
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Theses and Dissertations Student Research 

Summer 6-15-2021 

Off-chain Transaction Routing in Payment Channel Networks: A Off-chain Transaction Routing in Payment Channel Networks: A 

Machine Learning Approach Machine Learning Approach 

Heba Kadry 
The American University in Cairo AUC, hebakadry@aucegypt.edu 

Follow this and additional works at: https://fount.aucegypt.edu/etds 

 Part of the Digital Communications and Networking Commons 

Recommended Citation Recommended Citation 

APA Citation 
Kadry, H. (2021).Off-chain Transaction Routing in Payment Channel Networks: A Machine Learning 
Approach [Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1647 

MLA Citation 
Kadry, Heba. Off-chain Transaction Routing in Payment Channel Networks: A Machine Learning Approach. 
2021. American University in Cairo, Master's Thesis. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1647 

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge 
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC 
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=fount.aucegypt.edu%2Fetds%2F1647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1647?utm_source=fount.aucegypt.edu%2Fetds%2F1647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1647?utm_source=fount.aucegypt.edu%2Fetds%2F1647&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu


The American University in Cairo 

School of Sciences and Engineering 

Robotics, Control and Smart Systems  

 

 

Off-chain Transaction Routing in Payment Channel 

Networks: A Machine Learning Approach 

 

 

 

By 

Heba Ahmed Kadry El-Riedy 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science in Robotics, Control and Smart Systems (RCSS) 

 

 

 

 

Under supervision of: 

Dr. Yasser Gadallah 

Professor and Chair, Department of Electronics and Communications Engineering 

 

 

 

 

May, 2021 



i 

 

DEDICATION 

This thesis is dedicated to my parents for their kindness, patience, sacrifice, and 

devotion and for their endless and unparalleled support towards fulfilling my academic goals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to the thesis advisor, Dr. Yasser Gadallah, 

for his tremendous support in completing this research work. Every comment he made in the 

thesis built a solid and robust foundation in the thesis as well as my academic skills. 

My utmost gratitude also goes to my academic advisor and the RCSS program director, 

Dr. Maki Habib, for his exerted efforts to facilitate and grant the financial assistance that was 

a broad base of support to complete my study in the program. In addition, I am so grateful for 

the time spent as a research assistant in the robotics labs that added to my academic experience. 

My special and sincere thank you also goes to my dear colleague, Ahmed Fahim, for 

his continued moral support and encouragement throughout the years of working on my thesis. 

I remember when we spent hours discussing the challenges of the thesis or even the 

complicated coursework and how these discussions boost the confidence to stand and move 

forward towards achieving my academic potential. 

I also would like to appreciate the valuable and fruitful discussion in the thesis defense 

with Dr. Karim Seddik and Dr. Amr El-Sherif, the internal and external examiners. Their 

constructive comments helped me add further clarifications to enhance the final thesis quality. 

Finally and foremost, many thanks for a great deal of support and assistance that grant 

me the completion of this thesis work and my master’s degree.



iii 

 

ABSTRACT 

Blockchain is a foundational technology that has the potential to create new prospects 

for our economic and social systems. However, the scalability problem limits the capability to 

deliver a target throughput and latency, compared to the traditional financial systems, with 

increasing workload. Layer-two is a collective term for solutions designed to help solve the 

scalability by handling transactions off the main chain, also known as layer one. These 

solutions have the capability to achieve high throughput, fast settlement, and cost efficiency 

without sacrificing network security. For example, bidirectional payment channels are utilized 

to allow the execution of fast transactions between two parties, thus forming the so-called 

payment channel networks (PCNs). Consequently, an efficient routing protocol is needed to 

find the payment path from the sender to the receiver, with the lowest transaction fees. This 

routing protocol needs to consider, among other factors, the unexpected online/offline behavior 

of the constituent payment nodes as well as payment channel imbalance. This study proposes 

a novel machine learning-based routing technique for fully distributed and efficient off-chain 

transactions to be used within the PCNs. For this purpose, the effect of the offline nodes and 

channel imbalance on the payment channels network are modeled. The simulation results 

demonstrate a good tradeoff among success ratio, transaction fees, routing efficiency, 

transaction overhead, and transaction maintenance overhead as compared to other techniques 

that have been previously proposed for the same purpose.    

 

 

 

 

 

 

 

 

 

 

 



iv 

 

TABLE OF CONTENTS 

DEDICATION ............................................................................................................................ i 

ABSTRACT ............................................................................................................................. iii 

LIST OF FIGURES ................................................................................................................. vii 

LIST OF TABLES ................................................................................................................. viii 

NOMENCLATURE ................................................................................................................. ix 

Chapter 1 Introduction ............................................................................................................... 1 

1.1 The Blockchain Technology .......................................................................... 1 

1.2 Blockchain Applications ................................................................................ 2 

1.2.1 Financial applications ................................................................................ 3 

1.2.2 Internet of things ........................................................................................ 3 

1.2.3 Business and industrial applications .......................................................... 3 

1.2.4 Privacy and security ................................................................................... 3 

1.2.5 Integrity Verifications ................................................................................ 4 

1.2.6 Governance ................................................................................................ 4 

1.2.7 Healthcare management ............................................................................. 4 

1.3 Blockchain Challenges ................................................................................... 4 

1.4 Problem Statement ......................................................................................... 5 

1.5 Thesis Objectives and Contributions .............................................................. 6 

1.6 Thesis Structure .............................................................................................. 6 

Chapter 2 Related Work............................................................................................................. 8 

2.1 Introduction .................................................................................................... 8 

2.2 Blockchain and Cryptocurrency ..................................................................... 8 

2.3 The Off-chain Layer ..................................................................................... 10 

2.3.1 Payment Channel Networks ..................................................................... 12 

2.4 Off-chain Transaction Routing ..................................................................... 14 

2.5 Machine Learning for Networking ............................................................... 17 

2.6 Reinforcement Learning in Packet Routing ................................................. 18 

2.6.1 Model-free Reinforcement Learning in Packet Routing .......................... 20 

2.6.2 Model-based Reinforcement Learning in Network Packet Routing ........ 21 



v 

 

2.7 Chapter Summary ......................................................................................... 22 

Chapter 3 System Model and Problem Formulation................................................................ 23 

3.1 Introduction .................................................................................................. 23 

3.2 Payment Channel Network Model ............................................................... 23 

3.3 Problem Details and Formulation ................................................................ 25 

3.3.1 Payment Model and State Diagram ......................................................... 26 

3.3.2 The Proposed Model Update Methodology ............................................. 28 

3.4 Routing in Payment Channel Networks vs. Communication Networks Using 

Reinforcement Learning ........................................................................................... 30 

3.5 Chapter Summary ......................................................................................... 30 

Chapter 4 A Machine Learning-Based PCN Routing Technique: The Proposed Algorithm .. 31 

4.1 Introduction .................................................................................................. 31 

4.2 Algorithm Overview .................................................................................... 31 

4.3 Route Discovery ........................................................................................... 32 

4.4 Route Selection ............................................................................................ 33 

4.5 A Motivating Example ................................................................................. 34 

4.6 The Detailed Overall Algorithm .................................................................. 35 

4.7 A Numerical Example .................................................................................. 39 

4.8 Non-Participating Nodes .............................................................................. 39 

4.9 Chapter Summary ......................................................................................... 40 

Chapter 5 Simulation Results................................................................................................... 41 

5.1 Introduction .................................................................................................. 41 

5.2 Network Topology ....................................................................................... 41 

5.2.1 Network Topology Parameters ................................................................ 42 

5.3 Simulation Model and Payment Generation ................................................ 43 

5.4 Simulation Setup .......................................................................................... 44 

5.5 Performance Metrics .................................................................................... 46 

5.6 Results .......................................................................................................... 47 

5.6.1 Ripple Network ........................................................................................ 47 

5.6.1.1 Success ratio .................................................................................. 47 

5.6.1.2 Average Transaction Fees ............................................................. 48 



vi 

 

5.6.1.3 Routing efficiency ......................................................................... 50 

5.6.1.4 Transaction overhead ..................................................................... 50 

5.6.1.5 Transaction maintenance overhead................................................ 52 

5.6.2 Lightning Network ................................................................................... 53 

5.6.2.1 Success ratio .................................................................................. 54 

5.6.2.2 Average transaction fees ................................................................ 55 

5.6.2.3 Routing efficiency ......................................................................... 56 

5.6.2.4 Transaction overhead ..................................................................... 56 

5.6.2.5 Transaction maintenance overhead................................................ 57 

5.6.3 Results Overall Discussion ...................................................................... 58 

5.6.4 Impact of the selection of γ ...................................................................... 59 

5.7 Chapter Summary ......................................................................................... 59 

Chapter 6 Conclusion and Future Work .................................................................................. 61 

6.1 Thesis Summary and Conclusion ................................................................. 61 

6.2 Future Research Potential ............................................................................. 62 

References ................................................................................................................................ 63 

 

 

 

 

 

 

 

 

 

 



vii 

 

LIST OF FIGURES 

Figure 1-1. Blockchain-architecture options.............................................................................. 2 

Figure 2-1. A blockchain is a linked list built with hash pointers instead of pointers ............... 9 

Figure 2-2. Some details of a Bitcoin block .............................................................................. 9 

Figure 2-3. Proposed blockchain layers  .................................................................................. 11 

Figure 2-4. A path of payment channels .................................................................................. 13 

Figure 2-5. Examples of spanning-tree routing schemes ......................................................... 15 

Figure 2-6. The agent-environment interaction in a Markov decision process ....................... 19 

Figure 3-1. State diagram of Payment Model .......................................................................... 27 

Figure 4-1. MARL-Routing illustrative diagram ..................................................................... 31 

Figure 4-2. Simple 15-node network model ............................................................................ 34 

Figure 4-3. MARL-Routing flow diagram............................................................................... 36 

Figure 4-4. The agent selects between two channels based on the lowest Q-value................. 39 

Figure 5-1. Success ratio at various participation percentages in Ripple network .................. 48 

Figure 5-2. Transaction fees of successful transactions in Ripple network ............................. 49 

Figure 5-3. Routing efficiency in Ripple network ................................................................... 50 

Figure 5-4. Transaction overhead at various participation percentages in Ripple network ..... 51 

Figure 5-5. Transaction maintenance overhead of successful transactions in Ripple network 52 

Figure 5-6.  SpeedyMurmurs success ratio at different number of landmarks in LN ............. 53 

Figure 5-7. Success ratio at various participation percentages in LN ...................................... 54 

Figure 5-8. Transaction fees of successful transactions in LN ................................................ 55 

Figure 5-9. Routing efficiency in LN ...................................................................................... 56 

Figure 5-10. Transaction overhead at various participation percentages in LN ...................... 57 

Figure 5-11. Transaction maintenance overhead of successful transactions in LN ................. 57 

Figure 5-12. Success Ratio vs. discount factor γ ..................................................................... 59 



viii 

 

LIST OF TABLES 

Table 5-1. Network topology parameters ................................................................................ 43 

Table 5-2. Network and simulation parameters ....................................................................... 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

NOMENCLATURE 

𝑎 Action 

𝑑𝑠𝑡 Transaction destination 

𝐻 Hash function 

𝑄 Action-value 

𝑟 rewards 

𝑠 state 

𝑠𝑟𝑐 Transaction source 

𝜋 Policy 

  

 

Subscripts 

∗ Optimal 

𝑎 Action 

𝑎𝑟𝑔 Argument 

𝑑 Destination node 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑛 Minimum 

𝑥 Source node 

𝑧 Neighbor node 

 

Acronyms 

AMP Atomic multipath payments 

AODV Ad-hoc on-demand distance vector  

BFS Breadth-first search 

BTC Bitcoin network cryptocurrency 

HTLC Hashed time-lock contract 

LN Lightning Network 

MANET Mobile ad-hoc networks  

MARL Multi-agent reinforcement learning 

ML Machine learning 

P2P Peer-to-peer 

PCN Payment channel network 

QoS Quality of service 

RL Reinforcement learning 

TXN Transaction 

XRP Ripple network cryptocurrency 

  



1 

 

Chapter 1 

Introduction 

An economic dimension of peer-to-peer networks has been established by a previously 

unknown author, Satoshi Nakamoto, who introduced the Bitcoin concept in 2008 [1]. 

Blockchain, the underlying technology of Bitcoin, has widely spread in business applications. 

It is viewed as one of the most important technologies that will have massive impacts for years 

to come [2].  A blockchain consists of a distributed electronic database called a ledger, which 

is able to store any sort of data such as records, events, or transactions. This ledger continually 

grows as blocks linked to each other as chains are added, where each block has a limited storage 

size [3]. The verified block is added to the end of the growing chain of blocks, in which the 

data is continuously verified based on a consensus mechanism or a global agreement. In other 

words, the blockchain’s primary value is the ability to deploy cryptographic mechanisms to 

reach consensus across unrelated parties in the ledger [4]. No centralized node or authority is 

required. Also, not necessarily all the nodes keep a complete copy of the entire database. This 

architecture allows people to trust the system's output without the need to trust any part of it. 

1.1 The Blockchain Technology 

Blockchain introduces database functionalities similar to distributed networks. It is 

often referred to as a “radical innovation” or general-purpose technology. It is a technology 

that can create subsequent innovation and productivity gains across multiple industries, similar 

to what the Internet achieved [4]. A blockchain is a type of database, called a ledger, where 

records are added in the form of blocks. Each block is chained to the previous one using a 

cryptographic signature. The real novelty of this technology is that it is more than just a 

database. It can set rules about a transaction (business logic) that are tied to the transaction 

itself. This contrasts with conventional databases, in which rules are often set at the whole 

database level or in the application, but not in the transaction [5].There are different ways to 

maintain the accuracy and integrity of a ledger, but they are broadly known as consensus. They 

represent several blockchain architecture options, as shown in Figure 1-1.  Permissionless 

ledgers such as Bitcoin and Ethereum [6] have no single owner, and they cannot be owned. 

Anyone can contribute data to the ledger and possess an identical copy of the ledger. So, no 

actor can prevent adding a transaction to the ledger, which creates censorship resistance. 



2 

 

On the other hand, permissioned ledgers have one or many owners. The integrity of the 

ledger is maintained by trusted actors, such as government departments or banks. This process 

is much simpler than the consensus process used by permissionless ledgers. An example of 

such blockchains is the Ripple [7], which is a global financial transaction system. 

 

Figure 1-1. Blockchain-architecture options [8]    

1.2 Blockchain Applications  

Most of the blockchain applications are currently related to cryptocurrency, allowing 

the transfer of monetary values between parties. The blockchain was a priority topic at Davos, 

as a World Economic Forum.  A survey suggested that 10 percent of global gross domestic 

product (GDP) will be stored in blockchains by 2027 [8]. Designed to be much more than a 

payment system, Ethereum was launched in 2014 as an open-source, public, blockchain-based 

distributed computing platform that provides a ‘crypto-economically-secured’ platform for the 

development of any kind of decentralized application. Therefore, blockchain applications go 

far beyond cryptocurrency. They are able to create transparency and fairness while saving 

businesses time and money. This technology is impacting various sectors in different ways that 

range from how contracts are enforced to making the government work more efficiently.  The 

blockchain opportunities are enormous within different sectors, as summarized in the following 

[9]. 

https://builtin.com/blockchain/blockchain-companies-roundup


3 

 

1.2.1 Financial applications 

Currently, blockchain technology is applied to various financial fields, including cross-border 

payments and financial assets settlement. An example of bank cooperation is the Global 

Payments Steering Group (GPSG), whose members involve Santander, Bank of America, and 

UniCredit. The cryptocurrency behind GPSG is XRP, created by Ripple [7]. The Ripple 

network has 300+ financial institutions, including banks and payment providers worldwide. 

Although Ripple is built upon an open-source, decentralized consensus protocol, the current 

deployment of Ripple is solely managed by Ripple Labs. 

1.2.2 Internet of things 

The growing interest and investments for implementing decentralized IoT platforms are 

mainly motivated by blockchain technology and its inherent characteristics [10]. The primary 

purpose is to deliver secure and auditable data exchange in environments with plenty of 

interconnected smart devices, such as wireless sensor networks. 

1.2.3 Business and industrial applications 

 Blockchain has the capability to become a foundation of disruptive innovations in 

management through automating, improving, and optimizing business and industrial processes. 

For example, blockchain can increase transparency and accountability in supply chain 

networks, thus enabling more flexible value chains. Also, blockchain will significantly impact 

different industries, with the energy sector being at the top of the list. Nevertheless, the energy 

industry trading is different from the financial sector. The former requires online measurements 

and records for the physical product itself (e.g., oil, gas, electricity, nuclear power, solar power, 

wind power) for metering and billing of consumption. This cyber-physical collaboration can 

benefit from the Fourth Industrial Revolution applying the concepts of Industrial Internet of 

Things (IIoT) and machine-to-machine (M2M) communication. Hence, blockchain offers an 

opportunity to make use of the unpredictable nature of renewable energy. It also paves the way 

towards the transition to a decarbonized, decentralized, democratized, and resilient energy 

system [11] [12]. 

