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Abstract. We obtain new sufficient criteria for the oscillation of all solutions of linear
delay difference equations with several (variable) finite delays. Our results relax numerous
well-known limes inferior-type oscillation criteria from the literature by letting the limes
inferior be replaced by the limes superior under some additional assumptions related to slow
variation. On the other hand, our findings generalize an oscillation criterion recently given
for the case of a constant, single delay.
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1. INTRODUCTION

We consider the following linear difference equations with constant and variable delays:

∆x(n) +
k∑

i=1
pi(n)x(n − li) = 0 (1.1)

and

∆x(n) +
k∑

i=1
pi(n)x(τi(n)) = 0, (1.2)

where pi(n) : N → [0, ∞), li ∈ N and we assume that there exists a positive integer
N such that 0 < l1 < l2 < . . . < lk ≤ N holds in the constant delay case, and for
variable delays the retarded arguments τi : N → Z satisfy n − N ≤ τi(n) ≤ n − 1
for all 1 ≤ i ≤ k and n ∈ N. These hypotheses are assumed throughout the paper.
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Here ∆ denotes the forward difference operator, i.e.,

∆x(n) = x(n + 1) − x(n)

and N denotes the set of nonnegative integers.
Clearly, equation (1.1) is a special case of equation (1.2) with

τi(n) = n − li.

On the other hand, due to finiteness of the delay, equation (1.2) can also be rewritten
in the form of (1.1) (with possibly different coefficient functions pi and by choosing
k = N). As both formulations have their advantages, we will deal with both. However,
our proofs will only focus on the variable delay case.

By a solution of the difference equation (1.2) we mean a sequence of real num-
bers (x(n))∞

n=n0 (with n0 ≥ −N), which satisfies equation (1.2) for all integers
n ≥ n0 + N . A solution (x(n))∞

n=n0 of the difference equation (1.2) is said to be oscil-
latory if (x(n))∞

n=n0 is neither eventually positive nor eventually negative. Otherwise,
the solution (x(n))∞

n=n0 is said to be nonoscillatory.
Oscillation criteria for linear difference equations with delays have been the subject

of many studies in the last thirty years. For an introduction to the topic we recommend
the interested reader the monographs [1] and [10]. For an overview of the most recent
results we refer to [11], the survey paper [16], and the references therein.

In the following we recall some results from the literature that will be relevant for
our study.

Recently, Chatzarakis, Pinelas, and Stavroulakis [6] (corrected version of [5])
obtained the following oscillation criterion for equation (1.2).

Theorem 1.1 ([6, Theorem 2.2]). Suppose that the functions τi(·), 1 ≤ i ≤ k, are
nondecreasing for all 1 ≤ i ≤ k. Moreover, assume that

lim sup
n→∞

k∑

i=1
pi(n) > 0 and lim inf

n→∞

k∑

h=1

n−1∑

j=τi(n)

ph(j) >
1
e

(1.3)

hold for all 1 ≤ i ≤ k. Then, all solutions of (1.2) oscillate.

Remark 1.2. It is easy to see that the assumption lim supn→∞
∑k

i=1 pi(n) > 0 in (1.3)
is actually redundant. On the other hand, although monotonicity of the retarded
arguments τi is assumed, it is nowhere used throughout the proof in [6], so both of
these assumptions can be omitted.

Clearly, Theorem 1.1 applies for the case of constant delay as well, that is, to equa-
tion (1.1).

The following result was essentially obtained by Yan, Meng, and Yan in 2006
[18, Theorem 1], however, as Karpuz and Stavroulakis recently pointed out [11], some
corrections were necessary.
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Theorem 1.3 ([11, Theorem G]). Assume that

lim inf
n→∞

n−1∑

j=τi(n)

pi(j) > 0 holds for some 1 ≤ i ≤ k (1.4)

and

lim inf
n→∞

n−1∑

j=τmax(n)

k∑

h=1
ph(j)

(
j − τh(j) + 1

j − τh(j)

)j−τh(j)+1
> 1, (1.5)

where τmax(n) := max1≤i≤k τi(n) for n ∈ N. Then every solution of (1.2) oscillates.

For the case of constant delays the following sharper result was obtained in 1999
by Tang and Yu [17].

Theorem 1.4 ([17, Corollary 4]). Assume that

lim inf
n→∞

k∑

i=1

(
li + 1

li

)li+1 n+li∑

j=n+1
pi(j) > 1.

Then every solution of equation (1.1) is oscillatory.

