
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Faculty Book Chapters 

4-10-2018 

Hierarchical coherent and non-coherent communication Hierarchical coherent and non-coherent communication 

Kareem M. Attiah 
Alexandria University 

Karim G. Seddik 
American University in Cairo, KSEDDIK@AUCEGYPT.EDU 

Ramy H. Gohary 
Carleton University 

Follow this and additional works at: https://fount.aucegypt.edu/faculty_book_chapters 

Recommended Citation Recommended Citation 

APA Citation 
Attiah, K. Seddik, K. G. & Gohary, R. (2018).Hierarchical coherent and non-coherent communication. IEEE. , 
1242-1247 
https://fount.aucegypt.edu/faculty_book_chapters/214 

MLA Citation 
Attiah, Kareem M., et al. Hierarchical coherent and non-coherent communication. IEEE, 2018.pp. 
1242-1247 
https://fount.aucegypt.edu/faculty_book_chapters/214 

This Book Chapter is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted 
for inclusion in Faculty Book Chapters by an authorized administrator of AUC Knowledge Fountain. For more 
information, please contact fountadmin@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/faculty_book_chapters
https://fount.aucegypt.edu/faculty_book_chapters?utm_source=fount.aucegypt.edu%2Ffaculty_book_chapters%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/faculty_book_chapters/214?utm_source=fount.aucegypt.edu%2Ffaculty_book_chapters%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/faculty_book_chapters/214?utm_source=fount.aucegypt.edu%2Ffaculty_book_chapters%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu


Hierarchical Coherent and Non-coherent
Communication

Kareem M.Attiah∗, Karim G. Seddik† and Ramy H. Gohary‡
∗Department of Electrical Engineering, Alexandria University, Alexandria 21544, Egypt

†Electronics Engineering Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
‡Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Abstract—In this paper, we propose a method for simultaneous
communication of coarse and detailed information over three
types of layers: two nested layers to be communicated non-
coherently using Grassmannian constellations and an additional
layer to be communicated coherently using unitary constellations.
The layered architecture gives rise to four classes of receivers:
coherent and non-coherent receivers, each operating in one of
two distinct SNR regions. An operational bottleneck of this
architecture is the detection complexity of these layers. To
overcome this difficulty, four sequential detectors are developed.
These detectors enable somewhat comparable, and in some
cases identical, performance to that of their optimal maximum
likelihood counterparts with significantly less computational cost.

I. INTRODUCTION

Conventional communications typically use single-layer
transmission to communicate information over the channel.
In this framework, transmitted segments of information are
considered to be equally valuable for the prospective desti-
nation. Contrary to single-layer transmission are the multi-
layer ones. In multi-layer systems, various receivers may
be able to reconstruct some segments of the transmitted
information, but not the others, depending on their channel
conditions, their received signal-to-noise ratio (SNR) and their
computational power. For instance, a particular receiver with
favourable channel conditions might be able to recover all
the information segments, whereas another receiver with less
favourable channel conditions will only be able to recover the
more basic information segments.

Multi-layered signalling has many applications, e.g., in
military [1] and multimedia [2] communications. Most of
the work in this area focuses on receivers operating over
distinct SNR regions. However, other scenarios may arise
in which some receivers have more information about the
channel than others. In an extreme case, some receivers
may experience low mobility and therefore may have perfect
channel state information (CSI), whereas other receivers may
experience high mobility and therefore may have no access
to CSI. Focusing on this extreme case, the framework in [3]
proposes a signalling scheme that is conducive to effec-
tive communication in multiple-input multiple-output (MIMO)
systems. In this scheme basic low-resolution (LR) information
is communicated in the subspace spanned by the transmitted
signal matrix and detailed high-resolution (HR) information
is communicated in the basis that spans this subspace. The
LR information can be recovered non-coherently, i.e., without
invoking CSI, but the HR information must be recovered

coherently and therefore requires reliable CSI to be available
at the receiver.