1.2.4 Privacy and security 

Blockchain offers an opportunity to enhance the security aspects of big data. When 

combined with other efficient storage systems, blockchain is able to implement data mining 

methods. Another example is Namecoin [13], an open-source blockchain technology that 



4 

 

implements a decentralized version of the domain name system (DNS). The main benefits of a 

decentralized DNS approach are security, censorship resistance, efficiency, and privacy. 

1.2.5 Integrity Verifications 

The blockchain integrity verification applications store data related to the creation and 

lifetime of products or services. The potential applications are: i) provenance and counterfeit, 

ii) intellectual property (IP) management, and iii) insurance. 

1.2.6 Governance 

 Blockchain-enabled applications could change the way governments at the local or 

state level operate by disintermediating transactions and record keeping. The safety, 

automation, and accountability, which blockchain proposes for handling public records, could 

hinder corruption and make government services more efficient.  

1.2.7 Healthcare management 

 Various blockchain opportunities exist, for example, user-oriented medical research, 

sharing patients’ medical data, automated health claims adjudication, public healthcare 

management, longitudinal healthcare records, online patient access, drug counterfeiting, 

clinical trial, and precision medicine. 

1.3 Blockchain Challenges 

 Blockchain permissionless networks like Bitcoin and Ethereum face an inherent 

scalability limitation that restricts the rate at which the blockchain network can process 

transactions [14]. Solving the scalability problem will significantly help with blockchain 

mainstream adoption. Various solutions are proposed in the literature to scale blockchains 

without changing their trust assumptions, such as layer-one solutions and layer-two protocols 

[15]. Within the context of the blockchain, a layer-two protocol is implemented on top of the 

layer-one protocol, the blockchain or ledger. It is added to enable users to perform the so-called 

off-chain transactions through private and authenticated communication rather than to 

broadcast every single transaction on the (parent) blockchain [16].  

Off-chain networks have witnessed fast development over recent years. Bitcoin's 

Lightning Network (LN) [14] and Ethereum's Raiden Network [17] are the most prominent 



5 

 

examples of this emergent area of research. Ripple [7] is a permissioned digital payment 

network using its own cryptocurrency called XRP as the primary transaction medium.  

Transactions are executed off-chain without affecting the decentralization model, the 

privacy, or the trust features of the blockchain, with significantly lower transaction fees. For 

comparison, while the average on-chain bitcoin transaction fee may cost $25, the average fee 

on the Lightning (i.e. an off-chain layer on top of the Bitcoin) is a fraction of a cent [18]. To 

enable payments between any two nodes, payment channels form a network, called a payment 

channel network (PCN). In which payments can be routed over more than one hop. Thus, an 

efficient transaction routing protocol has a pivotal role in solving the scalability limitation of 

blockchain networks.  

The main challenge that PCNs face is finding the best route of payment channels 

between the transaction source and destination with the lowest transaction fees. Also, both 

transient errors (insufficiently funded channels) and intransient errors (such as offline nodes) 

are identified as the main reasons for failing payments [19]. 

Thus, one of the unsolved issues with routing algorithms, and the LN itself, is that a 

significant number of nodes should be continuously online [20]. This requirement is not present 

in Bitcoin and virtually all centralized payment systems. However, PCNs provide a measurable 

incentive for nodes to be online, as an online node could receive transaction fees by routing 

payments through it.  

According to the study in [19], the main reason for failing payments is a temporary 

channel failure. It is reported when a channel direction has temporarily insufficient available 

funds. This could be a result of previous transactions that have been locked through the channel. 

The error indicates the same payment may succeed through the channel at a later time. The 

following most common error was Unknown Next Peer. This error occurs because a hop along 

the intended payment route does not connect to the next node. 

1.4 Problem Statement 

In this work, the main objective is to overcome the blockchain limitations of scalability 

and high transaction fees using PCNs. We intend to achieve this objective by proposing an 

efficient and effective transaction routing protocol in PCNs. The proposed protocol has to 

consider the fast dynamic nature of PCN’s. In addition, it should be able to efficiently handle 



6 

 

frequent errors that may result in repetitive routing failures. These errors occur as a result of 

the lack of online or cooperative nodes needed to form the path from transaction source to 

destination. Also, a payment channel along the payment path may not have sufficient funds to 

route the payment, which is another source of frequent routing failure.  

1.5 Thesis Objectives and Contributions 

The thesis objective aims at transaction route-finding and selection in a PCN that meets 

certain constraints. A machine learning-based technique is proposed to suggest the possible 

routes of the payment channels to carry the transactions from the sender to the destination with 

the lowest transaction fees. It aims to “learn” and “memorize” node and payment channel 

activities and use it to predict a future route suggestion with the lowest transaction fees as a 

function of time. Besides, a model is proposed that assesses offline nodes' impact on the routing 

protocol performance in PCNs.  

As such, the objectives of this research can be summarized as follows. 

1. Propose an effective and efficient transaction routing protocol in PCNs. 

2. Assess the impact of off-chain network dynamics and errors on payment routing 

protocols. 

Consequently, the main contributions of this research can be stated as: 

Devising a novel machine learning-based routing protocol proposed for off-chain 

transaction routing in the payment channel networks. The proposed protocol will predict the 

best route in the future in case of insufficiently funded channels and offline nodes. Transient 

and intransient errors that result in payment routing failure are modeled. To the best of our 

knowledge, this is the first work that proposes a machine learning-based technique in 

transaction routing in PCN. Also, this is the first work that investigates and evaluates the 

routing problem in PCNs considering the dynamics in terms of the involved nodes status. These 

dynamics cover the offline nodes, identified as one of the main reasons for failing payments. 

1.6 Thesis Structure 

The rest of this thesis is organized as follows. In chapter 2, we present the necessary 

background information regarding blockchain. Furthermore, the fundamentals of payment 

channel networks are discussed in this chapter. We also review some of the proposed routing 

protocols that are relevant to our work. The recent findings of the literature studies that address 

machine learning applications in packet routing are also covered in this chapter. Chapter 3 



7 

 

presents the payment channel model and the routing problem formulation using a machine 

learning-based technique. Chapter 4 describes the proposed algorithm and its detailed 

functionality. In chapter 5, the results of the simulation experiments that validate and evaluate 

the proposed technique are presented. Finally, this study is concluded in chapter 6, along with 

providing our ideas for future work.



8 

 

Chapter 2 

Related Work 

2.1 Introduction 

In this chapter, we present the background necessary for this study along with the 

previous research efforts concerning the payment channel network routing. First, blockchain 

technology is introduced, highlighting the main characteristics of this technology. We address 

significant challenges that hinder the wide adoption of blockchain-based cryptocurrency. Then, 

we describe layers of the blockchain network and introduce the concept of off-chain layers. We 

discuss the solution to the blockchain scalability problem using an off-chain layer, forming the 

concept of payment channel networks. We highlight the significance of routing in efficient off-

chain network performance. We also discuss the related work in payment channel network 

routing. Finally, we investigate the background of using machine learning in communication 

network routing problems. 

2.2 Blockchain and Cryptocurrency 

Since the emergence of an economic dimension of P2P networks by an anonymous 

author called Satoshi Nakamoto in the Bitcoin paper [1] published in 2008, the blockchain 

applications, the underlying technology beyond Bitcoin, have widely spread in business 

applications. It is viewed as one of the most critical technologies that will have massive impacts 

for years to come [2].  

A blockchain consists of a distributed electronic database called a ledger that can store 

any data such as records, events, or transactions. This ledger continually grows as blocks linked 

to each other as a chain, where each block has a limited storage size. The data stored in each 

block are verified or confirmed and connected to the previous block, as shown in Figure 2-1, 

using an algorithm that generates a unique hash function, H, which includes a series of letters 

and numbers.  In case any piece of data is altered due to transmission error, for example, the 

correct hash function will not be generated, and therefore an error will be reported. The hash 

can easily generate a hash from any input. However, it is challenging to generate the input from 

the hash. Additionally, two different inputs cannot generate the same hash.  



9 

 

 

Figure 2-1. A blockchain is a linked list built with hash pointers instead of pointers [3] 

Then, the verified block is added to the end of the growing blockchain, in which the 

data is continuously verified based on a consensus mechanism or a global agreement. In this 

process, called mining, new transaction verifications are performed and recorded on the global 

ledger.  It is performed by the blockchain members, called miners, who render a competitive 

computing power service to the blockchain network by solving a hash function and get the 

chance to be rewarded accordingly. Miners also secure the blockchain transactions spending 

the same amount of Bitcoin (BTC) more than once, known as a double-spend. Thus, no 

centralized node or authority is required. Also, not necessarily all the nodes keep a complete 

copy of the entire database. This architecture allows people to trust the system's output without 

the need to trust any part of it [21] [22].  An example of some of the Bitcoin contents is shown 

in Figure 2-2. 

  

Figure 2-2. Some details of a Bitcoin block [23] 



10 

 

The hardware and bandwidth limitations impose constraints on the number of 

transactions per second of the distributed ledger of a blockchain, resulting in a scalability 

problem. Bitcoin and Ethereum [24] are prominent examples where the transactions per second 

are around seven for Bitcoin and fifteen for Ethereum [6]. On the other hand, the VISA system 

can support 47,000 transactions per second. Increasing the block size to handle a similar 

number of transactions as the VISA system will require a block capacity of eight gigabytes, 

which imposes large resource burdens on regular user computers [14]. Therefore, the number 

of miners will significantly decrease, which mandates relying on a central trusted authority 

with the power of validation. Thus, the primary privilege of the blockchain system of trustless 

trust would be lost. Moreover, micropayments (i.e. payments of less than a few cents) are  

considered impractical on the bitcoin network due to the fixed transaction fees and the 

minimum output size of a transaction. 

Scalability is considered one of the critical challenges of blockchains, described as the 

scalability trilemma, a term coined by Vitalik Buterin, the co-founder of Ethereum [25]. The 

trilemma claims that blockchain systems can at most only have two of the three properties: 

decentralization, scalability, and security. Decentralization is the core and the nature of 

blockchain; security is essential, while the main challenge of scalability is finding a way to 

achieve all three at the base layer. 

Various solutions are proposed in the literature to scale blockchains without changing 

their trust assumptions, such as layer-one solutions and layer-two protocols [15]. Within the 

context of blockchains, a layer-two protocol is implemented on top of the layer-one protocol, 

the blockchain or ledger. It is added to enable users to perform the so-called off-chain 

transactions through private and authenticated communications as opposed to broadcasting 

every single transaction on the (parent) blockchain [16].  

2.3 The Off-chain Layer 

In the literature, four layers are introduced to identify the blockchain components 

relevant to layer-two [16]. They are depicted in Figure 2-3 and can be summarized as follows: 

• Hardware Layer: is considered a Trusted Execution Environment (TEE) and substitutes 

the need for a blockchain clock with a trusted hardware assumption.  TEEs can execute 

sensitive or security-critical application code, tamper-proof from the operating system 

or other higher-privileged software.  

• Network Layer: also called layer-zero, is typically a peer-to-peer layer on which 

blockchain nodes exchange information asynchronously. This layer performance is 



11 

 

crucial to the scalability, security, and privacy of a blockchain. Moreover, layer-zero 

significantly affects transaction throughput and provides stronger resilience against 

malicious actors.  

• Blockchain Layer: also called layer-one, is an immutable append-only chain of blocks 

that accumulates transactions from parties in a network for public verifiability.  A 

transaction, which reflects an update of the blockchain state, can exchange digital assets 

between parties or invoke an application (i.e., smart contract). 

• Off-chain Layer: also called layer-two, allows transactions between users by 

exchanging authenticated messages through a medium tethered to a layer-one 

blockchain, but it is not part of it. Authenticated contentions are sent to the parent-chain 

only in case of a dispute. Hence, the parent-chain judges the dispute and issues the 

outcome. The security and trust properties of a layer-two protocol are inherited from 

the consensus algorithm of the parent-chain. 

 

Figure 2-3. Proposed blockchain layers [16]    

Different types of layer-two protocols exist, e.g. payment channel designs [26][27]. 

However, Bitcoin's Lightning Network [14] and Ethereum's Raiden Network [17] are the most 

prominent examples of this emergent area of research [28][29]. Despite having their own 

working mechanisms and particularities, both solutions are striving to provide increased 

throughput to blockchain systems. Bitcoin and Euthereum are the 

largest cryptocurrencies by market capitalization, respectively, according to CoinMarketCap 

[30]. This work will focus on the Lightning network as a prominent example of layer-two 



12 

 

protocols and payment channel networks. As of this writing, the Lighting network has 17,439 

nodes and 38,482 edges [31]. 

2.3.1 Payment Channel Networks 

A payment channel (aka micropayment channel or transaction channel) generates a 

financial relationship between two parties that record an updated current balance in a trustless 

manner and it gets communicated and exchanged off-chain [14]. In payment channel networks 

(PCNs), a payment channel can be viewed as a temporary joint account between two users or 

more [32]. The balance is divided among the owners, and the share can be modified upon all 

parties' agreement. Pre-set rules govern the agreement, e.g. a smart contract, allowing the 

involved parties to consent to channel updates by exchanging authenticated state transitions 

off-chain [16]. The channel capacity identifies the total deposit, limiting the maximum amount 

of payment that can be transferred via this channel. 

Payment channels initially emerged to support fast unidirectional payments [33]. Then, 

Poon et al. proposed the Lightning Network (LN) that supports bidirectional payments [14]. If 

two parties want to execute a transaction and do not share a payment channel, the payment has 

to be performed via a series of transactions in different channels, composing a payment path. 

Several measures have to be undertaken to guarantee to send funds via multiple intermediaries 

in a network without the risk of intermediary theft of funds. The concept of using staggered 

timeouts, Hashed Time-lock Contract (HTLC) [34], was integrated into the Lightning Network 

[14] to construct secure transfers using a network of channels across multiple hops to the final 

destination. Typically, nodes collect fees for forwarding transactions, thus creating incentives.   

Basically, three cases exist where the transactions are broadcasted to the blockchain:  

i) opening a payment channel,  

ii) closing a payment channel, and,  

iii) a dispute between the two parties.  

It is not necessary to open a channel in case the user will pay infrequently. Anyone may 

pay the money indirectly by transferring the money to intermediate parties till reaching the 

destination. In this process, the route is selected to minimize the number of intermediates and 

the associated fees. 

To illustrate this process of indirect payment through payment channels, we use the 

following example. Assume that Alice wishes to send 0.1 BTC to Dave, as shown in Figure 2-

4 (a). She locates a route through Bob and Carol and requests Dave to send her Hash (R), H, to 

use for this payment, where R is a secret random value generated by Dave. Alice then creates 



13 

 

a contract, HTLC, with Bob that contains H and an expiry time of three minutes, for instance. 

Bob cannot spend the payment without providing R to Alice within three minutes. Bob then 

creates a contract with Carol the same way with an expiry of two minutes. That is, each node 

along the path should forward the payment the same way but with a decremented expiration 

time till the destination.  

Upon reception, Dave will give the secret value, R, to Carol so that she can settle the 

payment and update the balance by the deadline instead of broadcasting it to the blockchain, as 

shown in Figure 2-4 (b). All parties along the path know that the disclosure of R will allow the 

disclosing party to pull funds, as agreed in the HTLC. This procedure then occurs step-by-step 

back to Alice. The whole process occurs off-chain, and nothing is broadcast to the blockchain 

when all parties are cooperative. In case a party, e.g. Bob, disconnects and refuses to update 

the balance, the counterparty, e.g. Carol, will be responsible for broadcasting this situation to 

the public blockchain, which will judge the situation and settle the failed non-responsive 

channel state, as shown in Figure 2-4 (c). 

  

(a) Payment over the Lightning Network using HTLCs        (b) Settlement of HTLCs 

 

(c) Only the non-responsive channels get broadcast on the blockchain, all others are settled off-chain 

    Figure 2-4. A path of payment channels [14]    

 



14 

 

2.4 Off-chain Transaction Routing  

Off-chain transaction routing is needed to achieve a successful payment with the 

minimum intervention of blockchain. Thus, efficient routing in PCNs is crucial to achieving 

their intended goal of solving the scalability limitations of blockchains. Though the routing 

problem is well-examined in data transmission, it experiences different challenges when 

applied to PCNs due to the diverse nature between both types [16]. In particular, node links 

and capacities are not considered private in computer networks. Moreover, routing of data does 

not change the state of the communication links. 

On the other hand, a successfully executed transaction changes the state of the payment 

channel. The balance is updated after each transaction. What makes the situation more 

challenging is that the channel could be depleted in one direction. This imbalance may cause 

the PCN to become locked as no paths are found with funds in the needed direction, thus, 

making PCNs more dynamic than computer networks. Nodes may take actions to increase their 

balance in a payment channel, at the expense of decreasing their balance in another channel, to 

keep routing payments. This process is called rebalancing. Different rebalancing strategies are 

implemented in the literature [35][36] to help maintain efficient PCN transaction transfer.  