The aim of this paper is to improve the results listed above by replacing the lower
limit with the upper limit in the main conditions under some additional assumptions
that are related to slowly varying functions.

In accordance with [2] a sequence (a(n))n∈N is called slowly varying (at infinity) if

lim
n→∞

(a(n + m) − a(n)) = 0

holds for all m ∈ N. It is worth noting that it suffices if the above equality holds for
m = 1. For a thorough description of slowly varying functions the reader is referred
to the monograph [15], in which, however, a different but related notion of slowly
varying functions is treated. For a discussion on the connection of these two notions
see [15, Chapter 1].

The idea of using slowly varying functions to obtain sharp oscillation criteria for
linear delay differential equations (with a single constant delay) originates from Pituk
[14]. This first result was then successfully generalized in a series of papers [7–9] for the
case of several (variable) delays. This concept was first utilized for difference equations
by three of the current authors in a recent paper [3].

Our work, on the one hand, offers discrete analogues of the results obtained in [8]
and, on the other hand, generalizes the result of [3], where equation (1.1) was treated
with a single delay.

In the next section we state and prove our main theorems, then, in Section 3,
we illustrate the applicability of them by means of two examples.
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2. RESULTS

We shall need the following auxiliary result. To the best of our knowledge, this lemma
is only available in the literature under the additional assumption that the delayed
arguments τi are nondecreasing [12]. However, as we will see, finiteness of the delays
(i.e., n − τi(n) ≤ N) – which is assumed in our case anyway – also guarantees such
a result.

Lemma 2.1. Let us assume that

lim inf
n→∞

n−1∑

j=τi(n)

pi(j) > 0 holds for all 1 ≤ i ≤ k. (2.1)

If (x(n))∞
n=n0 is an eventually positive solution of (1.2), then there exist K > 0 and

N1 ∈ N such that

x(τi(n))
x(n + 1) ≤ K for all n ≥ N1 and 1 ≤ i ≤ k.

Proof. The proof is based on the main ideas of Theorem 2 of [13] and Lemma 2.2
of [4].

First, let us fix an arbitrary index 1 ≤ i ≤ k and define

δi(n) := max{τi(ℓ) : 0 ≤ ℓ ≤ n}

and
µi(n) := max{ℓ ∈ N : τi(ℓ) = δi(n) and ℓ ≤ n}

for all n ∈ N. Note that (δi(n))n∈N is a monotone nondecreasing sequence.
According to (2.1) there exists

ci := lim inf
n→∞

n−1∑

j=τi(n)

pi(j) > 0. (2.2)

We claim that this implies

c̃i := lim inf
n→∞

n−1∑

j=δi(n)

pi(j) = ci.

To see this, first note that the definition of δi yields that n−N ≤ τi(n) ≤ δi(n) ≤ n−1
holds for all n ∈ N, which in turn implies that c̃i ≤ ci.

It remains to prove that c̃i ≥ ci. Now, set a subsequence (nm)m∈N such that

lim
m→∞

nm−1∑

j=δi(nm)

pi(j) = c̃i.
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From the definitions of δi and µi we obtain that

δi(n) = τi(µi(n)) = δi(µi(n))

holds for all n∈N. Hence, using that µi(n)≤n for all n∈N, and that limn→∞ µi(n)=∞
for all 1 ≤ i ≤ k, we have

c̃i = lim
m→∞

nm−1∑

j=δi(nm)

pi(j) ≥ lim
m→∞

µi(nm)−1∑

j=δi(nm)

pi(j)

= lim
m→∞

µi(nm)−1∑

j=τi(µi(nm))

pi(j) ≥ lim inf
n→∞

n−1∑

j=τi(n)

pi(j) = ci,

which proves our claim.
Thus we may suppose that for any ε ∈ (0, ci) the estimate

n−1∑

j=δi(n)

pi(j) ≥ ci − ε (2.3)

holds for all sufficiently large n.
Observe that (x(n))∞

n=n0 is an eventually positive solution, then, thanks to (1.2)
and the positiveness of the coefficients, it is clearly eventually monotone nonincreasing.

Furthermore, from inequality (2.3) we infer that for any large enough n ∈ N there
exists an n∗ ≥ n such that

n∗−1∑

j=n

pi(j) <
ci − ε

2 and
n∗∑

j=n

pi(j) ≥ ci − ε

2 , (2.4)

where the first sum is zero by definition in case n∗ = n (i.e., when pi(n) ≥ ci−ε
2 ).