To realize the multi-layered signalling scheme in [3], the
transmitted signals are restricted to be in the form of tall
unitary matrices. The subspace spanned by one such matrix
can be represented by a point on the compact Grassmann
manifold [4]. Such a point is invariant under right multipli-
cation by square unitary matrices. Using this feature, it can
be seen that the role of the right multiplication by a square
unitary matrix is to specify the basis that spans the subspaces
spanned by the tall unitary component. Interestingly, using
such a multiplication not only enables concurrent transmission
of LR and HR information, but also does that without incurring
additional power consumption. In other words, the HR infor-
mation will be communicated with essentially zero additional
power. Furthermore, multiplying points of the Grassmannian
constellation by square unitary matrices does not affect the
distance properties and hence does not compromise the per-
formance yielded by these constellations.

Building on the work in [3], herein we introduce a layered
structure within the Grassmannian constellation. In particular,
the Grassmannian constellation will be conceived as the Carte-
sian product of a ‘parent’ constellation and a ‘child’ one. This
structure will enable non-coherent receivers operating at lower
SNRs to have access only to the LR information encoded in the
parent constellation, whereas non-coherent receivers operating
at higher SNRs will have access to HR information encoded
in both the parent and child constellations. The composite
Grassmannian point comprised of both a parent component
and a child one are then right multiplied by point from a
square unitary constellation to specify the basis of the subspace
spanned by the composite point. Similar to [3], these bases will
be used to communicate HR information to coherent receivers.

The contributions in this paper are summarized in the
following points.

• We propose a three-layer technique consisting of a co-
herent and multi-layer non-coherent components, thereby
enriching the flexibility with which HR information can
be communicated.

• We derive conditional distributions of the received signal
and utilize these expressions to derive the respective
maximum-likelihood (ML) decision criteria.

• We develop simplified detectors that yield close-to-
optimal performance but at a significantly less compu-
tational cost.



II. PRELIMINARIES AND SYSTEM MODEL

A. Preliminaries and Non-coherent Communication

The unitary group, denoted by UM , is the set of M ×M
square unitary matrices. This set is closed under matrix mul-
tiplication, i.e. A1A2 ∈ UM , for all A1,A2 ∈ UM . Elements
of this set are of M2 real dimensions.

For T > M , the set of T × M complex matrices with
orthonormal columns is known as the Stiefel Manifold,
ST,M (C) =

{
P ∈ CT×M |P†P = IM

}
. For two matrices

P1,P2 ∈ ST,M (C), an equivalence relation can be defined
whereby P1 and P2 are equivalent if and only if the columns
of both matrices span the same subspace, that is P1 = P2Z,
for some Z ∈ UM . The Grassmann Manifold, GT,M (C), is
the quotient space ST,M (C)/UM with respect to the equiva-
lence relation. In other words, it can be regarded as the set of
M dimensional subspaces in CT . Elements in GT,M (C) are
invariant under right-multiplication by elements of UM . This
property will be of key importance in subsequent discussion.

The Grassmann manifold is of particular importance in the
context of non-coherent signaling over block fading channels
in which both the transmitter and receiver do not have access
to CSI. The significance follows from the observation that
the channel matrix rotates and scales the transmitted signal
basis but does not change the subspace it spans. Thus, in
non-coherent communication regimes the information to be
transmitted is mapped to a set of subspaces, or alternatively
Grassmannian points, which must be well-spaced to ensure
that the perturbations induced by channel noise have minimal
impact on the receiver’s decision. This calls for an appropriate
distance metric that reflects the performance of non-coherent
constellations. A number of good metrics were proposed in the
literature to guide the design of non-coherent constellations.
In this paper, we adopt the chordal Frobenius distance [5],
whereby the distance between two T ×M unitary matrices,
Q1 and Q2, is given by

d2(Q1,Q2) = M − ‖Q†1Q2‖2F

=

M∑
i=1

sin2 θi, (1)

where θi, i = 1, . . . ,M denote the principle angles between
the subspaces spanned by Q1 and Q2.

