CLOSED RANGE WEIGHTED COMPOSITION OPERATORS BETWEEN L^p-SPACES

Ching-on Lo and Anthony Wai-keung Loh

Communicated by P.A. Cojuhari

Abstract. We characterize the closedness of ranges of weighted composition operators between L^p -spaces, where $1 \leq p \leq \infty$. When the L^p -spaces are weighted sequence spaces, several corollaries about this class of operators are also deduced.

Keywords: weighted composition operator, Lebesgue space, closed range.

Mathematics Subject Classification: 47B33, 46E30.

1. INTRODUCTION

Let (X, Σ, μ) and (Y, Γ, ν) be two σ -finite and complete measure spaces. Suppose $\varphi: Y \to X$ is a point mapping such that $\varphi^{-1}(E) \in \Gamma$ for all $E \in \Sigma$. Assume that φ is also non-singular, which means the measure defined by $\nu \varphi^{-1}(E) := \nu(\varphi^{-1}(E))$ for $E \in \Sigma$, is absolutely continuous with respect to μ . Let $u: Y \to \mathbb{C}$ be a Γ -measurable function. The functions u and φ induce a *weighted composition operator* uC_{φ} from $L^{p}(\mu)$ $(1 \leq p \leq \infty)$ into the linear space of all Γ -measurable functions on Y by

 $(uC_{\varphi}f)(y) := u(y)f(\varphi(y))$ for every $f \in L^p(\mu)$ and $y \in Y$.

The non-singularity of φ guarantees that uC_{φ} is a well-defined mapping of equivalence classes of functions. When $u \equiv 1$ (resp. $(X, \Sigma, \mu) = (Y, \Gamma, \nu)$ and $\varphi(x) = x$ for all $x \in X$), the corresponding operator, denoted by C_{φ} (resp. by M_u), is called a *composition operator* (resp. a *multiplication operator*). Observe that $uC_{\varphi} = M_u \circ C_{\varphi}$. Suppose uC_{φ} maps $L^p(\mu)$ into $L^q(\nu)$, where $1 \leq p, q \leq \infty$. Since norm convergence in the L^p -norm implies pointwise convergence a.e. of a subsequence, it follows from the closed graph theorem that uC_{φ} is also bounded.

Operator-theoretic properties of weighted composition maps from $L^{p}(\mu)$ into itself were obtained in [1, 10, 12] and such operators acting between two distinct

@ 2021 Authors. Creative Commons CC-BY 4.0

 L^p -spaces in [4–7,9]. In this paper, we investigate closed range weighted composition operators between L^p -spaces. Singh and Kumar [11] characterized multiplication and composition operators on $L^2(\mu)$ with closed ranges. Takagi and Yokouchi [13, 14] not only extended the results of Singh and Kumar to a general L^p -space, but also obtained characterizations for the closedness of ranges of such operators between distinct L^p -spaces. Our results generalize their findings to the weighted case. While this question has been considered in [6], the results and proofs therein are sketchy and incomplete. We shall provide proofs that are somewhat different from those in [6], deduce interesting consequences when the underlying spaces are weighted sequence spaces and illustrate the results with examples.

2. PRELIMINARIES

Let f be a complex-valued Σ -measurable function on X. Its support, written as supp f, is defined by

$$supp f := \{ x \in X : f(x) \neq 0 \}.$$

ŝ

For $1 \le p \le \infty$, we define

$$||f||_p := \begin{cases} \left(\int_X |f|^p \, d\mu\right)^{1/p} & \text{if } 1 \le p < \infty, \\ \inf\{M > 0 : \mu(\{x \in X : |f(x)| > M\}) = 0\} & \text{if } p = \infty. \end{cases}$$

The Lebesgue space, denoted by $L^p(\mu)$, consists of all (equivalence classes of) Σ -measurable functions f on X for which $||f||_p < \infty$. It is a Banach space under the norm $|| \cdot ||_p$ and is written as $|| \cdot ||_{L^p(\mu)}$. The functions in $L^{\infty}(\mu)$ are said to be essentially bounded.

Let $w := \{w_n\}_{n \in \mathbb{N}}$ be a sequence of positive real numbers. If we take $X = \mathbb{N}$, $\Sigma = \mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}) and $\mu(E) = \sum_{n \in E} w_n$ for every $E \in \mathcal{P}(\mathbb{N})$, then $L^p(\mu)$ is the weighted sequence space $l^p(w)$ for $1 \leq p < \infty$. If $w_n = 1$ for all $n \in \mathbb{N}$, $l^p(w)$ is just the classical sequence space l^p . When $p = \infty$, we define $l^{\infty}(w)$ (or simply l^{∞}) as the space of all bounded sequences of complex numbers.

