked) data.

6.1 Literature Review

IIoT sensors’ readings at pivotal industrial areas are critical subjects whose loss or

malfunction due to attacks or otherwise can lead to considerable losses that may

include the loss of human lives [95]. For instance, the Stuxnet attack on the Iranian

nuclear system [96] has led to large losses and interruptions.

False Data Injection has been studied in various works in literature. In [97], the

study demonstrates that an intruder can build an FDI attack without being detected

by classical approaches such as state estimation (SE) and bad data detection (BDD)

[98]. State estimation is one of the basic solutions in detecting FDI attacks in critical

infrastructures. Relying on state estimation to achieve comprehensive sensing accuracy

leads to measurements’ alteration/fabrication [99]. The study in [97] highlights this

kind of weaknesses. If an intruder is aware of the measurements’ figures, he/she can

falsify the devices’ readings. To address this critical vulnerability, two recent studies
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[100, 101], introduced machine learning (ML) using support vector machine (SVM)

to efficiently detect FDI attacks. The study in [100] investigates the performance of

supervised and semi-supervised machine learning approaches based on SVMs against

several attacks. In their experimentation, they observed that the SVM solution performs

better than the regular solutions that employ the state estimation (SE) approach for

the detection of both observable and non-observable attacks. In addition, their results

showed that the semi-supervised learning approaches are stronger to deal with the

different data sparsity degrees than the fully-supervised learning approaches.

Using Machine Learning (ML) in security-related applications exists in literature in

multiple works. For example, in [102], the authors present an analysis of ML techniques

applied to the detection of cyber threats such as intrusion, malware, and spam. The goal

is to study the current maturity of these solutions and to identify their main limitations.

In [103], the authors present an ML-based technique for detecting cyber threats. The

system focuses on differentiating between true positive and false positive alerts thus

helping to rapidly respond to cyber threats. Another security threat, SQL injection, is

studied in [104]. The authors in this survey study various machine learning algorithms

used for the detection of SQL injection threats. An experimental analysis is performed

in [105] of the ML methods for the Botnet DDoS attack detection. The studied methods

are Support Vector Machine (SVM), Artificial Neural Network (ANN), Naïve Bayes

(NB), Decision Tree (DT), and Unsupervised Learning (USML). In [106], the authors

cover existing security threats on ML techniques and give a survey on them from the

aspects of the training phase and the testing phase. They also categorize the defensive

techniques of machine learning into security assessment mechanisms, countermeasures,

data security, and privacy.

In [101], the study presents two methods to detect false data injection. The first

method uses supervised learning over labeled data and a trained SVM. The other
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method does not need to train data to detect the measurements’ deviation. In both

schemes, they applied principal component analysis (PCA) to protect the data on a

low-dimensional space based on the observation that normal data and attacked data

tend to be separated after projection. Finally, they concluded that SVM performs better

than the classical attacks detection methods, such as state estimation (SE) and bad data

detection (BDD) classical approaches, once it has an appropriate number of trained

data sets.

In [107], the study proposes using AEs to learn latent features and to reduce the size

of the feature vector to be fed to some machine-learning-based classifier. The work in

[107] considers two applications, namely, network anomaly intrusion detection and

malware classification. In [108], the study proposes different anomaly detection models

based on different deep neural network structures, including AEs, convolutional neural

networks, and recurrent neural networks. In [109], sparse AEs are used to learn a

new feature vector, of reduced size, to be fed to an SVM used for detecting network

intrusion attacks. AEs are used to efficiently reduce the size of the feature vector in

an unsupervised fashion. In [110], a DAE feeding a compact multi-layer perceptron

(MLP) is used for network intrusion detection. DAEs are also used in [33] to extract

some reduced size robust features of data. The same authors in [111] use stacked AEs

to enhance the classification capability of neural networks. AEs are again used to learn

important features to be fed to the MLP stage of the detection algorithm.

