
Quantum-accelerated constraint programming
Kyle E. C. Booth1,2, Bryan O’Gorman1,3, Jeffrey Marshall1,2, Stuart Hadfield1,2, and
Eleanor Rieffel1

1Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA 94035,
USA

2USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, CA 94043, USA
3Berkeley Quantum Information and Computation Center, University of California, Berkeley, CA 94720, USA

Constraint programming (CP) is a paradigm used to model and solve con-
straint satisfaction and combinatorial optimization problems. In CP, problems
are modeled with constraints that describe acceptable solutions and solved with
backtracking tree search augmented with logical inference. In this paper, we
show how quantum algorithms can accelerate CP, at both the levels of in-
ference and search. Leveraging existing quantum algorithms, we introduce a
quantum-accelerated filtering algorithm for the alldifferent global constraint
and discuss its applicability to a broader family of global constraints with sim-
ilar structure. We propose frameworks for the integration of quantum filtering
algorithms within both classical and quantum backtracking search schemes,
including a novel hybrid classical-quantum backtracking search method. This
work suggests that CP is a promising candidate application for early fault-
tolerant quantum computers and beyond.

1 Introduction
Constraint programming (CP) is a paradigm used to model and solve constraint satisfaction
and combinatorial optimization problems [1]. In CP, a problem is expressed in terms of a
declarative model, identifying variables and constraints, and the model is evaluated using
a general-purpose constraint solver, leveraging techniques from a variety of fields including
artificial intelligence, computer science, and operations research. CP has successfully been
used to approach challenging problems in areas such as scheduling, planning, and vehicle
routing [1–3].

Given a CP model of a problem, a constraint solver performs a search for values of
the variables that satisfy the expressed constraints. The search performed is often system-
atic, as is the case in a backtracking search [4], although some solvers employ incomplete
schemes such as local search [5, 6]. In this work, we focus on the former, with an emphasis
on backtracking search. While CP bears similarity to other paradigms for modeling and
solving combinatorial problems, such as boolean satisfiability (SAT) [7] or integer pro-
gramming (IP) [8], the technology differentiates itself in a number of key ways. Modeling

Kyle E. C. Booth: kyle.booth@nasa.gov
Bryan O’Gorman: bogorman@berkeley.edu
Jeffrey Marshall: jeffrey.s.marshall@nasa.gov
Stuart Hadfield: stuart.hadfield@nasa.gov
Eleanor Rieffel: eleanor.rieffel@nasa.gov

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

10
3.

04
50

2v
2

 [
qu

an
t-

ph
]

 2
1

Se
p

20
21

https://quantum-journal.org/?s=Quantum-accelerated%20constraint%20programming&reason=title-click
https://orcid.org/
mailto:kyle.booth@nasa.gov
mailto:bogorman@berkeley.edu
mailto:jeffrey.s.marshall@nasa.gov
mailto:stuart.hadfield@nasa.gov
mailto:eleanor.rieffel@nasa.gov

efforts leverage rich decision variable types and focus on identifying and combining en-
capsulations of frequently occurring combinatorial substructure. Search effort is reduced
through logical inference, a process whereby possible variable-value assignments are ruled
out based on the constraints in the model. Each constraint is supported by an inference
algorithm that rules out value assignments for the variables in the scope of the constraint.
Assignments removed in one constraint often propagate to other constraints, allowing even
more inference to be performed [1]. This emphasis on inference and propagation is partic-
ularly powerful as it can significantly reduce the fraction of the search space that must be
explored, detecting “dead ends” as early as possible.

It follows that the success of CP is dependent on the availability of efficient procedures
for performing inference to prune infeasible value assignments. The benefits of a reduced
search space are severely muted if the time taken to perform inference exceeds the time
needed to explore the area pruned by that inference. Indeed, a large body of research exists
that is expressly focused on finding increasingly efficient inference algorithms for various
constraints [9–12]. In this paper, we explore the use of quantum computing to accelerate
CP, focusing on innovations for both inference and search.

In the context of inference, we explore the use of quantum algorithms for graph prob-
lems, especially that for finding maximum matchings in graphs [13], to accelerate classical
inference algorithms in CP. The quantum algorithms used heavily exploit Grover’s algo-
rithm for unstructured search [14]. In addition to speeding up inference, we argue that the
structure of inference in the CP paradigm represents an attractive framework for the de-
ployment of quantum algorithms. The encapsulation of combinatorial substructure within
CP models provides an elegant mechanism for carving off portions of complex problems
into inference subproblems that can be solved by a quantum co-processor. These smaller
subproblems require fewer resources, making them promising candidates for the early fault-
tolerant quantum computers of the future. With respect to search, we investigate the
adaptation of existing quantum tree search algorithms [15, 16] to the search performed
within CP, and provide preliminary resource estimates for this integration. Our adapta-
tions are focused on incorporating quantum filtering within both classical and quantum
backtracking search algorithms.

At a high level, this paper is intended to provide researchers in quantum computing
with an introduction to core concepts in CP before detailing how quantum algorithms can
be applied to the paradigm. While CP has been recently used as an approach to more
efficiently compile quantum circuits [17], this work, along with an earlier version [18], con-
ducts the first investigation into the formal integration of quantum computing into CP.
Our initial explorations indicate the potential for symbiosis between the two paradigms:
quantum algorithms can accelerate both inference and search in CP, and CP offers an at-
tractive, modular formalism for tackling hard problems that makes it a promising candidate
application for early fault-tolerant quantum computers,1 and beyond.

This paper primarily combines and exploits existing quantum algorithms from the lit-
erature, and some extensions thereto, to provide quantum algorithms for CP. Our main
overall contribution is a detailed examination of how these algorithmic building blocks can
be put together and applied to CP. This includes a careful analysis of subtle aspects of

1 By “early fault-tolerant” quantum computers, we mean future devices with error rates small enough,
for example, to enable phase estimation, but with a limited number of logical qubits. While we argue
that our proposals are suitable for early generations of such devices because their hybrid nature allows
for putting smaller parts of the problem on the device, we do not expect that the quantum algorithms
we discuss will be successfully implementable using NISQ devices. In other words, our target is quantum
devices that are still intermediate-scale but for which noise (at the logical level) is not a significant factor.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 2

this application, such as parameter regimes in which the algorithms best classical algo-
rithms, the use of classical data in quantum algorithms, and how to incorporate filtering
into backtracking when one or both are quantum. While the details of this analysis are
specific to this application, we expect that our approach to the subtler aspects of these
algorithms will be useful for designing and analysing the use of these building blocks in
other applications.

The primary contributions of this paper are as follows:

i. We propose a quantum-accelerated Õ(
√
|X||V ||E|)-time2 bounded-error algorithm

for domain consistency of the alldifferent constraint, where |X| is the number
of variables, |V | is the number of unique domain values, and |E| is the sum of the
variables’ domain sizes. Our approach follows the main classical algorithm, accel-
erating the basic subroutines performed at each iteration with quantum analogs.
The complexity is dominated by that for finding maximum matchings in bipartite
graphs. Long-standing state-of-the-art deterministic and randomized classical algo-
rithms take O(

√
|X||E|) and O(|X|ω−1|V |) time, respectively, where ω corresponds

to the asymptotic cost of classical matrix multiplication; the best upper bound known
on ω is 2.373.3 Our approach, leveraging an existing quantum algorithm, improves
over these bounds by factors on the order of

√
|E|/|V | and

√
|X|2ω−3|V |/|E|, re-

spectively, up to polylogarithmic terms.4 A recently proposed classical interior-
point-based method (IPM), improving on the aforementioned state-of-the-art, takes
Õ(|E|+ |V |3/2) time. For the regime where |E| = O(|V |3/2), our approach improves
over this method by a factor on the order of |V |/

√
|X||E|, up to polylogarithmic

terms. Within this regime, when |X| = O(
√
|V |) our approach always improves over

IPM, while |X| = Ω(
√
|V |) yields an improvement when |X||E| = O(|V |2).

ii. We identify a broader family of global constraints, including the global cardinality
constraint (gcc) and the inverse constraint, whose domain consistency filtering
algorithms can be accelerated with quantum algorithms. As with the alldifferent
constraint, the worst-case complexity of the classical domain consistency filtering
algorithms for these global constraints is dominated by finding maximum matchings
in bipartite graphs.

iii. We detail frameworks for integrating quantum-accelerated inference algorithms within
classical and quantum backtracking search schemes. We show that the speedups
noted for previously proposed quantum backtracking algorithms can also be lever-
aged for quantum branch-and-infer search. We also propose partially quantum search
schemes that yield speedups for smaller sections of the tree, intended for early,
resource-constrained quantum devices. Finally, we provide preliminary resource es-
timates and discuss the benefits and drawbacks of each search approach.

The organization of the paper is as follows. Section 2 provides background for important
concepts in CP and Section 3 summarizes relevant previous work. Section 4 discusses how

2 We use the notation Õ(f(n)) = O(f(n)polylogf(n)) to suppress factors that are polylogarithmic in the
dominant part of the scaling.

3 We note that the instance size at which the asymptotic scaling becomes relevant is so large that in,
practice, the cost of matrix multiplication may scale cubically.

4 For the purpose of algorithm comparison we consider the ratio of worst-case time-complexity upper
bounds. Specifically, an algorithm with time-complexity bound Õ(g(n)) is said to improve upon an Õ(f(n))
algorithm by a factor of f(n)/g(n).

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 3

quantum algorithms can access classical data. Section 5 details a quantum-accelerated
algorithm for the alldifferent constraint and discusses its generalization to other global
constraints with a similar structure. Section 6 details the integration of our quantum-
accelerated filtering algorithms within both classical and quantum tree search schemes.
Finally, Section 7 provides concluding remarks and future research directions.

2 Constraint Programming Background
In this section we provide background on the fundamental concepts of constraint program-
ming (CP). The interested reader is referred to additional sources for a more thorough
review of the subject [1, 19]. There is a variety of open-source [20–23] and commercial [3]
software available for modeling and solving problems using CP.

2.1 Constraint satisfaction problems
CP is a paradigm used for solving constraint satisfaction and optimization problems. A
constraint satisfaction problem (CSP) consists of variables X = (x1, . . . , x|X|), with as-
sociated domains D = (D1, . . . , D|X|), and constraints C = (C1, . . . , C|C|). The domain
Di = {di,1, . . . , di,|Di|} of variable xi is the finite set of values the variable can possibly be
assigned. Each constraint C ∈ C acts on a subset of the variables X, known as the scope
of the constraint. Let d∗i represent the value actually assigned to variable xi. A solution
to a CSP is a tuple of assigned values (d∗1, . . . , d∗|X|) ∈ D1 × · · · ×D|X| such that, for each
constraint C ∈ C the values assigned to the variables within its scope satisfy the constraint.

Similarly, a constraint optimization problem (COP) is a CSP with an objective function.
The solution to a COP is an assignment of values to variables, from the domains of those
variables, such that each constraint is satisfied and the objective function is optimized
(either maximized or minimized). The objective function is typically represented by a
variable and associated domain. In this work we focus on techniques that can be employed
to solve CSPs and COPs within a backtracking tree search framework.

2.2 Backtracking search algorithms
Backtracking search algorithms are an important and general class of algorithms used
to solve CSPs and can be seen as performing a depth-first traversal of a search tree [4].
The search tree provides a systematic way of investigating different decisions in a divide-
and-conquer fashion. The root node of the search tree corresponds to the original CSP
and subsequent nodes, generated via branching, are increasingly constrained versions of the
original CSP. Backtracking algorithms are effective given the means to quickly test whether
or not a node in the search tree can lead to a solution; for this reason, backtracking search
algorithms are not helpful for unstructured search problems. A node that cannot lead to a
solution is called a dead end. In general, it is advantageous to detect dead ends as quickly
as possible so that search effort can be directed to more promising areas of the search tree.

In the simplest form of backtracking, often called naive backtracking [4], a branch
represents an assignment of a value to an unassigned variable. This can be thought of as
adding a constraint to the CSP, i.e., xi = dj for some dj ∈ Di, or, alternatively, as reducing
the domain associated with the variable to the assigned value, i.e., Di = {dj}. There are
also more sophisticated branching rules than this simple assignment-based branching. For
each non-leaf node in the tree, a child is generated for each value in the domain of the
variable being branched on. The branching process involves variable- and value-selection

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 4

heuristics; the former identifies the variable to branch on, and the latter identifies the order
in which the branches are explored.

The node resulting from the branch corresponds to the CSP of the parent with an
updated domain. A predicate P is then used to test whether the node can lead to a
solution or not, returning 1 if the node indicates a solution to the CSP, 0 if the node
cannot lead to a solution (i.e., definitely infeasible), and indeterminate (∗) otherwise. The
ability to efficiently determine the value of P is often due to exploiting problem structure.

If a node in the search is a dead end (i.e., P returns 0), the most recent branch is undone
(backtracked), a new branch is posted, and the process repeats. If the node represents a
solution to the CSP (i.e., P returns 1), the problem has been solved.5 If it is not clear that
the node can lead to a solution (i.e., P returns ∗), a new branch is posted, the resulting
node is tested with P , and the process repeats.

Thus, there are two core ingredients of backtracking search: i) a means of testing
whether a node can lead to a solution or not, and ii) heuristics that determine how to
branch. In the next section we detail the branch-and-infer tree search used in CP.

2.3 Branch-and-infer search
Search effort in CP is reduced via logical inference. Each constraint in the CSP model
is supported by an inference algorithm that performs domain filtering (also known as
pruning), a process that removes possible variable-value assignments by proving that they
cannot satisfy the constraint, and thus cannot participate in a solution to the CSP. As
variables often participate in multiple constraints, value removal by the filtering of one
constraint often triggers value removals from variables in neighboring constraints in a
process termed propagation. For the purposes of this paper, the term logical inference
encapsulates both filtering and propagation. The remainder of this section provides a
more formal description of the overall search process.

CP’s branch-and-infer search follows the framework of backtracking search; however,
the predicate P is extended to a propagation function F that prunes values from the
domains of the variables and, through this domain reduction, determines whether a node
can lead to a solution or not. The search is specified by two main operators: the propagation
function F and a branching operator h.

Let us define
2D := ×ni=12Di (1)

where 2S is the power set of set S, i.e., 2D is the set of tuples of subsets of the domains.
The search proceeds by exploring a tree in which each node is associated with the variables
and constraints of the original CSP, and a distinct element of 2D representing the domains
“active” at that node.

2.3.1 Propagation Function

The propagation function
F : 2D → 2D × {0, 1, ∗} (2)

takes active domains6 D and returns filtered domains D′ and a flag β ∈ {0, 1, ∗} repre-
senting the status of the node (definitely infeasible, definitely feasible, or indeterminate,

5 In the case of a COP, the objective value of the solution is recorded and backtracking continues in
search of a better solution (or proof that none exists).

6 The set 2D denotes the set of global domain tuples throughout the paper. For simplicity of presenta-
tion, we overload the symbol D to denote active domains (i.e., elements of 2D).

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 5

respectively). We also use Fd(D) and Fp(D) to denote the filtered domains and flag (pred-
icate value) returned by F , respectively. A description of the propagation function F is
given by Algorithm 1.

The propagation function first initializes the node status to indeterminate (∗). Then,
it enters a loop of domain filtering based on each of the constraints using the constraint
filtering algorithm FilterC for each constraint C ∈ C in the CSP encoding. The constraint
filtering algorithm for a given constraint identifies variable-value assignments that it can
prove will not satisfy the constraint based on the structure of the constraint and the current
domains. The extent to which a filtering algorithm removes values is dictated by the level
of constraint consistency desired; see Section 2.4. The output of FilterC is the filtered
domains7 and a flag indicating whether the constraint is unsatisfiable (0) or potentially
satisfiable (∗).

After processing each constraint, the process repeats. As mentioned previously, domain
values pruned based on the information in one constraint propagate to another, yielding
the ability to perform more domain reduction. There are two cases for the filtering loop
(lines 2 − 14) to terminate: i) when, after calling the filtering algorithm on all of the
constraints, the domains are unchanged, or ii) when a filtering algorithm FilterC returns
“unsatisfiable” (a value of 0). In the latter case, an infeasible constraint is enough to declare
the node a dead end and a backtrack is initiated. For the former case, if all the domains
are singletons, flag β is updated to a value of 1 indicating a feasible solution has been
found. Otherwise, at the current node, the value of β is left as indeterminate (∗). The
pruned domains are returned and the branching operator, described in the next section, is
used to generate a child and continue the search.

