

УДК 622.23.054

Переход между блокированным и полублокированным режимами при резании горных пород тангенциальными резцами

Е.А.АВЕРИН¹, А.Б.ЖАБИН², А.В.ПОЛЯКОВ², Ю.Н.ЛИННИК³, В.Ю.ЛИННИК³

¹ ООО «Скуратовский опытно-экспериментальный завод», Тула, Россия

² Тульский государственный университет, Тула, Россия

³Государственный университет управления, Москва, Россия

Как цитировать эту статью: Переход между блокированным и полублокированным режимами при резании горных пород тангенциальными резцами / Е.А.Аверин, А.Б.Жабин, А.В.Поляков, Ю.Н.Линник, В.Ю.Линник // Записки Горного института. 2021. Т. 249. С. 329-333. DOI: 10.31897/PMI.2021.3.1

Аннотация. В современной теории резания горных пород в производственных условиях принято выделять два больших класса достижимых режимов резания – блокированный и полублокированный. Кинематика машин для разрушения горных пород в большинстве случаев обуславливает работу резцового инструмента в обоих режимах за один цикл работы резцового инструмента. Имеющиеся в настоящее время расчетные методы разработаны для стабилизированного, как правило, полублокированного режима резания. В настоящей статье поставлена задача определения условий перехода между режимами резания и модернизации расчетного метода для определения условий перехода между режимами резания и модернизации расчетного метода для определения условий перехода между режимами резания и в зависимости от отношения реского анализа, основанного на поиске экстремума функции усилия на резце в зависимости от отношения реального шага резания к оптимальному шагу для текущей толщины стружки. В результате решения задачи получено выражение для определения толщины стружки, для которой при заданных параметрах обеспечивается переход между блокированным и полублокированным режимами резания. Полученный результат позволил усовершенствовать метод расчета усилий на резцовом инструменте на участках движения резца с блокированным резанием.

Ключевые слова: режим резания; блокированный режим; полублокированный режим; тангенциальный резец; механическое разрушение горных пород

Введение. Процесс разрушения горной породы резцовым инструментом характеризуется отделением от забоя или породного блока стружки в виде частиц породы [11, 14, 17]. Форма стружки определяется главным образом кинематикой движения инструмента [19]. Большое влияние на показатели процесса резания оказывает соотношение между шириной и глубиной реза, т.е. между шагом резания *t* и толщиной стружки *h* [3, 13]. По взаимному расположению резов различают виды резания, их число. Определения существенно отличаются у разных исследователей, например, стендовое резание осуществляется в условиях так называемого свободного реза с выровненной поверхности, так как в этом случае легче обеспечиваются необходимые условия для сравнения силовых и энергетических параметров при сопоставляемых вариантах [7, 10, 22]. Однако при непрерывной работе исполнительного органа современных породоразрушающих машин такой вид резания практически невозможен. В целом, как правило, используют разделение классов резания на два обобщенных режима – блокированное и полублокированное резание.

Важную роль в процессе резания породы играет геометрия режущего инструмента, под которой понимается совокупность характеристик, определяющих форму инструмента и расположение его граней (поверхностей) и режущих кромок относительно поверхностей обрабатываемого забоя [15, 18, 21]. В современных конструкциях породоразрушающих машин режущего действия наибольшее распространение получили так называемые тангенциальные резцы [4, 12], поэтому все дальнейшие изыскания будут выполнены применительно к таким резцам.

Постановка задачи. На основании анализа, проведенного в работах [5, 6], выберем исходное уравнение для настоящего исследования:

$$F_{z} = 19.5\sigma_{c*}^{0.94}K_{\Gamma}K_{TP}K_{X\Pi}K_{00}(0.25 + 0.018th),$$
(1)

где σ_{cm} – предел прочности на одноосное сжатие горной породы, МПа; K_r – коэффициент геометрии резца; K_{rp} – коэффициент трещиноватости горной породы; K_{xn} – коэффициент хрупко-пластических свойств горной породы; K_{o6} – коэффициент неоптимальности режима резания; t – шаг резания (расстояние между соседними линиями резания), мм; h – глубина резания (толщина срезаемой стружки), мм.

Схема серповидной стружки [3]

Тангенциальными резцами, как правило, оснащаются режущие органы породоразрушающих машин, выполненные в виде тел вращения (фрезы, шнеки, барабаны и т.п.) [1, 3, 4, 13, 19]. Поэтому при резании образуются стружки, имеющие серповидную форму (см. рисунок).