Analogously, we may define $L^p(\nu)$ and $\|\cdot\|_{L^p(\nu)}$ for $1 \leq p \leq \infty$. Moreover, we define $\sup g$ similarly for a complex-valued Γ -measurable function g on Y.

In the sequel, we adopt the following decomposition of (X, Σ, μ) :

$$X = \left(\bigcup_{i=1}^{\infty} A_i\right) \cup B,$$

where $\{A_i\}_{i=1}^{\infty}$ is a countable collection of pairwise disjoint atoms and B, being disjoint from each A_i , is nonatomic. This decomposition is unique in the sense that equality of two Σ -measurable sets interpreted as their symmetric difference is of zero μ -measure. The σ -finiteness of (X, Σ, μ) ensures that $\mu(A_i) < \infty$ for every $i \in \mathbb{N}$. Moreover, if $X = \bigcup_{i=1}^{\infty} A_i$ (resp. X = B), then (X, Σ, μ) is said to be atomic (resp. nonatomic). The two facts below will be useful.

- (a) Let E be a nonatomic set in Σ with $\mu(E) > 0$. For every real number α satisfying $0 < \alpha < \mu(E)$, there is a set $E_{\alpha} \in \Sigma$ with $E_{\alpha} \subset E$ and $\mu(E_{\alpha}) = \alpha$.
- (b) A Σ -measurable function $f: X \to \mathbb{C}$ is constant μ -a.e. on an atom M in (X, Σ, μ) . Consequently, we view an atom M as a 'point' at which f takes a constant value denoted by f(M).

For $1 \leq q < \infty$, the measure μ_q defined by

$$\mu_q(E) = \int_{\varphi^{-1}(E)} |u|^q \, d\nu \quad \text{for every } E \in \Sigma$$

is absolutely continuous with respect to μ . The corresponding Radon–Nikodym derivative, denoted by $[d\mu_q/d\mu]$, satisfies an important property.

Lemma 2.1 ([7, Lemma 2]). If uC_{φ} is a weighted composition operator from $L^{p}(\mu)$ into $L^{q}(\nu)$, where $1 \leq p, q < \infty$, then

$$\|uC_{\varphi}f\|_{L^{q}(\nu)}^{q} = \int_{X} \left[\frac{d\mu_{q}}{d\mu}\right] |f|^{q} d\mu \quad \text{for every } f \in L^{p}(\mu).$$

Let $(B_1, \|\cdot\|_{B_1})$ and $(B_2, \|\cdot\|_{B_2})$ be two Banach spaces. For a bounded linear operator T from B_1 into B_2 , we denote its kernel and range by ker T and $T(B_1)$ respectively. The following result, which can be found in [2], will be used frequently in the subsequent sections. We state it for quick reference:

There exists a constant c > 0 such that $||Tx||_{B_2} \ge c ||x||_{B_1}$ for all $x \in B_1$ if and only if ker $T = \{0\}$ and $T(B_1)$ is closed in B_2 . (2.1)

The condition " $||Tx||_{B_2} \ge c ||x||_{B_1}$ for all $x \in B_1$ " is usually referred to as "T is bounded below".

3. MAIN RESULTS: $1 \le p, q < \infty$

In this section, we characterize the closedness of ranges of weighted composition operators from $L^p(\mu)$ into $L^q(\nu)$, where $1 \leq p, q < \infty$. For the sake of completeness, we state without proof the following result which characterizes weighted composition maps from $L^p(\mu)$ to $L^p(\nu)$ that have closed ranges. To this end, let \mathfrak{C} be the collection of all Σ -measurable sets E such that

(a)
$$\mu(E) < \infty$$
, and

(b) whenever
$$G \in \Sigma$$
 satisfies $G \subset E$ and $\int_{\varphi^{-1}(G)} |u|^p d\nu = 0, \ \mu(G) = 0.$

Theorem 3.1 ([6, Theorem 3.4]). Let uC_{φ} be a weighted composition operator from $L^{p}(\mu)$ into $L^{p}(\nu)$, where $1 \leq p < \infty$. The following statements are equivalent.

- (i) The operator uC_{φ} has closed range.
- (ii) There is a constant c > 0 such that $\left[\frac{d\mu_p}{d\mu}\right] \ge c \ \mu$ -a.e. on $\operatorname{supp}\left[\frac{d\mu_p}{d\mu}\right]$. (iii) There is a constant $\alpha > 0$ such that $\int_{\varphi^{-1}(E)} |u|^p d\nu \ge \alpha \mu(E)$ for all $E \in \mathfrak{C}$.