The development of efficient filtering algorithms is of utmost importance to the success
of CP. Better logical inference can detect dead ends earlier in the search (thereby pruning
away many nodes that would otherwise need to be explored) but usually at the cost of
being more expensive (i.e., time consuming) at each node that is explored. It is therefore
useful to classify the extent to which a particular filtering algorithm removes values in
order to balance this tradeoff. This topic forms the core discussion in Section 2.4.

2.3.2 Branching Operator

While some CP searches use naive backtracking (as described above), the paradigm com-
monly employs alternative branching strategies including (but not limited to) 2-way branch-
ing, which creates two children by posting constraints xi = dj and xi 6= dj [4] for some
dj ∈ Di, and domain splitting, which creates two children by posting constraints of the
form xi ≤ dj and xi > dj .8 Generally, a branch in CP adds a unary constraint (not
limited to an equality constraint as in naive backtracking) to the CSP. To preserve the
completeness of the search, the total set of branching constraints posted from a node must
be exhaustive.

We can equivalently view branching in CP as an operation which, given a tuple of
domains at a node in the search tree, produces a set of child nodes, each associated with a
tuple of domains. In this case, instead of a node being defined by the original CSP and the
set of branching constraints posted, a node is instead defined by the original variables X,
constraints C, and the tuple of active domains (where the active domains incorporate all

7 For ease of presentation, we assume the output of FilterC is all of the updated domains. In practice,
this function would only return updated domains for the subset of variables involved in constraint C.

8 Domain splitting is a commonly used branching strategy for branch-and-bound approaches for solving
integer programs.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 6

Algorithm 1: Propagation function F
Input: Domains D
Output: Filtered domains D′, flag β

1 β ← ∗
2 repeat
3 status ← False
4 for C ∈ C do
5 D′, β ← FilterC(D)
6 if β = 0 then
7 return D′, β
8 end
9 else if D 6= D′ then

10 status ← True
11 D ← D′
12 end
13 end
14 until status = False
15 if |Di| = 1, ∀Di ∈ D′ then
16 β ← 1
17 end
18 return D′, β

domain reductions from previous branching decisions as well as reductions due to filtering
at each node). This formulation will be particularly useful for our discussion of quantum
backtracking extensions in Section 6.3. Formally, we define the branching operator

hc : 2D → 2D (3)

as taking the parent’s tuple of domains as input and returning the c-th child (another tuple
of domains) produced by branching. We also define the operator

hnu : 2D → Z+ (4)

as taking the parent’s tuple of domains as input and returning the number of children
generated by branching from the parent (as determined by the specific branching strategy
used). Classically, such a function is not typically needed explicitly, because the children
are explored sequentially; however, for the quantum algorithms we propose in this work it
will be necessary. To maintain completeness, we require that

|X|

×
i=1

Di =
⋃
c

|X|

×
i=1

D
(c)
i (5)

where D(c)
i is the domain of variable xi in the c-th child. That is to say, any assignment

consistent with the domains of the parent is consistent with the domains of at least one
child.

2.4 Consistency
Concepts of consistency have long played a key role in CP and are fundamentally impor-
tant to the performance of backtracking search algorithms [24]. In this section, following

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 7

previous work [19], we consider domain consistency (also known as generalized arc con-
sistency) and range consistency but recognize that there are other relevant notions of
consistency. [25, 24].

Definition 2.1 (Domain consistency). An m-ary constraint C with scope (x1, . . . , xm)
having non-empty domains is called domain consistent iff for each variable xi and every
value d∗i in its domain Di, there is an assignment (d∗1, . . . , d∗m) such that d∗j ∈ Dj for all
j ∈ {1, . . . ,m} \ {i} and that satisfies constraint C.

Intuitively, the constraint is domain consistent if, after assigning any variable to any
value in its domain, there exists a set of values to assign to the other variables (from their
domains) such that the constraint is satisfied. From this, we can define a domain consistent
CSP as follows:

Definition 2.2 (Domain consistent CSP). A CSP is domain consistent iff all of its con-
straints are domain consistent.

Example 2.1. Consider the CSP: X = (x1, x2, x3), with D1 = {1, 2}, D2 = D3 = {2, 3}
and the constraints x1 < x2 and x1 < x3. This CSP is domain consistent as each of the
constraints is domain consistent.

Establishing domain consistency for some constraints can be, in the worst case, as in-
tractable as solving the global CSP. For this reason there exist weaker forms of consistency,
such as range consistency defined as follows [19].

Definition 2.3 (Range consistency). An m-ary constraint C with scope (x1, . . . , xm)
having non-empty, real-valued domains is called range consistent iff for each variable xi
and every value d∗i in its domainDi, there is an assignment (d∗1, . . . , d∗m) such that minDj ≤
d∗j ≤ maxDj for all j ∈ {1, . . . ,m} \ {i} and that satisfies constraint C.

Range consistency is effectively a relaxation of domain consistency, only checking the
feasibility of the constraint with respect to the range of domain values instead of the
domain itself. As such, filtering for range consistency is never more costly than domain
consistency, though the difference in effort depends on the specific constraint involved.
Domain consistency (or another specified level of consistency) for a constraint is achieved
via the filtering operator for that constraint. As effort spent filtering domains typically
results in fewer nodes in the search tree, much of the effort in CP has been in identifying
constraints that promote efficient and effective filtering. These special constraints are
known as global constraints.

2.5 Global constraints
A global constraint is a constraint acting on a more-than-constant number of variables
that represents a commonly recurring combinatorial substructure [19]. The motivation for
the use of global constraints is twofold. First, the shorthand of the constraint simplifies
the high-level modeling task. Second, while an equivalent constraint relationship may be
expressed with a combination of simpler constraints, global constraints can strengthen the
performance of solvers by maintaining a more global view of the structure of the problem.
This often translates to the ability to perform more domain filtering.

To illustrate this concept, we introduce a concrete example involving the alldifferent
global constraint [26].

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 8

Definition 2.4 (alldifferent constraint). The constraint alldifferent(x1, . . . , xk) re-
quires that all of the variables in its scope take on different values (i.e., in a solution to
the constraint xi 6= xj for all i < j ∈ {1, . . . , k}).

The alldifferent constraint captures a commonly recurring substructure, namely
that a subset of problem variables need to take on different values. This structure often
occurs in timetabling and scheduling problems, for example. In addition to packaging this
structure nicely for modeling purposes, the global constraint also increases the amount of
inference that can be performed.

Example 2.2. Consider the CSP: X = (x1, x2, x3), with D1 = D2 = D3 = {1, 2},
and the constraints x1 6= x2, x1 6= x3, and x2 6= x3. Enforcing domain consistency on
each constraint does not allow us to perform any inference; each constraint is domain
consistent and the pruned variable domains remain the same. It follows that the CSP is
domain consistent as posed, even though its unsatisfiability is apparent.

In contrast, consider the impact of using the alldifferent global constraint:

Example 2.3. Consider the CSP: X = (x1, x2, x3), with D1 = D2 = D3 = {1, 2}, and the
constraint alldifferent(x1, x2, x3). Enforcing domain consistency on the alldifferent
constraint would quickly return infeasible, as assigning x1 = 1 does not permit a set of
values for x2 and x3 that would satisfy the constraint, nor does x1 = 2, thus emptying the
domain store of x1. As such, the constraint (and thus the CSP) is inconsistent.

Evidently, it is beneficial to represent a relationship of difference over a set of variables
as an alldifferent constraint. In general, global constraints are proposed for substruc-
tures that permit enhanced filtering, not just to facilitate a more concise expression of
CSPs. The library of available global constraints is extensive9 and useful for modeling a
wide array of problems [12]. The success of these global constraints, however, is largely
tied to the efficiency of their underlying filtering algorithm.

The worst-case complexity of filtering algorithms for domain consistency can be poly-
nomial or exponential (i.e., as intractable as the problem being solved), depending on the
constraint. To mitigate this, weakened forms of consistency can be accepted, or the filter-
ing algorithm can simply be terminated prior to achieving domain consistency in favor of
branching in the search tree. Much of the research effort in the CP community revolves
around the design of algorithms that achieve a given level of consistency with improved
worst-case complexity over existing methods (e.g., for scheduling problems with resource
constraints [27, 28]).

2.6 CP modeling and solving: Sudoku
To illustrate CP’s branch-and-infer search, consider a CP model for the popular puzzle
game Sudoku [29]. An example Sudoku puzzle is visualized in Figure 1. A solution to the
puzzle assigns a number ranging 1–9 to each cell such that each row, column, and 3 × 3
sub-grid contains all of the digits from 1 through 9. The decision problem related to solving
general Sudoku puzzles on n2 × n2 grids is NP-complete [30]. In this example, n = 3.

One option for modeling the problem with CP uses integer decision variables of the
form xi,j ∈ {1, . . . , 9}, representing the value placed in the cell of row i, column j. Since it

9 A comprehensive global constraint catalogue is available at: https://sofdem.github.io/gccat/

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 9

Figure 1: Sudoku problem instance with 9× 9 cells.

is a satisfiability problem, we do not have an objective function. Let I = {1, . . . , 9}. The
CP model includes the variables xi,j ∈ I, ∀i, j ∈ I subject to the following constraints:

x3,3 = 1, x3,5 = 2, x2,6 = 3, etc. (6)
alldifferent(xi,1, . . . , xi,9),∀i ∈ I (7)
alldifferent(x1,j , . . . , x9,j), ∀j ∈ I (8)
alldifferent(xi,j , xi,j+1, xi,j+2,

xi+1,j , xi+1,j+1, xi+1,j+2,

xi+2,j , xi+2,j+1, xi+2,j+2), ∀i, j ∈ {1, 4, 7} (9)

Constraint (6) embeds the “clues” of the problem, fixing them to take on the values given
in the instance. Constraint (7) ensures that each cell in a given row takes on a different
value, and Constraint (8) does the same for columns. Constraint (9) enforces that each
3 × 3 sub-grid must have all different values. We note that, however, this is not the only
possible model. For example, we could have used binary decision variables xi,j,k, taking
on a value of 1 if value k ∈ {1, . . . , 9} is assigned to the cell in row i, columnn j, and 0
otherwise. Of course, the set of constraints using this variable definition would be different
as well. Appendix C provides modeling examples for other problems using CP.

With the model in hand, we can use CP’s branch-and-infer search to solve the Sudoku
instance. The search would start by invoking the propagation function to perform root
node filtering over the model constraints. For example, enforcing domain consistency
on alldifferent(x1,1, x1,2, . . . , x1,9) would not change the variable domains (as row 1
is blank). However, enforcing domain consistency on alldifferent(x2,1, x2,2, . . . , x2,9)
would prune a number of values (e.g., the value 3 would be pruned from the domain of
x2,1) as the hints in this row permit some inference. After the model achieves the desired
level of consistency, the search branches by, for example, assigning a value to a variable
(i.e., guessing a value assignment to a cell), before repeating the process.

The CP model described above has 9× 9 = 81 decision variables, each with an initial
domain of size |I| = 9, in the worst case. Each of the alldifferent filtering subproblems,
however, only involves nine variables. While representing the entire problem on a quantum
chip may be prohibitive, the filtering subproblems for the alldifferent constraints can
more readily take advantage of early fault-tolerant quantum hardware.

Within CP’s branch-and-infer tree search, an improvement in the efficiency of global
constraint filtering allows for domain values to be pruned faster. While this does not change
the number of nodes explored before finding a solution, which is usually the dominant
factor in the runtime, it does reduce the per-node time and therefore has a significant
positive impact on the efficiency of solving problems in practice. This phenomenon has been
demonstrated in similar paradigms such as integer programming (IP) where improvements

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 10

in solving linear programming (LP) relaxations has had an orders-of-magnitude impact on
the performance of IP solvers over the past few decades [31].

3 Related work
In this section we identify work immediately relevant to this paper. In Sections 4, 5, and 6
we present additional background in the context of our results. Similarly titled work by Di
Pierro et al. introduced a formal language for expressing quantum computations that they
called “quantum constraint programming” [32]; that is, they apply the modeling aspect of
CP to quantum computations, whereas here we employ a quantum version of the classical
CP approach to solving problems.

This work investigates the quantum acceleration of CP, at the levels of both inference
and search. Our explorations make use of two important quantum algorithms: quantum
search and phase estimation. For the former, Grover’s algorithm famously shows that
a target element can be found in an unstructured list of N elements with only O(

√
N)

quantum queries, which gives a realizable quadratic speedup over classical black-box search
(requiring N queries in the worst case) when the oracle for accessing the list can be queried
or implemented efficiently [14]. Phase estimation is a quantum algorithm used to estimate
the eigenvalues of a unitary [33].

Quantum algorithms for solving various graph problems have seen considerable progress
in recent years. These algorithms are often studied in the quantum query model, where
the algorithm accesses the graph through a quantum query operation as we detail in Sec-
tion 4. Previous work provides lower and upper bounds for the bounded-error quantum
query complexity of various graph problems, including connectivity, minimum spanning
tree, and single-source shortest path [34–38]. Particularly relevant work has investigated
the quantum query complexity of matching problems [13, 38–42], showing speedups over
classical query-model algorithms, and in some cases [40, 13] explicitly improved time com-
plexities, as discussed further in Section 5.1.2.

Similarly, there have been efforts to develop quantum algorithms for constraint satis-
faction and search. Quantum search has been extended to problems within mathematical
programming, such as semidefinite programming [43, 44] and the acceleration of the sim-
plex method [45]. The latter, in a similar fashion to this work, uses quantum search to
accelerate the subroutines of the simplex method (e.g., variable pricing). There also exist
recent efforts to use algorithms based on quantum search and phase estimation to speed up
tree search methods including branch-and-bound [46] and backtracking search [15, 16, 47];
we discuss the latter in more detail in Section 6. See in particular [15, Sec. 1.3] for a
historical overview.

4 Quantum resources and data access
In this paper, we propose quantum algorithms and quantum subroutines to solve problems
whose instance specification and solution are classical information. Many of these quantum
algorithms require quantum access to classical data that enables computation on a super-
position of classical data. This section synthesizes the relevant ideas from the literature
as background for later sections. For example, suppose that an instance is specified by a
function f : W → Y , where Y = {0, 1}r and elements of Y can be viewed as integers with
addition modulo |Y | = 2r. By “quantum access”, we mean the ability to call the unitary

Uf |w〉 |y〉 = |w〉 |y + f(w) mod |Y |〉 (10)

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 11

on an arbitrary state
∑
w∈W,y∈Y τw,y |w〉 |y〉. We will refer to the first register |w〉 as the

query register and the second register |y〉 as the database register.
Quantum algorithms are assessed with respect to several different metrics: query com-

plexity, time complexity in the oracle model, and time complexity in the gate model. In the
quantum oracle model, we are given access to a unitary such as that expressed in Eq. (10)
(the “oracle”). Query complexity counts the number of queries (calls to the oracle) the
algorithm uses. Time complexity in the oracle model additionally counts the number of
primitive (two-qubit) gates, counting each query as a single gate. In the gate model, there
is no oracle; everything must be expressed in terms of primitive gates, including the query
unitary. (While the oracle model only exists in theory, it can be extremely useful, espe-
cially for proving lower bounds, and in some cases directly leads to improved gate-model
time complexities.) The time complexity is usually the number of primitive gates (i.e., the
size of the circuit)10, but can also be the depth of the circuit if parallelization is permitted.

The quantum time complexities stated in this work are in terms of the depth of quantum
circuits consisting of two-qubit gates, but with parallelization only within the parts of the
circuits that implement the queries. The classical run-times reported, however, are in a
higher-level model that neglects non-dominant logarithmic factors associated with bit-level
operations; a lower-level model, such as classical circuits consisting of binary gates, would
include such additional factors. To abstract away such implementation details, we consider
only the dominant factors when comparing classical and quantum.

There are two main ways of implementing the query in the gate model. The first can
be used when the data specified by f can be efficiently and uniformly computed classically,
in which case one can use an explicit, efficient quantum circuit computing the function
f . For example, in applying Grover’s algorithm to a problem in NP, the function f is
simply the verifier, which by definition can be efficiently computed classically, and thus
also by an efficient quantum circuit. For any classical circuit with t gates on n bits, one
can construct a reversible version (and thus suitable for quantum circuit implementation)
with just O(t1+o(1)) gates on O(n log t) bits. See [49, Ch. 6] for details. For unstructured
data, the second method, which we employ in this work, is called quantum random access
memory (QRAM) [50].