Flare [20] is one of the earliest efforts to study the routing problem in payment channel 

networks (PCNs) in a decentralized manner. It is a beacon-based routing technique for LNs 

using the same techniques implemented in mobile ad-hoc networks (MANET). Each node 

reveals all payment channel capacities to a predefined number of nearest neighbors. It is 

characterized to have longer routes, higher latencies, and communication overheads. However, 

the most significant limitation of Flare is its inability to support topology changes [16]. 

Landmark-based routing was proposed in SilentWhispers [37], in which dedicated 

nodes, called landmarks, control the routing process and determine the path from a source to a 

destination such that they are part of the route (i.e. landmark-centered), as shown in Figure 2-

5 (a). Any route has to go through the landmark even if the sender and the receiver are on the 

same branch, which leads to longer routes. The evaluation of SilentWhispers on a real-world 

dataset reveals low effectiveness and moderate latencies [28]. 

 



15 

 

 

 

(a) Landmark-centered                  (b) Tree only                                    (b) Embedding-based 

Figure 2-5. Examples of spanning-tree routing schemes for landmark lm, sender s, receiver r [28] 

Embedded-based, also known as distance-based, routing was extended in 

SpeedyMurmurs [28] by assigning coordinates to each node in the network referenced to a set 

of landmarks, as shown in Figure 2-5 (c). Distance-based routing suggests the shortest path by 

learning a vector embedding. In particular, vector embedding relies on a coordinate system, 

coordinates of nodes are dictated by the root node from a spanning tree. In order to initialize 

an embedding-based routing system, a spanning tree has to be created. So, nodes close in 

network hop distance are also close in embedded space or such a coordinate system. Upon 

transaction execution, nodes locally select the next hop in a payment path by considering all 

neighboring links with sufficient balances. Then, nodes choose the channel to the node with 

the coordinate closest to the recipient's coordinate, which is not necessarily part of the spanning 

tree. If a channel opens or closes, only descendants in the spanning tree have to modify their 

coordinates, which typically results in an overhead logarithmically scaled to the network size. 

Nevertheless, SpeedyMurmurs does not consider balances, which results in low effectiveness 

due to insufficient balances in a dynamic PCN [16]. 

The Spider Network [38] uses a modified implementation of source routing [39], in 

which the sender specifies the complete route to the destination. The modifications involve 

actively accounting for the cost of channel imbalance by preferring routes that rebalance 

channels. The preferred paths are categorized after applying a decentralized congestion control 

algorithm to determine the rate to send the so-called transaction units for different payments. 

Payments are split into transaction-units routed independently on multiple paths over time, 

similar to packet-switched networks. So, the risk that there is an insufficient balance in the 

payment direction is minimized. However, this comes at the expense of higher computational 



16 

 

overhead. Besides, the cost-effectiveness of the selected paths is worsened since transaction 

fees are charged for each path [16].  

Maximum-flow algorithm [40], implementing the Ford–Fulkerson method [41], is the 

base for several studies for off-chain routing in [42], [32], [29], [43]. In graph theory, 

the maximum flow problem is to route as much flow as possible from the source to the sink. 

The flow from the source to the sink is initialized to zero at all edges. Then, the algorithm 

searches for any existing augmenting path. An augmenting path is a simple path from a source 

to a sink which does not include any cycles and that passes only through positive weighted 

edges. Upon finding an augmenting path, the current maximum flow is updated to add the flow 

of this augmenting path. Then, the current capacity of all the edges across the augmenting path 

are updated to exclude the augmenting path flow resulting in the so-called residual graph. A 

residual network graph indicates how much more of the flow is allowed in each edge in the 

network graph. If there are no augmenting paths possible from the source to the sink, then the 

flow has reached the maximum. 

 Although max-flow routing is a baseline technique in terms of throughput and 

transaction success rate, it has a high overhead of communication and latency [44] that is not 

practical for an actual PCN size. For instance, EdmondsKarp algorithm [45] is a special 

algorithm of the Ford–Fulkerson method, finding augmenting paths with breadth-first search 

(BFS) [46]. In BFS, the source node expands the shallowest nodes first of the graph to find the 

destination and explores all of the neighbor nodes at the present depth prior to moving on to 

the nodes at the next depth level. The complexity of EdmondsKarp algorithm is O(V𝐸2) per 

new transaction. 

In Flash [29], payments are differentiated based on a threshold payment value (i.e. a 

percentage of the whole transaction values). For high transaction values, aka elephant 

payments, Flash uses a modified version of the EdmondsKarp algorithm that finds the 

maximum flow using a predefined maximum number of paths, k. As the algorithm executes 

EdmondsKarp algorithm for k paths, it has high latency [16].  For low transaction values, aka 

mice payments, the algorithm uses local routing tables information to do the routing thus 

avoiding executing an expensive flow algorithm. However, inferring the size of payments, thus 

the threshold value, is hard in real-world networks [47]. 



17 

 

Ad-hoc on-demand distance vector (AODV) routing is proposed in [48] for payment 

channel networks. Each node maintains a routing table where updates are reflected only when 

searching for a route. The results indicate high effectiveness for successful path discovery and 

cost. However, the communication overhead is considerably high when compared to the 

simulated small graphs. So, scalability in a real-world dataset is unlikely [16].  

The execution of the transaction through multiple paths can be achieved in PCNs. This 

possibility makes use of the mechanism of Atomic Multipath Payments (AMP) proposed for 

the Lightning network in [49]. The feature is implemented using HTLCs to allow the 

transaction to split over multiple paths. At the same time, the receiver should wait for the total 

intended payment prior to settling any of the partial payments. This implies that the transaction 

should either succeed or fail in its entirety. AMP eliminates the restriction to a single path from 

sender to receiver with sufficient directional capacity. It reduces the pressure to have larger 

channels in order to guarantee higher payment flows. Prior routing algorithms Spider Network 

[38] and Flash [29] consider this mechanism and propose multi-path payments.  

To our knowledge, no routing algorithm that fulfills all desired criteria of scalability, 

effectiveness, and efficiency in real-world PCN dynamic settings [16]. 

2.5 Machine Learning for Networking 

Machine learning (ML) techniques have been applied in different fields. They can not 

only be used to aid critical analysis of data, called data mining (e.g., features, variables, 

probability distribution, and transformation), but they also go beyond data mining to predict 

future events. Research interests have recently increased to use the power of ML for 

networking. Different techniques have been proposed to tackle various computer networks’ 

problems, such as traffic prediction, congestion control, routing and classification, resource 

and fault management, QoS management, and network security [50]. Network traffic analysis 

and prediction is a proactive approach that aims to maintain secure and reliable network 

communications. The traffic analysis targets avoiding network congestion by allocating the 

network resources according to the predicted traffic. 

ML techniques can be broadly classified into four main categories [50]:  

i) Supervised, where labeled training datasets are used to create models to identify 

patterns or behaviors according to the training dataset. This technique is used in 



18 

 

classification and regression, where discrete and continuous quantities are 

predicted, respectively.  

ii) Unsupervised, where unlabeled training datasets are used to create models to 

distinguish between patterns (e.g., clustering).  

iii) Semi-supervised, where missing labels in the training dataset is inevitable.  

iv) Reinforcement learning (RL), where an agent interacts with the environment. 

Thus, it learns and gains experience by exploration rather than having examples. 

Different approaches of machine learning have been proposed to solve routing in 

wireless sensor networks. Such approaches are usually based on RL, swarm intelligence or 

neural networks. Nevertheless, these algorithms have different properties, which need to be 

considered when selecting the application. For instance, ant-based routing is a very flexible 

algorithm, but it generates a lot of additional traffic. This is because of the forward and 

backward ants that move through the network. In a WSN scenario, this overhead has to be 

carefully addressed and compared to that in other protocols.  

On the other hand, algorithms that need an offline learning phase, such as offline neural 

networks, cannot cope with changing properties of the network. As they require very high costs 

of gathering the relevant data, calculating the routing tree and then distributing the tree roles to 

the nodes. RL algorithms have proved to work very well for routing and can be implemented 

at nearly no additional costs. They should be the first choice when looking for a flexible and 

low-cost routing paradigm [51]. Moreover, some RL proposed techniques feature a good 

scalability property that implies the solutions’ capability to route data in large-scale networks. 

In contrast, swarm intelligence or neural network techniques feature limited scalability [52]. 

2.6 Reinforcement Learning in Packet Routing 

Reinforcement learning (RL) is a technique where an autonomous agent seeks to 

associate actions with system states in a trial-and-error manner. The outcome of an action is 

observed as a reinforcement. Reinforcement learning aims to maximize the total rewards (i.e. 

reinforcements) or minimize the penalties that an agent receives over time by selecting the 

optimal action. Reinforcement learning problems are typically modeled as Markov decision 

processes (MDPs) that consist of a set of states S, a set of actions A, and a reinforcement 

function R(s, a), as shown in Figure 2-6. 



19 

 

 

Figure 2-6. The agent-environment interaction in a Markov decision process [53] 

RL strategies can be classified into two main categories, namely, model-free (e.g. Q-

learning) and model-based learning methods [54]. Using a model of the environment, an agent 

can predict how the environment responds to its actions. Given a state and an action, a model 

produces a prediction of the resultant next state and next reward. In case the model is stochastic, 

there are several possible next states and next rewards, each with a probability of occurrence. 

Some models produce a description of all possibilities and their probabilities, called 

distribution models. Other models produce just one of the possibilities, sampled according to 

the probabilities, called sample models. Given a starting state and an action, a sample model 

produces a possible transition and a distribution model generates all possible transitions 

weighted by their probabilities of occurrence [53]. The model consists of an explicit knowledge 

of the state transition probability function T(s, a, s’) and the reinforcement function R(s, a) 

[54]. 

Model-based learning methods build an internal model of the environment, calculate 

the optimal policy and use it to derive the agent. On the other hand, model-free methods do not 

build an explicit T(s, a, s’)  and R(s, a) model, but the agent learns directly from experience. 

Model-based methods are guaranteed to converge faster to the optimal policy as they make use 

of the data stored in the internal model. However, they are less prevalent in RL due to slower 

execution time and increased storage size. Nevertheless, in distributed systems where gaining 

real-time experience is costly, model-based techniques are superior to model-free approaches 

as the former make use of the gathered data [55]. The upcoming sections will address the two 

RL approaches as used in communication routing problems. 



20 

 

2.6.1 Model-free Reinforcement Learning in Packet Routing 

Q-routing is a distributed adaptive traffic control scheme based on Q-learning (a 

reinforcement learning technique) to route traffic in dynamically changing traffic and topology 

networks [56]. In Q-routing, each node has its own controller that takes the routing decisions, 

while Q-learning depends on the network's global information for solving multistage decision 

problems. Q-Routing is the online version of the Bellmann-Ford algorithm [57]. An action-

value function (i.e. Q-value) estimates the utility for performing a specific action for a 

particular state. For Q-routing, the utility represents the best link with the lowest 𝑄𝑥 (𝑑, 𝑦) (i.e., 

the time estimate to deliver a packet to node d from node x via a neighbor node y) that is 

deterministically updated as follows. 

𝑄𝑥(𝑑, 𝑦) ← 𝑄𝑥(𝑑, 𝑦) + 𝛼 ∆𝑄                                                                                 

  ∆𝑄 = (𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 + 𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦 𝑎𝑡 𝑦 + 𝑚𝑖𝑛𝑧𝑄𝑦(𝑑, 𝑧) − 𝑄𝑥(𝑑, 𝑦)),                                                            

(2-1) 

(2-2) 

where ∆Q is the difference between the new and the old estimates, α is the learning rate, and 

𝑄𝑦(𝑑, 𝑧) is the time estimate to deliver a packet to node d from node y via a neighbor node z. 

In case the estimated time in the link has increased due to a temporary load condition, this link 

will not be used again until the other link in the same node has worse estimated time values. 

A memory-based Q-learning algorithm was proposed in [58] to memorize the best 

experiences (Q-values) and their rate of variations (i.e. recovery rate) to be used to predict 

future traffic trends thus increasing the learning speed. During normal network load, the 

shortest path is the optimum, while in case of congestion, alternative routes ought to be utilized. 

As the load decreases in the shortest paths, they recover and get back to be optimum paths. 

Special packets are occasionally sent using these paths as a controlled exploration activity 

called probing to recognize this change. The probing frequency is critical since it may increase 

the congestion in the already congested paths. Predictive Q-Routing (PQ-Routing) [58] is 

identical to Q-learning in how the Q-function is updated except for the routing policy (2-4). 

The recovery rate is used for better Q-value estimates rather than only the current Q-values. 

The recovery rate changes with time and depends on network traffic and the probability of link 

or node failure. This recovery rate is memorized to be utilized for future routing plans. 

 

 



21 

 

∆𝑡 = current time − 𝑈𝑥(𝑑, 𝑦),                                                                                  

  𝑄′𝑥(𝑑, 𝑦) = max(𝑄𝑥(𝑑, 𝑦) + ∆𝑡 𝑅𝑥(𝑑, 𝑦), 𝐵𝑥(𝑑, 𝑦)),                                                            

(2-3) 

(2-4) 

where 𝐵𝑥(𝑑, 𝑦) is the estimated delivery time from node x to node d via a neighboring node y, 

𝑅𝑥(𝑑, 𝑦) is the recovery rate for path from node x to node d via a neighboring node y, and 

𝑈𝑥(𝑑, 𝑦) is the last update time for path from node x to node d via a neighbor node y. 

In multi-agent RL, agents collaborate to achieve shared objectives in a challenging learning 

environment due to huge state space, limited training examples. In opaque transitions, agents 

are not able to track state transitions subsequent to performing an action. The earliest work that 

proposes multi-agent RL in network routing problems is Team-partitioned opaque-transition 

(TPOT) RL in [59]. 

The update mechanism in (TPOT) RL in (2-5) is similar to Q-routing in (2-1). Nevertheless, 

the fundamental difference between TPOT-RL and Q-routing is that the immediate rewards in 

(TPOT) RL is calculated based on the transmission of packet arrival time from the source node 

to the destination. Hence, immediate reward r in (2-5) is entirely goal-oriented after the packet 

reaches the destination:  

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) +  𝛼 [𝑟 − 𝑄(𝑠, 𝑎)] (2-5) 

 

In contrast, in Q-routing, the immediate rewards are based on the packet's arrival at the next 

node. Therefore, nodes get "expected time-to-go" information from neighboring node z to the 

destination d. This means that  𝑚𝑖𝑛𝑧𝑄𝑦(𝑑, 𝑧) in (2-1), is updated after each packet is sent to a 

neighbor only rather than the destination.    

2.6.2 Model-based Reinforcement Learning in Network Packet Routing 

The earliest work that proposes a model-based RL in network routing problems is [55] that 

uses collaborative feedback between agents to share the latest optimal policy in a non-

stationary environment such as MANET. Optimization problems are decomposed into a set of 

discrete optimization problems that are solved by collaborating RL agents, forming the so-

called collaborative RL, aka multi-agent RL (MARL).  

Each agent has routing tables that store route cost information to its neighboring nodes and 

the last advertised route cost values from those neighbors to each destination in use. 

Collaborative RL adapts agent behavior in a changing environment to meet system 

optimization goals with agents using only local state information. Collaborative RL provides 



22 

 

feedback models that map changes in an agent’s environment and neighbors onto internal 

changes in the agent’s policy using distributed model-based reinforcement learning. It utilizes 

a decay function for the advertised cost values to allow agents to exchange the effectiveness of 

actions they have learned with one another. 

2.7 Chapter Summary 

This chapter stated the necessary background information from blockchain emergence, 

description, main features, and significance as a foundational technology. We discussed the 

scalability challenge as the key challenge of the widespread blockchain adoption. Then, we 

described the background of payment channel networks introducing the concept of layer-two 

protocols. We summarized the related work that addresses payment channel routing problems. 

Finally, we discussed the application of reinforcement learning in packet routing, which is 

decomposed into model-free and model-based techniques. We aimed to introduce applying 

reinforcement learning in transaction routing in PCNs. 

 

 



23 

 

Chapter 3 

System Model and Problem Formulation 

3.1 Introduction 

This chapter investigates the payment channel network model and the formulated 

transaction routing problem. First, we introduce the payment channel network model. We then 

formulate the routing problem. We utilize a machine-learning technique to find the best 

available path to execute the payment. We then illustrate the payment model and the state 

diagram that we use to apply reinforcement learning in the PCN routing. We demonstrate the 

proposed RL model update methodology. Finally, we discuss the difference between the PCN 

routing problems versus those in communication networks using reinforcement learning. 