Here is an interesting corollary of Theorem 3.1.

Corollary 3.2. Suppose that $1 \le p < \infty$ and $0 < \inf_{n \in \mathbb{N}} w_n \le \sup_{n \in \mathbb{N}} w_n < \infty$.

- (a) If uC_{φ} is a weighted composition operator from $l^{p}(w)$ to $l^{p}(w)$ such that $\inf_{n \in \text{supp } u} |u(n)| > 0$, then uC_{φ} has closed range.
- (b) Every composition operator from $l^{p}(w)$ to $l^{p}(w)$ has closed range. In particular, all composition operators from l^p to l^p have closed ranges.

Proof. It suffices to prove (a) only, since (b) follows from (a) directly.

Put $\alpha := \inf_{n \in \mathbb{N}} w_n$, $\beta := \sup_{n \in \mathbb{N}} w_n$ and $\gamma := \inf_{n \in \text{supp } u} |u(n)|$ $(0 < \alpha, \beta, \gamma < \infty)$. In view of Theorem 3.1, we are to show that there is a constant c > 0 such that $[d\mu_p/d\mu](n) \ge c$ for every $n \in \text{supp} [d\mu_p/d\mu]$.

Note that we have

$$\begin{bmatrix} \frac{d\mu_p}{d\mu} \end{bmatrix} (n)\mu(\{n\}) = \int_{\{n\}} \begin{bmatrix} \frac{d\mu_p}{d\mu} \end{bmatrix} d\mu$$
$$= \int_{\varphi^{-1}(\{n\}) \cap \operatorname{supp} u} |u|^p d\mu$$
$$= \sum_{i \in \varphi^{-1}(\{n\}) \cap \operatorname{supp} u} |u(i)|^p \mu(\{i\})$$
(3.1)

for all $n \in \mathbb{N}$. From (3.1), we see that for each $n \in \text{supp}[d\mu_p/d\mu]$, there is some $j \in \operatorname{supp} u$ with $\varphi(j) = n$. Then

$$\left[\frac{d\mu_p}{d\mu}\right](n) = \frac{\sum_{i \in \varphi^{-1}(\{n\}) \cap \operatorname{supp} u} |u(i)|^p \mu(\{i\})}{\mu(\{n\})} \ge \frac{|u(j)|^p \mu(\{j\})}{\mu(\{n\})} \ge \frac{\gamma^p \alpha}{\beta}.$$

By taking $c = (\gamma^p \alpha) / \beta$, we obtain the desired result.

Example 3.3. Let $X = [0, \infty)$ be equipped with the Lebesgue measure μ on the σ -algebra Σ of Borel sets in $[0, \infty)$. If

$$\varphi(x) := 2x\chi_{[0,1)}(x) + \left(\frac{8}{3}x - \frac{8}{3}\right)\chi_{[1,\frac{7}{2})}(x) + \left(\frac{3}{8}x + \frac{11}{16}\right)\chi_{[\frac{7}{2},\infty)}(x) \quad \text{for } x \in X,$$

it follows from [3, Proposition 2.1] that C_{φ} is a composition operator from $L^{p}(\mu)$ $(1 \le p < \infty)$ into itself with

$$\left[\frac{d\mu_p}{d\mu}\right](x) = \frac{7}{8}\chi_{[0,2)}(x) + \frac{73}{24}\chi_{[2,\frac{20}{3})}(x) + \frac{8}{3}\chi_{[\frac{20}{3},\infty)}(x) \quad \mu\text{-a.e. on } X.$$

Using Theorem 3.1, we see that the range of C_{φ} is closed.

We now consider weighted maps between distinct L^p -spaces that have closed ranges. A few notations are in order. Let $E \in \Sigma$ with $\mu(X \setminus E) > 0$, we define

$$L^p|_E(\mu) = \{ f \in L^p(\mu) : f = 0 \ \mu\text{-a.e. on } X \setminus E \}.$$

Then, $L^p|_E(\mu)$ (equipped with the $\|\cdot\|_{L^p(\mu)}$ norm) is a closed subspace of $L^p(\mu)$ and is thus a Banach space. The restriction of uC_{φ} to $L^p|_E(\mu)$ is denoted by $uC_{\varphi}|_E$.

Theorem 3.4. Let uC_{φ} be a weighted composition operator from $L^{p}(\mu)$ into $L^{q}(\nu)$, where $1 \leq q . The following statements are equivalent.$

- (i) The operator uC_{φ} has closed range.
- (ii) The operator uC_{φ} has finite rank.