B. Channel Model

We consider a multicast scenario in which a single trans-
mitter wishes to send information to multiple receivers over
a block Rayleigh fading channel. In this model, the chan-
nel coefficients are essentially fixed during T (henceforth
referred to as a coherence interval) symbol durations, then
assume an entirely independent realization in later coherence
intervals [6]. Letting M (Ni) denote the number of transmit
(receive) antennas, the T × Ni matrix observed by the i-th
receiver can be expressed as

Yi = XHi +
√
M/γT Wi, (2)

where X is the complex T × M transmitted matrix, γ is
the SNR, and Hi ∈ CM×Ni and Wi ∈ CT×Ni are i-th
receiver’s channel and noise matrices, respectively. Elements
of both matrices are independent identically distributed (i.i.d.)
complex circularly-symmetric Gaussian distributed, CN (0, 1).

Our goal herein is for the transmitted signal to be structured
in such a way that enables all receivers to decode the funda-
mental portion of the message encoded in the basic layer, and,
depending on the availability of the CSI and the SNR, different
receivers will have access to improved reconstructions of the
message by retrieving additional layers. In [3], it was proposed
that the transmitted signal X has the form

X = QA, (3)

where matrix Q conveys LR information. It is drawn from
a finite subset of GT,M (C) and can be non-coherently de-
coded by all receivers. In contrast, the matrix A conveys
HR information. It is drawn from a finite subset of UM

and must be decoded coherently. Since X and Q span the
same subspace, a non-coherent receiver will be able to recover
the LR information encoded in that subspace. In contrast, a
coherent receiver will be able to detect both the subspace and
the particular basis specified by A, thereby retrieving both
the LR and the HR components of the transmitted message.
Herein, we will extends this philosophy by endowing the non-
coherent component with a layered structure. The advantage
of this setup will be discussed in Sections III and IV.

III. NON-COHERENT CODE CONSTRUCTION

Non-coherent communication at high data rates requires
the design of isotropically-distributed Grassmannian constel-
lations [7]. Unfortunately, this task is generally challenging.
Design methods for such constellations have been developed
in [8], [9]. Although these methods tend to yield constellations
with favourable performance, these constellations suffer from
several drawbacks. For instance, they do not possess a known
structure, which usually renders their storage, generation and
detection rather unwieldy. Furthermore, the optimization un-
derlying these designs is rather difficult to solve for medium-
size, let alone large-size, constellations. To circumvent this
difficulty, a structured approach for designing Grassmannian
constellations was developed in [10]. The constellations gen-
erated by this approach not only possess a layered structure,
but also admit computationally-efficient detection. For com-
pleteness, this approach will be discussed next.

Let CL be a small-size constellation with points well-
spaced, according to the chordal distance, on GT,M (C). Such
a constellation can designed using the method in [11], which
was shown to yield near-optimal packings. Suppose now that
each point of CL is replaced by a cloud of points so that the
overall constellation size is |CL||CM |, |CM | > 1. This idea can
be readily extended to a general L-layer construction, but for
ease of exposition, we will focus on the case of L = 2 layers.
The new constellation is formed by means of a basic and an
additional refinement layer. A simple method for constructing
the extended constellation is as follows: Starting at each point



Fig. 1. Pictorial illustration of the proposed multi-layer non-coherent constel-
lation. (Left) Basic constellation points (black circles) on GT,M (C). (Right)
Adding new points in an enclosing region of each basic point. In this case,
the new constellation points (black squares) are found by transitioning along
K = 4 geodesic directions and discarding basic points.

of the basic constellation, find K children points by transition-
ing along K geodesic directions, where K = |CM | − 1 and
include the basic constellation. Alternatively, set K = |CM |
and discard the basic constellation altogether. In this paper,
we adopt the latter approach, cf. Fig. 1.