It is easy to see that δi(n∗) ≤ n−1. Indeed, for n∗ = n, δi(n∗) = δi(n) ≤ n−1 clearly
holds. Otherwise, if n∗ > n, then δi(n∗) ≥ n would imply by (2.4) the inequalities

n∗−1∑

j=δi(n∗)

pi(j) ≤
n∗−1∑

j=n

pi(j) <
ci − ε

2 ,

a contradiction to (2.3).
Thus, using inequalities (2.3) and (2.4) we have

n−1∑

j=δi(n∗)

pi(j) =
n∗−1∑

j=δi(n∗)

pi(j) −
n∗−1∑

j=n

pi(j) ≥ ci − ε

2 . (2.5)
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Now, the second inequality of (2.4) in combination with equation (1.2), the pos-
itivity of x and the coefficients ph (1 ≤ h ≤ k), and the monotonicity of x and δi

yields

x(n) ≥ x(n) − x(n∗ + 1) =
n∗∑

ℓ=n

(x(ℓ) − x(ℓ + 1)) =
n∗∑

ℓ=n

k∑

h=1
ph(ℓ)x(τh(ℓ))

≥
n∗∑

ℓ=n

pi(ℓ)x(τi(ℓ)) ≥ x(δi(n∗))
n∗∑

ℓ=n

pi(ℓ) ≥ x(δi(n∗))ci − ε

2 .

(2.6)

In a similar fashion (using (2.5)) we obtain the estimates

x(δi(n∗)) ≥ x(δi(n∗)) − x(n) ≥
n−1∑

ℓ=δi(n∗)

pi(ℓ)x(τi(ℓ))

≥ x(δi(n − 1))
n−1∑

ℓ=δi(n∗)

pi(ℓ) ≥ x(δi(n − 1))ci − ε

2 .

(2.7)

From the combination of inequalities (2.6) and (2.7) together with the monotonicity
of the solution x and the fact that δi(n) ≤ n − 1 we obtain that

4
(ci − ε)2 ≥ x(δi(n))

x(n + 1) ≥ x(n − 1)
x(n + 1)

holds for all large enough n.
By iteration, and bearing in mind that n − N ≤ τi(n), we conclude that there

exists a constant K > 0 such that
x(τi(n))
x(n + 1) ≤ K

holds for all sufficiently large n.

Our first main result in the next theorem improves Theorem 1.1.
Theorem 2.2. Suppose that condition (2.1) is satisfied and that there exists a positive
constant M such that 0 ≤ pi(n) ≤ M holds for all 1 ≤ i ≤ k. Assume further that there
exists a sequence (τ∗(n))n∈N such that τi(n) ≤ τ∗(n) ≤ n − 1 holds for all 1 ≤ i ≤ k
and n ∈ N, and that the function

A(n) :=
k∑

h=1

n−1∑

j=τ∗(n)

ph(j)

is slowly varying and the inequality

lim sup
n→∞

A(n) = lim sup
n→∞

k∑

h=1

n−1∑

j=τ∗(n)

ph(j) >
1
e

(2.8)

is fulfilled. Then, all solutions of (1.2) oscillate.
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Proof. Assume to the contrary that there exists a nonoscillatory solution
(x(n))∞

n=−N of (1.2). Without loss of generality we may assume that x(n) > 0 for all
n ≥ −N . We also note that since

x(n + 1) − x(n) = −
k∑

i=1
pi(n)x(τi(n)) ≤ 0,

the solution x(n) is nonincreasing for all n ∈ N.
Firstly, by Lemma 2.1, there exists some K > 0 such that

x(τi(n))
x(n + 1) ≤ K (2.9)

holds for all n ∈ N and 1 ≤ i ≤ k. By (2.8) we may consider a strictly increasing
sequence δ(n) of natural numbers such that

lim
n→∞

A(δ(n)) = lim sup
n→∞

A(n) >
1
e

and, for each n, m ∈ N, we set

ym(n) = x(δ(n) + m)
x(δ(n) + 1) ,

qm,i(n) = pi(δ(n) + m),
τm,i(n) = τi(δ(n) + m) − δ(n).