(iii)
$$\left\lfloor \frac{d\mu_q}{d\mu} \right\rfloor = 0 \ \mu\text{-a.e. on } B \text{ and the set } \left\{ i \in \mathbb{N} : \left\lfloor \frac{d\mu_q}{d\mu} \right\rfloor (A_i) > 0 \right\} \text{ is finite.}$$

(iv) $\nu(\varphi^{-1}(B) \cap \operatorname{supp} u) = 0 \text{ and the set } \{i \in \mathbb{N} : \nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0\} \text{ is finite.}$

Proof. (ii) \Rightarrow (i) This follows from the fact that every finite-dimensional normed space is closed.

 $(iii) \Leftrightarrow (iv)$ Note that

$$\int\limits_E \left[\frac{d\mu_q}{d\mu}\right] d\mu = \int\limits_{\varphi^{-1}(E)} |u|^q \, d\nu = \int\limits_{\varphi^{-1}(E) \cap \operatorname{supp} u} |u|^q \, d\nu$$

for every $E \in \Sigma$. Thus, $[d\mu_q/d\mu]$ vanishes μ -a.e. on B if and only if

 φ^-

$$\int_{\mathbb{T}^1(B)\cap\operatorname{supp} u} |u|^q \, d\nu = 0,$$

which in turn is equivalent to $\nu(\varphi^{-1}(B) \cap \operatorname{supp} u) = 0$. For each $i \in \mathbb{N}$, we have

$$\left[\frac{d\mu_q}{d\mu}\right](A_i)\mu(A_i) = \int_{A_i} \left[\frac{d\mu_q}{d\mu}\right] d\mu = \int_{\varphi^{-1}(A_i) \cap \operatorname{supp} u} |u|^q \, d\nu.$$

Therefore, $[d\mu_q/d\mu](A_i) > 0$ if and only if $\nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0$. The equivalence of (iii) and (iv) has been established.

(iii) \Rightarrow (ii) Suppose (iii) holds. To show that uC_{φ} has finite rank, it suffices to prove the set

$$S := \{ g \in uC_{\varphi}(L^{p}(\mu)) : \|g\|_{L^{q}(\nu)} \leq 1 \}$$

is compact in $L^q(\nu)$.

If the set $\{i \in \mathbb{N} : [d\mu_q/d\mu](A_i) > 0\}$ is empty, then uC_{φ} is just the zero operator and (ii) trivially holds. Otherwise, we may assume (upon a suitable re-indexing of atoms if necessary) there exists some $k \in \mathbb{N}$ with

$$\begin{bmatrix} \frac{d\mu_q}{d\mu} \end{bmatrix} (A_i) \begin{cases} > 0 & \text{if } i = 1, 2, \dots, k, \\ = 0 & \text{if } i = k+1, k+2, \dots. \end{cases}$$

Take an arbitrary sequence $\{uC_{\varphi}f_n\}_{n\in\mathbb{N}}$ in S. Since $[d\mu_q/d\mu] = 0$ μ -a.e. on B, it follows that

$$\begin{aligned} \|uC_{\varphi}f_n\|_{L^q(\nu)}^q &= \int\limits_{\bigcup_{i\in\mathbb{N}}A_i} \left[\frac{d\mu_q}{d\mu}\right] |f_n|^q \, d\mu + \int\limits_B \left[\frac{d\mu_q}{d\mu}\right] |f_n|^q \, d\mu \\ &= \sum_{i=1}^k \left[\frac{d\mu_q}{d\mu}\right] (A_i) |f_n(A_i)|^q \mu(A_i) \\ &= \sum_{i=1}^k \alpha_i |f_n(A_i)|^q, \end{aligned}$$

where

$$\alpha_i := [d\mu_q/d\mu](A_i)\mu(A_i) > 0.$$

With $||uC_{\varphi}f_n||_{L^q(\nu)} \leq 1$ for all $n \in \mathbb{N}$, we have $|f_n(A_i)| \leq (1/\alpha_i)^{1/q}$ for $i = 1, 2, \ldots, k$ and $n \in \mathbb{N}$. By the Bolzano–Weierstrass theorem, there is a subsequence of natural numbers $\{n_j\}_{j\in\mathbb{N}}$ such that for each fixed $i = 1, 2, \ldots, k$, the sequence $\{f_{n_j}(A_i)\}_{j\in\mathbb{N}}$ converges. Suppose $\lim_{j\to\infty} f_{n_j}(A_i) = \zeta_i$, say, and define $f = \sum_{i=1}^k \zeta_i \chi_{A_i}$. Then, $f \in L^p(\mu)$ and