QRAM is a data structure that allows quantum queries of the form expressed by
Eq. (10). Broadly speaking there are two classes of QRAM: i) a speculative, yet plausible,
special-purpose physical hardware analogous to classical RAM [51], and ii) circuit-based
QRAM [52, 53]. In the former, the number of qubits required is linear in the database size,
O(|W | log |Y |), and query calls occur in logarithmic time O(log |W |+ log |Y |). The latter
circuit-based QRAM, on the other hand, is more flexible in terms of quantum resources
supporting trade-offs between circuit width (number of qubits) and depth (number of quan-
tum gates). Circuit QRAM can be implemented implicitly using O(log |W |+ log |Y |) total
qubits with circuit depth O(|W | log |Y |), or explicitly using O(|W | log |Y |) total qubits
and O(log |W | + log log |Y |) depth.11 Because gates can act in parallel, the total number
of primitive gates can still be linear in the database size, even with logarithmic depth.
12 Henceforth, by “QRAM” we will mean either the special-purpose hardware or explicit

10 When using circuit complexity measures, whether in the classical or quantum setting, care must be
taken that uniformity conditions are met so that complexity is not hidden in the circuit specification [48].

11 Given log |Y | copies of the index w ∈ W , each bit of the output y ∈ Y can be queried in parallel in
O(log |W |) depth. The log |Y | copies can be made (and unmade) in O(log log |Y |) depth.

12 While practical quantum computers are expected to employ significant parallelization, the circuit
model we use has no constraints on the geometry of the gates. That is, two gates can act in parallel so
long as they act on disjoint sets of qubits. Such non-local parallelization, while plausible (more so because

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 12

circuit-based variants, with linear space, logarithmic access time (circuit depth, in the lat-
ter case), and linear initialization time (but logarithmic update time). In both variants,
the contents of the database are stored explicitly in memory. In some cases we will require
this memory content to be in a superposition, as further detailed in Section 6.3.

We are primarily interested in quantum query access to a directed or undirected graph
G = (V,E), with n = |V | vertices andm = |E| edges. We consider two models for accessing
the graph: the adjacency matrix model (i.e., the “matrix” model) and the adjacency list
model (i.e., the “list” model).

Adjacency matrix model. Let A ∈ {0, 1}|V |×|V | represent the adjacency matrix of G
such that Au,v = 1 iff (u, v) ∈ E. In the matrix model, the query is defined by

UA |u, v〉 |b〉 = |u, v〉 |b⊕Au,v〉 (11)

for all u, v ∈ V and b ∈ {0, 1}. A QRAM implementing Eq. (11) can be initialized in time
O(|V |2) and queried in time O(log |V |).

Adjacency list model. Let δv be the degree of vertex v ∈ V and Nv : [δv]→ [n] be an
array with the neighbors of vertex v. Then, in the list model, we can query

UNv |i〉 |j〉 = |i〉 |j +Nv(i) mod δv〉 (12)

where i ∈ [δv], and j ∈ [δv], where Nv(i) is the ith neighbor of vertex v. For each vertex v,
a QRAM implementing Eq. (12) can be initialized in time O(δv logn) and called in time
O(logn). The overall initialization time for the graph is thus at most O(m logn), though
we will often need to initialize only the relevant portions of the model at a given point in
an algorithm, and in many cases this too can be parallelized further.

In this paper, we primarily use the list model due to its superior performance in the
application we consider.

5 Quantum-accelerated global constraint filtering
In this section we detail a quantum-accelerated filtering algorithm for domain consistency
of the alldifferent constraint. In Section 5.1.1, we review Régin’s classical filtering algo-
rithm for the alldifferent constraint. In Section 5.1.2, we explain how Dörn’s quantum
algorithm for maximum matching can be used to speed up the costliest part of Régin’s
algorithm. In Section 5.1.3, we explain how several quantum algorithms can be combined
to speed up the less costly parts of Régin’s algorithm. In Section 5.2, we explain how
Cymer’s general filtering framework allows for using quantum maximum matching to filter
other global constraints whose domain-consistency algorithms are structurally similar to
that for alldifferent.

5.1 The alldifferent constraint
The proposed quantum subroutines accelerate the classical algorithm of Régin [9] for fil-
tering the alldifferent constraint. We note that more recent work has investigated
techniques for optimizing Régin’s algorithm in practice; however, these do not improve
upon its worst-case time complexity [54, 55].

we only require it for a specific type of memory circuit) may be difficult to realize in practice.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 13

x3

x2

x1

d1

d2

d3

d4

Figure 2: Example bipartite variable-value graph G.

5.1.1 Classical filtering algorithm

The classical filtering algorithm for alldifferent begins by constructing a bipartite
variable-value graph [9], as illustrated in Figure 2. The example visualized involves vari-
ables and domains x1 ∈ D1 = {d1, d2}, x2 ∈ D2 = {d1, d2}, x3 ∈ D3 = {d2, d3, d4}. One
solution to the constraint alldifferent(x1, x2, x3) would be x1 = d1, x2 = d2, x3 = d3,
but there are other possibilities as well. A domain-consistency filtering algorithm for this
constraint seeks to remove values in each domain that cannot participate in a solution to
the constraint. For this example, x3 = d2 is an assignment that will never be feasible and
thus d2 should be pruned from the domain of x3.

Recall the notation from Section 2.1. We define the bipartite variable-value graph as
G = (X,V,E), with vertices X ∪ V and edges E. Each edge in the graph represents a
variable-value pair. In this case, V =

⋃
iDi is the set of unique domain values. Such a

graph has n = |X|+ |V | vertices and m = |E| =
∑
i |Di| ≤ |X||V | edges, with |E| ≥ |V |.

Algorithm 2: alldifferent filtering [9]
Input: Variables X and domains D
Output: False if no solution, otherwise filtered domains

1 Build G = (X,V,E)
2 M ← FindMaximumMatching(G)
3 if |M | < |X| then
4 return False
5 end
6 D′ ← D \RemoveEdges(G,M)
7 return D′

With G, the filtering of alldifferent proceeds as detailed in Algorithm 2. The
algorithm consists of two primary subroutines: FindMaximumMatching, which finds a
matching of maximum size (i.e., one with the most edges) in G, and RemoveEdges, which
identifies edges in G that can never participate in a maximum matching. If FindMaxi-
mumMatching returns a matching M whose number of edges |M | < |X|, the constraint
cannot be satisfied and the algorithm terminates. If a maximum matching exists with
|M | = |X|, the algorithm prunes domains based on the output of RemoveEdges. The
result is a set of pruned variable domains such that the constraint is domain consistent.

The FindMaximumMatching subroutine bears the brunt of the computational com-
plexity [26]. For our purposes, we only invoke this subroutine when |V | ≥ |X| (as the case
|X| > |V | is clearly infeasible). Long-standing previously state-of-the-art classical algo-
rithms for finding maximum matchings run in O(m

√
n) time; the algorithm of Hopcroft

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 14

and Karp (HK) is for bipartite graphs [56], while the algorithm of Micali and Vazirani (MV)
applies to general graphs [57, 58]. Given any initial matching, these algorithms operate in
phases, where each phase of the algorithm looks to find a matching of greater size. The
runtime of each phase is O(m), and O(

√
|M |) = O(

√
n) phases are required [56], where

|M | is the size of the maximum matching. In terms of the variable-value graph properties,
since |M | is bounded by |X|, these algorithms take O(|E|

√
|X|) time.

Following the algorithms of HK and MV, a randomized O(nω)-time algorithm [59, 60]
was proposed for bipartite graphs, where ω corresponds to the classical asymptotic cost of
matrix multiplication; the best upper bound known on ω is approximately 2.373 [61]. In
terms of the variable-value graph properties, this algorithm takes O(|X|ω−1|V |) time [60].
Alt et al. then proposed an O(n3/2√m/log n) algorithm [62]. Each of these algorithms
offer modest improvements over HK for dense graphs.

Finally, very recent work using interior-point methods and dynamic graph algorithms
have led to an Õ(m + n3/2)-time classical algorithm [63] for finding maximum match-
ings in bipartite graphs, offering the first significant improvement over HK. The algorithm
leverages fast linear system solvers to provide near-linear asymptotic complexity for mod-
erately dense graphs. In terms of the variable-value graph properties, with n = O(|V |),
their algorithm runs in Õ(|E|+ |V |3/2) time.

In order to remove edges which participate in no maximum matching, and thus cannot
satisfy the constraint, RemoveEdges finds strongly connected components (SCCs) in a
directed transformation of G using Tarjan’s O(n+m) algorithm [64]. While this subroutine
is not the dominant contribution to the computational cost of alldifferent filtering, its
acceleration can still be valuable in practice.

In the remainder of this section we provide details for the FindMaximumMatching
and RemoveEdges subroutines that accelerate the filtering of the alldifferent con-
straint. For the former, we summarize existing quantum algorithms for finding maximum
matchings in graphs, noting the complexity of the state of the art. For the latter, we
combine a number of quantum graph algorithms, including an adaptation of work that
identified strong connectivity in graphs [35], into a quantum subroutine that improves over
the classical algorithm in some cases.

5.1.2 Subroutine: Finding a maximum matching

The essence of a quantum-accelerated filtering algorithm for alldifferent is simple: use
a quantum algorithm to solve the maximum matching problem. Recent work proposed a
series of algorithms for finding maximum matchings in the quantum query model [40, 13].
To the authors’ knowledge, and excluding an earlier version of this work [18], these results
have never been linked to accelerating global constraint filtering in CP.

In the list model (see Section 4), an initially proposed quantum algorithm is capable
of finding maximum matchings in O(n

√
m+ n log2 n) time [40], while a second, improved

algorithm runs in O(n
√
m log2 n) time [13].13 The latter algorithm, proposed by Dörn,

improves over both existing deterministic and randomized algorithms for the majority of
parameter values, and follows the classical MV algorithm for finding maximum matchings
in general graphs [57], but accelerates its primary subroutines with quantum search.

In Dörn’s time-complexity result, the first log factor is due to repetitions of quantum
search required to produce an overall constant success probability bound14 for the algo-
rithm [13]. Each individual instance of quantum search may provide an incorrect answer

13 It is known that the quantum query complexity must be Ω(n3/2), even for bipartite graphs [34, 39].
14 By “success probability” we mean the probability of the algorithm returning a correct answer.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 15

x3

x2

x1

d1

d2

d3

d4

Figure 3: Directed graph GM , a transformation of the variable-value graph G. Bold arcs indicate
matching M , with cardinality |X|. Right-facing edges are those in M . Left-facing edges are those in
G \M . In this graph, d3 is an unmatched vertex.

with a constant probability [14], and the overall algorithm uses poly(n) quantum searches.
To ensure the probability of the overall algorithm producing an incorrect answer is less
than O(1/poly(n)), each instance of quantum search is repeated O(logn) times for a suc-
cess probability of at least 1 − O(1/poly(n)). The implications of these probabilties are
discussed more in the context of backtracking search in Section 6.1. The second log factor
is due to the cost of the (QRAM) queries, as discussed previously in Section 4, and other
low-level implementation costs.

As in HK, Dörn’s algorithm for bipartite graphs consists of O(
√
|X|) phases, each of

which takes O(
√
nm) = O(

√
|V ||E|) time. Thus, in terms of the variable-value graph

properties, the time complexity of Dörn’s algorithm is O(
√
|X||V ||E| log2 |V |), for a con-

stant Ω(1) success probability [13]. This indicates an improvement by a factor on the order
of
√
|E|/|V | over HK and MV, up to polylogarithmic terms. A similar analysis yields an

improvement by a factor on the order of
√
|X|2ω−3|V |/|E| over the randomized matrix

multiplication algorithm discussed above.
Dörn’s algorithm also offers an improvement over Brand et al.’s interior-point-based

method (IPM) [63] for the regime where |E| = O(|V |3/2), yielding an improvement factor
on the order of |V |/

√
|X||E| and up to polylogarithmic terms. Within this regime, when

|X| = O(
√
|V |) there is always an improvement (i.e., the improvement factor is ≥ 1) while

|X| = Ω(
√
|V |) yields an improvement only if |X||E| = O(|V |2).

A quantum algorithm for maximum bipartite matching with query complexity O(n3/4√m)
in the list model is shown in [41], with the same complexity recently obtained for general
graphs in [42]. In each case, it remains an open problem to obtain similarly improved time
complexities; see, e.g., [42, Sec. 4].

In addition to accelerating the filtering of alldifferent, Dörn’s algorithm (and any
improved quantum algorithms of the future) for finding maximum matchings [13] can play
a crucial role in the acceleration of domain-consistency algorithms for a broader family of
global constraints, as discussed in Section 5.2.

5.1.3 Subroutine: Removing edges

If a maximum matching is found such that |M | = |X|, Algorithm 2 proceeds to initiate
the RemoveEdges subroutine. The subroutine leverages properties formulated by Berge
[65] that describe necessary and sufficient conditions for an edge to be involved in some
maximum matching. If an edge does not participate in any maximum matching, the
edge can be pruned. Instead of applying Berge’s conditions directly, the problem has been
previously translated into a search for edges in directed simple paths and strongly connected
components (SCCs) in a directed transformation of the graph [9, 26]. We describe the main

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 16

Algorithm 3: RemoveEdges(G, M)
Input: Bipartite graph G = (X,V,E) and matching M
Output: Set of edges to prune

1 GM ← DirectGraph(G,M)
2 Eused ← FindSimplePaths(GM)
3 S ← FindSCC(GM)
4 return IdentifyEdges(G,M,Eused,S)

steps of the RemoveEdges subroutine, detailed by Algorithm 3, as follows.
The input to the RemoveEdges subroutine is the variable-value graph G and a match-

ing M . In DirectGraph, the edges in G are directed depending upon whether or not
they are in the matching M , producing directed graph GM . Edges in the matching are
directed from variables to values (“right-facing”) and the remaining edges from values to
variables (“left-facing”), as shown in Figure 3.

Using this graph, FindSimplePaths is used to identify all edges reachable from un-
matched vertices, i.e., those not involved in the matching M . This is achieved by a simul-
taneous breadth-first search (BFS) from the unmatched vertices, where any edge traversed
is marked as “used”. The output of FindSimplePaths is a set Eused of used edges, and
the time complexity is Θ(|Eused|); in the worst case, |Eused| = Ω(m), but it is typically
much smaller. In the example of Figure 3, edges (d3, x3) and (x3, d4) will be explored by
the BFS and thus marked “used”. These are then added to set Eused.

Definition 5.1 (Strongly connected component (SCC)). A strongly connected component
of a directed graph G is a maximal set of vertices S such that for every pair of vertices
u, v ∈ S, there is a directed path from u to v and from v to u.

Next, FindSCC is used to find SCCs in GM . Any edge in an SCC is in some maximum
matching and cannot be pruned [9]. Tarjan’s algorithm can be used to find SCCs with
time complexity O(n + m) [26, 64]. In the example of Figure 3, vertices {x1, x2, d1, d2}
form an SCC while the remaining vertices form trivial SCCs on their own. The output of
FindSCC provides a mapping S : X ∪ V → {1, . . . , Ns} from vertices to the SCC they
belong to, where Ns is the number of SCCs in GM .

Finally, IdentifyEdges is used to remove any edges i) not in M , ii) not in Eused,
and iii) not connecting vertices in an SCC. This step has time complexity O(m) as it
iterates over all edges in GM . In our running example of Figure 3, only edge (x3, d2) will
be removed, corresponding to the value d2 being pruned from the domain of variable x3.

To summarize, the classical implementation of RemoveEdges has time complexity
O(n + m) from the lower-level subroutines FindSimplePaths, FindSCC, and Identi-
fyEdges. In terms of the variable-value graph properties, this is O(|E|), since |E| ≥ |V |.
Though FindSimplePaths is already asymptotically optimal in the classical case, as the
run-time is linear in the size |Eused| of its output, the remaining subroutines can be ac-
celerated using quantum search. Specifically, our proposed quantum algorithm improves
the time complexity of RemoveEdges to Õ

(
|Eused|+

√
|V ||E|+

√
|E||R|

)
(where R is

the set of edges that are removed). In the worst case, and up to logarithmic factors, this
matches the classical complexity of O(|E|), but in the best case, as discussed below, a√
|E|/|V | improvement factor can be obtained. In the remainder of this section, we de-

scribe how to achieve this. Our approach uses a quantum analog of Tarjan’s algorithm,
Q-FindSCC, as detailed in Appendix A.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 17

Initialization. Let M(v) be the vertex adjacent to vertex v in matching M , where
M(v) = ∅ indicates v is not in the matching. Let δM,v be the out-degree of v and NM,v(i)
the ith out-neighbor of v in GM . To use Q-FindSCC, we need to provide quantum access
to GM . Specifically, we need to provide access to

UNM,v
|i〉 |0〉 7→ |i〉 |NM,v(i)〉 , (13)

for all vertices v ∈ X ∪ V . For variable vertices v ∈ X, δM,v = 1, and so constructing
UNM,v

is trivial. However, whenever it is called as part of a search, we can simply return
the appropriate value classically15. For unmatched value vertices v ∈ V , UNM,v

= UNv ; i.e.,
it is the same as that for the undirected graph G. For matched value vertices v ∈ V , δM,v =
δv − 1, where δv is the degree of v in the undirected graph G. UNM,v

can be implemented
by calling UNv and then adding a flag that indicates a null value when Nm,v(i) = M(v).
The quantum search routines that call UNM,v

can be easily modified to check for this flag.
For each vertex v, implementing UNM,v

in the above ways uses O(log |V |) overhead on top
of the potential call to UNv (see Section 4).