(2.10)

Note that ym(n) ≤ 1 for m ≥ 1, as x(n) is nonincreasing. Furthermore, since
x(n) is a solution of (1.2) we have

x(δ(n) + m + 1) − x(δ(n) + m) +
k∑

i=1
pi(δ(n) + m)x(τi(δ(n) + m)) = 0,

for each n, m ∈ N. Dividing both sides of the last equation by x(δ(n) + 1) yields

ym+1(n) − ym(n) +
k∑

i=1
qm,i(n)yτm,i(n)(n) = 0. (2.11)

Our aim now is to pass to a limiting equation as n → ∞ and apply Theorem 1.1 to
arrive at a contradiction. In order to do so, we first need to show that such a limiting
equation exists.

From inequality (2.9) we obtain that for all m, n ∈ N

x(δ(n) + m) − x(δ(n) + m − 1)

= −
k∑

i=1
pi(δ(n) + m − 1)x(τi(δ(n) + m − 1))

x(δ(n) + m) x(δ(n) + m)

≥ −kMKx(δ(n) + m)

holds, which in turn implies x(δ(n) + m) ≥ x(δ(n)+m−1)
1+kMK .
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By iteration we obtain the inequality

x(δ(n) + m) ≥ x(δ(n) + 1)
(1 + kMK)m−1 .

After division by x(δ(n) + 1) we may conclude that the estimate

1
(1 + kMK)m−1 ≤ ym(n) ≤ 1 (2.12)

holds for all m ≥ 1 and n ∈ N.
Our assumptions and the definitions of the functions qm,i and τm,i yield that

m − N ≤ τm,i(n) ≤ m − 1 and 0 ≤ qm,i(n) ≤ M hold for all m, n ∈ N and 1 ≤ i ≤ k.
These combined with (2.12), the Bolzano–Weierstrass theorem, and Cantor’s diagonal
argument imply that there exists a strictly increasing sequence of natural numbers
(sn)n∈N such that for each m ∈ N

lim
n→∞

ym(sn) =: y(m), lim
n→∞

qm,i(sn) =: qi(m), (2.13)

and for each 1 ≤ i ≤ k and m ∈ N there is an integer m − N ≤ σi(m) ≤ m − 1 such
that

τm,i(sn) = σi(m) (2.14)

holds for any large enough n ∈ N.
Now, by virtue of (2.11),

ym+1(sn) − ym(sn) +
k∑

i=1
qm,i(sn)yτm,i(sn)(sn) = 0

holds for all m, n ∈ N. Letting n → ∞ we obtain

y(m + 1) − y(m) +
k∑

i=1
qi(m)y(σi(m)) = 0 for all m ∈ N. (2.15)

Thus, in view of the inequality (2.12), y(m) is a nonoscillatory solution of the
equation (2.15). Note that thanks to the definition of τm,i the chain of inequalities
m − N ≤ σi(m) ≤ m − 1 also holds for all m ∈ N and 1 ≤ i ≤ k.

In order to apply Theorem 1.1 it remains to show that the conditions in (1.3) are
also satisfied for equation (2.15).
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In view of equations (2.13) and (2.14) and using that A is slowly varying and
inequality (2.8) holds, we infer that

k∑

h=1

m−1∑

j=σi(m)

qh(j) =
k∑

h=1

m−1∑

j=σi(m)

lim
n→∞

qj,h(sn)

= lim
n→∞

k∑

h=1

m−1∑

j=τm,i(sn)

qj,h(sn)

= lim
n→∞

k∑

h=1

m−1∑

j=τm,i(sn)

ph(δ(sn) + j)

= lim
n→∞

k∑

h=1

δ(sn)+m−1∑

j=δ(sn)+τm,i(sn)

ph(j)

= lim
n→∞

k∑

h=1

δ(sn)+m−1∑

j=τi(δ(sn)+m)

ph(j)

≥ lim
n→∞

k∑

h=1

δ(sn)+m−1∑

j=τ∗(δ(sn)+m)

ph(j)

= lim
n→∞

A(δ(sn) + m) = lim
n→∞

A(δ(sn))

= lim sup
n→∞

A(n) >
1
e

for any m ∈ N and 1 ≤ i ≤ k.
Hence, bearing Remark 1.2 in mind, Theorem 1.1 can be applied to conclude

that all solutions of (2.15) are oscillatory, which is a contradiction. The proof is
completed.

Since equation (1.1) is a special case of equation (1.2) with τi(n) = n− li, we obtain
the following result as an immediate corollary of Theorem 2.2.