$$||uC_{\varphi}f||_{L^{q}(\nu)}^{q} = \sum_{i=1}^{k} \alpha_{i}|\zeta_{i}|^{q} \le 1,$$

i.e. $uC_{\varphi}f \in S$. Moreover,

$$\|uC_{\varphi}f_{n_j} - uC_{\varphi}f\|_{L^q(\nu)}^q = \sum_{i=1}^k \alpha_i |f_{n_j}(A_i) - f(A_i)|^q$$
$$= \sum_{i=1}^k \alpha_i |f_{n_j}(A_i) - \zeta_i|^q \to 0 \quad \text{as } j \to \infty$$

Hence the set S is compact in $L^q(\nu)$.

(i) \Rightarrow (iii) We first prove that if uC_{φ} has closed range, then $[d\mu_q/d\mu] = 0$ μ -a.e. on B. Suppose, on the contrary,

$$\mu(\{x \in B : [d\mu_q/d\mu](x) > 0\}) > 0.$$

Then there is a constant $\delta > 0$ for which the set

$$G := \{ x \in B : [d\mu_q/d\mu](x) \ge \delta \}$$

has positive μ -measure. We may assume $\mu(G) < \infty$. As G is nonatomic, we can further assume that $\mu(X \setminus G) > 0$.

Consider the operator $uC_{\varphi}|_G$ defined on $L^p|_G(\mu)$. We claim that:

(a) $uC_{\varphi}|_G(L^p|_G(\mu))$ is closed in $L^q(\nu)$ (under the assumption uC_{φ} has closed range), (b) ker $uC_{\varphi}|_G = \{0\}$.

To prove (a), take any convergent sequence $\{uC_{\varphi}|_G f_n\}_{n\in\mathbb{N}}$ in $uC_{\varphi}|_G(L^p|_G(\mu))$ and let $g \in L^q(\nu)$ satisfy $||uC_{\varphi}|_G f_n - g||_{L^q(\nu)} \to 0$ as $n \to \infty$. Note that $\{uC_{\varphi}|_G f_n\}_{n\in\mathbb{N}}$ can be regarded as a sequence in $uC_{\varphi}(L^p(\mu))$. The closedness of range of uC_{φ} yields a function $f \in L^p(\mu)$ with $g = uC_{\varphi}f$ ν -a.e. on Y. Since

$$\begin{split} \|uC_{\varphi}\|_{G}f_{n} - g\|_{L^{q}(\nu)}^{q} &= \|uC_{\varphi}\|_{G}f_{n} - uC_{\varphi}f\|_{L^{q}(\nu)}^{q} \\ &= \int_{G} \left[\frac{d\mu_{q}}{d\mu}\right]|f_{n} - f|^{q} \, d\mu + \int_{X\backslash G} \left[\frac{d\mu_{q}}{d\mu}\right]|f_{n} - f|^{q} \, d\mu \\ &= \int_{G} \left[\frac{d\mu_{q}}{d\mu}\right]|f_{n} - f|^{q} \, d\mu + \int_{X\backslash G} \left[\frac{d\mu_{q}}{d\mu}\right]|f|^{q} \, d\mu \end{split}$$

for every $n \in \mathbb{N}$, it follows that $\int_{X \setminus G} [d\mu_q/d\mu] |f|^q d\mu = 0$. Now,

$$||uC_{\varphi}|_{G}f\chi_{G} - uC_{\varphi}f||_{L^{q}(\nu)}^{q} = \int_{X\backslash G} \left[\frac{d\mu_{q}}{d\mu}\right]|f|^{q} d\mu = 0.$$

Thus, $g = uC_{\varphi}|_G f\chi_G \nu$ -a.e. on Y, where $f\chi_G \in L^p|_G(\mu)$.

To prove (b), we take any $f \in \ker uC_{\varphi}|_G$. Then $uC_{\varphi}|_G f = 0$ ν -a.e. on Y, or

$$\int_{G} [d\mu_q/d\mu] |f|^q \, d\mu = \|uC_{\varphi}|_G f\|_{L^q(\nu)}^q = 0.$$

This, together with the inequalities

$$0 \le \delta \int_{G} |f|^{q} d\mu \le \int_{G} \left[\frac{d\mu_{q}}{d\mu} \right] |f|^{q} d\mu,$$

implies that f = 0 μ -a.e. on G. With $f \in L^p|_G(\mu)$, (b) follows.