Quantum SCC finding. Existing work has produced quantum algorithms for deter-
mining if a graph is strongly connected [35], noting that an adaptation of the approach
can find the SCCs. In Appendix A we describe such an adaptation. We outline a quantum
analog of Tarjan’s algorithm, Q-FindSCC, which can output the SCCs of a directed graph
with time complexity O(

√
nm log2 n), when given quantum access to the graph, as just

described (or O(
√
|V ||E| log2 |V |) in terms of the properties of G). The log factors come

from requiring a constant success probability and low-level implementation details (includ-
ing QRAM queries), as discussed in Section 5.1.2 for the maximum matching algorithms.
In the next stage, we will need quantum access to the components S, from a unitary US ;
see Appendix A. This can be done by recording them in QRAM during the execution of
Q-FindSCC without changing the time complexity.

Finding edges. Finally, we describe how to remove edges with time complexityO(
√
|E||R|)

with Q-IdentifyEdges, where R is the set of edges that are removed. This procedure
takes as input the set of unitaries {UNv}v and the unitary US . The general idea is to
perform a quantum search over the |E| edges in G. The time complexity of the procedure
is O(

√
|E||R| log2 |V |), even in the case when |R| is unknown a priori [66].

Recall that we wish to remove edges that are: i) not in M , ii) not in Eused, and iii) not
connecting vertices in an SCC. We proceed by searching over the edges incident to variable
vertices v ∈ X. For each v and i ∈ [δv], we want to remove the incident edge {v,Nv(i)} iff
(S(v) 6= S(Nv(i)))∧(Nv(i) 6= M(v))∧({v,Nv(i)} /∈ Eused). Given quantum access to S, Nv

and Eused, this can be computed in log(|V |) time. Note, as with the matching, QRAM for
quantum access to Eused can be initialized during the runtime of FindSimplePaths as
edges are discovered, without adding to the complexity of RemoveEdges.

If there are rv ≤ δv edges to be removed from the search over vertex v, the time
complexity is Õ(

√
rvδv) [66, 67]. Repeating this for each v gives an aggregate time com-

plexity of O(
√
|E||R| log2 |V |) by the Cauchy-Schwarz inequality, using

∑
v rv = |R| and∑

v δv = |E|.

15 We assume here that every variable vertex v ∈ X is matched in M , which will always be the case
when RemoveEdges is used in alldifferent filtering. When that’s not the case, UNM,v is even simpler:
δM,v = 0.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 18

Analysis. Combining the above with the classical FindSimplePaths gives a time com-
plexity of Õ

(
|Eused|+

√
|V ||E|+

√
|E||R|

)
for a quantum analog of RemoveEdges. In

the worst case this is Õ(|E|), matching the classical complexity (up to logarithmic factors).
In cases where there are |R| = O(|V |) edges to remove, and |Eused| = O(

√
|V ||E|), our

quantum approach has time complexity Õ(
√
|V ||E|), providing a

√
|E|/|V | improvement

(up to polylogarithmic factors) over the classical run time of O(|E|).

5.2 Generalizing quantum filtering
As detailed in the previous section, filtering for the alldifferent constraint consists of
a feasibility check followed by a pruning step to enforce domain consistency. The former
is achieved by finding a maximum matching in a bipartite graph representation of the
constraint, while the latter uses a combination of breadth-first and depth-first searches to
look for SCCs to enable the pruning of edges from the graph. Other global constraints with
a similar structure can also be accelerated using quantum subroutines. Indeed, the need
to find matchings in graphs is a bottleneck for many global constraint filtering algorithms.
The global cardinality constraint (gcc), for example, is another such constraint [11].

Definition 5.2 (gcc constraint). Given variablesX = (x1, . . . , x|X|), values V = (v1, . . . , v|V |),
and cardinality bounds Γ = (γ1, . . . , γ|V |), where each γi ∈ Γ is defined by an interval
[`i, ui], the constraint gcc(X,V,Γ) requires that value vi take place in the solution be-
tween `i and ui times, inclusively.

The gcc constraint is commonly used in scheduling, rostering, and timetabling prob-
lems [11]. Our previous work shows that the domain-consistency algorithm for gcc can
be accelerated with quantum algorithms in a fashion similar to that for alldifferent
[18]. Beyond alldifferent and gcc, however, there are other global constraints whose
domain-consistency algorithms consist of finding maximum matchings and SCCs in bipar-
tite graphs, such as the alldifferent_except_0 constraint.

Definition 5.3 (alldifferent_except_0 constraint). Given variablesX = (x1, . . . , x|X|),
alldifferent_except_0(x1, . . . , x|X|) requires that all of the variables in its scope not
assigned a value of 0 to take on different values (i.e., in a solution to the constraint,
xi 6= xj ,∀i 6= j ∈ {1, . . . , k} where xi 6= 0 ∧ xj 6= 0).

In this case, the variable-value graph is constructed such that there are additional
vertices on the value-side of the graph allowing multiple variables assigned to a value of
0 to participate in a maximum matching and thus satisfy the constraint. This variation
of alldifferent is often useful in models that require difference among a subset of the
variables that is unknown a priori.

The work of Cymer [10, 68] provides a powerful mechanism for extending our results
beyond alldifferent and gcc. Their initial work details a generic filtering algorithm
incorporating the Dulmage-Mendelsohn (DM) canonical decomposition [69] for global con-
straints whose domain-consistency algorithms consist of finding maximum matchings in
bipartite graphs, followed by a subsequent linear-time step [10]. Given a bipartite graph
associated with the constraint, their general filtering mechanism has two main steps: find-
ing a maximum matching and computing the DG canonical decomposition. As with Régin’s
algorithm for alldifferent, their generic algorithm is dominated by the complexity of
finding maximum matchings in bipartite graphs, as computing the DM decomposition can
be done in linear time [10]. It follows, then, that any global constraint that can be made
domain consistent by their algorithm can also be accelerated, with respect to worst-case

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 19

time complexity, by the quantum algorithm for finding maximum matchings, and the as-
sociated data structures, outlined in the previous section of this paper. In addition to
alldifferent, gcc, and alldifferent_except_0, Cymer shows that their algorithm can
be used for other global constraints including inverse, same, and usedby, as detailed in
Appendix B. See [10] for the full list of thirteen global constraints considered.

In subsequent work [68], Cymer proposes a generic filtering mechanism for global con-
straints whose domain-consistency algorithms are expressed over general graphs, incorpo-
rating the Gallai-Edmonds decomposition [70]. Similar to the bipartite case, maximum
and optimal-degree matchings play an important role in this algorithm. Given that the
quantum algorithm for finding maximum matchings in our approach is applicable to gen-
eral graphs [13], quantum filtering could accelerate aspects of the filtering for these families
of constraints as well. In contrast to Cymer’s DM-based algorithm, however, it is unclear
as to whether quantum computing would improve on worst-case time complexity since
finding matchings in their Gallai-Edmonds decomposition algorithm is not necessarily the
dominating complexity term.

6 Quantum-accelerated branch-and-infer search
Recall that the constraint programming (CP) approach to solving a CSP is to augment
backtracking search with logical inference. In the previous section, we showed how to
accelerate inference with quantum processing. In this section, we focus on using quantum
processing to accelerate branch-and-infer search. In Section 6.1, we detail how the quantum
subroutines for inference described above can be integrated into an otherwise entirely
classical backtracking search. In Section 6.2, we review existing quantum algorithms for
backtracking search and introduce hybrid variants of quantum backtracking search that
interpolate between the fully classical and fully quantum cases. Finally, in Section 6.3, we
show how these quantum algorithms for backtracking can be applied to CP, including how
to integrate quantum filtering into quantum backtracking search algorithms to obtain a
fully quantum branch-and-infer search algorithm.

6.1 Classical backtracking with quantum-accelerated inference
Integrating quantum filtering algorithms within a classical backtracking search is the most
straightforward of the frameworks we propose, as well as potentially the earliest to be
implementable on quantum devices with some degree of fault-tolerance since it requires
the fewest quantum resources. The high level idea is to use a classical processor to manage
the tree search and a quantum co-processor to solve global constraint filtering subproblems.
In the context of Algorithm 1, this would involve replacing some (or all) of the FilterC
algorithms with quantum analogs (i.e., using quantum alldifferent filtering instead of
the classical algorithm).

Recall that our quantum subroutines require quantum access to their inputs. For sim-
plicity, we assume that the contents of the QRAM can be prepared classically using the
same low-level encoding before being loaded into the QRAM; in this way, any overhead
from classical memory calls is exactly the same regardless of how the filtering is done.
Quantum FindMaximumMatching, for example, requires quantum access to the bipar-
tite variable-value graph G, which we supposed is performed using QRAM, as discussed
in Section 5.1.2. For the purposes of our classical backtracking approach with quantum-
accelerated inference, it suffices to use a single QRAM capable of holding the bipartite
variable-value graph for the most memory-intensive alldifferent constraint at the root

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 20

of the tree (where it is largest). This QRAM can then be initialized from scratch for each
filtering subproblem without impacting the asymptotic complexity of the quantum sub-
routine.16 We can also imagine a more sophisticated implementation where the QRAM is
updated to reflect removed edges as the tree is traversed, instead of re-initializing it from
scratch each time. We note both approaches result in the same asymptotic complexity.

Similarly, the subroutine Q-FindSCC requires quantum access to the directed graph
GM . As discussed in Section 5.1.3 the QRAM for G (used by quantum FindMaximum-
Matching) can be converted to one for GM with negligible overhead. The subroutine
Q-IdentifyEdges requires quantum access to the strongly connected components S re-
turned by Q-FindSCC and the used edges Eused returned by FindSimplePaths; the
QRAM for these can be initialized during the course of these prior subroutines. Again,
only one QRAM is needed for each, and can be re-initialized for each iteration of filtering.

Given the probabilistic nature of the quantum algorithms we employ, their integration
within the CP search must be done with care. Recall from Section 5.1.2 that each of the
quantum subroutines proposed for alldifferent filtering involves a polynomial number
of quantum searches, where each instance of quantum search yields an incorrect answer
with a probability bounded above by a constant; to ensure the overall success probability
of the subroutines is bounded by a constant, each of the quantum searches is repeated
O(logn) times. While this repetition yields a bounded-error algorithm for a single instance
of filtering, in a tree search the filtering algorithms are called (potentially exponentially)
many times, often more than once per node in the search. The repetitions necessary
to ensure a constant overall success probability for an exponential number of quantum
searches could overwhelm any quantum speedups. With this in mind, we propose two
approaches for integrating quantum filtering in a classical tree search: i) an exact method,
where quantum subroutines with a certain property can be integrated without sacrificing
the completeness of the search and ii) a bounded-error method.

6.1.1 Exact method

Quantum subroutines augmented to return an explicit failure indicator (e.g., a boolean
flag that tells us whether or not the algorithm has succeeded) can be used in a tree search
algorithm that requires perfect completeness (i.e., an exact tree search) with negligible
overhead. To illustrate this, suppose we have such a quantum algorithm and a classical
algorithm for the same problem (e.g., finding a maximum matching). Let c(n) = poly(n)
be the runtime of the classical algorithm, which always succeeds, and q(n, p) be the run-
time of the quantum algorithm with failure rate p, which we are free to choose.17 Suppose
now that we run the quantum algorithm for p = o(1/c(n)); if it fails (as noted by the
failure indicator), we then run the classical algorithm. This is a Las Vegas algorithm; it
always succeeds, but its runtime varies probabilistically. The expected runtime is then
q(n, o(1/c(n))) + p · c(n) = q(n, 1/poly(n)) + o(1). That is, the average runtime is only
negligibly more than running the quantum algorithm for failure rate at most inverse poly-
nomial.

Of course, the above result is only beneficial to us when the quantum algorithm offers
a speedup over its classical counterpart. While we can often design quantum subroutines

16 Recall that initializing the QRAM for bipartite variable-value graph G takes time on the order of the
number of edges in G.

17 Generally, if we have a quantum algorithm that succeeds with constant probability, we can get inverse
polynomial failure probability with O(logn) repetitions, though for some algorithms such as quantum
FindMaximumMatching this additional logarithmic factor is not needed.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 21

that offer such speedups, augmenting them to include the required failure indicator without
impacting asymptotic runtimes is not always possible. To illustrate this point, consider
the two subroutines in our quantum filtering algorithm for alldifferent, as detailed in
Section 5, in turn.

The quantum FindMaximumMatching subroutine can be extended to include the
required failure indicator with the same complexity scaling reported in Section 5.1.2. The
failure rate of this subroutine, as previously stated, is already polynomially small, and a
further reduction in failure rate to a smaller polynomial entails only changing the constant
factor absorbed by the asymptotic notation. To construct the required failure indicator,
we must check whether or not the subroutine returned a maximum matching. In all cases,
the subroutine as formulated returns some set of edges. In linear time, as we explain, we
can check whether these edges are a maximum matching and set the failure indicator to
“true” if not. If the returned edges are a maximum matching, then in linear time we can
construct a minimum vertex cover [71] of the same size. If we follow this constructive
procedure and the resulting vertex cover is larger than the matching, then we know it is
not maximum and we set the failure indicator to “true”. Otherwise, we confidently return
the maximum matching and a failure indicator of “false”.

On the other hand, we cannot efficiently construct a failure indicator for the quantum
RemoveEdges subroutine. It could return an incorrect edge to remove if Q-FindSCC
returns an invalid set of SCCs. Unlike verifying a maximum matching, it is not possible to
classically check whether the SCCs returned are correct without overwhelming the quantum
speedup. As a result, this subroutine cannot be advantageously incorporated into an exact
tree search approach.

Our quantum alldifferent filtering algorithm for an exact tree search implementa-
tion, then, would consist of both quantum and classical FindMaximumMatching sub-
routines and a classical RemoveEdges subroutine. A similar analysis can be conducted
for the subroutines of other global constraint filtering algorithms.

6.1.2 Bounded-error and heuristic methods

Alternatively, suppose we permit the overall tree search to fail (i.e., not find a solution to
the CSP if one exists) with some constant probability, and we wish to use all quantum
subroutines available to us to maximize the speedup achieved at each node. Since, in
this case, the output of some quantum subroutines (i.e., quantum RemoveEdges) is not
efficiently verifiable classically, we would would need an approach that is robust to errors.

To achieve a constant success probability for the overall tree search, we can restrict
the search to calling our quantum subroutines a polynomial number of times; in this case
it suffices to have each subroutine fail with probability at most inverse polynomial, which
introduces at most O(logn) overhead, as discussed above. We can also, for example, ensure
that the quantum subroutines are invoked at earlier nodes in the tree which typically repre-
sent larger subproblems and will stand to benefit from quantum speedups the most. After
some predetermined polynomially bounded threshold of calls to the quantum subroutines,
the tree search transitions to using classical filtering only.

A final “heuristic mode” approach is to always use the quantum subroutines regardless
of the size of the tree without stringent guarantees on the overall success probability. In
this case, the effect of subroutine failures on the overall tree search is strongly dependent on
the particular tree search and filtering algorithms used. For filtering algorithms in which
the only failure mode is not pruning a domain value that could have been pruned, the tree
search will remain complete. However, the resulting tree may end up larger than if the
filtering succeeded without failure (i.e., pruned all removable values).

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 22

6.2 Quantum-accelerated backtracking
In this section we detail quantum-accelerated approaches to backtracking search. We
begin by reviewing existing quantum backtracking search algorithms from the literature.
Then, we present variations of these algorithms that perform quantum tree search over
subtrees of the full tree, using fewer quantum resources at the expense of a smaller speedup.
In Section 6.3 we will incorporate inference into the backtracking algorithms to obtain
quantum branch-and-infer search algorithms.