To obtain Grassmannian constellations with favourable de-
sign characteristics, the K geodesic directions ought to be
carefully chosen. One way to do so is to choose these direc-
tions so that the the chordal distance between children points
of a common parent (i.e. point in the basic constellation)
is maximized. This criterion is derived in [10] and will be
discussed later in this section. Another consideration is the
distance at which children points lie from their respective
parents. If such a distance is chosen to be small, the dis-
tance between children associated with a common parent will
also be small and the refinement constellation will feature
unfavourable distance characteristics. On the other hand, when
a large value of this distance is selected, children points will
cross over the parent region boundaries thus leading in perfor-
mance degradation in both layers. In multi-layer applications
of interest, where the basic layer is desired to exhibit superior
performance, the numerical value of this distance is typically
selected to strike a balance between the performance of the
refinement and basic layers.

The geodesic of length t emanating from a point U = U(0)
moving along the direction U̇(0) = U⊥B for a (T −M)×M
complex matrix B with SVD PΣV† is given by [4]

U(t) =
[
U U⊥

] [V cos Σt
P sin Σt

]
, (4)

where U⊥ is a unique representative of the null space of U.
In other words, there is a unique matrix U⊥ corresponding to
a given U. Using (4), the extended constellation comprising
the basic and refinement constellations can be expressed as

CNCOH =
{

Q = [U U⊥]

[
Vi cos Σit
Pi sin Σit

] ∣∣∣
∀U ∈ CL, i ∈ {1, . . . , |CM |}

}
,

Focusing on the important special case of T = 2M and
applying the maximum distance criterion for children points
of common parent yields [10]

CNCOH =

{
Q = [U U⊥]

[
αV
βI

] ∣∣∣ ∀U ∈ CL,V ∈ CM} ,

where α = cos t, β = sin t. Using these parameters, it can be
seen that the children-parent chordal distance is given by

d2(Q(U),U) = Mβ2.

Finally, the refinement layer CM , is characterized by the
set {Vi}|CM |i=1 , which is obtained by solving the optimization
problem, cf. [10].

max
{V†kVk=IM}1≤k≤K

min
i 6=j
‖Vi −Vj‖2F .

We conclude this section by noting that allowing the non-
coherent component to admit the multi-layer structure intro-
duces additional freedom in transmitting information, which
can be invoked in a multidescription coding framework, cf.,
e.g., [12]. In addition to the layered approach for coherent
and non-coherent communication in [3], receivers can access
transmitted information at varying resolutions according to the
SNR region in which they operate. Specifically, receivers op-
erating in a lower SNR region are able to recover information
from the basic layer, while those operating in a higher SNR
region can recover information from the basic and refinement
layers. Moreover, if CSI is available, any of the two classes
can additionally recover coherent layer information.

IV. MULTI-LAYER-BASED DETECTORS

In this section, we develop optimal and computationally-
efficient suboptimal receivers. Before we do that, we write
the T ×N received signal as

Y = (αUV + βU⊥) AH +
1√
γ̄

W, (5)

where γ̄ = γT/M , U is drawn from the basic constel-
lation, CL, and V and A are drawn from the refinement
constellation, CM , and the coherent constellation, CH . The
main priority of a multi-layer receiver is to retrieve the basic
component U, and if possible, it may retrieve either one
or both of the refinement layer characterized by V and the
coherent layer characterized by A. This results in four classes
of receivers, depending on the information recoverable by
these receivers.

The following lemmas will be useful in subsequent analysis.
Lemma 1: Let Y be expressed as in (5). If H is unknown,

then Y is statistically independent of A.
Proof: The proof follows from the fact that unitarity of A

implies that AH and H have the same distribution.
From this lemma, it can be seen that the performance of

non-coherent receivers is not compromised by including A in
the transmitted signal. Furthermore, it implies that the non-
coherent receiver cannot benefit from knowing A nor can it
use its codebook to simplify or improve the detection of non-
coherent information. Next, we will obtain expression for the
conditional distributions of the received signal.