By (2.1), there exists a constant c > 0 such that

$$||uC_{\varphi}|_G f||_{L^q(\nu)} \ge c ||f||_{L^p(\mu)}$$

for all $f \in L^p|_G(\mu)$. We claim that this is impossible by showing that for each $\alpha > 0$, there is some $f_{\alpha} \in L^p|_G(\mu)$ satisfying

$$||uC_{\varphi}|_G f_{\alpha}||_{L^q(\nu)} < \alpha ||f_{\alpha}||_{L^p(\mu)}.$$

For every $n \in \mathbb{N}$, define

$$G_n = \{ x \in G : n - 1 \le [d\mu_q/d\mu](x) < n \}.$$

Then

$$G = \left(\bigcup_{n=1}^{\infty} G_n\right) \cup \left\{x \in G : \left[\frac{d\mu_q}{d\mu}\right](x) = \infty\right\}$$

Since uC_{φ} is a bounded operator from $L^{p}(\mu)$ into $L^{q}(\nu)$, it follows from [5, Theorem 2.3] that $[d\mu_{q}/d\mu] \in L^{p/(p-q)}(\mu)$. In particular, $[d\mu_{q}/d\mu]$ is finite-valued μ -a.e. on X and

$$\mu\left(\left\{x\in G: \left[\frac{d\mu_q}{d\mu}\right](x)=\infty\right\}\right)=0.$$

With $\mu(G) > 0$, we see that $\mu(G_N) > 0$ for some $N \in \mathbb{N}$. Fix any $\alpha > 0$. By the nonatomicity of G_N , we may choose a set $E_\alpha \in \Sigma$ with $E_\alpha \subset G_N$ and $\mu(E_\alpha) = \mu(G_N)/K$, where $K \in \mathbb{N}$ and

$$K > (N^{\frac{p}{p-q}}\mu(G_N))/\alpha^{\frac{pq}{p-q}}.$$

Take $f_{\alpha} := \chi_{E_{\alpha}}$. Then, $f_{\alpha} \in L^p|_G(\mu)$ and $||f_{\alpha}||_{L^p(\mu)} = (\mu(G_N)/K)^{1/p}$. Moreover,

$$\|uC_{\varphi}|_{G}f_{\alpha}\|_{L^{q}(\nu)} = \left(\int_{E_{\alpha}} \left[\frac{d\mu_{q}}{d\mu}\right] d\mu\right)^{1/q}$$
$$\leq (N\mu(E_{\alpha}))^{1/q} = \frac{N^{\frac{1}{q}}\mu(G_{N})^{\frac{1}{p} + \frac{p-q}{pq}}}{K^{\frac{1}{p} + \frac{p-q}{pq}}} < \alpha \|f_{\alpha}\|_{L^{p}(\mu)}.$$

This proves our claim. Therefore, we must have $[d\mu_q/d\mu] = 0$ μ -a.e. on B.

It remains to show that if uC_{φ} has closed range, then the set

$$\{i \in \mathbb{N} : [d\mu_q/d\mu](A_i) > 0\}$$

is finite.

We also argue by contradiction. Suppose, on the contrary, the set

$$\{i \in \mathbb{N} : [d\mu_q/d\mu](A_i) > 0\}$$

is infinite. Without losing generality, we assume that $[d\mu_q/d\mu](A_i) > 0$ for all $i \in \mathbb{N}$. Let $A := \bigcup_{i \in \mathbb{N}} A_i$ and assume $\mu(X \setminus A) > 0$. This time, we consider the operator $uC_{\varphi}|_A$ on $L^p|_A(\mu)$ (if $\mu(X \setminus A) = 0$, then (X, Σ, μ) is atomic. Upon replacing $uC_{\varphi}|_A$ and $L^p|_A(\mu)$ by uC_{φ} and $L^p(\mu)$ respectively, the proof below is still valid).

Similarly, one may show that $uC_{\varphi}|_A(L^p|_A(\mu))$ is a closed subspace of $L^q(\nu)$ and ker $uC_{\varphi}|_A = \{0\}$. By (2.1), there is a constant d > 0 with

$$||uC_{\varphi}|_A f||_{L^q(\nu)} \ge d||f||_{L^p(\mu)}$$

for all $f \in L^p|_A(\mu)$. Then

$$\left[\frac{d\mu_q}{d\mu}\right](A_i)\mu(A_i) = \|uC_{\varphi}|_A \chi_{A_i}\|_{L^q(\nu)}^q \ge d^q \|\chi_{A_i}\|_{L^p(\mu)}^q = d^q \mu(A_i)^{q/p},$$

so that

$$\left[\frac{d\mu_q}{d\mu}\right](A_i)^{\frac{p}{p-q}}\mu(A_i) \ge d^{\frac{pq}{p-q}}$$

for all $i \in \mathbb{N}$. From the above inequality,

$$\sum_{i\in\mathbb{N}} d^{\frac{pq}{p-q}} \le \sum_{i\in\mathbb{N}} \left[\frac{d\mu_q}{d\mu} \right] (A_i)^{\frac{p}{p-q}} \mu(A_i) = \|uC_{\varphi}\|^{\frac{pq}{p-q}} < \infty.$$