Following existing work [15], the results in this section assume the existence of a classical
backtracking algorithm A that finds a solution to the CSP or determines that none exists.
This algorithm implicitly defines a tree T that contains T vertices and has depth L. As
before, this classical backtracking algorithm is assumed to traverse the tree with a depth-
first search, where the ordering of each node’s children is determined by A. Further, we
let TUB and LUB represent (efficiently calculable from the CSP itself) upper bounds on
the number of nodes in and depth of T , respectively. Finally, we let TA be the number
of nodes actually explored by A in finding a single solution to the CSP (or proving that
none exists). We report the complexity of quantum backtracking algorithms as a function
of these parameters; the full complexity includes the cost of implementing the per-node
procedures, as detailed in Section 6.3.

6.2.1 Background

In quantum tree search, we are given quantum access to operators that locally define a tree
(i.e., that specify each node’s children) and a predicate that evaluates a node. The goal
can be i) to determine if the tree contains a marked node, i.e., one for which the predicate
value is 1 (indicating a solution to the CSP); ii) to find a marked node, if one exists; or
iii) to find all marked nodes. While the methods described here apply in a general setting,
we will be concerned with their use to search the tree defined by a given backtracking
procedure, as described in Section 2.2. We discuss implementation of the node operators
in the context of CP in Section 6.3.2.

Montanaro [15] (building off of Belovs [72]) gave a quantum algorithm to determine
if a search tree T contains a marked node in Õ(

√
TUBLUB) queries to the operators that

locally define the tree, and to find such a node in Õ(
√
TL3) queries (or Õ(

√
TL) when

there’s a promise of only one marked node). Jarret and Wan (JW) [16] extended and
improved the algorithm to find a marked node in Õ(

√
TL) queries in general. (Their query

complexity is actually tighter when expressed in terms of the effective resistance of the
tree, which is always upper bounded by the depth.) Ambainis and Kokainis (AK) [47]
gave a tree size estimation algorithm that, together with Montanaro’s algorithm, yields an
algorithm to find a marked node in Õ(

√
TAL3) queries. That is, with a small overhead,

AK ensures that the quantum backtracking algorithm explores only as much of the tree as
the classical algorithm A would. TA, the actual number of nodes explored by A, can be
much smaller than TUB for two reasons. First, the upper bound TUB that we can efficiently
calculate before starting the tree search may be much larger than the size T of the tree,
especially when A uses inference. (Whether we have such a bound or not is irrelevant when
actually finding a marked vertex, because we can try exponentially increasing values TUB,
thereby introducing at most a factor logarithmic in TUB.) Second, the classical algorithm
A can stop when it finds the first solution, so the number of nodes TA it explores can
be much smaller than the total number of nodes T in the tree when it is not required to
find all solutions. While AK’s and JW’s versions have better scaling than Montanaro’s
with respect to the number of nodes and depth, they involve more complicated procedures

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 23

that can significantly increase the constant factors and degree of the logarithmic ones; a
practical implementation would need to take this into account. Nevertheless, the quantum
parts of all three variants are mostly the same, and so improvements in implementation
for, say, Montanaro’s algorithm would likely also apply to the the extensions.

The foundation of these quantum backtracking algorithms is a quantum walk operator
defined as follows (see e.g. [15, Sec. 2]). For each vertex s (with children s′) of the tree
with root r and any α > 0, let

|ψs(α)〉 ∝
{
|s〉+

√
α
∑
s′←s |s′〉 , if s = r,

|s〉+
∑
s′←s |s′〉 , if s 6= r,

(14)

where the summation
∑
s′←s is over all children of s. Define a walk operator that reflects

about the subspace perpendicular to |ψs(α)〉 when s is not marked:

Ws(α) =
{
I, if s is marked,
I − 2 |ψs(α)〉 〈ψs(α)| , otherwise,

(15)

where I is the identity operator. Let A be the set of vertices that are an even distance from
the root (including the root itself), and B be the set of vertices that are an odd distance
from the root. Let

WA(α) =
⊕
s∈A

Ws(α),

WB = |r〉 〈r|+
⊕
s∈B

Ws(1).
(16)

The quantum algorithms for tree search are based the spectral properties of the overall
walk unitary WBWA(α).18 Specifically, if there is at least one marked node, then the
root |r〉 has non-trivial overlap with a 1-eigenvector of WBWA(α); if there is no marked
node, then the root is orthogonal to the 1-eigenspace. These can be distinguished by phase
estimation on the root.

Montanaro’s algorithm for detecting whether a marked node exists is to repeatedly
perform quantum phase estimation for the operator WBWA(L), starting with the initial
state |r〉; the algorithm returns affirmatively if enough of its eigenvalues are 1. 19 Quan-
tum phase estimation of a unitary operator U to precision δ uses O(1/δ) applications of
controlled-U and O(log(1/δ)) other gates [33]. To find a marked node, we can do classical
descent on the tree, at each stage checking whether the subtree rooted at each child con-
tains a marked vertex and descending on any one that does. This multiplies the runtime
by a factor of L. Because we can check whether the output is actually a marked node,
we can do the above for TUB equal to increasing powers of 2, so that the overall runtime
depends on the actual tree size T , up to polylogarithmic factors. If there is a single marked
node, then conditioned on the estimated phase being 1, the node register is a superposi-
tion of states each of which has half its amplitude on the root and the other half uniformly
distributed over the path from the root to the marked vertex. By measuring the node
register and repeating the procedure on the subtree rooted at the output, we can get to
the marked node in O(logL) repetitions.

18 While WA and WB have the form of quantum walk operators, the algorithms described here do not
use them to perform a quantum walk in the usual sense.

19 As pointed out by [73], because the algorithm only needs to distinguish between eigenvalue 1 and
eigenvalues far from 1, the quantum Fourier transform at the end of the phase estimation can be replaced
by a Hadamard on each qubit.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 24

JW’s version proceeds similarly, except that phase estimation is run using WBWA(η̃),
where η̃ is an estimate of the effective resistance of the tree20. The procedure to estimate
η̃ consists of rounds of phase estimation (of the walk operator using the current estimate)
followed by quantum amplitude estimation (of the 1-eigenspace), which has the same re-
source requirements as the phase estimation. By using the effective resistance, the overlap
of the 1-eigenvector with the root is made to be about 1/2. The state of the node register
conditioned on the estimated phase being 1 is such that we can get to a marked node in the
same way as Montanaro’s procedure but in O(logL) repetitions for any number of marked
nodes.

The algorithm [47] of Ambainis and Kokainis for quantum tree search works by search-
ing the first τ nodes of the tree T that would be explored by a classical tree-search algo-
rithm, for exponentially increasing values of τ . For each value of τ , it does this by first
generating a path u(τ) = (u0, . . . , ul) of length l ≤ L descending from the root r = u0
that completely specifies the subtree Tτ containing the first τ nodes; the set of nodes of the
subtree Tτ specified by the path u(τ) consists of the nodes of the path itself together with
the nodes of each subtree rooted at any “earlier” sibling of any node in the path. By earlier
sibling of a node s, we mean a node s′ with the same parent as s (i.e., a sibling) that is
explored earlier by the classical algorithm. An example is shown in Fig. 4a, where the path
consists of the right-most green colored nodes at each level. Then Montanaro’s algorithm
is applied to the subtree Tτ using a successor function modified according to u(τ). Recall
that this entails performing phase estimation to precision O(1/

√
τL), including for the

final value of τ ≈ TA.
If we use JW’s algorithm in place of Montanaro’s in AK’s algorithm in order to find

a marked node within TA, then the overall resource cost is Õ(
√
TAL3) calls to the walk

operator for the original tree T to get the path u and Õ(
√
TAL) calls to the walk operator

for TA as specified by the path u. In Section 6.3.2, we explain how to implement both walk
operators for backtracking search schemes that integrate inference as in CP, but first we
discuss partial quantum search variants of the above algorithms that require fewer quantum
resources.

6.2.2 Partially quantum tree search

Resources will be constrained on quantum devices for years, likely decades, to come. Before
being able to implement the fully quantum tree search algorithms discussed in Section 6.2.1,
it will be possible to implement methods that perform quantum search over smaller subtrees
rather than over the full tree. Here, we describe two such methods.

Rennela et al. also considered hybrid classical-quantum tree searches [74]. They were
concerned with quantum algorithms bottlenecked by space constraints, and show how in
certain cases divide-and-conquer algorithms can achieve genuine quantum speedups even
with a number of qubits equal to some small fraction of the problem input size. The
essential idea is to apply the quantum algorithm to subtrees at the “bottom” of the search
tree when the subproblems are sufficiently small. In constrast, our hybrid algorithm allows
us to apply the quantum tree search algorithm over subtrees that together cover the entire
search tree, starting at the root. Unlike as with the divide-and-conquer approach, the
effectiveness of our hybrid approach does not depend on the internal structure of the tree,
but rather just its size and depth. At a high level, our hybrid approach is motivated
by the possibility that the limiting quantum resource is not space but accuracy of the

20 See [72] for the definition of effective resistance of a graph and [16] for a more detailed discussion of
its application.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 25

computation.21 Specifically, it may be possible that we can “implement” the operator
WBWA(α), in the sense of having enough qubits to run the circuit, but that the noise
level is such that phase estimation cannot be reliably performed to the precision Õ(1/

√
T)

required to search the whole tree.

Chunky quantum tree search. We present now an extension of AK’s algorithm with
which the entire tree can be explored in arbitrarily sized chunks as illustrated in Figure 4.
For simplicity, we assume all chunks are of uniform size χ. Let Tτ,τ ′ be the subtree (i.e.,
the “chunk”) of T consisting of the first τ ′ − τ nodes explored after the first τ nodes,
together with the union of the nodes on the unique path between the τ ′ nodes and the
root. Intuitively, Tτ,τ ′ is the difference between Tτ ′ and Tτ , with minimal edges added to
make it connected. As discussed in Section 6.2.1, the subtree Tτ can be uniquely specified
by a path u(τ). The subtree Tτ,τ+χ can be uniquely specified by two paths: u(τ) and
u(τ + χ). The path u(τ) can be thought of as defining Tτ by specifying a youngest child
for each node on the path. The paths u(τ) and u(τ + χ) can be thought of as defining
Tτ,τ+χ by additionally specifying an oldest and a youngest child for each node on their
shared initial subpath.

Using AK’s algorithm and for any τ , we can get the path u(τ) of length at most L
defining the subtree Tτ = T0,τ of the first τ nodes explored in T . Given paths u(τ) and
u(τ + χ), we can apply Montanaro’s or JW’s algorithm to explore the subtree Tτ,τ+χ by
modifying the walk operator.

Each chunk Tτ,τ+χ has at most χ+L nodes, and so can be explored using Õ(
√

(χ+ L)L)
calls to the walk operator for Tτ,τ+χ. Overall, the walk operator for Tτ,τ+χ uses Õ(L) more
gates relative to the walk operator for T , independent of τ and χ. Additionally, the
path u(τ + χ) can be found using AK’s algorithm using Õ(

√
(χ+ L)L3) calls to the walk

operator for Tτ,TA .
Assuming χ = Ω(L), the specification and exploration of each chunk use Õ(

√
χL3) calls

to a modified walk operator. There are dTA/χe chunks, so overall there are Õ(
√
TAL3/χ)

calls. For a single chunk (χ = TA), we get the original runtime scaling of
√
TA, and for

constant-sized chunks χ = O(1), we get the classical TA scaling. Importantly, the per-node
cost is that of the largest cost node within each chunk, which interpolates between the fully
classical and fully quantum cases.

Bounded-depth quantum tree search. An alternative way of breaking up the tree
into subtrees is to limit the quantum search by depth. That is, starting at some node
of the full search tree, we perform quantum search on the subtree rooted at that node
and containing nodes at most some distance L∗ away. This can be done by marking each
node such that i) the predicate value is 1 or ii) the predicate value is indeterminate and
the node is distance L∗ from the root (of the subtree). The outcome of each depth-L∗-
bounded quantum search is either a satisfying solution if one exists within distance L∗ of
the starting point, or the set of not-definitely-infeasible nodes at distance exactly L∗ away
from the starting point. The simplest case, L∗ = 1, is essentially Grover search over each
node’s children, which we can perform directly. Specifically, if we classically know the node
whose children we are searching over, we can classically compute its number of children
and perform a modified Grover search to find all children c that the predicate marks as

21 While in theory this limitation applies in both the NISQ and early fault-tolerant regimes, we expect
our algorithms to be effective only in the fault-tolerant regime, since they are unlikely to be successfully
implementable using NISQ devices. In the fault-tolerant regime, accuracy can be increased using more
physical qubits, which supports the consideration of accuracy as a resource.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 26

(a) T8 = T0,8

(b) T8,16

(c) T16,24

(d) T24,32

(e) T32,40

Figure 4: Visualization of chunky quantum tree search for chunks of size χ = 8. For each k = 0, . . . 4,
two subtrees are colored: Tkχ and Tkχ,(k+1)χ. Nodes in Tkχ but not Tkχ,(k+1)χ are red. Nodes in
Tkχ,(k+1) but not Tkχ are green. Nodes in both are orange. Similarly, two paths are shown. Edges
in the path defining Tkχ but not in the path defining Tkχ,(k+1)χ are red. Edges in the path defining
Tkχ,(k+1)χ but not in the path defining Tkχ are green. Edges in both paths are orange.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 27

Variable Range Role Num. qubits
l {0, . . . , L} num. of branching dlog(L+ 1)e

constraints posted
b = (b1, . . . , bL) ({∗} ∪ [B])L branches Ldlog(B + 1)e
D = (D1, . . . , D|X|) 2D “active” domains

∑|X|
i=1 (log(|Di|+ 1) + |Di|dlog |V |e)

R = (R1, . . . , RL)
(
2E
)L

edges Rk removed L(log(m+ 1) +mdlog |V |e)
after kth branching

Table 1: Parts of our representation of a search node. For the domains, the range and number of qubits
is that of the original (largest) domains D. Each set S (e.g., Di or Rk) is stored as an integer giving
its size |S| and a list (s1, . . . , s|S|, ∗, . . .) of its entries followed by null values; the length of the list is
the maximum size of the set. The total number of qubits is Õ(Lm).

not definitely infeasible. Performing Grover search directly in this way allows us to store
much of the state classically, while restricting our attention to children not known to be
infeasible after propagation in a cheaper way. More generally, such direct Grover searches
are complicated by the generally unknown structure of the tree; see [75, 76].

6.3 Quantum-accelerated backtracking with inference
In this section we extend the ideas of the previous section to incorporate the propagation
of CP. Classically, this involves as many rounds of filtering as needed to reach a fixed point
(as exemplified in Algorithm 1). Since, in the quantum case, the propagation must be
done in superposition, the number (and sequence) of rounds of filtering must be fixed a
priori. Similarly, the circuit for each filtering algorithm must be valid when applied to
any corresponding value-variable graph throughout the tree; this means that the effective
per-node filtering cost is that of the worst case.

6.3.1 Representation of tree nodes for CP

Before getting to how to implement the walk operators, we will start by specifying one
way of representing the nodes of the search tree in memory. Concretely, we will represent
each node of the search tree by the tuple (l,b,D,R), where l ∈ {0, . . . , L} is the number of
branching constraints posted, b ∈ ({∗} ∪ [B])L is the history of branching decisions (where
B is an upper bound on the number of children of any node in the tree), D = (D1, . . . , D|X|)
denotes the domains (before filtering), and R = (R1, . . . , RL) denotes the whole history
of removed edges, where Rl′ is the set of edges removed from the domains by the l′-th
branching constraint. Table 1 contains a more detailed description of how exactly this are
represented at a low level, and how many qubits they require.

The main requirements of the representation of the search node are that each node
is uniquely identified and that each node contains all the information necessary get to
that node’s unique parent. In general, different nodes in the search tree can have the
same domains, so the domains alone are not enough. The history b of branching decisions
alone suffices in this sense, but we include the rest for ease of exposition and efficiency of
computation. In a slight abuse of notation, for two tuples A = (A1, . . .),B = (B1, . . .) of
sets (e.g. D or R), we will write the difference as A \ B =

⋃
iAi \Bi.

The root of the full search tree has l = 0, b = (∗, . . .), D set to its initial value, and
R = (∅, . . .), but we will also consider searches of subtrees rooted at other nodes. The

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 28

children of a non-leaf node

(l, (. . . , bl, ∗, . . .)D, (. . . , Rl, ∅, . . .)) (17)

are the nodes

{(l + 1, (. . . , bl, c, . . .) , hc(Fd(D)), (. . . , Rl,D \ hc(Fd(D)), . . .)}c∈[hnu(D)]. (18)

Recall that Fd(D) ∈ 2D is the filtered domains and Fp(D) ∈ {∗, 0, 1} indicates the known
feasibility of the filtered domains.