Эффективность разрушения горных пород резцами обеспечивается при определенных сочетаниях шага резания *t* и толщины стружки *h*, позволяющих оптимизировать процесс резания [13, 20]. Оптимизация заключается в обеспечении минимальной энергоемкости резания горных пород с определенными свойствами при определенных значениях силовых характеристик исполнительного органа горнопроходческой машины.

На схеме серповидной стружки выделено несколько участков: два участка 1 в начале и в конце серпа, у которых $t > t_{\text{опт}}$; один участок 2 в средней части серпа с $t < t_{\text{опт}}$; два промежуточных участка 3, соответствующих $t \approx t_{\text{опт}}$. Таким образом, резание любой горной породы тангенциальными резцами при оснащении ими современных режущих органов горнопроходческих машин всегда проходит этапы неоптимальных режимов.

При достаточно большой разнице между реальным и оптимальным шагами резания значение коэффициента K_{ob} принимает неестественно большие значения на участках 1, стремясь к бесконечности при $t_{onr} \rightarrow 0$, а также ведет к получению неправильных значений усилия на инструменте [3]. То есть имеющаяся математическая модель не адекватна реальному процессу резания при движении резца по участкам 1 стружки, на которых наблюдается блокированное резание. В связи с этим возникает необходимость в определении точки перехода между участками 1 блокированного и 3 полублокированного режимов резания.

Методика проведения исследования. Для решения поставленной задачи используем подход, заключающийся в нахождении экстремума функции усилия на резце от глубины резания [9]. Величины $\sigma_{cж}$, K_r , $K_{тp}$ и K_{xn} , как и константа 19,5, не требуют раскрытия, поскольку не зависят от переменной *h* [6]. Эта переменная встречается в коэффициенте K_{o6} при вычислении оптимального шага резания $t_{onr} = 3,65 \text{tg}\phi K_B \sqrt{h}$, где tg ϕ – критерий хрупко-пластических свойств горной породы, зависящий от значения половины угла развала борозды резания ϕ , K_B – коэффициент, зависящий от диаметра твердосплавной вставки;

$$K_{\rm o6} = 1,334 - 0,7808 \frac{t}{3,65 t_{\rm g} \varphi K_{\rm B} \sqrt{h}} + 0,478 \left(\frac{t}{3,65 t_{\rm g} \varphi K_{\rm B} \sqrt{h}}\right)^2.$$
(2)

Произведем замену переменной $x = \sqrt{h}$, а также $A_2 = t(3,65 \text{tg} \phi K_B)^{-1}$. Тогда исходное выражение (1) преобразуется в уравнение четвертой степени относительно переменной x. Уравнения четвертой степени в общем виде решаются методом Феррари. При известном корне кубической резольвенты корни уравнения четвертой степени по методу Феррари могут быть найдены из двух квадратных уравнений, которые в данном случае описываются следующим выражением:

$$x^{2} + 0.145x + \frac{y}{2} \pm \sqrt{(0.021 + y)x^{2} + (0.145y - 4\frac{A_{2}}{t})x + \frac{y^{2}}{4} + 4.98\frac{A_{2}^{2}}{t}} = 0,$$
(3)

где *у* – единственный вещественный корень кубической резольвенты, вычисляемый по формуле Кардано,

$$y = \sqrt[3]{-\frac{q}{2} + \sqrt{Q}} + \sqrt[3]{-\frac{q}{2} - \sqrt{Q}}, \qquad (4)$$
$$q = \frac{A_2^2(0,42t - 16A_2^2)}{t^2} \quad \mathbf{H} \quad Q = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2.$$

Решение уравнения (3) позволит определить момент перехода между блокированным и полублокированным режимами резания горных пород тангенциальными резцами. **Результаты и обсуждение.** Найдем все возможные решения уравнения (3) при различных реально достижимых вариациях исходных данных, а результаты представим в виде таблицы.

Решения уравнения	четвертой с	тепени при	различных	вариантах	лопустимых	исхолных	ланных
remembra jpublichina	icibepion e	rememin inpit	Passin mbix	Dupnuntux	Aon's crimina	пелодпыл	данныя