This is absurd, since $\sum_{i \in \mathbb{N}} d^{\frac{pq}{p-q}} = \infty$. Hence $[d\mu_q/d\mu](A_i) > 0$ for finitely many $i \in \mathbb{N}$ only. The proof of the implication $(i) \Rightarrow (iii)$ is now complete.

Theorem 3.5. Let uC_{φ} be a weighted composition operator from $L^{p}(\mu)$ into $L^{q}(\nu)$, where $1 \leq p < q < \infty$. The following statements are equivalent.

- (i) The operator uC_{φ} has closed range.

- (ii) The operator uC_{φ} has finite rank. (iii) The set $\left\{ i \in \mathbb{N} : \left[\frac{d\mu_q}{d\mu} \right] (A_i) > 0 \right\}$ is finite. (iv) The set $\{i \in \mathbb{N} : \nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0\}$ is finite.

Proof. The proofs of (iii) \Leftrightarrow (iv), (ii) \Rightarrow (i) and (iii) \Rightarrow (ii) are the same as those in Theorem 3.4. It suffices to prove $(i) \Rightarrow (iii)$ only.

Suppose, on the contrary, the set $\{i \in \mathbb{N} : [d\mu_q/d\mu](A_i) > 0\}$ is infinite. We may further assume that $[d\mu_q/d\mu] > 0$ on A, where $A := \bigcup_{i \in \mathbb{N}} A_i$. By [4, Theorem 2.5], $[d\mu_q/d\mu] < \infty$ on A. Let d > 0 be a constant such that

$$||uC_{\varphi}|_A f||_{L^q(\nu)} \ge d ||f||_{L^p(\mu)}$$
 for all $f \in L^p|_A(\mu)$.

Consider the operator M on $L^p|_A(\mu)$ defined by

$$Mf = \left[\frac{d\mu_q}{d\mu}\right]^{1/q} f \quad \text{for } f \in L^p|_A(\mu).$$

Since $||Mf||_{L^q(\mu)} = ||uC_{\varphi}|_A f||_{L^q(\nu)}$, M maps $L^p|_A(\mu)$ into $L^q|_A(\mu)$ and M is bounded below. We shall show that $M(L^p|_A(\mu))$ is dense in $L^q|_A(\mu)$, for this implies that M is a surjective map between $L^p|_A(\mu)$ and $L^q|_A(\mu)$. Take any $g \in L^q|_A(\mu)$ and let $g_n := \sum_{i=1}^n g(A_i)\chi_{A_i}$ for each $n \in \mathbb{N}$. Then

$$||g_n - g||^q_{L^q(\mu)} = ||g||^q_{L^q(\mu)} - \sum_{i=1}^n |g(A_i)|^q \mu(A_i) \to 0$$

as $n \to \infty$. We also define

$$f_n = \begin{cases} [d\mu_q/d\mu]^{-1/q}g_n & \text{on } A, \\ 0 & \text{on } X \setminus A. \end{cases}$$

Note that $f_n \in L^p|_A(\mu)$ (with $||f_n||_{L^p(\mu)}^p = \sum_{i=1}^n \frac{|g_n(A_i)|^p \mu(A_i)}{[d\mu_q/d\mu](A_i)^{p/q}} < \infty$) and

$$||Mf_n - g||_{L^q(\mu)} = ||g_n - g||_{L^q(\mu)} \to 0 \text{ as } n \to \infty.$$

Thus, $M(L^p|_A(\mu))$ is dense in $L^q|_A(\mu)$.