Our approach differs from those using AEs for similar purposes (e.g. in [107–

110]) in that we propose to use AEs as classifiers not just to learn some reduced size

features. This has the benefit of simplifying the training process since there is no

need for labeled data for training. Another important feature of the use of AEs as

classifiers is their ability to detect other attacks since AEs are trained with unlabeled

clean data. Any attack that distorts the data correlation structure would be identified
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by an AE-based detector. Other conventional detectors (classifiers) must be trained

with labeled data sets for every attack that they have been designed to detect, and they

are not guaranteed to detect any other attacks for which they were not trained. This, in

addition to simplifying the training of AE-based detectors, enhances the performance

of AE-based schemes in comparison to other attack detection algorithms. Moreover, it

is more natural to detect false data injection attacks using AEs as they can learn latent

correlation structures in the data. Dissimilarity between the expected correlation model

and the observed correlation model can lead to a more natural classification compared

to, for example, SVM, where it is assumed that the two classes can be separated by a

hyperplane in some feature space.

6.2 Problem Description

In this section, a description of the problem at hand is presented including the adopted

model, the nature of the attacks, and finally the proposed detection technique.

6.2.1 System Setup

The system that is used in this work is the hydraulic system presented in [93]. The data

set is a group of sensor readings scattered for the hydraulic system monitoring purpose.

The data set was experimentally obtained (i.e. not simulated) with a hydraulic test

rig. The system cyclically repeats constant load cycles (duration of 60 seconds) and

measures process values while the condition of four hydraulic components (cooler,

valve, pump, and accumulator) is quantitatively varied. The data set includes readings

from temperature, pressure, volume flow, vibration, motor power, and cooling power

sensors. The total number of sensors is 15 (6 pressure sensors, 4 temperature sensors, 2

volume flow sensors, 1 motor power sensor, 1 vibration sensor, and 1 cooling power
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sensor). The data set contains raw process sensor data (i.e. without feature extraction).

The number of readings gathered from each sensor ranges from 132300 to 1323000. We

use the least number of readings to avoid empty incomplete input vectors.

6.2.2 False Data Injection (FDI) Attack Description

The attack that this work aims to detect is the False Data Injection (FDI) attack, which

is one of the most common cyber-attacks in IIoT. To adapt the use of our technique to

the needs and nature of IIoT systems, we adopt the attack model presented in [112]. In

this model, the intruder can alter and/or falsely inject single or several sensors’ data at

any time to have these false data within a valid range of authentic measurements.

The integrity attack on measured data is defined as follows. Let’s define za as the

recorded readings vector that may have some false data. Consequently, za can be

described as za = z + a, where z = [z1, . . . , zm]T is the clean measurements vector, and

a = [a1, . . . , am]T is the added/fabricated data vector. Therefore, the vector a represents

the vector of the attack where the i-th element of a, ai, is of a nonzero value that reflects

the intruder’s ability to falsify the i-th reading and to substitute its corresponding

authentic value with an alternative false value.

6.2.3 Proposed Attack Detection Algorithm

As mentioned earlier, in this study, an AE is used for attack detection due to its

capability of capturing the structure of the data and learning the correlation between

readings. Then, a DAE is used for cleaning the corrupted data previously detected by

the AE. The process is shown in Fig. 6.1 which is a flowchart of the proposed scheme.
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FIGURE 6.1: Flowchart of the AE-based Proposed Solution.

Autoencoder-based Detection Scheme

During the training phase, the AE is fed with the original data taken from the sensors.

Target values are set to be the same data. By the end of this phase, the network becomes

able to exploit the inter-correlation between entries to compress and then decompress

back the input vector. Once the training phase is complete and the weights are set, the

AE can then be used for false data detection.

When false data are fed to the AE, the network tries to compress and decompress

the input vector. However, due to the lack of the expected correlation structure in the

false data, the Mean Square Error (MSE) is larger than expected. To detect false data,

the MSE is compared to a pre-determined threshold which is chosen as the mean of

the validation MSE. Once an MSE value exceeds the mentioned threshold, an attack is

declared. It is worth mentioning that validation is necessary to avoid overfitting which

means that the machine learns the training data too well that it is unable to investigate

new data. This happens when the training data keep decreasing but the validation

error starts to increase. Therefore, by monitoring the validation error, early stopping of

the training process occurs once it starts to increase.

Denoising Autoencoder-based Data Cleaning

When an attack is detected, the corrupted data are then fed into a DAE. DAEs are

trained using the corrupted data as inputs and the original data as target outputs. As a
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result, the DAE has the capability of recovering the correlation among inputs. When

falsified data are fed into the DAE, the output is a clean version of the corrupted input.

This version can then be used in further processing of the system at hand as a substitute

during the time of fixing the sensor under attack.

A pseudo-code of the whole process is given in Algorithm 5.

6.3 Performance Evaluation

In this section, the performance evaluation results of the proposed scheme are presented.