Исходные данные		Пре	Решение уравнения 4-й степени						
φ, °	<i>d</i> , мм	<i>t</i> , мм	A_2	Q	у	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
45	15,5	15	3,56	239,38	0,61	_	_	1,69	-1,04
45		20	4,75	593,09	0,81	_	_	1,85	-1,08
45		25	5,93	1208,56	1.01	_	_	1,98	-1,11
45		30	7,12	2175,11	1,21	_	_	2,09	-1,13
45		35	8.30	3591.70	1.41	_	_	2.19	-1.14
60		15	2.05	8.06	0.19	_	_	1.22	-0.90
60		20	2.74	19.43	0.26	_	_	1.32	-0.94
60		25	3.42	38.57	0.33	_	_	1.42	-0.97
60		30	4.11	67.72	0.40	_	_	1.50	-0.99
60		35	4.79	109.23	0.47	_	_	1,57	-1.01
75		15	0.95	0.08	0.03	_	_	0.77	-0.70
75		20	1 27	0.18	0.04	_	_	0.84	-0.73
75		25	1 59	0.36	0.06	_	_	0.90	-0.76
75		30	1,91	0,50	0.07	_	_	0.94	-0.79
75		35	2,23	1,00	0,09	—	-	0,99	-0,81
45	17,5	15	3,42	185,86	0,56	_	_	1,65	-1,03
45		20	4,56	459,14	0,75	_	_	1,80	-1,07
45		25	5,70	933,07	0,94	_	_	1,93	-1,10
45		30	6,84	1675,10	1,12	_	_	2,04	-1,12
45		35	7,98	2759,67	1,30	_	_	2,14	-1,13
60		15	1,97	6,30	0,18	_	_	1,19	-0.89
60		20	2,63	15,17	0,24	_	_	1,29	-0.93
60		25	3.29	30.08	0.31	_	_	1.38	-0.96
60		30	3.95	52.75	0.37	_	_	1.46	-0.98
60		35	4.60	84.99	0.43	_	_	1.53	-1.00
75		15	0.92	0.06	0.02	_	_	0.75	-0.69
75		20	1.22	0.14	0.04	_	_	0.82	-0.72
75		25	1.53	0.28	0.05	_	_	0.87	-0.75
75		30	1,83	0.49	0.06	_	_	0.92	-0.77
75		35	2.14	0.78	0.08	_	_	0.97	-0.79
45	22	15	3.14	109.15	0.47	_	_	1.57	-1.01
45		20	4 18	268.12	0.63	_	_	1 71	-1.05
45		25	5 23	542.02	0.79	_	_	1.83	-1.08
45		30	6.28	968 31	0.95	_	_	1 94	-1.10
45		35	7 32	1587.98	1 10	_	_	2.03	_1.12
60		15	1.81	3 75	0.15	_	_	1.13	_0.86
60		20	2 42	9,00	0,15	_	_	1,13	_0.90
60		20	3.02	17.81	0.25			1,25	0,90
60		30	3,62	31 17	0,25	_	_	1 30	-0,75
60		35	4 23	50.12	0.36			1,55	_0.98
75		15	0.84	0.04	0,50	_	_	0.71	-0,58
75		20	1 1 2	0,04	0.02			0.78	_0.70
75		20	1,12	0.17	0,03	_	_	0,70	0.73
75 75		2.5	1,40	0,17	0,04	_	_	0,05	-0,75
75		35	1,00	0,29	0,05	_	_	0,00	-0,73
15	I	55	1,90	0,47	0,00	ı —	-	0,92	-0,77

В таблице широко представлены возможные варианты реальных комбинаций исходных данных. Выводы, сделанные на основе анализа таблицы, вполне можно принять окончательными. Как видно из таблицы, при любых комбинациях исходных данных корни x_1 и x_2 отсутствуют – на самом деле они являются комплексными числами, но нас интересуют только вещественные корни. Кроме того, при любых комбинациях исходных данных корень x_4 является отрицательным числом. От этого корня также следует отказаться, поскольку ранее мы производили замену $x = \sqrt{h}$, а подкоренное выражение не может быть отрицательным вещественным числом.

Таким образом, единственный возможный в контексте настоящей задачи корень находится из выражения, которое при любых допустимых комбинациях исходных данных позволяет получить положительное вещественное число в качестве ответа. Искомое значение глубины резания *h*₆, при

которой для заданных условий происходит переход между блокированным и полублокированным режимами резания, определяется возведением в квадрат значения этого корня:

$$h_{5} = \frac{1}{4} \left(\sqrt{0,021+y} - 0,145 + \sqrt{\left(0,145 - \sqrt{0,021+y}\right)^{2} - 4\left(\frac{y}{2} - \sqrt{\frac{y^{2}}{4} + 4,98\frac{A_{2}^{2}}{t}}\right)} \right)^{2}.$$
 (5)

Если текущее значение глубины резания меньше величины, полученной по формуле (5), то резание происходит в режиме блокированного резания, а если больше – полублокированного.

Моделирование разрушения горного массива с учетом текущего положения резцов, в том числе с учетом различных схем и режимов резания, осуществляется с использованием численных методов, таких как метод конечных элементов [8] и метод дискретных элементов [16]. Для корректного применения полученного результата в решении задач с использованием численных методов необходимо, чтобы значения характерных размерных величин конечных или дискретных элементов не превышали величины h_6 .