Theorem 2.3. Suppose that

lim inf
n→∞

n−1∑

j=n−li

pi(j) > 0 for all 1 ≤ i ≤ k,

and there exist a positive constant M and a positive integer l∗ ≤ l1 such that
0 ≤ pi(n) ≤ M hold for all 1 ≤ i ≤ k and the function

k∑

h=1

n−1∑

j=n−l∗

ph(j)
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is slowly varying, and moreover, the inequality

lim sup
n→∞

k∑

h=1

n−1∑

j=n−l∗

ph(j) >
1
e

(2.16)

is fulfilled. Then all solutions of (1.1) oscillate.

Remark 2.4. Observe that τ∗ (resp. l∗) is intentionally not defined as
τ∗(n) = max1≤i≤k τi(n) (resp. l∗ = l1), since, as we will also see in Example 3.1,
it can very well be that with this specific choice of τ∗ (resp. l∗) our assumption on
slow variation fails to be true, while a more appropriate choice of these parameters
can satisfy all assumptions.

Analogously to Theorem 2.2 we can make Theorem 1.3 sharper under some
additional assumptions as follows.

Theorem 2.5. Suppose that condition (2.1) is satisfied and there exists a positive
constant M such that 0 ≤ pi(n) ≤ M holds for all 1 ≤ i ≤ k. Assume further that there
exist a sequence (τ∗(n))n∈N such that τi(n) ≤ τ∗(n) ≤ n − 1 holds for all 1 ≤ i ≤ k
and n ∈ N, and that the function

A(n) :=
n−1∑

j=τ∗(n)

k∑

h=1
ph(j)

(
j − τh(j) + 1

j − τh(j)

)j−τh(j)+1
(2.17)

is slowly varying and the inequality

lim sup
n→∞

n−1∑

j=τ∗(n)

k∑

h=1
ph(j)

(
j − τh(j) + 1

j − τh(j)

)j−τh(j)+1
> 1

is fulfilled. Then all solutions of equation (1.2) are oscillating.

Proof. Proceeding exactly as in the proof of Theorem 2.2 and using the same notations
– with the only exception that now A is defined by (2.17) – we obtain a positive
sequence (y(m))m∈N that solves (2.15).
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Arguing again indirectly, our aim is to apply Theorem 1.3 and to arrive at a contra-
diction. So let us show that (1.4) and (1.5) hold for equation (2.15). Bearing in mind
equations (2.13) and (2.14) and using that A is slowly varying we obtain that

m−1∑

j=σi(m)

k∑

h=1
qh(j)

(
j − σh(j) + 1

j − σh(j)

)j−σh(j)+1

= lim
n→∞

m−1∑

j=τm,i(sn)

k∑

h=1
qj,h(sn)

(
j − τj,h(sn) + 1

j − τj,h(sn)

)j−τj,h(sn)+1

= lim
n→∞

m−1∑

j=τi(m+δ(sn))−δ(sn)

[
k∑

h=1
ph(δ(sn) + j)

×
(

j − τh(δ(sn) + j) + δ(sn) + 1
j − τh(δ(sn) + j) + δ(sn)

)j−τh(δ(sn)+j)+δ(sn)+1
]

= lim
n→∞

m+δ(sn)−1∑

j=τi(m+δ(sn))

k∑

h=1
ph(j)

(
j − τh(j) + 1

j − τh(j)

)j−τh(j)+1

≥ lim
n→∞

m+δ(sn)−1∑

j=τ∗(m+δ(sn))

k∑

h=1
ph(j)

(
j − τh(j) + 1

j − τh(j)

)j−τh(j)+1

= lim
n→∞

A(m + δ(sn)) = lim
n→∞

A(δ(sn)) = lim sup
n→∞

A(n) > 1

holds for all 1 ≤ i ≤ k and m ∈ N. That means, in particular, that the inequality
m−1∑

j=σmax(m)

k∑

h=1
qh(j)

(
j − σh(j) + 1

j − σh(j)

)j−σh(j)+1
> 1

is also fulfilled for all m ∈ N, where

σmax(m) := max
1≤i≤k

σi(m).

That is, condition (1.5) holds for equation (2.15).
Finally, note that a similar argument and assumption (2.1) yield that

lim inf
m→∞

m−1∑

j=σi(m)

qi(j) > 0

also holds for some 1 ≤ i ≤ k. Thus all assumptions of Theorem 1.3 are satisfied
by equation (2.15) and hence all solutions of equation (2.15) are oscillatory. This is
a contradiction which concludes our proof.