This includes comparing it to another SVM-based scheme from the literature.

6.3.1 Simulation Setup and Parameters

Simulations were carried out using the data set of [93]. The AE of the proposed scheme

is trained using 60% of the data, its validation is done using 20% of the data, and its

testing is done using the remaining 20%. As mentioned earlier, during the training

phase, target values are set equal to input values and weights are updated, one epoch

after another, such that the MSE is minimized. During validation and testing, no target

output is set. The output is calculated based on the weights adjusted by the training

and finally, the MSE is calculated. The validation error is used for two purposes. First,

it is monitored to avoid overfitting. Second, it is used to calculate the threshold which,

if exceeded by the MSE, an alarm (detected attack) is set. Testing error is compared

(for every input) with the threshold to decide whether the input data are attacked. It is

worth noting that AEs need to be exposed to neither the false data during the training

phase nor the labels for the input training data.

To exploit both the inter-correlation between the sensors and the autocorrelation of

the readings of a single sensor in the time domain, the input to the AE is set to include
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Algorithm 5 False Detection Using Autoencoder
1: procedure PREPARE DATA SET

2: Divide data set into: 60% training, 20% validation and 20% testing.
3: Prepare a falsified copy of the testing data by replacing readings with another random

numbers drawn from the normal distribution having the same variance.
4: end procedure
5: procedure TRAINING

6: Initialize: Random weights.
7: Input: Nt readings from each sensor.
8: procedure BACKPROPAGATION LEARNING TECHNIQUE:
9: while Validation error is decreasing do

10: for Each training epoch do
11: Compute MSE based on current weights and current input: E = 1

N

∑
m(ym−

xm)
2, where N is the size of the training set, xm is the m-th input vector, and ym is the m-th

output vector.
12: Update Weights based on the MSE and learning rate.
13: Make sure that the validation error is decreasing to avoid overfitting.
14: end for
15: end while
16: end procedure
17: end procedure
18: procedure TESTING

19: Complexity: O(d · k) for each iteration, where d is the number of dimensions of the
input and k denotes the number of dimensions of the encoding.

20: Input: Testing data and falsified data.
21: while Results are not satisfying do
22: Change hyper parameters (e.g. learning rate, batch size, number of hidden layers,

optimizer, ... etc.
23: Repeat training phase.
24: end while
25: end procedure
26: procedure DENOISING

27: Training: Use corrupted data as inputs and original data as target outputs.
28: Testing: Use detected falsified data as inputs.
29: Output: Clean data.
30: end procedure
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FIGURE 6.2: The Effect of Varying Number of Readings per Sensor on the
Training and Validation Losses

more than one reading from each sensor at every iteration rather than a single reading

per sensor. To choose the best number of time instants to be considered, the AE was

trained and tested for Nt = 1, 2, 3, 4, 5, and 10, where Nt is the number of readings

(time instants) from each sensor to be fed to the AE per epoch. The training loss for

each Nt value is shown in Fig. 6.2. The lowest loss value is at Nt = 2, where it is 3.99e-7

for the training loss and 4.37e-7 for the validation loss. The trend of decreasing training

and validation losses at Nt = 2 can be seen in Fig. 6.3.

The readings from each sensor are fed to the AE in parallel to other sensors. There

are 15 sensors in the network and each one feeds the AE with Nt consecutive readings

every iteration. This results in a total of 15∗Nt neurons in the input layer. As mentioned

earlier, the output layer is the same as the input layer. Five hidden layers are used. The

compression factor, which is the ratio between the number of inputs and the innermost

hidden layer which stands between the encoder and the decoder, is set to 3. The size of

the hidden layers between the input (output) layer and the innermost layer decreases

linearly according to the compression factor. It is worth mentioning that the number
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TABLE 6.1: Autoencoder Simulation Parameters

Parameter Value
Number of readings per sensor (Nt) [1 2 3 4 5 10]
Number of neurons in input layer Nt ∗ 15

Number of neurons in output layer Nt ∗ 15
Compression factor 3

Number of hidden layers 5
Number of neurons per hidden layer Decreases linearly according to the compression factor

Learning Algorithm Unsupervised learning applying backpropagation
Optimizer RMSprop

Learning Rate 0.001
Training Data 60% of whole set

Validation Data 20% of whole set
Testing Data 20% of whole set + equal amount of false data

Number of training epochs 20 (determined by the early stopping criterion)
Threshold mean of validation error

of hidden layers and the compression factor are hyperparameters that are determined

after several trials. A summary of the AE simulation parameters is listed in Table 6.1.