3.2 Payment Channel Network Model 

We model the payment channel network as a directed graph, similar to prior work [28], 

[38] since funds can flow in either direction and channel balances are dependent on the 

direction. We define the graph 𝐺 = (𝑉, 𝐸), where V is the set of accounts in the network, E is 

the set of payment channels between a pair of accounts, and a weight function w of the set of 

edges. A link from a node, z, to a node, v, exists if z can transfer funds to v. The neighbors of 

the node v can be expressed as 𝑁(𝑣) = {𝑧 ∈ 𝑉:  (𝑧, 𝑣)  ∈ 𝐸}.  

Although a node v can have a limited number of direct neighbors 𝑁(𝑣), it can ‘route’ 

payments to participants to which no direct network connection exists by chaining channels 

together. This is achieved by forming  a payment path p  via a sequence of edges 𝑒1, … , 𝑒𝑛 with 

𝑒𝑘 = (𝑣𝑘
1, 𝑣𝑘

2) , for 1 ≤ 𝑘 ≤ 𝑛 − 1.  Therefore, the routing problem can be defined as the 

process of finding the minimum cost path starting at the source vertex, and reaching all 

destination vertices, by using the available graph edges. This path is actually a spanning tree 

whose vertices include the source (i.e. a root node) and destinations (i.e. leaf nodes that do not 

have any child nodes). Moreover, function w reflects the value of funds that can be transferred 

from one node to another node that shares the same edge, e. Hence, the maximum possible 

transaction value is limited by the path capacity (i.e., the funds available in a path  𝑒1, … , 𝑒𝑛), 

which is defined as the 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤(𝑒𝑘).  

A node, src, wants a send a payment to node, dst, via payment channels, while both are 

not directly connected. We aim to find a connected path of payment channels in which each 



24 

 

link has sufficient funds in the payment direction for a single path payment. If the payment is 

divided over multiple paths, the payment is split so that each channel in each path can handle 

the partial payment. For simplicity, we assume a single path only, while a multiple-path routing 

is postponed for future work. 

Therefore, the objective is to find a set of edges 𝑒1, … , 𝑒𝑛 for transferring the payment 

between src and dst satisfying the following requirements, which are in line with the previous 

works that address the same problem [20], [28], [16]:  

Effectiveness: The routing algorithm should find the paths that maximize the probability of a 

successful transaction. Upon channel balance change, the algorithm should remain effective. 

Efficiency: The traffic generated by route discovery should result in low latency, computation 

and communication overheads. Besides, low overhead costs should be paid in case of PCN 

dynamic topological changes. 

Scalability: The routing algorithm should maintain effectiveness and efficiency in large-scale 

PCN with massive amounts of transactions. 

Cost-Effectiveness: The routing paths should incur transaction fees that are as low as possible. 

They should be consistently lower than layer-one protocols. 

Node’s Privacy:  No certainty can be given to whom the sender/receiver are in a transaction. 

The distribution of funds among the two-channel participants should not be disclosed. 

 The stated requirements should be fulfilled by the routing algorithm considering the 

fast dynamic nature of PCNs. As stated in Section 1.4, both transient errors (insufficiently 

funded channels) and intransient errors (such as offline nodes) are identified as the main 

reasons for failing payments. Therefore, the routing algorithm should be verified to handle a 

considerable amount of these errors.  

It is worth mentioning that peer-to-peer PCNs differ from common peer-to-peer 

networks as the connections between peers are predefined and cannot be changed to improve 

the routing quality. Therefore, they are argued in the literature to be considered friend-to-friend 

(F2F) networks, which restrict connections to peers sharing a mutual trust relationship [28]. 

Moreover, opening or closing a payment channel is a costly process. Hence, it is not expected 

that connections between peers frequently change with the same rate as the communication 

networks. 



25 

 

3.3 Problem Details and Formulation 

We aim to address the fast dynamic nature of PCNs by using machine learning. As 

described in Section 2.5, RL is the type of machine learning techniques that dominates the area 

of traffic routing with the aim of achieving good scalability and low overhead. In reinforcement 

learning, each agent interacts with the environment described by a set of states, S. Hence, it 

learns and gains experience by exploration rather than having examples. The agent performs 

an action and uses the environment's feedback to maximize the reward for a given state in the 

form of rewards or penalties. We propose modeling the nodes in a PCN as agents collaborating 

and sharing information to perform successful transactions. This is achieved by selecting the 

most suitable action (i.e. a payment channel with a direct neighbor) to route the transaction 

with the lowest fees.   

In the literature, both model-free and model-based RL algorithms are proposed for 

communication routing problems. Model-based methods are guaranteed to converge faster to 

the optimal policy as they make use of the data stored in their internal models. Generally, in 

distributed systems where gaining real-time experience is costly, model-based techniques are 

superior to model-free approaches.  

Therefore, we propose using multi-agent reinforcement learning (MARL) in PCNs.  

MARL is a model-based technique to "learn" the nodes' behavior (i.e. build a model for the 

optimal policy 𝜋∗) and use it to predict the nodes' status as a function of time for future route 

suggestions. This implementation is supported by the study in [29] based on real-world 

transactions in the Ripple network that concludes that cryptocurrency transactions are 

characterized as highly recurrent in terms of the sender, receiver, and value within a time frame 

of 24 hours. To allow the transaction source to take the most appropriate action (i.e. a specific 

payment channel to route the transaction), the time and the amount of the transaction and the 

destination affect the decision. Thus, the states used to describe the environment should reflect 

these aspects, unlike the packet routing problem concerned with the destination only. 

Based on the above, it is expected to have performance gains when applying RL in PCN 

routing for two main reasons:  

i) Peer-to-peer PCNs can be described as friend-to-friend, and,  

ii) real-world transactions in PCNs are characterized to be highly recurrent.  

Therefore, RL will be able to “memorize” and “learn” node and payment channel 

activities. 



26 

 

In communication network routing, the fast convergence feature of model-based 

techniques is achieved at the expense of slower execution and increased storage size. 

Nevertheless, these constraints of communication networks are not of the same weight in 

PCNs. This is because the execution time of a payment routing is of a time frame of seconds 

or minutes. Also, the transactions are characterized to be highly recurrent, so the memorized 

data for each node should be of a limited size.   

3.3.1 Payment Model and State Diagram 

In the context of reinforcement learning, the agent, i.e. the transaction source, src, 

interacts with the environment with the goal of performing a successful transaction. The 

environment is described by a set of states, S, which is a function of the transaction destination, 

dst, time t, and transaction value c. Each agent can perform one action out of a set of actions, 

A, representing the transaction's execution through a direct neighbor that forms with the agent 

a payment channel. Furthermore, a specific combination of neighbors could be utilized in case 

that partitioning the transaction on multiple paths is required, which is left for future work. For 

simplicity, no transaction is considered to be deferred unless it fails in immediate execution. 

Otherwise, a "postpone" action should be considered for each agent.  

A cost function Q(s, a) is proposed to describe the routing quality, where 𝑠 ∈ 𝑆 is the 

current state, and 𝑎 ∈ 𝐴 is a possible action based on s. The cost function is estimated by 

measuring the route's transaction fees to a destination, dst, via a payment channel for a 

particular transaction value, c, and a specific time slot, t. The Q-value for each state-action pair 

is locally stored in lookup tables so that the routing decision is taken based on the node’s own 

experience. The values in the tables are updated locally by the node after each routing decision. 

The table represents the model of the optimal policy that the agent continually wants to learn 

and improve.    

Each new transaction (TXN) is represented in the proposed model as an episode in the 

reinforcement learning process, as shown in Figure 3-1. An episode is a sequence of actions 

that leads the agent from an initial state to a terminal state. The transaction source's goal is to 

perform a successful transaction at the first time to the transaction destination, dst, at an 

arbitrary time slot, t0. If the source transaction fails, it would have a maximum number of trials 

𝑡𝑙𝑚𝑎𝑥 , within the same episode. The episode of the interaction between the agent and 

environment will terminate in any of the following two cases: 

 



27 

 

i) Reaching the agent's goal, i.e., a successful transaction, or, 

ii) Exceeding the maximum number of trials, i.e., tl >𝑡𝑙𝑚𝑎𝑥. 

 

Figure 3-1. State diagram of Payment Model 

Each state is described as a combination of a destination, time, and payment value. 

Since the transactions are characterized to be recurrent every 24 hours, the states that describe 

the environment need to be reset every day as well. The number of states used to describe the 

environment enhances the routing table resolution at the expense of increased storage size. For 

example, a time resolution of 30 minutes requires the storage of up to 48 states in the lookup 

table per payment slot for each destination. In case the payment value is described by two limits 

(e.g. half or full payment channel capacity), the number of states is up to 48*2 for each 

destination. 

Therefore, in order not to consume the storage resource, we assume that the payment 

time is described by one of five values, called time slots. One epoch represents the time of 

resetting these time slots, which is one day in our model. The transaction value is approximated 

into two limits, namely, half and full the channel capacity. For example, two transactions with 

values less than half of the channel capacity at the same slot of time for the same destination 

will be considered one state in the lookup table. Hence, the state space is approximated into a 

reduced number of states that is limited to ten per destination. Their values are stored by the 

agent into a lookup table for each transaction destination due to the product of transaction time 

slot (i.e. five states) and transaction amount (i.e. two states).  



28 

 

3.3.2 The Proposed Model Update Methodology  

Different reinforcement learning algorithms exist, and the convergence rates of some 

of them are known. The total number of RL algorithms introduced in the literature is vast. For 

model-based algorithms, R-MAX [60] is considered one of the best algorithms, according to 

[61] [53], that are guaranteed to find a near-optimal solution in time polynomial in the number 

of states and actions. It takes the idea of optimistic initialization to its extreme, in which all 

incompletely explored choices are assumed maximally rewarding, and optimal paths are 

computed to test that assumption. 

 In R-MAX, the agent always stores a complete but possibly inaccurate model of its 

environment and acts based on the optimal policy derived from this model. The model is 

initialized in an optimistic manner (optimism under uncertainty) with its maximum possible 

reward R-MAX (i.e. admissible heuristic). Upon the real model's execution, the agent's 

fictitious model makes a choice between exploration and exploitation implicit. So, we utilize 

R-MAX to update the RL model in the PCN routing problem. The model is locally memorized 

by each node in the form of local lookup table.  

Let n(s, a) denote the number of times in which the agent has taken an action, a, starting 

from a state, s.  The agent has observed the immediate rewards, r[1], r[2],…., r[n(s, a)], after 

n(s, a) actions. In the proposed model, the node wants to take an action, a, of executing the 

transaction via a specific payment channel starting from a specific state, s, described by a 

payment value limit, slot of time, and a specific destination. The node observes the transaction 

execution to evaluate the rewards or penalties represented as transaction fees in the proposed 

model. The immediate rewards, r[n(s, a)], are the transaction fees after a successful transaction 

execution. In case of failure, the value of the immediate rewards is estimated, as discussed later 

in this section. Then, the empirical mean reward distribution, 𝑅̂(𝑠, 𝑎), can be obtained as 

follows. 

𝑅̂(𝑠, 𝑎) =
1

𝑛(𝑠, 𝑎)
∑ 𝑟[𝑖]

𝑛(𝑠,𝑎)

𝑖=1

, (3-1) 

Let n(s, a, s') denote the number of times when the agent has taken action a from state 

s and immediately transitioned to the state s'. In the proposed model, the next state, s', is one 

of the states used to describe the environment. In this case, s' represents the same payment limit 

by the node itself to the same destination in another slot of time. The node tries the transaction 



29 

 

and waits for the results. In case of a successful transaction, the episode representing the node 

interaction of the environment terminates, so there is no next state. In case of a failing 

transaction, the transaction is retried in another slot of time representing the next state. This 

process is repeated till the maximum number of retrials is exceeded; hence, the episode 

terminates. So, the transition distribution, 𝑇̂(𝑠, 𝑎),  in our model reflects the probability of from 

a specific state, 𝑠, to another specific next state, 𝑠′. Then, the empirical transition distribution 

𝑇̂(𝑠, 𝑎) is given as 

𝑇̂(𝑠′\𝑠, 𝑎) =
𝑛(𝑠, 𝑎, 𝑠′) 

𝑛(𝑠, 𝑎)
 for each 𝑠′ ∈ 𝑆 (3-2) 

In the action selection step, the agent selects the action argmin
𝑎′

𝑄(𝑠′, 𝑎′) that minimizes 

the current action value Q(s, .) that represents the transaction fees in our model. As the 

transaction fees are targeted to be reduced, they can be viewed as penalties that need to be 

minimized. In contrast, in case the rewards are targeted to be maximized, the agent should 

select argmax
𝑎′

𝑄(𝑠′, 𝑎′), which is not the case in our model. The update rule is to solve the 

following set of Bellman equations [57] 

𝑄(𝑠, 𝑎) = {
𝑅̂(𝑠, 𝑎) + 𝛾 ∑ 𝑇̂(𝑠′\𝑠, 𝑎) min

𝑎′
𝑄(𝑠′, 𝑎′),

𝑠′

       𝑛(𝑠, 𝑎) ≥ 𝑚,

𝑈(𝑠, 𝑎)                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

   (3-3) 

where  𝑅̂(𝑠, 𝑎) and 𝑇̂(𝑠, 𝑎)are the empirical (maximum-likelihood) estimates for the reward 

and transition distribution from the state-action pair (s, a), to the state-action pair, (𝑠′, 𝑎′), 

respectively, using only data from the first m observations, n(s, a) denotes the number of times 

in which the agent has taken action a from state s, 0 ≤ 𝛾 < 1 is the discount factor, which is a 

constant that determines the relative value of delayed versus immediate rewards and U(s, a) is 

the upper bound of the real value function or admissible heuristic where 𝑈: 𝑆𝑥𝐴 → 𝑅 satisfies 

𝑈(𝑠, 𝑎) ≤ 𝑄∗(𝑠, 𝑎), where 𝑄∗(𝑠, 𝑎) is the Q-value when applying an optimal policy 𝜋∗, for 

all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴. This MDP uses the empirical transition and reward distributions for those 

state-action pairs that have been experienced by the agent at least m times. 

In the proposed model, the observations are counted by the node for each state-action 

pair and stored in the lookup table. The admissible heuristic is the shortest path search, 

performed on-demand upon each transaction execution trial. This heuristic is used to estimate 

the transaction fees in case of a transaction failure. 



30 

 

3.4 Routing in Payment Channel Networks vs. Communication Networks Using 

Reinforcement Learning 

The proposed algorithm is similar to the Q-routing of the communication networks in 

that both are distributed so that each node locally stores the Q-values. Within the context of 

RL, each node resembles an agent that could be a source node or any node along the path. In 

case there is a route of  two sources to the same destination, the Q-values stored in their own 

routing tables will be different depending on their own learning experience. 

On the other hand, the proposed algorithm is different from the Q-routing of the 

communication networks in the following aspects: 

1. In Q-routing, the state is described by the destination. While in the proposed PCN model, 

the state is described by a combination of a destination, payment time and a payment value. 

2. In Q-routing, the action is described as one of the transaction source direct neighbors. While 

in the proposed PCN model, the state is described as one of the directly connected payment 

channels. 

3. In Q-routing, the Q-value is interpreted as the time estimate to deliver a packet to node d 

from node x via a neighbor node y. While in the proposed PCN model, the Q-value is 

interpreted as the transaction fees estimate to deliver a payment, c, at a time slot, t, from 

source, src, to destination, dst, via a neighbor payment channel described by an action a. 

4. In Q-routing, the next state-action pair (𝑠′, 𝑎′)  is performed by a neighbor node. While in 

the proposed PCN model, the next state-action pair is performed by the same node at a 

future time. 

3.5 Chapter Summary 

In this chapter we introduced the system model and formulated the payment channel 

routing problem that finds the best available route with the lowest transaction fees to execute 

the payment. We described the machine learning technique that builds a model using 

reinforcement learning. The optimum routes are memorized considering the state of the 

environment upon the transaction execution. We compared our proposed algorithm in the 

payment channel network to the Q-routing protocol in the communication networks.  

 



31 

 

Chapter 4 

A Machine Learning-Based PCN Routing Technique: The 

Proposed Algorithm 

4.1 Introduction 

In this chapter, we introduce a novel model-based reinforcement learning technique for 

transaction routing in PCNs. The proposed algorithm overview, route discovery, and route 

selection are described in the context of reinforcement learning. We illustrate the proposed 

technique by describing a motivating example. Then, we give a detailed description of the 

overall proposed transaction routing algorithm in PCNs. Finally, we introduce a way to model 

the impact of transient and intransient errors on the routing protocol.   

4.2 Algorithm Overview 

We propose a transaction routing protocol in PCNs, based on multi-agent reinforcement 

learning that we call “MARL-Routing”. As shown in Figure 4-1, each node in the network 

represents an agent that has local lookup tables. The Q-value for each state-action pair is locally 

stored in such tables so that the routing decision is taken based on the node’s own experience. 

The values in the tables are updated locally by the node after each routing decision. The table 

represents the model of the optimal policy that the agent continuously wants to learn and 

improve.  