Следует отметить, что выражение (5) получено для идеализированной картины разрушения забоя режущим органом, не учитывающей его колебаний. Вместе с тем, как отмечалось в работе [2], размахи колебаний режущего органа могут достигать нескольких сантиметров, существенно увеличивая глубину резания, в том числе на участках 1 и 3, что вносит ошибку в определение режима резания на данных участках. В таком случае целесообразно определять не глубину резания h_6 , а продолжительность участков стружки, на которых наблюдается блокированное резание. Например, по углу поворота резца внутри стружки относительно точки первоначального контакта. Этот угол ϕ_6 определяется как арксинус отношения h_6 к h_{max} без учета колебаний режущего органа. Тогда условие перехода между блокированным и полублокированным режимами резания трансформируется к следующему. Если текущее значение угла поворота ϕ_i резца при движении по стружке резания меньше величины ϕ_6 или больше величины $180^\circ - \phi_6$, то резание происходит в режиме блокированного резания, иначе – полублокированного.

Заключение. Из проведенного исследования можно сделать основные теоретические выводы:

• переход между блокированным и полублокированным режимами резания не зависит от прочностных свойств горной породы;

• глубина резания, при которой для заданных условий осуществляется изменение режима резания, определяется хрупко-пластическими свойствами горной породы, а также диаметром твердосплавной вставки и шагом резания.

Практическое использование полученного результата заключается в следующем. Текущее значение глубины резания h сравнивается со значением h_5 , полученным по формуле (5). В случае $h < h_5$ в формулу (2) для определения коэффициента K_{05} подставляется значение h_5 , иначе -h. Предложенный подход позволяет более точно в сравнении с исходным методом оценивать усилия на резце по формуле (1) на участках 1 стружки резания согласно рисунку, т.е. на участках нерациональных режимов резания.

ЛИТЕРАТУРА

1. Барон Л.И. Разрушение горных пород проходческими комбайнами. Том 1: Научно-методические основы. Разрушение резцовым инструментом / Л.И.Барон, Л.В.Глатман, Е.К.Губенков. М.: Наука, 1968. 216 с.

2. Кондрахин В.П. Математическая модель процесса стружкообразования, учитывающая осевые перемещения исполнительного органа горного комбайна / В.П.Кондрахин, В.Л.Головин // Наукові праці ДонНТУ. Серія гірнично-механична. 2004. Вып. 83. С. 142-149.

3. Об учете неоптимальных режимов резания горных пород тангенциальными резцами / А.Б.Жабин, А.В.Поляков, Е.А.Аверин и др. // Уголь. 2019. № 7. С. 20-24. DOI: 10.18796/0041-5790-2019-7-20-24

4. Проектирование фрезы стволопроходческого комбайна / Е.А.Аверин, Ю.Н.Наумов, А.Д.Смычник, Е.А.Смычник // Горный информационно-аналитический бюллетень. 2019. № 2. С. 105-113. DOI: 10.25018/0236-1493-2019-02-0-105-113

5. Пути развития теории разрушения углей и горных пород резцовым инструментом / А.Б.Жабин, А.В.Поляков, Е.А.Аверин и др. // Уголь. 2019. № 9 (1122). С. 24-28. DOI: 10.18796/0041-5790-2019-9-24-28

6. Состояние научных исследований в области разрушения горных пород резцовым инструментом на рубеже веков / А.Б.Жабин, А.В.Поляков, Е.А.Аверин, В.И.Сарычев // Известия Тульского государственного университета. Науки о Земле. 2018. № 1. С. 230-247.

7. A new linear cutting machine for assessing the rock-cutting performance of a pick cutter / H.Kang, J.W.Cho, J.Y.Park et al. // International Journal of Rock Mechanics and Mining Sciences. 2016. Vol. 88. P. 129-136. DOI: 10.1016/j.ijrmms.2016.07.021

8. A study on rock cutting efficiency and structural stability of a point attack pick cutter by lab-scale linear cutting machine testing and finite element analysis / J.Y.Park, H.Kang, J.W.Lee et al. // International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 103. P. 215-229. DOI: 10.1016/j.ijmms.2018.01.034

9. Averin E.A. Approach to Estimate Rational Parameters of Rock Destruction from a Function of a Cutting Force / E.A.Averin, A.B.Zhabin, A.V.Polyakov // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 272. Iss. 2. № 022002. DOI: 10.1088/1755-1315/272/2/022002