When considering the comparison with SVM, on the other hand, we find that SVM

must be trained with both types of data (original and false) along with labels for each

class. This requires some extra effort for preparing the false (attacked) data for training

and labeling each set of sensors’ data. During the training phase, the machine creates

the optimization model (based on Lagrange multipliers). Then, during the testing

phase, the model investigates new inputs and classifies each of the classes (false data

class or clean data class).

Falsified data used for testing and also for SVM training are obtained by two

methods

1. Add a random number to the entries of all sensors. The random number is

drawn from a uniform distribution in the range of +/−10% of the original value -

Referred to as “Case 1” in the rest of this section.

2. Alter the entries of only one sensor (to simulate the case of only one attacked
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FIGURE 6.3: Training and Validation Losses in the Training Phase.

sensor). The entries of one sensor are replaced with another value drawn from a

normal distribution with mean and variance that are equal to those of original

data (To create a scenario more difficult to be detected). This case is referred to as

“Case 2” in the rest of this section

Both machines (AE and SVM) were tested under the two scenarios.

As mentioned earlier, the AE was tested for Nt = 1, 2, 3, 4, 5, and 10. For the

sake of further confirmation of the best choice of Nt, an actual test under “Case 1” and

“Case 2” is carried out for each value of Nt. Furthermore, the test was done for the

SVM as well to make a fair comparison. Results can be seen in Fig. 6.4 in which the

percentage of accurate decisions is plotted. In the figure, the Accuracy Rate can be

defined as the percentage of the number of entries that were correctly decided by the

machine (regardless of whether an attack or clean data were determined) to the whole

number of entries. From the figure, we can confirm that Nt = 2 is the best choice for

the proposed AE-based scheme. However, for the SVM, Nt = 3 seems to give better

results. For this reason, further comparisons will take place using the best value of Nt

for the corresponding scheme. It can also be seen from Fig. 6.4 that the accuracy in
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FIGURE 6.4: The Effect of Varying Number of Readings per Sensor on the
Decision Accuracy

“Case 1” (for both machines) is higher than that of “Case 2”. This is due to the difficulty

of detecting only one malfunctioning (attacked) sensor. Moreover, the type of attack is

even trickier to be detected. This is because replacing the sensor readings with values

from the normal distribution with the same mean and variance will slightly affect the

inter-correlation between readings. It is also worth mentioning that the accuracy of the

proposed scheme is higher than that of the SVM-based scheme in all cases. However,

this will be discussed in more detail later.

6.3.2 Testing and Comparing the Final Decision Accuracy

A comparison between the two machines from the perspective of the percentage of

correct attack detection and the percentage of false alarm is shown in Fig. 6.5. In the

figure, the Rate of Detection can be defined as the percentage of the number of false

entries that were correctly detected by the machine to the whole number of entries.
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Additionally, the Rate of False Alarm can be defined as the percentage of the number of

clean entries that were mistakenly decided by the machine as false data to the whole

number of entries. Other famous kernels (other than the linear kernel) were tested

for the SVM (e.g., RBF and Gaussian). The AE has proven to be more reliable and

outperforms the SVM in both cases. This can be justified by the capability of AEs to

learn the hidden complex correlation structures of the data. Anomalies in input data

that cause the difference between the expected data structure and the observed one can

lead to a more robust classification compared to SVM where it is assumed that the two

classes are separable by a hyperplane in some space.

A higher percentage of detection and a lower percentage of false alarm are recorded.

Furthermore, the percentage of detection of the AE-based scheme reaches 100% in

“Case 1”. SVM, with a linear kernel, gives better performance than with the other two

kernels. It is worth mentioning that the AE gives equal percentages of false alarm in

both cases. This is because during the training phase, the machine was subjected to

original (clean) data only and the same machine is used for both cases. However, the

SVM must be subjected to false data in the training phase. That is why each case needs

a new trained machine. This is also another major advantage of AE-based approaches,

which is that they can detect other attacks since AEs are not trained to classify any

“specific” attack. Rather, AEs are trained with clean data. An AE-based attack detector

can detect any attack that causes a significant distortion in the data correlation model.