Lemma 2: Let Y be expressed as in (5). Define y =
vec (Y), and set

Q = αUV + βU⊥, (6)



then we have the following:
1) Conditioned on U and V, the elements of Y are jointly

Gaussian. Furthermore, E(y|U,V) = 0 and Γy|U,V =
E(yy†|U,V) = I⊗QQ† + 1/γ̄I.

2) Conditioned on U, V, A, and H, the elements of Y
are jointly Gaussian. Furthermore, E(y|U,V,A,H) =
QAH and Γy|U,V,A,H = 1/γ̄I.

3) Conditioned on U, the elements of Y are distributed as

p(Y|U) =
γ̄TN

|CM |πTN (γ̄ + 1)TN
×∑

Q∈{U}×CM

exp(−Tr (Y†(γ̄I− γ̄2

γ̄ + 1
QQ†)Y)). (7)

4) Conditioned on U, A, and H, elements of Y are
distributed as

p(Y|U,A,H) =
γ̄TN

|CM |πTN
×∑

Q∈{U}×CM

exp
(
−γ̄ ‖Y −QAH‖2

)
. (8)

Proof: Proof uses elementary conditioning arguments and
is omitted for space limitations.

We now develop maximum likelihood (ML) and suboptimal
detectors for each class of receivers.

A. Class A Receivers
This class comprises receivers that have no access to CSI

and operate at lower SNRs. Receivers of this class can only
detect the basic layer and their optimal ML detector decides on
the codeword that solves the following optimization problem:

max
U∈CL

p(Y|U). (9)

Drawing insight into p(Y|U), we note that the received signal
expression in (5) can be expressed as

Y = αUH2 + βU⊥H1 +
1√
γ̄

W,

where elements of H1 = AH and H2 = VAH are both
i.i.d zero mean Gaussian distributed. In addition, H1 and H2

are uncorrelated, however, not independent. This is because,
despite being marginally Gaussian, H1 and H2 are not jointly
Gaussian. To show that, we will use a contradiction argument.
Suppose that H1 and H2 are jointly multivariate normal. A
necessary condition that follows is that every deterministic
affine transformation of

[
H†1 H†2

]
is also multivariate nor-

mal [13, Theorem 5.3.1]. Now, let us consider the matrix

B =
[
−Ṽ I

] [H1

H2

]
,

for some Ṽ ∈ CM . Now, Pr(B = 0) = Pr(V − Ṽ = 0) =
1/|CM |. This implies that the distribution of B has a delta
function at the origin, and hence cannot be Gaussian.

Using (7) in (9), the ML detector will decide in favour of

ÛML = arg max
U∈CL

∑
V∈CM

exp

(
γ̄2

γ̄ + 1
Tr
(
Y†QQ†Y

))
, (10)

where Q is defined in (6). The ML detector requires an
exhaustive search over |CL×CM | points in order to find a point
in a set of a notably-smaller size, namely |CL|. The discussion
on a simplified detector in this case is deferred until the end of
the next subsection, where simplified detectors for Classes A
and B are proposed.

B. Class B Receivers
This class comprises receivers that do not have access to

CSI but operate at higher SNRs. Such receivers will attempt
to recover information in both the basic and refinement non-
coherent layers. The ML detection is performed according to
the rule(

ÛML, V̂ML

)
= arg max

(U,V)∈CL×CM
p(Y|U,V)

= arg max
Q∈CL×CM

p(Y|Q).

Using Lemma 2, the ML detector will decide in favour of

Q̂ML = arg max
Q∈CL×CM

Tr
(
Y†QQ†Y

)
, (11)

which is identical to the Generalized Likelihood Ratio Test
(GLRT) detector in [14].