This definition of the search tree is not unique, and several choices were made for ease
of exposition. Different representations of the nodes make different space-time tradeoffs.
That is, more consise representations can save space at the cost of requiring more computa-
tion. A quantitative balance of these tradeoffs would depend on detailed knowledge of the
hardware (including any underlying fault-tolerance scheme), of the choices of the heuristic
and propagation functions, and of the class of instances. Our definition also allows in the
search tree nodes known to be infeasible (as does [73]), whereas in Montanaro’s original
formulation such a node was excluded when enumerating the children of its ostensible
parent. While including infeasible leaves in this way increases the number of nodes in the
tree, it does not increase the number of times the filter operator (analogous to Montanaro’s
predicate) is called; in Montanaro’s formulation, the predicate is called for each child in
sequence, so that overall it is called a number of times proportional to the number of nodes
in the inclusive tree.

6.3.2 Implementation of walk operators for CP

Both operatorsWA(α) andWB can be built from the following primitives: the propagation
operator

UF |D, ∅〉 |∗〉 = |Fd(D),D \ Fd(D)〉 |Fp(D)〉 , (19)

and the branching operator

Ubr,A(α) |0, ∗,D, R〉

= (1 + hnu (D)α)−1/2

|0, ∗,D, R〉+
√
α

hnu(D)∑
c=1

|1, c, hc(D), R ∪ (D \ hc(D))〉

 , (20)

Ubr,A(α) |l, ∗,D, R〉

even l>0= (1 + hnu (D))−1/2
(
|l, ∗,D,R〉+

hnu(D)∑
c=1

|l + 1, c, hc(D), R ∪ (D \ hc(D))〉
)
, (21)

and Ubr,B is defined as Ubr,A for odd l. By keeping track of the removed edges, we en-
sure that UF is invertible. In other words, while additional ancillas may be needed to
compute UF , they can be returned to their initial state by the end. If we have a classical
circuit to compute F , then the quantum circuit for UF is approximately the same size. In
Section 6.3.3, we discuss how the quantum-accelerated version of the filter operator UF
can be integrated into the quantum tree search. Note that because we must perform the
propagation in superposition, the cost per node is equal to the maximum over all nodes,
rather than the average as in the classical case, where propagation at some nodes may be
quicker than at others. This is the same whether we use a reversible version of a classical
circuit, or a modification of quantum-accelerated filtering as described in Section 6.3.3.
The implementation of the branching operator Ubr will depend on the exact choice of the

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 29

NB: For a generalized controlled gate |x〉 |0〉 7→ |x〉Ux |f(x)〉, we use a triangle to indicate the control
register(s) |x〉; filled and unfilled circles have their usual meaning of binary controls and negated controls,
respectively.

l

∗
D
∅
∗
b

R

UF

U−1
br,A

−1

0

−Z

*

Ubr,A

U−1
F

swap {b2bl/2c+1, R2bl/2c+1}

w/ resp. anc.

(a) Circuit implementing WA(α). The bottom line of l corresponds to the least significant bit indicating the
parity of l. The first gate swaps the R2bl/2c+1 and the corresponding ancilla; the second does the same for
b2bl/2c+1. The central gates apply −Z on the least-significant bit for predicate value β = ∗ and a global sign
flip for predicate value β = 0.

l

∗
0

D
∅

Uhnu

e−iY θ

Uunif

Uh−1
nu

Uch

(b) Circuit implementing Ubr,A. In the second gate, θ = tan−1√αhnu for 2bl/2c = 0 and θ = tan−1√ hnu
otherwise. For example, when 2bl/2c 6= 0, the second gate takes |0〉 to (the normalization of) (|0〉+ hnu |1〉).
Circuit is only valid for even l.

0

b1

b2

b3...

bl̃−1

bl̃
bl̃+1

0

D
+b̃1 +b̃2 +b̃3

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

+b̃l̃ Uhnu

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

...

(c) Circuit implementing Uh̃nu . For each l ∈ [l̃] there is a gate that negates the first ancilla and adds b̃l+1 to
the second ancilla, conditioned on (bl, bl+1) = (b̃l, ∗), with the convention that bl̃+1 = 0. The first gate does
the same but with the simpler condition that b1 = ∗. The latter half of the gates reset the ancilla.

Figure 5: Circuits for walk operator and subroutines thereof. Note that 2bl/2c is obtained from l by
setting the least significant bit to zero.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 30

classical heuristic h, but below we give as an example a concrete implementation assuming
classical circuits for hnu and hch(·, c) = hc(·).

We will sketch how to implement WA(α) out of these primitives; the implementation
of WB is similar but simpler. To start, note that WA(α) acts on several subspaces inde-
pendently, each spanned by a node at some even level l and its children:

|l, (. . . , bl, ∗, . . .) ,D, (. . . , Rl, ∅, . . .)〉 (22)

and

{|l + 1, (. . . , bl, c, . . .) , hc(Fd(D)), (. . . , Rl,D \ hc(Fd(D)), . . .)〉}c∈[hnu(Fd(D))]. (23)

Suppose we add an ancilla state |β〉 for β ∈ {0, 1, ∗} and initialize it to |∗〉. If we apply UF
for even l, the children nodes are unchanged, and the parent node is transformed into

|l, (. . . , bl, ∗, . . .) , Fd(D), (. . . , Rl,D \ Fd(D), . . . ,)〉 . (24)

Let l0 be the least significant bit of l. Now applying Ubr,A(−Zl0)U−1
br,A reflects around a

state similar to the right-hand sides of Eqs. (20) and (21), except with the parent filtered.
By controlling this on the predicate value β = ∗, we ensure that the overall effect is
the identity for marked vertices. For predicate value β = 0, we apply a global sign flip
(effecting Eq. (15) for an unmarked but childless node). The circuit for this is shown
in Fig. 5a. A practical implementation of WA(α) need not use Ubr,A(α) as a black box as
above.

Now we explain how to implement the branching operator Ubr,A. Assuming classical
circuits for hnu and hch(·, c) = hc(·), we can implement the operators

Uhnu |D〉 |0〉 = |D〉 |hnu(D)〉 , (25)
Uch |∗〉 |D, R〉 = |∗〉 |D, R〉 , (26)
Uch |c〉 |D, R〉 = |c〉 |hc(D), R ∪ (D \ hc(D))〉 . (27)

We will also make use of a controlled uniform-superposition-producing operator

Uunif |0〉 |∗〉 = |0〉 |∗〉 , (28)

Uunif |i〉 |∗〉
i>0= |i〉

i∑
j=1
|j〉 . (29)

Details on how to construct Uunif can be found in [73, Sec. 4.7]. To implement the
branching operator, we use an ancilla register, initialized to 0, to compute the branches
produced by the heuristic. (The case in which a node has no children because the predicate
is true is accounted for in the circuit for Wa(α) outside the subroutine Ubr,A, by cancelling
out the branching operator with its inverse.) Then conditioned on the number of branches
hnu and whether l = 0, we produce a state proportional to |0〉 +

√
αhnu |1〉 on the least

significant bit of l. Conditioned on the least significant bit of l being 1, we then prepare
a uniform superposition over [hnu] using Uunif . We then uncompute hnu, and apply hc
according to the ancilla. The circuit for this is shown in Fig. 5b. A practical implementation
of Ubr,A(α) need not use Uhnu , Uch as black boxes as above.

AK’s algorithm has two stages. First, it generates the path u specifying the subtree Tτ
containing the first (by DFS) τ nodes of the full tree T . It does this by repeated evaluations
of a tree-size estimating procedure whose quantum part is just phase estimation of the walk
operator WBWA(L) on successive nodes of the tree, with the slight modification that no

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 31

marking is done (e.g., by conditioning the controlled phase in the middle of Fig. 5b on
predicate values {0, 1} rather than just 0). In our circuit forWA in Fig. 5a, this means just
removing the control on the central −Z gate. Second, the algorithm performs Montanaro’s
(or JW’s) algorithm for detecting or finding a marked node in the subtree Tτ using the
path u. In order to do that, we just need to modify the walk operator WBWA(α) so that
it corresponds to Tτ rather than the full tree T . We can do that as follows. Let l̃ + 1 be
the length of u. For each node ul on the path, its values of bl′ and Rl′ for all l′ ≤ l are
the same as those for nodes later in the path. (The values of bl′ and Rl′ in ul are ∗ and
∅ for l′ > l.) Let b̃ be the branching history for the last node ul̃ in the path. Define the
function

h̃nu(l,b,D) =

0, l = l̃,

b̃l+1, (b1, . . . , bl) = (b̃l, . . . , b̃l),
hnu(D), o.w.,

(30)

which gives the number of branching decisions from a node in Tτ . (We leave the dependence,
via b̃ and l̃, on the path u implicit, because we know that classically.) Note that h̃nu
depends on more parts of the state than hnu. For a node not on the path, this is the same
as for T . For a node on the path, this ensures that the next node on the path (if there
is one) is the last branch in Tτ . To implement Montanaro’s algorithm on the subtree Tτ
defined by u, it suffices to replace Uhnu by

Uh̃nu
|l,b,D〉 |0〉 = |l,b,D〉 |h̃nu(l,b,D)〉 . (31)

We give an example circuit for this is in Fig. 5c. Because l is encoded in b (by the location
of the last non-zero entry thereof), the circuit depends only on (b1, . . . , bl̃+1) and D, in
addition to some ancilla qubits.

6.3.3 Incorporating quantum algorithms for filtering

We now explain how the quantum-accelerated version of the filtering operator UF can be
integrated into a fully or partially quantum tree search. There are two main considerations:
the QRAM needed as input and the possible error in the output.

We willl first address the QRAM. Our quantum algorithms require quantum access to
the variable-value graph G = (X,V,E), as specified some active domains D. Here, we
will work in the adjacency list model, but the situation is similar in the adjacency matrix
model. Let ND,v be the neighbors of vertex v in the variable-value graph implied by D.
At the lowest level, each set ND,v is represented as a list of its elements together with
a register indicating its size. For each v, there is an Õ(|ND,v|)-size, Õ(log |ND,v|)-depth
circuit implementing

|ND,v〉 |i〉 |0〉 7→ |ND,v〉 |i〉 |ND,v(i)〉 , (32)

i.e., an explicit circuit QRAM, as discussed in Section 4.
At a given tree search node, we can initialize the QRAM by implementing∑

(l,b,D,R)
ψl,b,D,R |l,b,D,R〉

⊗
v∈V
|0〉 7→

∑
(l,b,D,R)

ψl,b,D,R |l,b,D,R〉
⊗
v∈V
|ND,v〉 (33)

in Õ(m) time, where the second “QRAM” register has Õ(m) qubits. The contents of
the QRAM are then in superposition, but entangled with the node register. The filtering
algorithm can then query the graph (perhaps for a superposition over query registers |i〉) by
calling the operator in Eq. (32). There are two potential sources for further efficiency. First,

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 32

each filtering algorithm only needs access to the subgraph induced by the variables in the
corresponding constraint’s scope and their neighbors. Second, as discussed in Section 6.3.1,
the part of the node register containingD is exactly the registers |ND,v〉 for variable vertices,
so there is no need to copy them into a separate ancilla register.

Now we will address the error in the output. In Section 5, we described the quantum
filtering algorithm as a mostly classical procedure that utilizes quantum search, each time
completely measuring the quantum state before proceeding. However, as described in Ap-
pendix D, we can construct a single unitary that performs the filtering without changing
the error or runtime. Unlike as when doing classical backtracking, we cannot amortize
away the classical failsafe checks, and so there will always be some probability of failure.
Our choices then are to only use the accelerated filtering in a polynomial number of places,
or to use it everywhere without any assurance that the overall tree search will be success-
ful. We also need to formulate the filtering algorithm such that the final state (when the
algorithm is successful) is independent of the intermediate measurement results. When-
ever the filtering algorithm succeeds, it outputs the same set of edges to remove. If the
filtering is part of a classical procedure, the order of the elements in this set would not
matter. However, within the classical algorithm, we need the state |D′, R, Fp(D)〉 to be
uniquely specified at the lowest level; this can be easily achieved, for example, by storing
the domains D′ and the removed edges R as sorted lists.

7 Conclusions
In this paper, we investigate the use of quantum computing to accelerate constraint pro-
gramming (CP). We adapt recent work in quantum algorithms for graph problems and
propose quantum subroutines to accelerate the filtering of the alldifferent constraint
and other global constraints whose domain-consistency filtering problems involve finding a
maximum matching in a bipartite graph. We detail frameworks for integrating quantum-
accelerated inference algorithms within classical and quantum backtracking search schemes.
Our work highlights the potential for mutual benefit between the paradigms of quantum
computing and CP.

One avenue for future work is to investigate whether even faster quantum algorithms
for constraint filtering can be obtained by leveraging recent advances in quantum query
complexity for various graph problems [38, 41, 42]. Such query complexity improvements
suggest that further quantum speedups may be possible in terms of time complexity. Simi-
larly, advances in quantum algorithms more generally may allow speedups to be shown for
a wider variety of constraint types. A particularly promising direction for future research is
the use of quantum computers to accelerate domain-consistency algorithms posed in terms
of a Gallai-Edmonds decomposition [68] as noted in Section 5.2.

Acknowledgements
The authors are grateful for the support of the NASA Ames Research Center. K.B., J.M.,
and S.H. were supported by NASA Academic Mission Services (NAMS), contract number
NNA16BD14C. K.B. was also supported by the NASA Advanced Exploration Systems
(AES) program. B.O. was supported by a NASA Space Technology Research Fellowship
and the NSF QLCI program through grant number OMA-2016245.

Quantum circuit diagrams were made using 〈q|pic〉 [77].

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 33

References
[1] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint program-

ming. Elsevier, 2006. ISBN 9780080463803. 1, 2, 4
[2] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling:

applying constraint programming to scheduling problems, volume 39. Springer Science
& Business Media, 2001. DOI: 10.1007/978-1-4615-1479-4.