However, to detect other attacks in the case of SVM, the machine must be trained with

labeled data for every possible attack and there is no guarantee that an SVM trained to

classify a specific attack will be able to detect other attacks.

To make a better visualization of the results, Fig. 6.6 gives a snapshot of a portion of

the time series of the test data and the decision of both machines. As explained earlier,

the ability of the AE to learn the data structure results in better performance and higher
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FIGURE 6.5: A Comparison w.r.t Detection Percentage and False Alarm
Percentage

accuracy. Therefore, Fig. 6.6 shows fewer miss-detections and false alarms in the case of

the AE-based scheme. It is worth mentioning that the AE is not better than the SVM at

every instant. For example, at instant 175, SVM was able to detect the attack while AE

was not. However, AE still gives better average performance and a higher percentage

of detection.

The Receiver Operating Characteristics (ROC) plot for both machines is shown in

Fig. 6.7. The ROC is the relation between the rate of false alarm and the rate of detection.

When comparing two methodologies, a better scheme is the one that achieves a higher

detection rate for the same false alarm rate. It is noticeable from Fig. 6.7 that the

AE-based scheme outperforms the SVM-based scheme in terms of ROC as well.

6.3.3 Complexity Analysis

The training complexity of SVM can be approximated to O(N3), where N is the number

of data entries [113]. On the other hand, the training complexity of AEs is O(d · k) for
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FIGURE 6.6: A Visualization of a Time Series Snap Shot

FIGURE 6.7: Receiver Operating Characteristics Plot
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each iteration, where d is the number of dimensions of the input and k denotes the

number of dimensions of the encoding [114]. To apply this to the case at hand, the

number of readings taken from each sensor is 132300. Only 60% is used for training;

this gives 79380. By taking Nt = 3 readings from each sensor every iteration, the total

number of entries is 79380
3

(= 26460) for each sensor. With 15 sensors under consideration,

this results in N = 396900 data entries. This gives a training complexity, approximately

equals O(6e16) for the SVM. On the other hand, for the AE, the dimension of input

vector d = Nt ∗ 15 = 30, while the dimension of the encoded vector k = 10 (since

the compression factor is chosen to be 3). It is also necessary to consider the number

of training epochs, which is chosen to be 20 in our case. This results in a training

complexity O(30 ∗ 10 ∗ 396900 ∗ 20) = O(2e9). The complexity of the AE is a lot less

than that of the SVM. The training was carried out on a SAMSUNG laptop that uses

a Windows 10 Pro operating system, an Intel 2.40 GHz Core i7 processor, and 8.00

GB RAM. The AE needed less than one minute to train while the SVM (linear kernel)

needed 15 minutes to train.

6.3.4 Denoising Autoencoder

In this experiment, the DAE is used to clean up the corrupted data, detected by the

original AE. The DAE is trained and tested using corrupted data from both cases (Case

1 and Case 2). As mentioned earlier, when an attack is detected (by the AE), the falsified

data are fed to the DAE to obtain a clean version as close as possible to the original

data. To prove that the output of the DAE can regain the correlation model of the data,

the Mean Square Error (MSE) of the corrupted data (both cases) is plotted before and

after the DAE in Fig. 6.8. This error represents the difference between the corrupted

data and the original data with and without the DAE. In Fig. 6.8, the MSE is noticed to

decrease immensely when DAE is used. This means that the DAE can recover a clean
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FIGURE 6.8: Mean Square Error of the Corrupted Data before and after
the Denoising Autoencoder.

version of the corrupted data by recovering the data “hidden” correlation model. It

is also noticeable that the MSE in case 2 is less than that in case 1. This is because the

nature of the attack in case 1 causes all sensors to be corrupt, while in case 2, only one

sensor is corrupt. Therefore, although the attack on only one sensor is harder to detect

if the attack is causing only one sensor to be corrupted it is easier to recover the data if

the attack is detected. It is worth mentioning that the input data are normalized, that is

why mean square errors are all less than 1.

6.3.5 Limitations

In the following, we highlight the limitations of the proposed algorithm. These limita-

tions can be summarized as follows

• The proposed algorithm can detect attacks that ruin the correlation among sensor

readings. If the attack can maintain this correlation, the AE might not be able to
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detect it. For instance, if the attacker used data from the history of the measure-

ments in which readings are taken from the same cycle, the AE algorithm may

not detect this.