For this case, a simplified sequential detection scheme that
exploits the underlying hierarchical structure was developed
in [15]. In this scheme, the detection process is decomposed
into two stages. Let d : GT,M (C) → R be some decision
metric and q < |CL| be an integer. In the first stage, the
detector identifies a candidate set of parent points, U ∈ CL,
with d greater than a constellation-dependent threshold τ , i.e.,

U = {U ∈ CL|d(U) ≥ τ} . (12)

The threshold τ can be adjusted to ensure that |U| = q. Herein,
the decision metric is chosen to be the GLRT metric

d(U) = Tr
(
Y†UU†Y

)
. (13)

In the second stage, the detector examines only the children
points of the parents in the candidate set, U , and a decision is
made in favor of

Q̂ = arg max
Q∈U×CM

Tr
(
Y†QQ†Y

)
. (14)

Comparing this expression with (11) for Class B receivers
(or (10) for Class A receivers), a reduction of (|CL|−q) |CM |−
|CL| in ML computations is observed. Hence, ensuring that q
is small implies significant computational savings.

C. Class C Receivers
This class encompasses receivers with perfect CSI, oper-

ating at lower SNRs. This class will be able to coherently
recover information in the basic and coherent layers. Hence,
the ML rule in this case can expressed as(

ÛML, ÂML

)
= max

(U,A)∈CL×CH
p(Y|U,A,H).

Using (8), it follows that the ML detection rule reduces to(
ÛML, ÂML

)
= max

(U,A)

∑
V∈CM

exp(−γ̄‖Y −QAH‖2).



where Q is given in (6). Similar to the Class A ML detector,
the search space size is increased by a factor of |CM |. To
overcome this limitation, we will propose two simplified
detection schemes: non-sequential and sequential ones.

For the non-sequential scheme, let Z = U†⊥Y. Then,

Z = βAH +
1√
γ̄

W. (15)

Rather than maximizing p(Y|U,A,H), the simplified detec-
tor performs the ML test on Z. Conditioned on U, A and H,
the elements of Z are jointly Gaussian. Hence, the simplified
detection rule is

(Û, Â) = min
(U,A)∈CL×CH

∥∥∥U†⊥Y − βAH
∥∥∥ . (16)

It is crucial to point out that Z contains only side information
about A. In fact, one can show that the proposed detector is
strictly sub-optimal by showing that the mutual information
I(A; Y) > I(A; Z).

In terms of computational cost, the simplified detector
requires search over |CL||CH | as opposed to |CL||CM ||CH |.
However, even for moderate-size constellations, the number
of computations involved can be massive and may result in
unnecessary processing overhead.

For the sequential scheme, we reuse the discussion on
the simplified decoder in the previous section. Specifically,
a candidate parent set U of reduced size q is first generated
according to the distance metric in (13). Next, the likelihood
search in (16) is performed over U × CH in order to find the
decision pair (Û, Â) that minimizes the objective in (16).

D. Class D Receivers
Receivers of this class operate coherently and at the higher

SNRs. Therefore, these receivers can detect all transmitted
layers. The ML estimate is in this case is given by

(Q̂ML, ÂML) = max
(Q,A)∈CL×CM×CH

p(Y|Q,A,H)

= min
(Q,A)∈CL×CM×CH

‖Y −QAH‖. (17)

A three-step method for simplified detection can be readily
deduced in the following manner. The first two steps parallel
the operation of the sequential non-coherent detector for
Class B receivers, where the basic and refinement information
are non-coherently estimated. Next, the coherent component
is estimated coherently based on the decision taken on the
non-coherent component and knowledge of H. That is, the
decision in the last step is made according to the following
rule:

Â = min
A∈CH

‖Y − Q̂AH‖. (18)

V. PERFORMANCE EVALUATION

In this section we analyze the performance of the proposed
multi-step detectors presented in the previous section. Towards
this end, we plot the symbol error rates (SER) of the simplified
detectors against those of the optimal detection schemes. In
all cases, we assume T = 4, and M = Ni = 2. The overall
constellation size is 211 = 2048, which is partitioned into
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4 6 8 10 12 14 16 18 20

SNR [dB]

10-3

10-2

10-1

S
E

R

ML, Basic Layer
ML, Intermediate Layer
Two-step, Basic Layer
Two-step, Intermediate Layer

Fig. 3. SER of basic and refinement layers for ML and two-step detectors.
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Fig. 4. SER of basic and coherent layers for ML, non-sequential, and
sequential two-step detectors.