 

Figure 4-1. MARL-Routing illustrative diagram 



32 

 

To initialize this model, on-demand route discovery is required. We also use it to 

estimate the updated value in case of transaction failure. Therefore, on-demand route discovery  

and route selection are the main elements of the proposed algorithm that are detailed in the 

subsequent sections. 

4.3 Route Discovery 

Each agent has an internal environment model in model-based reinforcement learning 

and calculates the optimal policy. The agent relies on the rewards it gains via the interaction 

with the environment to build its own model. The agent also gathers some information on-

demand upon a transaction execution and uses it to update the model. Routing information is 

collected locally through direct neighbors, including the cost function or the transaction fees to 

reach a destination. We establish this route discovery process on-demand in order to limit the 

communication overhead. Upon a transaction execution, the sender finds the shortest path to 

the destination with sufficient funds to perform the payment.  

A variety of algorithms perform the path calculations based on the required 

performance and the forwarding scheme [62]. For example, widest paths [63], shortest-widest 

paths [63], [64], and widest-shortest paths [64], among others, are proposed in the literature 

[65]. The widest path is one of maximum available bandwidth, with bandwidth predicating a 

bottleneck weight function. Then, a widest-shortest path is the widest path among the set of 

shortest paths between two nodes. In contrast, a shortest-widest path is the shortest path among 

the set of widest paths between two nodes [65].  

However, we leave the investigation of the best method to perform the path calculations 

that optimize the routing problem in PCNs in our technique to future work.  For simplicity, the 

transaction fees are assumed to be fixed for all nodes. Thus, the shortest path is equivalent to 

the lowest number of hops. Our algorithm uses Breadth-First Search (BFS), described in 

Section 2.4, that expands the shallowest nodes first. BFS is optimal if the path cost is a 

nondecreasing function of the node's depth [66]. Thus, applying BFS in our implementation is 

the optimal solution that goes with the assumption of an equally weighted graph to find the 

shortest path. In the proposed implementation, we include the maximum number of hops and 

payment value in the route request. Hence, only nodes on paths with sufficient funds in the 

payment direction would respond.  



33 

 

It is worth mentioning that relying on the shortest path only does not consider channel 

balances. In particular, routing decisions might contain channels with low balances or 

implicitly turn bidirectional channels into unidirectional ones, reducing the available routes 

over time in a dynamic PCN [16][47]. On the other hand, our algorithm uses the shortest path 

search to help update the nodes’ internal model, but the routing decision is taken based on the 

lowest Q-values. These values are updated so that they reflect the quality of selecting the 

shortest path, as discussed in the upcoming section.  

4.4 Route Selection 

In the context of reinforcement learning, each node stores a local lookup table 

containing Q-values for routing payment to a destination via a specific payment channel. These 

values are only considered based on the node’s own experience, whether the node is the 

transaction source or an intermediate node in the payment path. The direct interpretation of the 

Q-value is an estimate of transaction fees that need to be minimized. This is the exact meaning 

when all previous payments are successfully completed. So, the actual transaction fees (𝑅̂ in 

(3-3)) are averaged and stored in the node’s lookup table after transaction execution (i.e. no 

delayed actions). In our algorithm, the agent goal is to minimize the transaction fees that 

represent penalties rather than rewards in the context of reinforcement learning. 

On the other hand, in case of a transaction failure, no substantial fees are actually 

charged. Alternatively, the expected fees for the shortest path in addition to an extra constant 

percentage of these fees (i.e. called the penalty factor, α) are stored in the lookup table after the 

unsuccessful transaction trial. This penalty factor that is added to the expected transaction fees 

represents the waste of opportunity of immediate payments. This is in line with the 

reinforcement learning concept that applies the minimum penalties in successful interactions 

with the environment. In contrast, higher penalties are applied in case of failure. 

Thus, when all the transactions are successful, the Q-value will be minimum. However, 

in case repetitive failures are encountered using a specific payment channel, the Q-value starts 

to increase, driving the agent to select another payment channel. Hence, the Q-value is not only 

an indication of the transaction fees, but the figure involves the cumulative experience of using 

a specific payment channel to route a transaction to a destination under certain circumstances 

described by 𝑠. 

The use of reinforcement learning in our implementation inherently solves the problem 

of channel imbalance. This problem may arise while using the shortest path criterion only, as 



34 

 

discussed in the previous section. When the payment channel is frequently depleted in the 

payment direction, this path will be avoided due to increased Q-value. At the same time, 

reinforcement learning proposes a solution to network underutilization since congested paths 

will have higher Q-values. Therefore, the agent will try other underutilized routes, even if they 

are of longer paths. 

A route is established only on-demand on a hop-by-hop basis. In hop-by-hop routing, 

every node maintains a lookup table that indicates the next hops of the routes to other nodes in 

the network. For a transaction to reach its destination, it only needs to carry the destination 

address. Intermediate nodes forward the payment along its path based on only the destination 

address. In other words, the transaction sender selects only the direct neighbor, but it should 

not be aware of any further node across the path. Similarly, each intermediate node can decide 

on how to forward the message to the final receiver. Each node along the path appears to its 

successor as the payment source. Therefore, the sender's real identity should not be revealed, 

which preserves the sender's privacy. Nevertheless, the proposed algorithm's privacy 

assessment and its impact on the performance are left for future work.  

4.5 A Motivating Example 

We use an example to illustrate the proposed technique's functionality using a simple 

15-node network model, shown in Figure 4-2.  

 

Figure 4-2. Simple 15-node network model 

i) Node 1, src, has three direct payment channels via 4, 5, and 7 that can reach node 

15, dst. 



35 

 

ii) Node 1 performs a route discovery process to node 15 and updates the shortest 

path table based on the network's current state. 

iii) Based on the transaction destination dst, transaction value c, and slot of time t, 

node 1 selects the corresponding state s in the lookup table and selects the action 

with the lowest transaction fees (i.e. Q-value in our implementation) via node 5. 

iv) If the state s does not exist, node 1 creates the state-action value based on the 

shortest path heuristics. 

v) Node 5 repeats the same previous steps to forward the payment. All the nodes 

along the path to the destination will also do the same. 

vi) Upon transaction success, node 1 updates the Q-value utilizing the actual 

transaction fees. 

vii)  Upon transaction failure, node 1 updates the Q-value utilizing data from the route 

discovery in addition to a penalty identified by an extra constant percentage of 

these fees (the penalty factor, α). 

a. Another slot of time is suggested to retry the payment based on the lowest Q-

value stored in the lookup table. Alternatively, this is retried after two time slots, 

if there are no available suggestions. 

b. Node 1 repeats steps (ii) & (iii) and selects node 4 to execute the transaction.   

c. In case the transaction is successful, node 1 updates the Q-value based on the 

actual transaction fees rather than the advertised values in the route discovery. 

d. In case the transaction fails for the second time, node 1 repeats steps (vii-a) & 

(vii-b) until the maximum number of trials is reached. 

4.6 The Detailed Overall Algorithm 

As illustrated in Section 3.5, each new transaction (TXN) is represented in our 

implementation as an episode in the reinforcement learning process, as illustrated in Algorithm 

4-1 and depicted the flow diagram in Figure 4-3. The agent or transaction source interacts with 

the environment with the goal of performing a successful transaction (Line 1).  

In the beginning, Q(s, a) has to be initialized with the shortest path to the destination, 

which represents an admissible heuristic 𝑈(𝑠, 𝑎ℎ) . Therefore, each agent v will receive 

information, 𝐼𝑣, collected from its online neighbors (Lines 3-18) / (Figure 4-3: FD-1). This 

advertised information is intended to conduct route discovery in our model and will be utilized  



36 

 

 

Figure 4-3. MARL-Routing flow diagram 

to communicate the shortest path as admissible heuristics to initialize the environment model. 

The input data during a maximum allowable number of hops, ℎ𝑚𝑎𝑥 , and the value of the 

transaction, c. The node submits these queries to its neighboring nodes that satisfy the condition 

that the payment channel capacities must be higher than the transaction value (i.e., 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤(𝑒𝑘) > 𝑐). In response, each node will reply with the transaction fees for the 

destination. 



37 

 

Algorithm 4-1: The MARL-Routing algorithm 

Input: Graph,   m, 𝛼, ℎ𝑚𝑎𝑥, and 𝑡𝑙𝑚𝑎𝑥 

Output: 𝑄(𝑠, 𝑎) 

1. for all episodes do    

2.     do while (TXN !successful && 𝑡𝑙 ≤ 𝑡𝑙𝑚𝑎𝑥) 

3.             #Look up the corresponding possible state-action pairs Q(s, a) in src's table   

4.             #Collect on-demand route discovery information 𝐼𝑣 and 𝑈(𝑠, 𝑎ℎ)                            

5.             if Q(s, 𝑎ℎ) is not found 

6.                𝑄(𝑠, 𝑎ℎ) ← 𝑈(𝑠, 𝑎ℎ)  in (3-3)                          

7.                𝑛(𝑠, 𝑎ℎ) ← 0            in (3-1)                                                        

8.                𝑛(𝑠, 𝑎ℎ, 𝑠′) ← 0        in (3-2)                          

9.                if 𝑈(𝑠, 𝑎ℎ)  is not found 

10.                         # TXN is declined                   

11.                         # lookup argmin
𝑎′

𝑄(𝑠′, 𝑎′) 

12.                         If min 𝑄(𝑠′, 𝑎′) is found 

13.                                # retrial at s’ slot of time 

14.                         else               

15.                                #retrial after two slots of time 

16.                         end if            

17.                  end if            

18.              end if 

19.            execute action a such that  

20.                             𝑎 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎 𝑄(𝑠, 𝑎)   

21.            𝑛(𝑠, 𝑎) ← 𝑛(𝑠, 𝑎) + 1           

22.             if (successful TXN)  

23.         𝑟𝑆𝑢𝑚(𝑠, 𝑎) ← 𝑟𝑆𝑢𝑚(𝑠, 𝑎) + 𝑟(𝑠, 𝑎)       

24.                     if  𝑛(𝑠, 𝑎) ≥ 𝑚            

25.                        𝑄(𝑠, 𝑎) ← 𝑅̂(𝑠, 𝑎)              
26.                    else               

27.                           𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)  \\ no change 

28.                    end if 

29.                    episode terminates 

30.              else  

31.                    tl++ 

32.                   #select argmin
𝑎′

𝑄(𝑠′, 𝑎′) 

33.                   #reschedule TXN for retrial 

34.        𝑟𝑆𝑢𝑚(𝑠, 𝑎) ← 𝑟𝑆𝑢𝑚(𝑠, 𝑎) + 𝑈(𝑠, 𝑎ℎ)(1 + 𝛼)    

35.                    𝑛(𝑠, 𝑎, 𝑠′) ← 𝑛(𝑠, 𝑎, 𝑠′) + 1         

36.                    if  𝑛(𝑠, 𝑎) ≥ 𝑚       

37.                       𝑄(𝑠, 𝑎) = 𝑅̂(𝑠, 𝑎) + 𝛾 ∑ 𝑇̂(𝑠′\𝑠, 𝑎) min
𝑎′

𝑄(𝑠′, 𝑎′)𝑠′     

38.                    else   

39.                       𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)  \\ no change 
40.                    end if 
41.                end if 
42.         end do 

43.   end for 



38 

 

Basically, the agent aims to reduce the transaction fees in both success and failure cases. 

In a sense, the reward function is converted to a penalty if a failure is targeted to be minimized 

in our algorithm (Line 20). The agent action, a, is selected to achieve the goal that the cost 

function is to be minimized, 𝑎𝑟𝑔𝑚𝑖𝑛𝑎 𝑄(𝑠, 𝑎), for the suggested route (Lines 19-21) / (Figure 

4-3: FD-2). In case more than one action has equal Q-values, the one with the highest 𝑛(𝑠, 𝑎) 

should be selected. It represents a higher number of times that the agent has taken the same 

action, which indicates it is more experienced with this action. Upon the transaction execution, 

a route request is sent by the source via the selected payment channel to know the transaction 

fees. This request is forwarded on a hop-by-hop basis without revealing the original source 

identity. 

The transaction is considered successful when all nodes along the route from the source 

to the destination are online and have sufficient funds to perform the transaction, including the 

transaction fees. On the other hand, the transaction is considered to have failed when at least 

one node along the route from the source to the destination is found offline, ceases to participate 

in the transaction routing, or does not have sufficient funds to perform the transaction, 

including the transaction fees.  

The reward r(s, a) in (3-1) represents the actual transaction fees in case of a transaction 

success (Lines 22-29) / (Figure 4-3: FD-3) or a representation for the waste of payment channel 

utilization in case of a transaction failure (Lines 30-41) / (Figure 4-3: FD-3). Therefore, the 

reward summation 𝑟𝑆𝑢𝑚(𝑠, 𝑎)  is updated and memorized in the lookup table alongside Q(s, 

a) after each TXN trial (Lines 23 & 34). In case of a successful transaction, an immediate 

reward, r(s, a), is based on the actual TXN fees. Therefore, 𝑅̂(𝑠, 𝑎) is calculated (Line 25). On 

the other hand, in case of a failure, the agent will assume r(s, a), representing the function of a 

penalty. It is calculated based on the heuristics collected through advertising U(s, 𝑎ℎ) and in 

addition to a penalty factor, 𝛼. Then the 𝑟𝑆𝑢𝑚(𝑠, 𝑎) is updated (Line 34).  

As far as the Transition function 𝑇̂(𝑠′\𝑠, 𝑎) in (3-2) is concerned, in case the TXN is 

successful, the episode terminates, and the transition function value becomes zero (Line 29) / 

(Figure 4-3: FD-4). In case of a failure, 𝑇̂(𝑠′\𝑠, 𝑎) and Q(s, a) will be updated as described in 

(3-2) and (3-3), respectively (Lines 35 & 37). The next state, s', is transitioned to by the agent 

to retry TXN in a future slot of time based on the lowest Q(s', a') (Line 32) / (Figure 4-3: FD-

5). Thus, the transaction is rescheduled. If there are no future suggestions, TXN will be retried 

after two-time slots as a default (Line 11). 



39 

 

To verify our assumption of considering the shortest path route discovery 𝑈(𝑠, 𝑎ℎ) as 

an admissible heuristic, we need to examine the original definition in a pathfinding problem. 

A heuristic function is considered admissible if it never overestimates the cost of reaching the 

goal, i.e. the cost it estimates to reach the goal is less than the lowest possible cost from the 

current point in the path. To apply this definition in our problem, TXN fees of the shortest path 

𝑈(𝑠, 𝑎ℎ) are always guaranteed to be less than the lowest state-action value, Q(s, a), (Lines 6, 

25, 27, 37, and 39). 

4.7 A Numerical Example 

We use a numerical example, as shown in Figure 4-4, to illustrate how the agent selects 

between two channels a and b to execute a transaction to dst. Assume that the optimistic values 

stored in the local lookup table for channels a and b are 6 and 8, respectively. For simplicity, 

assume the number of transaction retrial, tl =0, the penalty factor, 𝛼 = 0.5, the number of 

optimistic observations, m=1, and the on-demand route discovery shortest path U=8.   

 

Figure 4-4. The agent selects between two channels based on the lowest Q-value 

  Action a suggests a shorter path than action b, but the agent has never tried both actions 

a or b (i.e. the number of times the agent selects an action, n=0). This information is captured 

earlier through the on-demand route discovery process and is used to initialize these two state-

action pairs. The agent selects action a since it incurs lower transaction fees. Two transaction 

failures increase the Q-value of action a and drive the agent to select action b. Therefore 

MARL-routing proposes a solution to channel underutilization (e.g. channel b) and channel 

overutilization (e.g. channel a). 

4.8 Non-Participating Nodes 

One of the unsolved issues with routing algorithms, and PCN itself, is that a significant 

number of nodes should be continuously online. This requirement is absent in blockchain and 

virtually all centralized payment systems [20]. Therefore, we aim to assess the impact of non-

participating nodes on the routing protocol performance. We introduce a new factor in our 



40 

 

assessment to simulate the inactive nodes during the routing process, called the participation 

percentage. The node's inactivity could be due to being offline, uncooperative, or the payment 

channel is depleted in the payment direction.  

In case the routing algorithm is fully distributed, such as Max-Flow, Flash, or MARL-

Routing, all the nodes across the path from src to dst have to be participating in considering 

the transaction successful. Also, the non-participating nodes are excluded from the route 

discovery process. In landmark-oriented algorithms, such as SilentWhisper and 

SpeedyMurmurs, all the nodes across the path from src to dst have to be connected to the tree 

root or landmark via participating nodes. So that the transaction is considered successful. This 

condition is in line with the original work of the SpeedyMurmurs algorithm [28] that considers 

different cases that call for coordinate changes of the existing nodes in the spanning tree. 