A similar argument can be applied to prove the following improvement of Theo-
rem 1.4. The proof is left to the reader.
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Theorem 2.6. Suppose that

lim inf
n→∞

n−1∑

j=n−li

pi(j) > 0 for all 1 ≤ i ≤ k, (2.18)

and there exists M > 0 such that 0 ≤ pi(n) ≤ M holds for all 1 ≤ i ≤ k. Furthermore,
assume that the function

k∑

i=1

(
li + 1

li

)li+1 n+li∑

j=n+1
pi(j)

is slowly varying, and the inequality

lim sup
n→∞

k∑

i=1

(
li + 1

li

)li+1 n+li∑

j=n+1
pi(j) > 1

holds. Then every solution of equation (1.1) is oscillatory.
Observe that Theorem 2.1 of [3] is a special case of Theorems 2.5 and 2.6, i.e. with

k = 1 (and with the choice τ∗(n) = τ1(n) in Theorem 2.5).

3. EXAMPLES

We provide two illustrative examples to demonstrate the applicability and significance
of the results. First we compare Theorems 2.2 and 1.1.
Example 3.1. Let us consider equation (1.2) with k = 2 and N = 3. We suppose
that τi(n) ∈ {n − 2, n − 3} for all n ∈ N and i = 1, 2, and let us not make further
assumptions on τ1 and τ2 for now. Furthermore, let the coefficient functions be
defined by

p1(n) = c1 + d1 cos2(√
n · π/2

)
+ (−1)nε, and p2(n) = c2

for all n ∈ N, where c1, c2, d1 and ε are positive parameters with ε < c1. Then, by
choosing τ∗(n) = n − 2 for all n ∈ N, it is elementary to show that the sequence

A(n) :=
k∑

h=1

n−1∑

j=τ∗(n)

ph(j) = 2c1 + 2c2 + d1

2∑

j=1
cos2

(√
n − j · π/2

)

is slowly varying at infinity and that
lim sup

n→∞
A(n) = 2(c1 + c2 + d1)

(consider the subsequence δ(n) = 4n2 + 1). On the other hand, the coefficient functions
are clearly nonnegative and bounded, and moreover, condition (2.1) also holds. Hence
the application of Theorem 2.2 implies that all solutions oscillate, whenever

2(c1 + c2 + d1) >
1
e

(3.1)

is fulfilled.
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On the other hand, if, for example, τ1(n) = n − 2 and τ2(n) = n − 3 for all n ∈ N,
then it is not hard to check that Theorem 1.1 can only guarantee oscillation of all
solutions if

lim inf
n→∞

k∑

h=1

n−1∑

j=n−2
ph(j) = 2c1 + 2c2 + d1 lim inf

n→∞

2∑

j=1
cos2

(√
n − j · π/2

)

= 2(c1 + c2) >
1
e

,

which is clearly more restrictive than condition (3.1).
Observe that – as noted in Remark 2.4 – the flexibility that the definition of τ∗

in Theorem 2.2 gives us can come handy here. Even in the constant (single) delay
case with τ1(n) = τ2(n) ≡ n − 3 we should choose τ∗(n) = n − 2 for these coefficient
functions. This is because with the choice of τ∗(n) ≡ n − 3 we would get

A(n) = 3c1 + 3c2 + (−1)n−1ε + d1

3∑

j=1
cos2

(√
n − j · π/2

)
,

resulting in limn→∞ |A(n + 1) − A(n)| = 2ε ̸= 0, meaning that A(n) is not slowly
varying and one could not apply Theorem 2.2 with this choice of τ∗.

We conclude this paper with an example for the application of Theorem 2.6.

Example 3.2. Consider the constant delay equation (1.1) with l1 = 1 and l2 = 2 and
coefficient functions

p1(n) = c1 + d1 cos2(√
n · π/2

)
, and p2(n) = c2,

with positive constants c1, c2 and d1. The coefficients are evidently nonnegative and
bounded, moreover, condition (2.18) is satisfied.

Then the function
k∑

i=1

(
li + 1

li

)li+1 n+li∑

j=n+1
pi(j) = 4

(
c1 + d1 cos2(√

n + 1 · π/2
))

+
(

3
2

)3
2c2

is slowly varying at infinity, so Theorem 2.6 can be applied to obtain that all solutions
are oscillatory, provided

4
(

c1 + d1 lim sup
n→∞

cos2(√
n + 1 · π/2

))
+ 27

4 c2 = 4(c1 + d1) + 27
4 c2 > 1.

On the other hand, Theorem 1.4 can guarantee oscillation of all solutions only if
the stronger condition

4c1 + 27
4 c2 > 1

is satisfied.
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