16 × 8 × 8 for the basic, refinement and coherent layers,
respectively. The respective rates are 1, 0.75, 0.75 bits per
channel use (bpcu). Throughout, the size of the candidate
parent set for the simplified detectors, U , is q = 2, resulting
in a computational saving of about 87%. The coherent code
used throughout is the standard 2× 2 Alamouti one,

A =
1√
2

[
x1 x2
−x∗2 x∗1

]
,

where x1 and x2 are drawn from a 4-QAM constellation.
1) Class A Receivers: For these receivers, we consider two

cases: β = 0.25 and β = 0.33. In Fig. 2, we plot the SER
for the optimal and the simplified two-step detector. The SER
of the ML detector assuming that the distribution p(Y|U)
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Fig. 5. SER of all three layers for ML and simplified three-step detectors.

is Gaussian is also shown. For a zero-mean refinement layer
and assuming that the conditional distribution is Gaussian, the
expression for the ML detection rule is

max
U∈CL

Tr(Y†UU†Y).

It can be seen from this figure that the sequential scheme
exhibits almost identical performance to that of the optimal
detector. Additionally, we observe heavy performance losses
for the ML detector when the distribution in (7) is erroneously
assumed to be Gaussian. Furthermore, for this detector, the
gap from optimality grows substantially with the increase of
β. This observation can be intuitively explained: Assuming the
distribution is Gaussian, the ML decoder attempts to find the
transmitted child point by examining parent points. When β
is increased, children move further away from their associated
parents, thus leading to this deterioration.

2) Class B Receivers: In Fig. 3, the SER for the basic,
as well as the refinement layer, is shown. Again, in this
case, we observe a near-optimal performance of the simplified
approach, despite the considerable reduction in ML computa-
tions.

3) Class C Receivers: The error rate probabilities are
investigated for the sequential and non-sequential detectors
described in Section IV-C. The SER of the simplified detectors
is compared against that of the optimal ML detector in Fig. (4).
From this figure, we draw two main observations. First, the
non-sequential detector provides no noticeable advantage over
the sequential counterpart. Second, the ML detector outper-
forms the simplified detectors by about 4 dB for the basic
layer and 5 dB for the coherent layer at an SER of 10−3. We
conclude that ignoring side-information, due to the projection
Z = U†⊥Y, is the cause for this deterioration in performance.

4) Class D Receivers: We compare the SER in all three
layers for the three-step detector with that of the one-step
optimal detector in Fig. (5). Again, we observe a tangible
loss in performance for the simplified detector relative to the
optimal one, e.g., 5, 5 and 6 dB for the basic, refinement
and coherent layers, respectively, at an SER of 10−3. This
deterioration follows from the non-coherent detection of the
basic and refinement layers. In other words, in the detection
of those layers, the three-step detector does not make use of
the available CSI.

VI. CONCLUSION

In this paper, we developed a multi-layer approach com-
prised of a two-layer non-coherent component and a one-
layer coherent one. These components are mutually utilized
to convey basic LR and refinement HR information. The
receivers can be categorized into four classes depending on
CSI availability and operational SNR. Each of these classes
will have access to a particular subset of the transmitted
layers. For each of these classes, the ML detection criterion is
derived and, simplified detectors are developed to overcome
the computational limitations of ML detectors. Numerical
simulations were used to show that the simplified detectors
enable comparable, and in some cases identical, performance
to the ML counterparts.
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