[3] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP op-
timizer for scheduling. Constraints, 23(2):210–250, 2018. DOI: 10.1007/s10601-018-
9281-x. 1, 4

[4] Peter Van Beek. Backtracking search algorithms. In Foundations of artificial intelli-
gence, volume 2, pages 85–134. Elsevier, 2006. DOI: 10.1016/S1574-6526(06)80008-8.
1, 4, 6

[5] Pascal Van Hentenryck and Laurent Michel. Constraint-based local search. MIT Press,
2009. ISBN 026251348X. 1

[6] Gustav Björdal, Jean-Noël Monette, Pierre Flener, and Justin Pearson. A constraint-
based local search backend for MiniZinc. Constraints, 20(3):325–345, 2015. DOI:
10.1007/s10601-015-9184-z. 1

[7] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume
185. IOS press, 2009. ISBN 1586039296. 1

[8] Laurence A Wolsey. Integer programming, volume 52. John Wiley & Sons, 1998. ISBN
0471283665. 1

[9] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-
1994), pages 362–367. AAAI Press, 1994. URL https://www.aaai.org/Papers/
AAAI/1994/AAAI94-055.pdf. 2, 13, 14, 16, 17

[10] Radosław Cymer. Dulmage-Mendelsohn canonical decomposition as a generic pruning
technique. Constraints, 17(3):234–272, 2012. DOI: 10.1007/s10601-012-9120-4. 19, 20,
42

[11] Claude-Guy Quimper, Alejandro López-Ortiz, Peter Van Beek, and Alexander Golyn-
ski. Improved algorithms for the global cardinality constraint. In Principles and
Practice of Constraint Programming (CP-2004), pages 542–556. Springer, 2004. DOI:
10.1007/978-3-540-30201-8_40. 19

[12] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global con-
straint catalogue: Past, present and future. Constraints, 12(1):21–62, 2007. DOI:
10.1007/s10601-006-9010-8. 2, 9

[13] Sebastian Dörn. Quantum algorithms for matching problems. Theory of Computing
Systems, 45(3):613–628, 2009. DOI: 10.1007/s00224-008-9118-x. 2, 11, 15, 16, 20

[14] Lov K Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing
(STOC-1996), pages 212–219. Association for Computing Machinery, 1996. DOI:
10.1145/237814.237866. 2, 11, 16

[15] Ashley Montanaro. Quantum-walk speedup of backtracking algorithms. Theory of
Computing, 14(15):1–24, 2018. DOI: 10.4086/toc.2018.v014a015. 2, 11, 23, 24

[16] Michael Jarret and Kianna Wan. Improved quantum backtracking algorithms us-
ing effective resistance estimates. Phys. Rev. A, 97:022337, February 2018. DOI:
10.1103/PhysRevA.97.022337. 2, 11, 23, 25

[17] Kyle E. C. Booth, Minh Do, J Christopher Beck, Eleanor Rieffel, Davide Venturelli,
and Jeremy Frank. Comparing and integrating constraint programming and temporal

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 34

https://doi.org/10.1007/978-1-4615-1479-4
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1016/S1574-6526(06)80008-8
https://doi.org/10.1007/s10601-015-9184-z
https://doi.org/10.1007/s10601-015-9184-z
https://www.aaai.org/Papers/AAAI/1994/AAAI94-055.pdf
https://www.aaai.org/Papers/AAAI/1994/AAAI94-055.pdf
https://doi.org/10.1007/s10601-012-9120-4
https://doi.org/10.1007/978-3-540-30201-8_40
https://doi.org/10.1007/978-3-540-30201-8_40
https://doi.org/10.1007/s10601-006-9010-8
https://doi.org/10.1007/s10601-006-9010-8
https://doi.org/10.1007/s00224-008-9118-x
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.97.022337

planning for quantum circuit compilation. In Proceedings of the Twenty-Eighth In-
ternational Conference on Automated Planning and Scheduling (ICAPS-2018), pages
366–374. AAAI Press, 2018. URL https://arxiv.org/abs/1803.06775. 2

[18] Kyle E. C. Booth, Bryan O’Gorman, Jeffrey Marshall, Stuart Hadfield, and Eleanor
Rieffel. Quantum-accelerated global constraint filtering. In Principles and Practice of
Constraint Programming (CP-2020), pages 72–89. Springer, 2020. DOI: 10.1007/978-
3-030-58475-7_5. 2, 15, 19

[19] Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Foundations of Ar-
tificial Intelligence, volume 2, pages 169–208. Elsevier, 2006. DOI: 10.1016/S1574-
6526(06)80010-6. 4, 8

[20] Laurent Perron. Operations research and constraint programming at Google. In
Principles and Practice of Constraint Programming (CP-2011), pages 2–2. Springer,
2011. DOI: 10.1007/978-3-642-23786-7_2. 4

[21] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language.
In Principles and Practice of Constraint Programming (CP-2007), pages 529–543.
Springer, 2007. DOI: 10.1007/978-3-540-74970-7_38. 43

[22] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode: A generic constraint
development environment, 2019. URL https://www.gecode.org.

[23] Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange,
and Kathryn Francis. Chuffed, a lazy clause generation solver, 2019. URL https:
//www.github.com/chuffed/chuffed. 4

[24] Danial Davarnia and John N Hooker. Consistency for 0–1 programming. In In-
ternational Conference on Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research (CPAIOR-2019), pages 225–240. Springer, 2019. DOI:
10.1007/978-3-030-19212-9_15. 7, 8

[25] Alan K Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):
99–118, 1977. DOI: 10.1016/0004-3702(77)90007-8. 8

[26] Willem-Jan Van Hoeve. The alldifferent constraint: A survey. arXiv:cs/0105015,
2001. URL https://arxiv.org/abs/cs/0105015. 8, 14, 16, 17

[27] Luc Mercier and Pascal Van Hentenryck. Edge finding for cumulative scheduling.
INFORMS Journal on Computing, 20(1):143–153, 2008. DOI: 10.1287/ijoc.1070.0226.
9

[28] Petr Vilím. Edge finding filtering algorithm for discrete cumulative resources in
O(kn logn). In Principles and Practice of Constraint Programming (CP-2009), pages
802–816. Springer, 2009. DOI: 10.1007/978-3-642-04244-7_62. 9

[29] Helmut Simonis. Sudoku as a constraint problem. In CP Workshop on Modelling and
Reformulating Constraint Satisfaction Problems, volume 12, pages 13–27, 2005. 9

[30] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE Trans. Fundamentals, 86(5):1052–1060,
2003. 9

[31] Robert E Bixby. A brief history of linear and mixed-integer programming computa-
tion. Documenta Mathematica, Extra Volume: Optimization Stories:107–121, 2012.
11

[32] Alessandra Di Pierro and Herbert Wiklicky. Quantum constraint programming. In
Joint Conference on Declarative Programming (APPIA-GULP-PRODE-2001), pages
113–130, 2001. 11

[33] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 35

https://arxiv.org/abs/1803.06775
https://doi.org/10.1007/978-3-030-58475-7_5
https://doi.org/10.1007/978-3-030-58475-7_5
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1007/978-3-642-23786-7_2
https://doi.org/10.1007/978-3-540-74970-7_38
https://www.gecode.org
https://www.github.com/chuffed/chuffed
https://www.github.com/chuffed/chuffed
https://doi.org/10.1007/978-3-030-19212-9_15
https://doi.org/10.1007/978-3-030-19212-9_15
https://doi.org/10.1016/0004-3702(77)90007-8
https://arxiv.org/abs/cs/0105015
https://doi.org/10.1287/ijoc.1070.0226
https://doi.org/10.1007/978-3-642-04244-7_62

algorithms revisited. Proc. R. Soc. Lond. A., 454(1969):339–354, 1998. DOI:
10.1098/rspa.1998.0164. 11, 24

[34] Aija Berzina, Andrej Dubrovsky, Rusins Freivalds, Lelde Lace, and Oksana Scegul-
naja. Quantum query complexity for some graph problems. In Theory and Prac-
tice of Computer Science (SOFSEM-2004), pages 140–150. Springer, 2004. DOI:
10.1007/978-3-540-24618-3_11. 11, 15

[35] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query
complexity of some graph problems. SIAM Journal on Computing, 35(6):1310–1328,
2006. DOI: 10.1137/050644719. 15, 18, 39

[36] Bartholomew Furrow. A panoply of quantum algorithms. Quantum Information
& Computation, 8(8):834–859, 2008. URL https://arxiv.org/abs/quant-ph/
0606127.

[37] Fuwei Cai, Satoshi Tayu, and Shuichi Ueno. On the quantum query complexity of
all-pairs shortest paths. In Proceedings of the 2007 IEICE General Conference, 2007.

[38] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complex-
ity inspired by the Elitzur-Vaidman bomb tester. In 30th Conference on Compu-
tational Complexity (CCC-2015), Leibniz International Proceedings in Informatics
(LIPIcs), pages 537–566. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.
DOI: 10.4230/LIPIcs.CCC.2015.537. 11, 33

[39] Shengyu Zhang. On the power of Ambainis lower bounds. Theoretical Computer
Science, 339(2-3):241–256, 2005. DOI: 10.1016/j.tcs.2005.01.019. 15

[40] Andris Ambainis and Robert Špalek. Quantum algorithms for matching and network
flows. In Annual Symposium on Theoretical Aspects of Computer Science (STACS-
2006), pages 172–183. Springer, 2006. DOI: 10.1007/11672142_13. 11, 15

[41] Salman Beigi and Leila Taghavi. Quantum speedup based on classical decision trees.
Quantum, 4:241, 2020. DOI: 10.22331/q-2020-03-02-241. 16, 33

[42] Shelby Kimmel and R Teal Witter. A query-efficient quantum algorithm for maximum
matching on general graphs. InWorkshop on Algorithms and Data Structures (WADS-
2021), pages 543–555. Springer, 2021. DOI: 10.1007/978-3-030-83508-8_39. 11, 16,
33

[43] Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving semidef-
inite programs. In 58th Annual Symposium on Foundations of Computer Science
(FOCS-2017), pages 415–426. IEEE, 2017. DOI: 10.1109/FOCS.2017.45. 11

[44] Joran Van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum
SDP-solvers: Better upper and lower bounds. Quantum, 4:230, 2020. DOI: 10.22331/q-
2020-02-14-230. 11

[45] Giacomo Nannicini. Fast quantum subroutines for the simplex method. In Integer
Programming and Combinatorial Optimization (IPCO-2021), pages 311–325. Springer,
2021. DOI: 10.1007/978-3-030-73879-2_22. 11

[46] Ashley Montanaro. Quantum speedup of branch-and-bound algorithms. Physical
Review Research, 2(1):013056, 2020. DOI: 10.1103/PhysRevResearch.2.013056. 11

[47] Andris Ambainis and Martins Kokainis. Quantum algorithm for tree size estimation,
with applications to backtracking and 2-player games. In Proceedings of the 49th
Annual ACM Symposium on Theory of Computing (STOC-2017), pages 989–1002.
Association for Computing Machinery, 2017. DOI: 10.1145/3055399.3055444. 11, 23,
25

[48] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. ISBN 9781139477369. 12

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 36

https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1007/978-3-540-24618-3_11
https://doi.org/10.1007/978-3-540-24618-3_11
https://doi.org/10.1137/050644719
https://arxiv.org/abs/quant-ph/0606127
https://arxiv.org/abs/quant-ph/0606127
https://doi.org/10.4230/LIPIcs.CCC.2015.537
https://doi.org/10.1016/j.tcs.2005.01.019
https://doi.org/10.1007/11672142_13
https://doi.org/10.22331/q-2020-03-02-241
https://doi.org/10.1007/978-3-030-83508-8_39
https://doi.org/10.1109/FOCS.2017.45
https://doi.org/10.22331/q-2020-02-14-230
https://doi.org/10.22331/q-2020-02-14-230
https://doi.org/10.1007/978-3-030-73879-2_22
https://doi.org/10.1103/PhysRevResearch.2.013056
https://doi.org/10.1145/3055399.3055444

[49] Eleanor G Rieffel and Wolfgang H Polak. Quantum computing: A gentle introduction.
MIT Press, 2011. ISBN 9780262015066. 12

[50] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random ac-
cess memory. Physical review letters, 100(16):160501, 2008. DOI: 10.1103/Phys-
RevLett.100.160501. 12

[51] N Jiang, Y-F Pu, W Chang, C Li, S Zhang, and L-M Duan. Experimental realization
of 105-qubit random access quantum memory. npj Quantum Information, 5(1):1–6,
2019. DOI: 10.1038/s41534-019-0144-0. 12

[52] O. D. Matteo, V. Gheorghiu, and M. Mosca. Fault-tolerant resource estimation of
quantum random-access memories. IEEE Transactions on Quantum Engineering, 1:
1–13, 2020. DOI: 10.1109/TQE.2020.2965803. 12

[53] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca,
and Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum ram.
New Journal of Physics, 17(12):123010, 2015. DOI: 10.1088/1367-2630/17/12/123010.
12

[54] Ian P Gent, Ian Miguel, and Peter Nightingale. Generalised arc consistency for the
alldifferent constraint: An empirical survey. Artificial Intelligence, 172(18):1973–2000,
2008. DOI: 10.1016/j.artint.2008.10.006. 13

[55] Xizhe Zhang, Qian Li, and Weixiong Zhang. A fast algorithm for generalized arc con-
sistency of the alldifferent constraint. In International Joint Conference on Artificial
Intelligence (IJCAI-2018), pages 1398–1403, 2018. DOI: 10.24963/ijcai.2018/194. 13

[56] John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. DOI:
10.1137/0202019. 15

[57] Silvio Micali and Vijay V Vazirani. An O(
√
|V ||E|) algorithm for finding maximum

matching in general graphs. In 21st Annual Symposium on Foundations of Computer
Science (FOCS-1980), pages 17–27. IEEE, 1980. DOI: 10.1109/SFCS.1980.12. 15

[58] Vijay V Vazirani. A simplification of the MV matching algorithm and its proof.
arXiv:1210.4594 [cs.DS], 2012. URL https://arxiv.org/abs/1210.4594. 15

[59] Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination.
In 45th Annual Symposium on Foundations of Computer Science (FOCS-2004), pages
248–255. IEEE, 2004. DOI: 10.1109/FOCS.2004.40. 15

[60] Oscar H Ibarra and Shlomo Moran. Deterministic and probabilistic algorithms for
maximum bipartite matching via fast matrix multiplication. Information Processing
Letters, 13(1):12–15, 1981. DOI: 10.1016/0020-0190(81)90142-3. 15

[61] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In ACM-SIAM Symposium on Discrete Algorithms (SODA-
2021), pages 522–539. SIAM, 2021. DOI: 10.1137/1.9781611976465.32. 15

[62] Helmut Alt, Norbert Blum, Kurt Mehlhorn, and Markus Paul. Computing a maxi-
mum cardinality matching in a bipartite graph in time O(n1.5m logn). Information
Processing Letters, 37(4):237–240, 1991. DOI: 10.1016/0020-0190(91)90195-N. 15

[63] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In 61st Annual Symposium on Foun-
dations of Computer Science (FOCS-2020), pages 919–930. IEEE, 2020. DOI:
10.1109/FOCS46700.2020.00090. 15, 16

[64] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972. DOI: 10.1137/0201010. 15, 17, 39

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 37

https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1038/s41534-019-0144-0
https://doi.org/10.1109/TQE.2020.2965803
https://doi.org/10.1088/1367-2630/17/12/123010
https://doi.org/10.1016/j.artint.2008.10.006
https://doi.org/10.24963/ijcai.2018/194
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1109/SFCS.1980.12
https://arxiv.org/abs/1210.4594
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1016/0020-0190(81)90142-3
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1016/0020-0190(91)90195-N
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1137/0201010

[65] Claude Berge. Graphs and hypergraphs. North-Holland, 1973. ISBN 9780444876034.
16

[66] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quan-
tum searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505, 1998.
DOI: 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P. 18

[67] A. Ambainis. Quantum search algorithms. ACM SIGACT News, 35(2):22–35, 2004.
DOI: 10.1145/992287.992296. 18

[68] Radosław Cymer. Gallai-edmonds decomposition as a pruning technique. Central
European Journal of Operations Research, 23(1):149–185, 2015. DOI: 10.1007/s10100-
013-0309-4. 19, 20, 33

[69] Andrew L Dulmage and Nathan S Mendelsohn. Coverings of bipartite graphs. Cana-
dian Journal of Mathematics, 10:517–534, 1958. DOI: 10.4153/CJM-1958-052-0. 19

[70] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:
449–467, 1965. DOI: 10.4153/CJM-1965-045-4. 20

[71] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Macmillan, 1977.
ISBN 9780333226940. 22

[72] Aleksandrs Belovs. Quantum walks and electric networks. arXiv:1302.3143 [quant-ph],
2013. URL https://arxiv.org/abs/1302.3143. 23, 25

[73] Earl Campbell, Ankur Khurana, and Ashley Montanaro. Applying quantum algo-
rithms to constraint satisfaction problems. Quantum, 3:167, 2019. DOI: 10.22331/q-
2019-07-18-167. 24, 29, 31

[74] Mathys Rennela, Alfons Laarman, and Vedran Dunjko. Hybrid divide-and-conquer
approach for tree search algorithms. arXiv:2007.07040 [quant-ph], 2020. URL https:
//arxiv.org/abs/2007.07040. 25

[75] Martin Fürer. Solving NP-complete problems with quantum search. In Latin American
Symposium on Theoretical Informatics (LATIN-2008), pages 784–792. Springer, 2008.
DOI: 10.1007/978-3-540-78773-0_67. 28

[76] Nicolas J. Cerf, Lov K. Grover, and Colin P. Williams. Nested quantum search
and structured problems. Phys. Rev. A, 61:032303, 2000. DOI: 10.1103/Phys-
RevA.61.032303. 28

[77] Thomas G. Draper and Samuel A. Kutin. 〈q|pic〉: Quantum circuit diagrams in
LaTeX, 2020. URL https://www.github.com/qpic/qpic. 33

[78] Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum.
arXiv:quant-ph/9607014, 1996. URL https://arxiv.org/abs/quant-ph/9607014.
39

[79] Pascal Benchimol, Willem-Jan Van Hoeve, Jean-Charles Régin, Louis-Martin
Rousseau, and Michel Rueher. Improved filtering for weighted circuit constraints.
Constraints, 17(3):205–233, 2012. DOI: 10.1007/s10601-012-9119-x. 42

[80] Nicolas Beldiceanu, Irit Katriel, and Sven Thiel. Filtering algorithms for the same
constraint. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR-2004), pages 65–79. Springer, 2004.
DOI: 10.1007/978-3-540-24664-0_5. 42

[81] Rong Qu and Fang He. A hybrid constraint programming approach for nurse rostering
problems. In Applications and Innovations in Intelligent Systems (SGAI-2008), pages
211–224. Springer, 2008. DOI: 10.1007/978-1-84882-215-3_16. 43

[82] Michael A Trick. Integer and constraint programming approaches for round-robin
tournament scheduling. In Practice and Theory of Automated Timetabling (PATAT-
2002), pages 63–77. Springer, 2002. DOI: 10.1007/978-3-540-45157-0_4. 43

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 38

https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1145/992287.992296
https://doi.org/10.1007/s10100-013-0309-4
https://doi.org/10.1007/s10100-013-0309-4
https://doi.org/10.4153/CJM-1958-052-0
https://doi.org/10.4153/CJM-1965-045-4
https://arxiv.org/abs/1302.3143
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://arxiv.org/abs/2007.07040
https://arxiv.org/abs/2007.07040
https://doi.org/10.1007/978-3-540-78773-0_67
https://doi.org/10.1103/PhysRevA.61.032303
https://doi.org/10.1103/PhysRevA.61.032303
https://www.github.com/qpic/qpic
https://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1007/s10601-012-9119-x
https://doi.org/10.1007/978-3-540-24664-0_5
https://doi.org/10.1007/978-1-84882-215-3_16
https://doi.org/10.1007/978-3-540-45157-0_4

[83] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singu-
lar value transformation and beyond: Exponential improvements for quantum matrix
arithmetics. In Proceedings of the 51st Annual ACM Symposium on Theory of Comput-
ing (STOC-2019), page 193–204. Association for Computing Machinery, 2019. DOI:
10.1145/3313276.3316366. 45

A Quantum algorithm for strongly connected components
Here we propose a quantum version of Tarjan’s algorithm to find the strongly connected
components (SCCs) in a directed graph G = (V,E). As mentioned in the main text, Dürr
et al. [35] say that their algorithm for determining strong connectivity can be extended to
find the components; here, we give such an extension explicitly. Our version closely follows
the flow of the classical Tarjan algorithm, which uses bookkeeping during a DFS to find
the SCCs [64]. We replace two of the classical searches by quantum searches to achieve a
speedup from O(m) to O(

√
nm log2 n).