Among others, setting the value of non-zero links to zero is one of the reasons. Then, the on-

demand repair mechanism included in the SpeedyMurmurs algorithm urges the child node and 

all its descendants to choose a new parent. It is aimed to increase the number of non-zero links 

in the spanning tree and the likelihood of transferring funds. This suggests that in case any node 

is non-participating, all its descendants should follow the exact behavior of coordinate changes. 

Otherwise, the node and all its descendants connected to the spanning tree root by a non-

participating node will be isolated from the rest of the network.  

4.9 Chapter Summary 

This chapter introduced the details of the proposed model-based machine learning 

technique to be used for transaction routing in PCNs. We began by highlighting the overall 

proposed algorithm functionality, route discovery, and route selection in the light of model-

based reinforcement learning.  We used the BFS algorithm to find the shortest path to initialize 

the model and estimate the rewards or the penalties. A motivating example to demonstrate the 

proposed technique was presented. We described the details of the proposed algorithm for the 

routing problem at hand. Finally, we introduced the proposed new factor, called participation 

percentage, to model both the transient and the intransient errors to assess their impacts on the 

routing protocols. 



41 

 

Chapter 5 

Simulation Results 

5.1 Introduction 

In this chapter, the proposed machine learning-based routing protocol's performance is 

evaluated through two real-world off-chain network topologies: Ripple and Lightning. 

Subsequently, we evaluate the simulation results along with five different performance metrics. 

In particular, the success ratio, routing transaction fees, routing efficiency, transaction 

overhead, and maintenance overhead are analyzed. Furthermore, we discuss the impact of 

selected network and simulation parameters on the performance. 

5.2 Network Topology 

The network topology could substantially influence the routing protocol performance, 

so it is crucial to consider a variety of possible topologies. It is widely recognized that many 

real-world complex network systems display some organizing principles, which often lead to 

either small-world topology or scale-free topology [67] [68]. Small-world networks describe 

networks with high clustering, few hubs, and short average path lengths. Examples of small-

world networks include peer-to-peer file sharing [69]. 

In scale-free networks, nodes preferentially attach to higher degree nodes leading to 

few high degree hubs and little clustering. Examples of scale-free networks include the Internet. 

Scale-free networks have been used in simulation models for timing analysis of the Bitcoin 

network [70]. Besides, research has concluded that the scale-free model well approximates the 

Lightning network [71]. Such studies may not be indicative of the networks in this work since 

the proposed setup does not use the same networks as in these studies.  

The evaluation is conducted using two real-world network topologies, namely, the 

Ripple and the LN networks. The Ripple network, which to the best of our knowledge, is the 

only payment network whose transaction data are publicly available [28]. Each transaction data 

entry includes the sender, the receiver, the transaction volume, and transaction time 

information.  We use the same ripple network dataset used in the studies of  [28],[38],[29] that 

propose routing algorithms for the same purpose. 



42 

 

 As described in Chapter 1, the Ripple is a permissioned public blockchain network, 

where transactions are executed on-chain with medium scalability and managed by a privately 

held company. It is assumed that the on-chain and off-chain transactions characteristics are 

almost similar since on-chain transactions are moving to be off-chain for rapid settlement with 

lower fees [29].  Nevertheless, the Ripple payment protocol is not actually implemented in the 

simulator. We only utilize the network graph's existing snapshots and the actual transactions to 

assess the different routing protocols. 

The second real-world network topology is the Lighting Network.  As stated in Chapter 

1, it is the most prominent PCN for the largest cryptocurrency by market capitalization, Bitcoin. 

The available real-world data is the network graph only, without including the transactions. We 

use the same network topology used in [29], proposed to solve the same problem, where nodes 

and channels were obtained as a snapshot of the Lightning network on a particular day of 

December 2018. 

5.2.1  Network Topology Parameters 

Although topological analysis of the proposed network is beyond the scope of this 

work, network topology metrics for the Ripple network and the Lightning Network, utilized in 

the simulation, are as defined in Table 5-1. These parameters are helpful in the performance 

analysis of the routing protocols. We rely on these parameters in assessing the change in the 

routing protocols’ behavior under the two different simulated topologies, as illustrated in the 

Results Section 5.6. 

Average degree is the straightforward and perhaps also the most critical characteristic of a 

single node. The degree ki of a node i is usually defined to be the total number of its 

connections. Thus, the larger the degree, the more influential the node is in a network. The 

average of ki over all i is called the average degree of the network and is denoted by < k > 

[72]. It is the coarsest connectivity characteristic of the topology. Networks with a higher 

average degree are "better-connected" on average [73].   

Clustering Coefficient (C) is the average fraction of pairs of neighbors of a node that are also 

neighbors of each other, where C ≤ 1; and C = 1 if and only if the network is globally coupled, 

which means that every node in the network connects to every other node [72]. Clustering 

expresses local robustness in the graph and thus has practical implications: the higher the local 

https://www.google.com/search?sxsrf=ALeKk012OO3rjlTwM_4gQ7iIAEHWQvmWvA:1617566261537&q=Privately+held+company&stick=H4sIAAAAAAAAAOPgE-LWz9U3MDQwyk6vSFLiBHFMzUyLyrQUM8qt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKrksqC1EWsYgFFmWWJJak5lQoZqTkpCsn5uQWJeZU7WBkByDBEKVkAAAA&sa=X&ved=2ahUKEwjSla3zr-XvAhWKO-wKHSegBH8QmxMoATAkegQIOBAD
https://www.google.com/search?sxsrf=ALeKk012OO3rjlTwM_4gQ7iIAEHWQvmWvA:1617566261537&q=Privately+held+company&stick=H4sIAAAAAAAAAOPgE-LWz9U3MDQwyk6vSFLiBHFMzUyLyrQUM8qt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKrksqC1EWsYgFFmWWJJak5lQoZqTkpCsn5uQWJeZU7WBkByDBEKVkAAAA&sa=X&ved=2ahUKEwjSla3zr-XvAhWKO-wKHSegBH8QmxMoATAkegQIOBAD


43 

 

clustering of a node, the more interconnected are its neighbors, thus increasing the path 

diversity locally around the node [73].   

Table 5-1. Network topology parameters 

Parameter Value Ripple Lightning 

Nodes Number of nodes in the network 80,591 2,509 

Edges Total number of links in the graph 245,394 34,022 

Average Degree Average number of links connected to a node 6.09 27.12 

Clustering Coefficient 
Measure of how nodes tend to cluster together 

in a graph 

0.082 0.308 

Node with 1 Link Number of nodes with a single Link 29361 588 

5.3 Simulation Model and Payment Generation 

We use an existing simulator of payment channel networks to model the transactions' 

arrival and execution functions [28].  It is a java-based simulator that makes use of the graph 

analysis tool GTNA (Graph-Theoretic Network Analysis for P2P structured networks) [74]. 

For the Ripple topology, we use the same Ripple network dataset used in [28]. As 

performed in the same paper, the chosen transactions are guaranteed to be successful using the 

Max-Flow (Ford-Fulkerson) [41] as the baseline algorithm. The transactions were executed 

using Ford-Fulkerson, and only the successful transactions were used in further simulations of 

this work.  Max-flow-based routing is a reference technique in terms of throughput and 

transaction success rate, but it has a high computational complexity overhead [44]. Since the 

nodes' behavior is valuable, in terms of the transaction value, time, and the destination, in the 

proposed routing algorithm, the raw data are reprocessed to include the actual Unix timestamps, 

unlike the proposed work [28] that uses a time-averaged dataset.  

We generate payments for the Lightning Network topology by randomly sampling the 

Ripple trace for the Ripple topology. In other words, due to the lack of sender-receiver 

information in the Bitcoin trace for Lightning, and similar to [29], we randomly sample the 

Bitcoin trace for transaction volumes and sample a sender-receiver pair from the Ripple trace 

and map it to the nodes in the Lightning topology. Payments arrive at senders sequentially, 

which is considered a time-averaged behavior. Similar to the Ripple network, the chosen 

transactions are guaranteed to be successful using the Ford-Fulkerson algorithm. 

To simulate the proposed technique, the simulator is modified to include participation 

functionality for each node. If the node is offline or online but unresponsive during the payment 



44 

 

execution, it is considered non-participating. This, subsequently, results in a transaction 

decline. Due to the absence of actual dynamic network topology models, different participation 

assumptions are considered to cover a range of practical scenarios. Based on the target 

participation percentage of the total number of nodes, each node participation status is 

randomly selected. The selection is altered at the beginning of each time slot, i.e., five times a 

day. The random number generation criterion, used to decide the node's status, is weighted by 

the number of edges connected to each node (i.e., payment channels). So, the more connected 

the node, the higher probability of being participating. To allow an equal basis comparison, the 

random function is seeded from the Unix time for each new time slot, which is fixed for all 

routing techniques.  

For simplicity, the transaction fees are assumed to be fixed for all nodes. Thus, the 

minimum cost function is equivalent to the lowest number of hops. For a fair comparison, we 

modified the SpeedyMurmurs algorithm to dynamically repair the spanning tree in case of a 

node being non-participating. Thus, it is excluded from being a parent node the same way as 

the coordinate change for zero-edge in the original work, as discussed in Section 3.7. 

5.4 Simulation Setup 

For the Ripple network, the simulation is performed on 328,230 Ripple transactions 

starting from January 2013 till November 2016. For the Lightning network, the simulation is 

performed on 363,520 randomly sampled transactions as described in Section 5.3. 

The nodes' participation is randomly altered at the start of each time slot. The random 

function was seeded from the time for each new time slot. In order to assume the participation 

percentage, it has to be linked to the actual network topology upon executing the transaction. 

Due to the absence of actual network topology models, different participation assumptions are 

considered to cover a wide range of practical scenarios. As of this writing, the number of 

Lighting network active nodes, for example, is almost 50% of  17,439 (i.e. 50% of the total 

number of nodes) [31].  

On the other hand, the number of active addresses that have either sent or received a 

transaction in the Ripple [75] and Bitcoin [76] is less than 5% of the total non-zero addresses. 

As discussed earlier in Section 5.2, the on-chain characteristics are moving to be off-chain. 

Besides, as demonstrated in Section 3.7, this factor also involves transient errors such as 

insufficiently funded channels. Therefore, a lower participation percentage should be 



45 

 

considered in the simulation. The simulated participation percentages are selected to be 100% 

and 50%. An additional participation percentage of 5% is considered to demonstrate the routing 

protocols' resilience. 

The simulation parameters are summarized in Table 5-2. The presented results are the 

averages of 10 experimental runs, using a different set of transactions for each run. The 

proposed routing technique is evaluated in comparison to Flash and SpeedyMurmurs. The 

former combines max-flow with the shortest path search to find the suitable path, while the 

latter is a spanning tree-based routing protocol [28]. Distributed Ford-Fulkerson is used as the 

benchmark algorithm for the success ratio for the routing protocols under evaluation.  In 

addition, Ford–Fulkerson is the baseline method for several routing protocols in the literature, 

proposed to address the same problem. Further details about the routing protocols exist in 

Section 2.4. 

For Ford-Fulkerson and SpeedyMurmurs algorithms, we use the same implementations 

of [28]. For the Flash algorithm, we implement the same algorithm and input parameters used 

in the original work [77]. It is worth mentioning that the Flash algorithm uses a threshold 

payment value (i.e. as a percentage of the whole transaction values) to differentiate between 

low transaction values, aka mice payments, that use k-shortest paths stored in local routing 

tables. On the other hand, high trasanaction values, aka elephant payments, use a modified 

max-flow based algorithm for the routing. 

Table 5-2. Network and simulation parameters 

Parameter Value 

All: Maximum number of trials 𝑡𝑙𝑚𝑎𝑥 2 

All: One epoch 24 hrs 

Ford-Fulkerson: Number of paths  Unlimited 

MARL-Routing: Discount factor γ  Ripple: 0.95 / Lightning: 0.35 

MARL- Routing: Penalty Factor α 0.1 

MARL- Routing: No. of optimistic observations m 1 

MARL- Routing: Maximum number of hops ℎ𝑚𝑎𝑥  8 

MARL- Routing: Number of states for each dst 5 for time x 2 for amount 

MARL- Routing: Number of paths  1  

SpeedyMurmurs: Number of landmarks  1 

Flash: Elephant-mice threshold 90%  

Flash: Number of paths "mice payments" 4 

Flash: Number of paths "elephant payments" 20 



46 

 

In case of a failure in the algorithms used for comparison, the transaction is randomly 

retried within one day in any slot of time, including the current slot. While in our algorithm, 

the transaction is retried in another slot of time within a day, based on the time slot with the 

lowest Q-value. For SpeedyMurmurs, selecting one landmark is in line with the original work 

results since increasing the landmarks negatively impacts the success ratio.  It is worth 

mentioning that the number of landmarks in the original work is interpreted as the number of 

spanning-tree roots, which is equivalent to the number of paths.   

5.5 Performance Metrics 

Five performance metrics are used to evaluate the proposed algorithm in comparison 

with the other routing protocols as follows: 

Success Ratio: describes the total number of successfully completed payments over the total 

number of generated payments. 

Transaction Fees: represents the average path length of successful transactions. When the 

transaction is performed via multiple paths, the summation of all these paths is counted.   

Routing Efficiency (eff): represents the average ratio of shortest path length over the routing 

path length (where the path length of unsuccessful paths is infinite) [78]. The routing efficiency 

is described as follows: 

𝑒𝑓𝑓 =

∑ ∑
𝑠𝑝𝑖𝑗

𝑝𝑖𝑗

𝑛
𝑗=1,𝑗≠𝑖  

𝑛
𝑖=1

𝑛(𝑛 − 1)
, 

(5-1) 

where i and j are two nodes within the set of n nodes, 𝑠𝑝𝑖𝑗is the shortest path length from i to j 

and 𝑝𝑖𝑗is the routing path length from i to j. The ratio 
𝑠𝑝𝑖𝑗

𝑝𝑖𝑗
 assumes values in the interval [0, 1]. 

When the routing is unsuccessful, the path length is infinite, and therefore the ratio is zero, 

which represents the worst case. When the routing is successful, the path length is greater than 

zero, and the ratio tends to 1 as the path length tends to the shortest path length, becoming one 

in the best case. The routing efficiency is the average of this ratio over all the node pairs. 

Transaction Overhead: denotes the traffic required for route discovery and collecting 

information from neighboring nodes.  



47 

 

Transaction Maintenance Overhead: describes the traffic necessary to complete a successful 

transaction for repeated payments between the same pair of node and destination. The node 

could be the transaction source or any node along the payment path.  

5.6 Results 

The proposed routing protocol is assessed in comparison with Flash and SeedyMurmurs 

using two real-world network topologies as detailed in this section. We use the metrics defined 

in Section 5.5 for our comparison. 

5.6.1 Ripple Network 

We conduct the evaluation using actual Ripple network topology and transactions. The 

impact of different participation percentages, namely, 100%, 50%, and 5%, is assessed for each 

performance metric.  

5.6.1.1  Success ratio 

As demonstrated earlier in this chapter, the Ford-Fulkerson algorithm is the baseline in 

terms of success ratio, under the condition that all nodes are online (i.e., 100% participation), 

and the success ratio is 100% in that case. However, Ford-Fulkerson shows a decline in the 

success ratio as the participation percentage decreases to 50% and 5%. This is expected because 

the non-participating nodes are excluded from the suggested routes. 

As shown in Figure 5-1, MARL-Routing is able to get comparable performance to 

Ford-Fulkerson, in terms of success ratio, at 100%, while it outperforms Ford-Fulkerson at 

50% and 5% node participation. This difference results from the embedded intelligence in our 

algorithm, which is gained from the learning process. In particular, the machine learning-based 

protocol selects the most suitable time slot for the transaction retry in case of a failure. 

Therefore, if there is no path of online nodes or channels with sufficient funds between the 

source and the destination in a specific time slot, the transaction is retried in another time slot 

within a day, based on the stored highest Q-value.  

On the contrary, in Ford-Fulkerson, Flash, or SpeedyMumurs, the failed transaction is 

randomly retried within the same day. This includes the time slot in which the transaction has 

already failed due to the lack of participating nodes necessary to form a path to the transaction 

destination since no specific slots of time have a preference in these algorithms. 



48 

 

The machine learning capability that considers the payments' recurrency feature is why 

the comparable performance of success ratio in our algorithm with the baseline algorithm or 

exceeding that of Flash. Although that Flash is a distributed algorithm that combines routing 

table and max-flow, MARL-Routing outperforms it at 100% participation. The reason is that 

Flash simply reuses the existing paths if the receiver is in the routing table without considering 

on-demand route discovery. The authors depend on the recurrency feature of mice payments. 

Our algorithm uses this feature and also considers the fast dynamic nature of PCNs. It performs 

on-demand route discovery even if there are several stored Q-values for the same destination. 

This helps balance the exploration and exploitation and combat the underutilization of some 

paths. 