• The DAE must be trained for each type of attack, unlike the AE which does not

need any labels or supervised learning. This limits the use of the DAE to the

specific attacks that it was trained to fix.

6.4 Conclusions

In this chapter, we present a novel method of detecting FDI attacks against a complex

hydraulic sensor-based system using AEs. The proposed detection method offers better

detection performance compared to support vector machine-based methods (e.g. linear

kernel, RBF kernel, and Gaussian kernel). In addition, AEs are easier to train since

they do not require labeled data for training. Finally, AEs can detect different attacks

since they can learn hidden complex correlation structures in the data. Any attack that

will cause significant changes in these correlation structures can be detected by the AE-

based attack detection algorithm. However, this is not the case for any other classifier

like SVM which is trained to detect a "specific" attack and it is not guaranteed to detect

any other attack for which it was not trained with labeled data. We adopt two different

scenarios of FDI attacks which we referred to as case 1 and case 2 in the study. In

both scenarios, our approach offers the highest probability of attack detection with the

lowest rates of false alarm and the lowest execution time. We also present the results

of using a DAE to recover from the attack’s effects on data. The results demonstrate

the high ability of the DAE to recover the data to its original state with very low mean

square error values.
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Conclusion and Future Work

7.1 Conclusion

In this work, three of the main challenges of the fifth-generation mobile network are

the main focus. The first challenge is Resource Allocation. It is studied for Wireless

Powered Communication Networks (WPCNs) with Non-Orthogonal Multiple Access

(NOMA). Time and Power are allocated such that a certain objective function is maxi-

mized. Two cases are studied. The first is maximizing the network sum throughput

and the second is maximizing the minimum throughput. For both cases, two decoding

schemes are adopted, namely Low Complexity Decoding and Successive Interference

Cancellation Decoding. Due to the non-convex nature of the max-sum and max-min

optimization problems, we propose an approximate solution approach, in which the

non-convex optimization problem is approximated by a convex optimization problem,

which satisfies all the constraints of the original problem. The approximate convex op-

timization problem can be then solved iteratively. The results show a trade-off between

maximizing the sum throughout and achieving fairness via maximizing the minimum

throughput.

The second challenge is Network Management. Cellular networks are the main

focus in this part. We present Machine Learning (ML) based approaches for this
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purpose. Two use cases are tackled here. The first one is energy conservation by

controlling the MIMO feature. We present a Neural Network (NN) machine that

emulates the network behavior and turns MIMO on only when necessary to satisfy a

predetermined QoE criterion. This approach saves the energy consumed by the MIMO

feature when it is not needed. We train our model based on real mobile network data.

Results reveal the efficiency and effectiveness of proposed approaches as they allow for

real-time, data-driven solutions. These are unique features of our proposed solutions

as compared to the current practices of mobile network operators.

The second use case is the need of the network to replace the human control over

the features (which is error-prone) with self-control that delivers a stable state of the

network regarding load balance, the number of covered users, Quality of Experience

(QoE), and consumed energy. We present a Reinforcement Learning (RL) based solution

that controls three network features, namely, relative CIOs, transmission power, and

MIMO on/off. The advantage of the presented model is that it enables the network

to regain this stable state, without the operator interference, after any change in the

environment. Moreover, this work proposes a layered approach that enables the

framework to handle hybrid action space in a relatively easy yet efficient methodology.

The third challenge is Cyber Security, especially in the industrial Internet of Things

(IoT). We presented a novel method of detecting False Data Injection (FDI) attacks

against a complex hydraulic sensor-based system using Autoencoders (AEs). The

proposed detection method offers better detection performance compared to Support

Vector Machine based methods. AEs are easier to train since they do not require labeled

data for training. Moreover, AEs can detect different attacks since they can learn hidden

complex correlation structures in the data. Our approach offered the highest probability

of attack detection with the lowest rates of false alarm and the lowest execution time.

We also presented the results of using a denoising autoencoder to recover from the
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attack’s effects on data. The results demonstrated the high ability of the denoising

autoencoder to recover the data to its original state with very low error values.

7.2 Future Work

In this section, we present some directions for future work as follows:

• Explore the use of ML for resource allocation in WPCN. ML can provide an

efficient, real-time resource allocation algorithm as compared to the proposed

approach in this thesis based on convex optimization tools.

• Another interesting direction for future work is to extend the RL based approach

in mobile networks to manage real scenarios (real eNBs locations and practical

users’ mobility models).
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