The procedure is detailed in Algorithms 4 and 5. The essential component is Q-
StrongConnect, which is called recursively to perform the DFS, recording the SCCs as
they are found. As in the standard Tarjan algorithm, several classical data structures are
maintained:

• A stack S of vertices, to which each vertex is pushed upon discovery and from which
it is removed upon assignment to an SCC. We will require quantum access to the
presence or absence of a vertex on the stack,

US |v〉 |0〉 7→ |v〉 |S(v)〉 , (34)

where S(v) = 1 if v is on the stack and S(v) = 0 otherwise.

• For each vertex v, an index index(v) ∈ [|V |]∪{∅}, where ∅ is the initial null value,
indicating the order in which v was discovered by the DFS. We will require quantum
access to index(v):

Uindex |v〉 |0〉 7→ |v〉 |index(v)〉 . (35)

• For each vertex v, a “low link” ll(v) indicating the smallest index of a vertex reachable
from v, including itself.

The two quantum subroutines, Q-FindUndiscoveredNeighbor and
Q-FindMinIndexNeighborOnStack, each take as input a vertex, and perform a search
over its forward neighbors in time Õ(

√
δv) where δv is the degree of the vertex v. They

require access to an oracle for labelling discovered vertices and an oracle for outputting
the index value, respectively.

Q-FindUndiscoveredNeighbor(v, UNv , Uindex) searches over i ∈ [δv] for an i such
that index(Nv(i)) = ∅ and returns the actual vertex Nv(i).

Q-FindMinIndexNeighborOnStack(v, UNv , Uindex, US) attempts to find

arg min
i:S(Nv(i))=1

{index(Nv(i))}

This can be achieved in Õ(
√
δv) time using a slight modification of an algorithm for

minimum finding due to Dürr and Høyer [78]. The algorithm consists of repeated Grover
searches using the predicate

(index(Nv(i)) < index(Nv(i∗))) ∧ S(Nv(i)) = 1, (36)

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 39

https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366

where i∗ is initially set uniformly at random from [δv] and reset to the outcome of every
successful Grover search. The procedure finds the minimum with constant probability, in
Õ(
√
δv) time, including queries to UNv , US , and Uindex.

Q-FindUndiscoveredNeighbor and Q-FindMinIndexNeighborOnStack are called
O(n) times (to traverse all n vertices in the DFS). To get a constant error probability for
Q-FindSCC, each should be repeated logn times to get their error rates to O(1/n). Over-
all, the running time is Õ

(∑
v∈V
√
δv
)

= Õ(
√
nm). This assumes that UNv for all v ∈ V is

previously initialized. US and Uindex can be initialized in Õ(n) and updated in O(logn).

Algorithm 4: Q-FindSCC
Input: Directed graph G with quantum access UN = (UNv)v∈V .
Output: Strongly connected components S = (Sv)v∈V .

1 for v ∈ V do
2 index(v)← ∅ // quantum
3 ll(v)← ∅
4 end
5 index ← 0
6 S ← empty stack // quantum
7 S ← (∅)v∈V
8 for v ∈ V do
9 if index(v) is ∅ then

10 Q-StrongConnect(v, index)
11 end
12 end

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 40

Algorithm 5: Q-StrongConnect
Input: Vertex v and index (passed by reference)
Output: Updated component values S

1 index(v)← index
2 ll(v)← index
3 index ← index+1
4 push(S, v)
5 while True do
6 w ← Q-FindUndiscoveredNeighbor(v, UNv , Uindex)
7 if index(w) is ∅ then
8 Q-StrongConnect(w, index)
9 ll(v) ← min(ll(v), ll(w))

10 else
11 break
12 end
13 end
14 w ← Q-FindMinIndexNeighborOnStack(v, UNv , US)
15 ll(v) ← min(ll(v), index(w))
16 if ll(v) = index(v) then
17 while True do
18 u ← pop(S)
19 S[u]← ll(v)
20 if u = v then
21 break
22 end
23 end
24 end

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 41

B Other global constraints
Additional global constraints can be made domain consistent using the Dulmage-Mendelsohn
canonical decomposition algorithm of Cymer, and thus can be accelerated by our quantum
approach as discussed in Section 5.2. Here we consider several examples; see [10] for a list
of thirteen applicable global constraints.

Definition B.1 (inverse constraint). Let N = {1, . . . , n}. Given tuples of variables
X = (x1, . . . , xn) and Y = (y1, . . . , yn) with domains Dxi = Dyi = N, ∀i ∈ N , the
constraint inverse(X,Y) enforces that: xi = j ⇔ yj = i for all pairs i, j ∈ N such that
i 6= j.

The inverse constraint is often used to model routing problems involving successor
and predecessor variables. For example, a CP model of the symmetric traveling salesman
problem (TSP) with n vertices can be posed as follows:

min
∑
i∈N

ci,xi (37)

s.t. inverse(X,Y) (38)
alldifferent(X) (39)
alldifferent(Y) (40)
x1 < y1 (41)
xi ∈ N, yi ∈ N ∀i ∈ N (42)

where cij is the cost of traveling from vertex i to j, xi is the vertex visited immediately
after i and yi is the vertex visited immediately before i. Constraint (41) breaks symmetry
by preventing reverse tours [79]. A solution that visits the vertices in order (1, 2, 3, 4) would
have X = (2, 3, 4, 1) and Y = (4, 1, 2, 3).

Definition B.2 (same constraint). Given tuples of variables X = (x1, . . . , xn) and Y =
(y1, . . . , yn), the constraint same(X,Y) enforces that the multiset of values assigned to the
variables of X is identical to the multiset of values assigned to the variables of Y [80].

For example,X = (1, 1, 2, 4) and Y = (1, 2, 1, 4) would satisfy the constraint same(X,Y),
whereas X = (1, 2), Y = (1, 1) would not. If the cardinality of the two sets is not equal
(i.e., |X| > |Y |), the usedby constraint can instead be used.

Definition B.3 (usedby constraint). Given tuples of variables X = (x1, . . . , xn) and
Y = (y1, . . . , ym), where m ≤ n, the constraint usedby(X,Y) enforces that the multiset
of values assigned to the variables of Y is contained in the multiset of values assigned to
the variables of X [80].

For example, X = (1, 2, 3) and Y = (2, 1) would satisfy the constraint usedby(X,Y),
whereas X = (1, 2, 3) and Y = (4) would not. The usedby constraint is often useful for
models that require an assignment of resources where there may be more of one resource
type than another (i.e., nurses and doctors).

C Other CP modeling examples
In this appendix we provide additional examples to illustrate how computationally difficult
problems can be modeled in constraint programming (CP). These examples are on top of
the Sudoku model presented in Section 2 and the TSP model presented in Appendix B,
and utilize only the global constraints formally defined in this paper.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 42

C.1 Rostering problems
CP has been used to model and solve various scheduling problems, such as the nurse
rostering problem [81] from operations research. In this problem we are given a team
of nurses, i ∈ I; a set of days in the rostering period, d ∈ D; a set of different shifts,
k ∈ K = {M,A,E,O} (i.e., morning, afternoon, evening, and off); and a pre-specified
rostering requirement, Cd,k, specifying the number of nurses required on day d, shift k.
We can model this rostering requirement in CP effectively using the global cardinality
constraint (gcc), as introduced in Section 5.2.

We define decision variable si,d ∈ K to represent the shift assigned to nurse i on day
d. Our gcc constraint is then formulated as follows:

gcc({si,d : i ∈ I}, {M,A,E}, {Cd,M , Cd,A, Cd,E}),∀d ∈ D. (43)

Constraint (43) requires that, for example, there are exactly Cd,M morning shifts assigned
to the team of nurses on day d. It is also common to express that each nurse receive
between Wmin and Wmax days off in the schedule. This can be accomplished with the
following gcc constraint:

gcc({si,d : d ∈ D}, {O}, {[Wmin,Wmax]}),∀i ∈ I. (44)

C.2 Sports tournament scheduling
Another interesting application of CP modeling is for round-robin sports tournament
scheduling [82]. In a single round-robin tournament we have a set of n teams, i ∈ I,
and a set of n− 1 match slots, t ∈ T . The goal is to design a schedule such that each team
plays each other team exactly once. (There are also more complex versions of round-robin
tournament scheduling such as bipartite single round robin [82].)

To formulate this problem in CP, we introduce decision variable xi,t ∈ I \ {i} whose
value indicates the opponent team i faces in match slot t. The constraints can then be
expressed as:

xxi,t,t = i, ∀t ∈ T (45)
alldifferent({xi,t : t ∈ T}), ∀i ∈ I (46)
xi,t ∈ I \ {i}, ∀i ∈ I, t ∈ T. (47)

Constraint (45) ensures that the team that i plays in slot t plays i in slot t; the flexibility of
the CP paradigm allows variables to be indexed by other variables.22 Constraint (46) dic-
tates that each team has a different opponent in each match slot, and finally Constraint (47)
dictates the domain for each of the variables.

While this modeling example illustrates the core constraints for round-robin scheduling,
real-world models typically capture more complex constraints, such as those surrounding
limitations on the number of ‘away’ games, or the incorporation of travel times.

C.3 Quadratic assignment problems
While the previous examples were both satisfaction problems, CP can be used to model
and solve optimization problems as well, including those with quadratic objective functions.

22 Some solvers require this to be modeled using the element constraint [21], while others allow this
indexing to be directly expressed.

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 43

Consider a problem where a set of n facilities, I, must be assigned to a set of n different
locations, L, and the distance between locations ` and k is given by d`,k. Each pair of
facilities (i, j) is also associated with a weight, wi,j . We seek to minimize the weighted
distances.

We can model this in CP by first introducing the integer decision variable xi ∈ L whose
value represents the location that facility i is assigned to. The objective function is then
stated as follows:

min
∑

i∈I,j∈I,i 6=j
dxi,xjwi,j . (48)

In this case, we use decision variables xi to index the distance parameter matrix d`,k.
We can enforce that the location of each facility must be different by adding the constraint
alldifferent({xi : i ∈ I}) to the model.

D Wrapping quantum subroutines into a single unitary
Here we detail how to take an algorithm that consists of classical computations inter-
spersed with quantum subroutines and produce a single unitary with the same effect, error
probability, and runtime scaling.

Suppose we want to compute a bijective function f : Σ → Γ. Consider a classical
stochastic algorithmA that computes the function f(σ) in k steps, sampling from a random
variable El before each step l. Let σ = σ0, σ1, . . . , σk ∈ Σ be the intermediate states
of the algorithm, and let fl(σl, el) = σl+1 be the deterministic function that advances the
state. Each intermediate state σl is stochastic, but completely determined by the previous
measurements e(l) = (e0, e1, . . . el−1), and so we write σl(e(l)).

Assume that each step fl is reversible, i.e. (σl, el) is completely determined by σl+1.
Then a classical circuit description of fl can be translated into a quantum circuit that
computes the transformation

Ufl
|σl, el〉 = |σl+1〉 (49)

in the usual way. Now, suppose that we can implement

UEl
|σl,0〉 =

∑
el∈El(σl)

√
Pr[el|σl] |σl, el〉 , (50)

which computes a quantum state corresponding to the probability distribution Pr[El|σl].
Then together we can compute

Ufk−1UEk−1 · · ·Uf0UE0 |σ0〉

=
∑

e(k)∈E(k)

√
Pr[e(k)] |σk(e(k))〉 (51)

where we introduced the notation E(l) = (E0, E1, . . . , El−1) and e ∈ E means that e is a
possible value of the random variable E.

Lastly, by construction we can write the final state as σk(e(k)) = (f(σ), γ(e(k))), i.e.,
as the concatenation of the answer and some other information γ(e(k)), including that
which enables reversibility. Then we can perform the transformation in Eq. (51), copy
f(σ) into an ancilla register, and then uncompute to effect |σ0〉 |0〉 7→ |σ0〉 |f(σ0)〉. If we
additionally can compute f−1, then overall we can implement

Uf |σ0〉 = |f(σ0)〉 . (52)

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 44

The key idea is that, while each state σl is dependent on the measurement history
e(l), the final state σk has a part that is independent of the measurement history, namely
f(σ0), and that can therefore be unentangled therefrom.

Now, consider our quantum algorithm for filtering. The filtering computes the function
f(D) = (D′, R, Fp(D)), where D′ = Fd(D) and R = D \ D′. (See Eqs. (2) and (19).)
Note that this is reversible, as supposed above (and we keep track of the removed edges Rl
for precisely this reason). It consists of classical computations interspersed with quantum
searches. Suppose that each search were perfect, in the sense that measurement always
yielded a marked state. In that case, the circuit before measurement is exactly as in (50),
with uniform probability over the possible outcomes, so if we can do the search, then
we can implement UEl

. More precisely, using fixed-point amplitude amplification (Thm.
27 of [83]) we can implement UEl

such that the final state is ε-far from ideal in using
O(log(1/ε)/δ) queries, where δ is the usual leading term of Grover search (e.g.,

√
N).

If we want the final state of the whole quantum tree search to be within distance O(1)
from ideal and the filtering algorithm is run T times with g search each, then we need
ε = O(Tg).

Accepted in Quantum 2021-08-28, click title to verify. Published under CC-BY 4.0. 45

	1 Introduction
	2 Constraint Programming Background
	2.1 Constraint satisfaction problems
	2.2 Backtracking search algorithms
	2.3 Branch-and-infer search
	2.3.1 Propagation Function
	2.3.2 Branching Operator

	2.4 Consistency
	2.5 Global constraints
	2.6 CP modeling and solving: Sudoku

	3 Related work
	4 Quantum resources and data access
	5 Quantum-accelerated global constraint filtering
	5.1 The alldifferent constraint
	5.1.1 Classical filtering algorithm
	5.1.2 Subroutine: Finding a maximum matching
	5.1.3 Subroutine: Removing edges

	5.2 Generalizing quantum filtering

	6 Quantum-accelerated branch-and-infer search
	6.1 Classical backtracking with quantum-accelerated inference
	6.1.1 Exact method
	6.1.2 Bounded-error and heuristic methods

	6.2 Quantum-accelerated backtracking
	6.2.1 Background
	6.2.2 Partially quantum tree search

	6.3 Quantum-accelerated backtracking with inference
	6.3.1 Representation of tree nodes for CP
	6.3.2 Implementation of walk operators for CP
	6.3.3 Incorporating quantum algorithms for filtering

	7 Conclusions
	References
	A Quantum algorithm for strongly connected components
	B Other global constraints
	C Other CP modeling examples
	C.1 Rostering problems
	C.2 Sports tournament scheduling
	C.3 Quadratic assignment problems

	D Wrapping quantum subroutines into a single unitary