The SpeedyMurmurs simulation results, when all nodes are participating, is around 

90%, which is in line with the average figure in the original work [28] for the same number of 

transaction retries. However, the spanning tree reconstruction of SpeedyMurmurs is not able 

to cope with a further reduction of participating nodes of the network. This leads to a significant 

decline in the success ratio at participation percentages of 50% and 5%. The rationale beyond 

the SpeedyMurmurs deterioration is that, unlike a fully distributed approach in MARL-Routing 

and Flash, not only the nodes, along the path from the sender to the receiver, have to be 

participating. Nevertheless, they have to be connected to the landmark (i.e. the spanning-tree 

root) with participating nodes. 

 

Figure 5-1. Success ratio at various participation percentages in Ripple network 

5.6.1.2 Average Transaction Fees 

It is appropriate to recall the assumption in Section 5.3 that the transaction fees are 

considered to be fixed for all nodes. Accordingly, where multiple paths are required to complete 



49 

 

the transaction, the summation of the number of hops for all the paths has to be counted to 

represent the transaction fees.  

As shown in Figure 5-2, the Ford-Fulkerson algorithm, which works on finding all the 

possible paths, gains a considerable rise in the transaction fees of the successful transactions 

when compared to the other algorithms. Since the number of intermediate nodes in Ford-

Fulkerson is unlimited, there is a slight increase in transaction fees as the number of non-

participating nodes increases. The algorithm tends to find the maximum flow that the network 

allows from a source to a destination. This concept implies that if the number of non-

participating nodes increases, the average path gets longer since the offline nodes cannot be 

counted in the path. 

On the contrary, both the SpeedyMurmurs and our algorithm work on finding the 

shortest path and using a single path in the current simulation. Therefore, reducing the 

successful transactions' average path length, thus the associated fee, occurs. This is because 

those transactions are successfully executed when the sender and receiver are closer in terms 

of the number of hops. Flash relies on routing tables that store k-shortest paths in more than 

90% of the payments categorized as mice payments. This results in low transaction fees that 

are comparable to the SpeedyMurmurs and our algorithm.  

 

Figure 5-2. Transaction fees of successful transactions in Ripple network 

Although the SpeedyMurmurs algorithm shows lower transaction fees, this can be 

justified by the lower success ratio. For example, at 5% participation, our algorithm's average 

path length involves the execution of transactions of paths of 1, 2, 3, and 4 hops. In contrast, at 



50 

 

the same participation percentage, the successful transactions in the SpeedyMurmurs consist 

of the payments where the source and the destination are mainly one hop apart. Longer paths 

may be available, but they are not recognized due to taking both algorithms' greedy actions 

based on the shortest path.  Hence, the successful transactions' average path length could not 

be assessed in isolation from the success ratio or the number of the simulation paths.  

5.6.1.3 Routing efficiency  

The routing efficiency measure allows the routing navigability assessment with a score 

that integrates both the concepts of success ratio and average path length of successful 

transactions. It provides a unique solution when both performance metrics suggest conflicting 

results. As shown in Figure 5-3, MARL-Routing outperforms Ford-Fulkerson, Flash, and 

SpeedyMurmurs at all participation percentages.  

The Ford-Fulkerson algorithm is generally characterized by a high success ratio and 

long average path length, while the opposite features apply to the SpeedyMurmurs. Our 

algorithm and Flash relatively combine the tradeoff between a high success ratio and a low 

average path length. The machine learning feature in our algorithm results in a superior 

performance to that of other algorithms. Therefore, MARL-Routing is able to surpass the other 

algorithms in terms of routing efficiency. 

 

Figure 5-3. Routing efficiency in Ripple network 

5.6.1.4  Transaction overhead 

Nodes exchange messages to collect route discovery information in order to execute a 

transaction, as described in Section 4.6. Since MARL-Routing, Flash, and Ford-Fulkerson 



51 

 

algorithms are fully distributed routing techniques, the number of messages is expected to be 

quite large upon transaction execution. It is appropriate to recall that the fully distributed 

payment network is a crucial feature of blockchain, which our algorithm is designed to 

maintain. This decentralized approach will be at the expense of increased transaction overheads 

compared to any landmark-oriented algorithm such as SpeedyMurmurs.  

On the contrary SpeedyMurmurs experiences an enormous overhead in case of a 

coordinate change is initiated in the spanning tree, called stabilization overhead [28]. This is 

so frequent due to the fast dynamic nature of PCNs, as stabilization overhead is required to 

maintain necessary state information. As described in Section 2.4, the stabilization overhead is 

logarithmically scaled to the network size.  Nevertheless, the stabilization overhead metric does 

not apply to the other algorithms since all the traffic is generated on-demand upon transaction 

execution. 

Flash performs route discovery for k-shortest paths for mice payments if the destination 

is not in the routing table. Also, the route discovery is performed for the transaction retrial in 

case the stored paths have failed to execute the transaction. This aids in limiting the transaction 

overhead in Flash. 

On the other hand, MARL-Routing gains transaction overhead on-demand upon each 

transaction execution. Nevertheless, this overhead is rationalized by searching for the minimum 

sufficient paths only rather than a predefined number of paths. However, as shown in Figure 

5-4, our algorithm outperforms Flash and reduces the transaction overhead by a factor of 4.5 

at 50%. 

 

Figure 5-4. Transaction overhead at various participation percentages in Ripple network 



52 

 

5.6.1.5  Transaction maintenance overhead 

This metric considers the average traffic generated, which is deemed necessary to 

perform a successful transaction. In MARL-Routing, the amount of traffic generated is not 

equal for each transaction towards this average. In case there is a new combination of state-

action pair (i.e. payment category, slot of time, destination, and payment channel), the 

transaction’s share in the maintenance overhead is relatively high. In case the combination is 

not new and was previously used to make the routing decision towards a successful transaction, 

this figure is minimal. Similarly, Flash reuses existing paths stored in the lookup tables for 

repeated transactions to the same destination for mice payments. These payments are around 

90% of the executed transactions. At the same time, higher payment values rely on a max-flow 

algorithm, which generates a massive amount of traffic upon each transaction execution even 

if the transaction is repeated. 

In MARL-Routing, the transaction maintenance overhead metric is different from the 

transaction overhead for successful transactions. The transaction overhead also counts the 

traffic generated for collecting data from neighbors to enhance the routing table accuracy and 

balance between the exploration and exploitation. This route discovery information is 

unnecessary for a successful payment if the node has existing Q-values in the lookup table and 

uses it to take the routing decision in a repeated transaction. 

 

Figure 5-5. Transaction maintenance overhead of successful transactions in Ripple network 

As expected, Ford-Fulkerson experiences a massive transaction overhead, as depicted 

in Figure 5-5.  The performance of SpeedyMurmurs is also expected since the maintenance 



53 

 

overhead of the successful transactions depends on their shortest path lengths. Averaging this 

parameter over the total number of transactions should not be assessed in isolation from the 

success ratio, as discussed earlier in this section. MARL-Routing outperforms Flash as a fully 

distributed technique and reduces the transaction maintenance overhead by a factor of around 

4 in all participation percentages. Lower transaction maintenance overhead suggests faster 

successful transaction execution. 

5.6.2 Lightning Network 

As described earlier in Section 5.2, we use a real-world network implementation of the 

Lightning network. While the transactions are generated by randomly sampling sender-receiver 

from the Ripple dataset, we use the actual Lightning transaction values. So, the relationship 

between the transaction volumes with respect to the payment channel capacities is still 

maintained. We sample one million transactions and verify their success using Ford-Fulkerson, 

resulting in 363,520 transactions. As the number of nodes used in the simulated Lightning 

implementation is 25 times smaller than the Ripple, we modify the simulated nodes' 

participation to 100%, 50%, and 20%. Accordingly, there is a sufficient number of nodes to be 

participating in the routing process.  

 

Figure 5-6.  SpeedyMurmurs success ratio at different number of landmarks in LN 

In order to identify the number of landmarks (i.e., spanning tree roots) in the 

SpeedyMurmurs algorithm, we compare the routing success ratio at the values of one and three, 

see Figure 5-6.  This parameter is also interpreted as the number of paths. The higher number 

of landmarks, the higher the success ratio only when all nodes are online. Then, the 

performance deteriorates at lower participation percentages. For a fair comparison, we select 



54 

 

one landmark in the simulation in the subsequent sections. Since non-participating nodes' 

impact is the focus of our work, we opt for the figure that achieves the best success ratio at 

lower participation percentages. The network and simulation parameters are described in Table 

5-2. 

5.6.2.1 Success ratio 

As expected, since the Ford-Fulkerson algorithm is the baseline for success ratio and 

transaction volumes, it gives the highest success ratio, as shown in Figure 5-7 in all 

participation percentages. At 100% participation percentage, the gap between the baseline 

algorithm and the other algorithms (i.e. MARL-Routing, Flash, and SpeedyMurumrs) increases 

when compared with the same performance metric in the Ripple network in Figure 5-1. This 

can be justified as a result of the different topology parameters of the simulated Lightning 

against the Ripple network, as reflected in Table 5-1. The Lightning topology has higher values 

of clustering coefficient and degrees as well as a lower number of single-link nodes. This gives 

Ford-Fulkerson and Flash an advantage of finding multiple paths between the source and the 

destination. On the other hand, MARL-Routing gives a comparable performance to Flash using 

only one path. As stated in chapter 4, we leave using multiple paths in MARL-Routing for 

future work.  

 

Figure 5-7. Success ratio at various participation percentages in LN 

The multiple-path impact in the LN is also in line with the SeedyMurmurs results in 

Figure 5-6, demonstrating that using three paths via three landmarks enhances the success ratio 

at 100% participation. However, the same behavior cannot be maintained at lower participation 



55 

 

percentages. This is because all the nodes along the three paths have to be participating, which 

is more challenging as the participation percentage decreases.  

Eventually, our algorithm shows robustness against increasing the number of non-

participating nodes. The gap to the baseline algorithm in terms of the success ratio decreases 

from almost 17% at full nodes' participation to 12.5% at 20% participation percentage. Similar 

to the Ripple network, a significant decline is observed in the SpeedyMurmurs at participation 

percentages of 50% and 20%. 

5.6.2.2 Average transaction fees 

Similar to the Ripple network, the transaction fees of the successful payments are the 

highest for the Ford-Fulkerson algorithm, see Figure 5-8. The participation percentage effect 

is insignificant on all the algorithms due to the high average degree and clustering coefficient 

parameters of the simulated Lightning network. Multiple paths exist between the source and 

the destination with various link capacities. In case of losing one or two paths, other paths of 

the same distance and capacities are available to perform the transaction. The higher transaction 

fees of Flash compared to MARL-Routing indicate that Flash relies more on multi-paths in the 

transaction routing. 

 

Figure 5-8. Transaction fees of successful transactions in LN 

 



56 

 

5.6.2.3 Routing efficiency  

Similar to the Ripple network, our algorithm relatively combines a high success ratio 

and a low average path length. Therefore, it is able to surpass the other algorithms in terms of 

routing efficiency, as shown in Figure 5-9.  

 

Figure 5-9. Routing efficiency in LN 

5.6.2.4 Transaction overhead 

Similar to the case of the Ripple network, MARL-Routing surpasses the other fully 

distributed algorithms, Ford-Fulkerson and Flash, in terms of transaction overhead, at 100% 

and 50%, as shown in Figure 5-10. MARL-Routing’s increase of transaction overhead at lower 

participation percentages is dominated by the overhead that results from failed transactions 

which is worsened when combined by the higher connectivity of the LN. This is caused by the 

on-demand route discovery that will search for all the available paths. At the same time, the 

other routing algorithms' performance is consistent in all participation percentages. 

It is worth mentioning that SpeedyMurmurs shows low transaction overhead upon 

transaction execution because it relies on a coordinate system (i.e. spanning tree-based). 

However, it results in an overhead that is logarithmically scaled to the network size, in case of 

coordinate changes, which is not captured by this metric. 

 

  



57 

 

 

Figure 5-10. Transaction overhead at various participation percentages in LN 

5.6.2.5 Transaction maintenance overhead 

As depicted in Figure 5-11, the transaction maintenance overhead is a significant 

enhancement of MARL-Routing over the other fully distributed algorithms, which is similar to 

the performance in the Ripple network. The transaction maintenance overhead in MARL-

Routing is mainly dominated by the on-demand route discovery, only when it is used in the 

routing decision without relying on the previously stored values. 

 

Figure 5-11. Transaction maintenance overhead of successful transactions in LN 

 



58 

 

5.6.3 Results Overall Discussion 

As highlighted earlier in this chapter, the network topology may significantly impact 

the routing protocol performance. This fact is very present in the simulated results for two real-

world network topologies: Ripple and Lightning. Ford Fulkerson is the benchmark algorithm 

in terms of success ratio. Nevertheless, MARL-Routing manages to surpass the Ford Fulkerson 

algorithm in the Ripple network at lower participation percentages. The machine learning 

feature embedded in MARL-Routing helps the algorithm outperform the other protocols as the 

number of single nodes increases in the network. 

The increase of single-link nodes gives MARL-Routing an advantage over the other 

algorithms. In particular, if the transaction sender, or receiver, is a single-link node, it means it 

is connected to the payment channel network through one node. In case this node is non-

participating, the transaction will immediately fail, and it is better to be repeated in the future. 

This makes MARL-routing excels as the number of the single-link nodes increases. The 

number of single-link nodes in the simulated Lightning topology, 23.44%, is less than the same 

parameter in the simulated Ripple topology 36.43%. Therefore, at  50% and 20% participation 

percentages, MARL-Routing is not able to perform close to the benchmark algorithm in terms 

of the success ratio in the Lightning network.  

Moreover, MARL-Routing uses a single path in the transaction routing while Ford- 

Fulkerson and Flash use multiple paths. This gives them an advantage for both algorithms over 

MARL-Routing, if the transaction value exceeds the payment channel capacities for the 

available paths. This advantage is quite evident in the LN, where the simulated transactions 

rely more on multiple paths than the transactions of the Ripple network. Applying multiple 

paths in MARL-Routing is left for future work. 

MARL-routing clearly outperforms the SpeedyMurmurs algorithm in terms of the 

success ratio. MARL-routing has the highest routing efficiency among the other algorithms 

under comparison in all participation percentages.  

The average successful transaction fees are comparable for both MARL-routing and 

SpeedyMurmurs, while both slightly outperform Flash. Being a fully distributed method, 

MARL-routing demonstrates an advantage over Flash and Ford Fulkerson in terms of 

transaction and maintenance overheads. This is opposite to the landmark-based algorithm, 

SpeedyMurumus, which experiences massive overhead due to spanning tree modifications. 



59 

 

Eventually, MARL-routing shows a good tradeoff among success ratio, transaction 

fees, routing efficiency, transaction overhead, and transaction maintenance in both real-world 

network topologies: the Ripple and the Lighting networks. 

5.6.4 Impact of the selection of γ 

Figure 5-12 depicts the effect of the discount factor, 𝛾, on the success ratio at the 20% 

participation percentage in MARL-routing for the LN. It results in the best performance at 

values around 0.4. When the value is closer to one, the agent prioritizes rewards in the distant 

future. However, a discount factor closer to zero indicates that only rewards in the immediate 

future are considered, implying a shallow lookahead. Hence, the performance is best in 

moderate values in between the two extremes. If the discount factor meets or exceeds 1, the 

action values may diverge.  

 

Figure 5-12. Success Ratio vs. discount factor γ 

5.7 Chapter Summary 

In this chapter, we presented the performance evaluation results of the proposed routing 

protocol in payment channel networks. The simulations were conducted using two different 

real-world network topologies and datasets, which were used in previous research works 

addressing the same problem. We presented the simulation results for both networks showing 

the impact of the non-participating node percentage on the success ratio, the transaction fees, 

the routing efficiency, the transaction overhead, and the transaction maintenance overhead. We 

conducted an overall overall discussion on the results of MARL-routing performance in 

comparison with maximum flow-, routing table-, and landmark-based routing protocols. We 

illustrated the change in the routing techniques' performance between both networks regarding 



60 

 

the difference in network topology parameters. Finally, we justified the selected discount factor 

used in the simulation setup of MARL-routing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

Chapter 6 

Conclusion and Future Work 

6.1 Thesis Summary and Conclusion 

This thesis investigated the recent efforts in the literature that deal with transaction 

routing in payment channel networks. The usage of PCNs is one of the most promising 

solutions proposed to solve the blockchain scalability challenge. We introduced a novel 

machine learning-based technique to find the possible routes between the transaction source 

and destination. We applied a model-based reinforcement technique and multi-agent 

reinforcement learning to build an internal model for each node via routing tables to 

continuously learn and improve the routing efficiency.  