10. Balci C. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines / C.Balci, N.Bilgin // International Journal of Rock Mechanics and Mining Sciences. 2007. Vol. 3. № 44. P. 468-476. DOI: 10.1016/j.ijrmms.2006.09.001

11. Discrete element simulation of conical pick's coal cutting process under different cutting parameters / J.Liu, C.Ma, Q.Zeng, K.Gao // Shock and Vibration. 2018. Vol. 2018. P. 7975141. DOI: 10.1155/2018/7975141

12. Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results / N.Bilgin, M.A.Demircin, H.Copur et al. // International Journal of Rock Mechanics and Mining Sciences. 2006. Vol. 43. Iss. 1. P. 139-156. DOI: 10.1016/j.ijrmms.2005.04.009

13. Effect of cutting depth and line spacing on the cuttability behavior of sandstones by conical picks / X.Wang, O.Su, Q.F.Wang, Y.P.Liang //Arabian Journal of Geosciences. 2017. Vol. 10. P. 510-525. DOI: 10.1007/s12517-017-3307-3

14. Experimental investigation of hard rock fragmentation using a conical pick on true triaxial test apparatus / S.Wang, X.Li, K.Du, S.Wang // Tunnelling and Underground Space Technology. 2018. Vol. 79. P. 210-223. DOI: 10.1016/j.tust.2018.05.006

15. Indentation Characteristics Using Various Indenters: A Study Based on Laboratory and Numerical Tests / J.Liu, W.Wan, S.Xie, J.Wang // Geotechnical and Geological Engineering. 2019. Vol. 37. P. 4919-4931. DOI: 10.1007/s10706-019-00952-8

16. Investigation on the influence mechanism of rock brittleness on rock fragmentation and cutting performance by discrete element method / L.Xuefeng, W.Shibo, G.Shirong, // Measurement. 2018. Vol. 113. P. 120-130. DOI: 10.1016/j.measurement.2017.07.043

17. Li H.S. Numerical simulation on interaction stress analysis of rock with conical picks / H.S.Li, S.Y.Liu, P.P.Xu // Tunnelling and Underground Space Technology. 2019. Vol. 85. P. 231-242. DOI: 10.1016/j.tust.2018.12.014

18. Loading of coal mining machine tools after change in spatial orientation of picks / V.N.Zakharov, V.Y.Linnik, Y.N.Linnik, E.A.Averin // Eurasian mining. 2018. № 1. P. 40-42. DOI: 10.17580/em.2019.01.10

19. New model for predicting instantaneous cutting rate of axial-type roadheaders / Q.Zhang, Z.Han, M.Zhang, J.Zhang // KSCE Journal of Civil Engineering. 2017. Vol. 21. P. 168-177. DOI: 10.1007/s12205-016-0433-5

20. Numerical simulation of rock cutting in different cutting mode using the discrete element method / Q.Q.Zhang, Z.N.Han, S.H.Ning et al. // Journal of GeoEngineering. 2015. Vol. 10. № 2. P. 35-43. DOI: 10.6310/jog.2015.10(2).1

21. Prokopenko S.A. Improvement of cutting tools to enhance performance of heading machines in rocks / S.A.Prokopenko, V.S.Ludzish, I.A.Kurzina // Journal of Mining Science. 2016. Vol. 52. P. 153-159. DOI: 10.1134/S1062739116010248

22. Yasar S. Rock cutting tests with a simple-shaped chisel pick to provide some useful data / S.Yasar, A.O.Yilmaz // Rock Mechanics and Rock Engineering. 2017. Vol. 50. P. 3261-3269. DOI: 10.1007/s00603-017-1303-2

Авторы: Е.А.Аверин, канд. техн. наук, инженер-конструктор, evgeniy.averin.90@mail.ru, https://orcid.org/0000-0003-3350-331x (ООО «Скуратовский опытно-экспериментальный завод», Тула, Россия), А.Б.Жабин, д-р техн. наук, профессор, https://orcid.org/0000-0001-5305-4908 (Тульский государственный университет, Тула, Россия), А.В.Поляков, д-р техн. наук, профессор, Polyakoff-an@mail.ru, https://orcid.org/0000-0002-0067-6954 (Тульский государственный университет, Тула, Россия), Ю.Н.Линник, д-р техн. наук, профессор, https://orcid.org/0000-0003-3968-0026 (Государственный университет управления, Москва, Россия), В.Ю.Линник, д-р техн. наук, профессор, https://orcid.org/0000-0001-5130-8222 (Государственный университет управления, Москва, Россия).

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 04.07.2020. Статья принята к публикации 29.03.2021.