The aim of the resulting model is not only limited to suggesting the route of the lowest 

transaction fees but also to consider the quality of using a specific path. In particular, the 

algorithm learns to avoid paths that encounter frequent transaction failure due to offline or non-

responsive nodes and repeated payment channel imbalance. This is achieved by using on-

demand route discovery upon transaction execution that continuously updates the model based 

on the latest state of the network, characterized to be highly dynamic. Simultaneously, 

reinforcement learning proposes a solution to network underutilization since congested paths 

are avoided by the transaction source. Therefore, the node tries other underutilized routes, even 

if they are of longer paths.  Moreover, due to the model built by each node to describe the 

network, our algorithm is able to suggest the best time in the future to retry the transaction in 

case of a failure. This is applied randomly in the other protocols. 

 We modeled the frequent transient and intransient errors, identified as the main reasons 

for failing payments, by introducing a simulation parameter called participation percentage. 

We aimed to model the nodes’ inability to immediately participate in a successful payment due 

to being offline, non-responsive, or temporarily lacking adequate funds. Hence, the node is 

excluded from the path selection, even if it is suggested by the routing protocol.  

We verified our algorithm using two real-world network topologies. We ran the 

simulations on a vast number of transactions. In addition, we applied different values for 

participation percentages that represent real-world cases. We compared our algorithm to other 

routing protocols proposed to solve the same problem. We used various performance metrics 



62 

 

to conduct the evaluation, namely, success ratio, transaction fees, routing efficiency, 

transaction overhead, and transaction maintenance overhead. Our algorithm showed a superior 

performance that significantly balances all the performance metrics, while this is achieved 

using only one path for the payment routing. 

6.2 Future Research Potential 

Since the payment channel network is a thrust area of research to solve the blockchain 

scalability challenge, considerable improvements and further investigations are to be studied 

for the proposed protocol as follows. 

• On-demand discovery technique: A variety of algorithms perform the path calculations 

based on the required performance and the forwarding scheme. The best method to 

perform the path calculations that optimize the routing problem in PCNs needs further 

assessment. 

• Multi-path routing: The feature of multi-path payment is applicable in payment channel 

networks. The utilization of this feature in the routing can potentially result in higher 

success ratio and transaction volume.  

• Privacy guarantees in PCNs: A public blockchain does not entail strong privacy 

guarantees. The link between a sender and receiver of payments as well as tracing back 

the origin of coin can be tracked on a public blockchain. Similarly, broadcasting a 

transaction may reduce the privacy aspects of a PCN. Also, probing messages may 

impose privacy risks. Privacy risks have to be thoroughly assessed and addressed in 

used routing protocols. 

 

 

 

 

 

 

 



63 

 

References 

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” October, 2008. [Online]. 

Available: https://bitcoin.org/bitcoin.pdf. 

[2] A. Webb, “8 Tech Trends to Watch in 2016,” Harvard Business Review, Dec. 08, 2015. 

[Online]. Available:  https://hbr.org/2015/12/8-tech-trends-to-watch-in-2016. 

[3] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, "Bitcoin and 

cryptocurrency technologies: a comprehensive introduction." Princeton University Press, 

2016 Jul 19. 

[4] C. Catalini and J. S. Gans, “Some Simple Economics of the Blockchain,” Social Science 

Research Network, Rochester, NY, SSRN Scholarly Paper ID 2874598, Apr. 2019. 

[5] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, "Blockchain technology: 

Beyond bitcoin," Applied Innovation, 2016 Jun. 

[6]  D. G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," 

Ethereum project yellow paper, no. 151, pp. 1-32, 2014. 

[7] “Ripple: Global payment solutions-instant processing.” [Online]. Available: 

https://ripple.com/. 

[8] “The strategic business value of the blockchain market | McKinsey.”  [Online]. Available: 

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-

beyond-the-hype-what-is-the-strategic-business-value. 

[9] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of blockchain-

based applications: Current status, classification and open issues,” Telematics and 

Informatics, vol. 36, pp. 55–81, Mar. 2019. 

[10] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet 

of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016. 

[11] “The Energy Web Blockchain – Energy Web Foundation.”  [Online]. Available: 

https://energyweb.org/blockchain/. 

[12] H. Kadry, “Blockchain Applications in Midstream Oil and Gas Industry,” International 

Petroleum Technology Conference, Jan. 2020. 

[13] M. Haferkorn and J. M. Quintana Diaz, “Seasonality and Interconnectivity Within 

Cryptocurrencies - An Analysis on the Basis of Bitcoin, Litecoin and Namecoin,” in 

Enterprise Applications and Services in the Finance Industry, Cham, 2015, pp. 106–120. 



64 

 

[14] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain instant 

payments," Jan. 2016. [Online]. Available: https:// bitcoinlightning.com/wp-

content/uploads/2018/03/lightning-network-paper.pdf. 

[15] A. Hafid, A. S. Hafid and M. Samih, "Scaling blockchains: A comprehensive survey," 

IEEE Access, vol. 8, pp. 125244-125262, 2020. 

[16] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais, “SoK: Layer-

Two Blockchain Protocols,”  2019. [Online]. Available: http://eprint.iacr.org/2019/360 

[17] “Raiden network.” [Online]. Available: https://raiden.network/. 

[18] “CoinDesk: A guide to saving on bitcoin’s high transaction fees,” Feb. 26, 2021. 

[Online]. Available: https://www.coindesk.com/saving-bitcoin-high-transaction-fees. 

[19] F. Waugh and R. Holz, “An empirical study of availability and reliability properties of 

the Bitcoin Lightning Network,” arXiv:2006.14358 [cs], Jun. 2020, [Online]. Available: 

http://arxiv.org/abs/2006.14358. 

[20] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy and O. Osuntokun, "Flare: An 

approach to routing in lightning network white paper,” July, 2016. [Online]. Available: 

https://pdfs.semanticscholar.org/4392/ 166a1194010c844ec915694fd5c56da94301.pdf 

[21] J. J. Sikorski, J. Haughton, and M. Kraft, “Blockchain technology in the chemical 

industry: Machine-to-machine electricity market,” Applied Energy, vol. 195, pp. 234–246, 

Jun. 2017. 

[22] A. M. Antonopoulos "Mastering Bitcoin: unlocking digital cryptocurrencies," O'Reilly 

Media, Inc."Dec. 2014. 

[23] “Blockchain.com Explorer | BTC | ETH | BCH.” [Online]. Available:  

https://www.blockchain.com/explorer. 

[24] V. Buterin, “A next generation smart contract & decentralized application platform,” 

Ethereum Foundation, 2013. 

[25] “Sharding-FAQs,” Ethereum Wiki. [Online]. Available: 

https://eth.wiki/sharding/Sharding-FAQs. 

[26] “[ANNOUNCE] Micro-payment channels implementation now in bitcoinj.” [Online]. 

Available: https://bitcointalk.org/index.php?topic=244656.0. 

[27] “bitcoinj.” [Online]. Available: https://bitcoinj.org/. 

[28] S. Roos, P. Moreno-Sanchez, A. Kate and I. Goldberg, “Settling payments fast and 

private: Efficient decentralized routing for path-based transactions,” in Proc. Network and 

Distributed System Security Symposium (NDSS), San Diego, CA, USA, 2018. 



65 

 

[29] P. Wang, H. Xu, X. Jin and T. Wang, "Flash: Efficient dynamic routing for offchain 

networks," in Proc. the 15th Int. Conf. on Emerging Networking Experiments and 

Technologies (CoNEXT '19), New York, NY, USA, Dec. 2019, pp. 370–381 

[30] “Global Cryptocurrency Market Charts,” CoinMarketCap. [Online]. Available: 

https://coinmarketcap.com/charts/. 

[31] “Real-Time Lightning Network Statistics.” [Online]. Available: 

https://1ml.com/statistics 

[32] R. Yu, G. Xue, V. T. Kilari, D. Yang and J. Tang, "Coinexpress: A fast payment routing 

mechanism in blockchain-based payment channel networks," in Proc. 27th Int. Conf. on 

Computer Communication and Networks (ICCCN), July, 2018, pp. 1-9. 

[33] “Working with micropayment channels.” [Online]. Available:  

https://bitcoinj.org/working-with-micropayments. 

[34] C. Decker and R. Wattenhofer, “A Fast and Scalable Payment Network with Bitcoin 

Duplex Micropayment Channels,” in Stabilization, Safety, and Security of Distributed 

Systems, Cham, 2015, pp. 3–18. 

[35] R. Khalil and A. Gervais, “Revive: Rebalancing Off-Blockchain Payment Networks,” 

823, 2017. [Online]. Available: http://eprint.iacr.org/2017/823 

[36] L. M. Subramanian, G. Eswaraiah, and R. Vishwanathan, “Rebalancing in Acyclic 

Payment Networks,” in 2019 17th International Conference on Privacy, Security and Trust 

(PST), Aug. 2019, pp. 1–5.  

[37] G. Malavolta, P. Moreno-Sanchez, A. Kate and M. Maffei, “SilentWhispers: Enforcing 

security and privacy in decentralized credit networks,” in Proc. Network and Distributed 

System Security Symposium (NDSS), Feb. 2017. 

[38] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti and P. Viswanath, 

“Routing cryptocurrency with the spider network,” in Proc. the 17th ACM Workshop on 

Hot Topics in Networks, Redmond, WA, USA, Nov. 2018, pp. 29–35. 

[39] C. A. Sunshine, “Source routing in computer networks,” SIGCOMM Comput. Commun. 

Rev., vol. 7, no. 1, pp. 29–33, Jan. 1977. 

[40] L. R. Ford, “Network Flow Theory,” Jan. 1956. [Online]. Available: 

https://www.rand.org/pubs/papers/P923.html. 

[41] L. R. Ford and D. R. Fulkerson, "Maximal flow through a network," Canadian Journal 

of Mathematics, vol. 8, pp. 399-404, 1956. 



66 

 

[42] E. Rohrer, J.-F. Laß and F. Tschorsch, “Towards a concurrent and distributed route 

selection for payment channel networks,” in Data Privacy Management, Cryptocurrencies 

and Blockchain Technology, Springer, Cham, Aug. 2017, pp. 411-419. 

[43] S. Mazumdar, S. Ruj, R. G. Singh and A. Pal, "HushRelay: A privacy-preserving, 

efficient, and scalable routing algorithm for off-chain payments," in Proc. IEEE Int. Conf. 

on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, May 2020, pp. 1-5. 

[44] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow problem,” J. 

ACM, vol. 35, no. 4, pp. 921–940, Oct. 1988. 

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," 

MIT Press, 2009. 

[46] C. Y. Lee, “An Algorithm for Path Connections and Its Applications,” IRE Trans. on 

Electronic Computers, vol. EC-10, no. 3, pp. 346–365, Sep. 1961. 

[47] V. Sivaraman et al., “High Throughput Cryptocurrency Routing in Payment Channel 

Networks,” in Proc. 17th Symposium on Networked Systems Design and Implementation, 

2020, pp. 777-796. 

[48] P. Hoenisch and I. Weber, “AODV–Based Routing for Payment Channel Networks,” 

in Proc. Int. Conf. on Blockchain, Jun. 2018, pp. 107-124. 

[49] O. Osuntokun, “[Lightning-dev] AMP: Atomic Multi-Path Payments over Lightning,” 

Feb. 06, 2018. [Online]. Available: https://lists.linuxfoundation.org/pipermail/lightning-

dev/2018-February/000993.html 

[50] R. Boutaba et al., “A comprehensive survey on machine learning for networking: 

evolution, applications and research opportunities,” Journal of Internet Services and 

Applications, vol. 9, no. 1, Dec. 2018. 

[51] R. V. Kulkarni, A. Förster, and G. K. Venayagamoorthy, “Computational Intelligence 

in Wireless Sensor Networks: A Survey,” IEEE Communications Surveys Tutorials, vol. 

13, no. 1, pp. 68–96, First 2011. 

[52] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine Learning in Wireless 

Sensor Networks: Algorithms, Strategies, and Applications,” IEEE Communications 

Surveys Tutorials, vol. 16, no. 4, pp. 1996–2018, Fourthquarter 2014. 

[53] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction," MIT Press, 

2018. 

[54] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” 

Journal of artificial intelligence research, vol. 4, pp. 237-285, May 1996. 



67 

 

[55] J. Dowling, E. Curran, R. Cunningham and V. Cahill, “Using feedback in collaborative 

reinforcement learning to adaptively optimize MANET routing,” IEEE Trans. on Systems, 

Man, and Cybernetics - Part A: Systems and Humans, vol. 35, no. 3, pp. 360–372, May 

2005. 

[56] J. A. Boyan and M. L. Littman, “Packet Routing in Dynamically Changing Networks: 

A Reinforcement Learning Approach,” Advances in neural information processing 

systems, pp. 671-678, 1994. 

[57] R. Bellman, "Dynamic Programming," Princeton University Press, 1959. 

[58] S. P. M. Choi and D.-Y. Yeung, “Predictive Q-Routing: A Memory-based 

Reinforcement Learning Approach to Adaptive Traffic Control,” Advances in Neural 

Information Processing Systems, pp. 945-951, 1996. 

[59] P. Stone, and M. Veloso. "Team-partitioned, opaque-transition reinforcement 

learning." Proceedings of the third annual conference on Autonomous Agents, pp. 206-212, 

1999. 

[60] R. I. Brafman and M. Tennenholtz, “R-MAX-A general polynomial time algorithm for 

near-optimal reinforcement learning,” Journal of Machine Learning Research, vol. 3, pp. 

213–231, Oct. 2002. 

[61] A. L. Strehl, L. Li and M. L. Littman, "Reinforcement learning in finite MDPs: PAC 

analysis," Journal of Machine Learning Research, vol. 10, no. 11, Nov. 2009. 

[62] Y. Yang and J. Wang, “Routing metrics design for multihop wireless networks,” in 

Proc. of Communication & Networking Technology (CNT) Symposium, 2007. 

[63] Zheng Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia 

applications,” IEEE J. Select. Areas Commun., vol. 14, no. 7, pp. 1228–1234, Sep. 1996. 

[64] Qingming Ma and P. Steenkiste, “On path selection for traffic with bandwidth 

guarantees,” in Proceedings 1997 International Conference on Network Protocols, pp. 

191–202, Oct. 1997. 

[65] J. L. Sobrinho, “Algebra and algorithms for QoS path computation and hop-by-hop 

routing in the Internet,” in Proceedings IEEE INFOCOM 2001. Conference on Computer 

Communications. Twentieth Annual Joint Conference of the IEEE Computer and 

Communications Society (Cat. No.01CH37213), Apr. 2001, vol. 2, pp. 727–735 vol.2. 

[66] S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," 3rd ed. Upper 

Saddle River, Pearson, 2009. 

[67] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev. Mod. 

Phys., vol. 74, no. 1, pp. 47–97, Jan. 2002. 



68 

 

[68] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” 

Nature, vol. 393, no. 6684, Art. no. 6684, Jun. 1998. 

[69] A. Iamnitchi, M. Ripeanu, and I. Foster, “Small-world file-sharing communities,” in 

IEEE INFOCOM 2004, Mar. 2004, vol. 2, pp. 952–963 vol.2.  

[70] T. Neudecker, P. Andelfinger, and H. Hartenstein, “Timing Analysis for Inferring the 

Topology of the Bitcoin Peer-to-Peer Network,” in 2016 Intl IEEE Conferences on 

Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable 

Computing and Communications, Cloud and Big Data Computing, Internet of People, and 

Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Jul. 2016, pp. 

358–367. 

[71] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and B. Bhattacharjee, 

“Discovering Bitcoin’s Public Topology and Influential Nodes,”, May 2015. [Online]. 

Available: https://allquantor. at/blockchainbib/pdf/miller2015topology. pdf 

[72] Xiao Fan Wang and Guanrong Chen, “Complex networks: Small-world, scale-free and 

beyond,” IEEE Circuits Syst. Mag., vol. 3, no. 1, pp. 6–20, 2003. 

[73] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, K. C. Claffy, and A. 

Vahdat, “The Internet AS-Level Topology: Three Data Sources and One Definitive 

Metric,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 17–26, Jan. 2006. 

[74] B. Schiller and T. Strufe, “GTNA 2.0-A framework for rapid prototyping and 

evaluation of routing algorithms,” in Proc. Summer Computer Simulation Conf. 

(SummerSim), 2013. 

[75] “Charts,” Coin Metrics, Jul. 03, 2020. [Online]. Available: 

https://coinmetrics.io/charts/ 

[76] “Got 10 BTC? You’re now in the top 0.5% of 30 million bitcoin addresses,” 

Cointelegraph, Jul. 03, 2020. [Online]. Available: https://cointelegraph.com/news/got-10-

btc-youre-now-in-the-top-05-of-30-million-bitcoin-addresses 

[77] "Offchain-routing-traces-and-code," GitHub. [Online]. Available: 

https://github.com/NetX-lab/Offchain-routing-traces-and-code  

[78] A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi and C. V. Cannistraci “Machine 

learning meets complex networks via coalescent embedding in the hyperbolic space,” Nat. 

Commun., vol. 8, no. 1615, 2017. 

 

 


	Off-chain Transaction Routing in Payment Channel Networks: A Machine Learning Approach
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1621956414.pdf.mjxzZ