The inverse operator of M, denoted by M^{-1} , is given by $g \mapsto pg$ for $g \in L^q|_A(\mu)$, where

$$p := \begin{cases} [d\mu_q/d\mu]^{-1/q} & \text{on } A, \\ 0 & \text{on } X \setminus A. \end{cases}$$

By the bounded inverse theorem, M^{-1} is also bounded. Applying [5, Theorem 2.3], we obtain

$$\int_{A} \frac{1}{[d\mu_q/d\mu]^{p/(q-p)}} d\mu < \infty.$$
(3.2)

Furthermore, according to [4, Theorem 2.5], we have

$$(0 <) \| uC_{\varphi} \|^{q} = \sup_{i \in \mathbb{N}} \frac{[d\mu_{q}/d\mu](A_{i})}{\mu(A_{i})^{(q-p)/p}}$$

This, together with (3.2), yields

$$\sum_{i \in \mathbb{N}} \frac{1}{\|uC_{\varphi}\|^{\frac{pq}{q-p}}} \le \sum_{i \in \mathbb{N}} \frac{\mu(A_i)}{[d\mu_q/d\mu](A_i)^{p/(q-p)}} = \int_A \frac{1}{[d\mu_q/d\mu]^{p/(q-p)}} \, d\mu < \infty.$$

This is absurd because

$$\sum_{i\in\mathbb{N}} 1/\|uC_{\varphi}\|^{\frac{pq}{q-p}} = \infty.$$

Hence the set $\{i \in \mathbb{N} : [d\mu_q/d\mu](A_i) > 0\}$ is finite if uC_{φ} has closed range.

In Corollary 3.2, we showed that every composition operator from l^p to itself has closed range. This is *not* necessarily true, when the domain of the operator differs from the co-domain. The following example demonstrates this.

Example 3.6. Let $T: l^1 \to l^2$ be defined by

$$T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$$
 for every $\{x_n\}_{n \in \mathbb{N}} \in l^1$.

The map T is a composition operator (also known as the left shift operator) induced by $\varphi(n) = n + 1$ for $n \in \mathbb{N}$. Since

$$[d\mu_2/d\mu](n) = \begin{cases} 0 & \text{if } n = 1, \\ 1 & \text{if } n = 2, 3, \dots \end{cases}$$

an appeal to Theorem 3.5 shows that T does not have closed range. This fact can also be established by a direct argument: for each $n \in \mathbb{N}$, let $f_n \ (= \{x_j^n\}_{j \in \mathbb{N}})$ be the sequence

$$x_j^n := \begin{cases} 1/j & \text{if } j = 1, 2, \dots, n, \\ 0 & \text{if } j = n+1, n+2, \dots \end{cases}$$

Then as $n \to \infty$, $||Tf_n - g||_{l^2} \to 0$, where $g := (1/2, 1/3, 1/4, ...) \in l^2$. However, $g \notin T(l^1)$.

4. MAIN RESULTS: $p = \infty$ OR $q = \infty$

In this section, we study the closedness of ranges of weighted composition maps from $L^p(\mu)$ into $L^q(\nu)$, where $p = \infty$ or $q = \infty$. When $1 \leq p, q < \infty$, we rely on the Radon–Nikodym derivative $[d\mu_q/d\mu]$ in stating characterizations and constructing proofs. This is no longer viable if $q = \infty$. It is necessary to utilize properties intrinsic to uC_{φ} and the measure $\nu \varphi^{-1}$ instead. The following notations will be adopted in this section.

Let $S \in \Gamma$. The restriction of a Γ -measurable function $g: Y \to \mathbb{C}$ to S is denoted by $g|_S$. We also define the σ -algebra Γ_S and the measure ν_S on Γ_S by

$$\Gamma_S = \{F \cap S : F \in \Gamma\}$$
 and $\nu_S(F) = \nu(F)$ for $F \in \Gamma_S$

respectively. Then (S, Γ_S, ν_S) is a σ -finite and complete measure space. For $1 \leq p \leq \infty$ and a Γ_S -measurable function $h: S \to \mathbb{C}$, let

$$\|h\|_p := \begin{cases} \left(\int_S |h|^p \, d\nu\right)^{1/p} & \text{if } 1 \le p < \infty, \\ \inf\{M > 0 : \nu(\{y \in S : |h(y)| > M\}) = 0\} & \text{if } p = \infty. \end{cases}$$

The set $L^p(\nu_S)$ is the Banach space of all (equivalence classes of) Γ_S -measurable functions h on S such that $\|h\|_p < \infty$. We denote the norm $\|\cdot\|_p$ by $\|\cdot\|_{L^p(\nu_S)}$.

If $S \in \Sigma$, then $L^p(\mu_S)$ and $\|\cdot\|_{L^p(\mu_S)}$ are defined similarly.

When (X, Σ, μ) is atomic, we have the following sufficient condition for the closedness of range of uC_{φ} from $L^{\infty}(\mu)$ to $L^{\infty}(\nu)$. A general characterization, however, has not yet been obtained.

Theorem 4.1. Suppose that (X, Σ, μ) is atomic. Let uC_{φ} be a weighted composition operator from $L^{\infty}(\mu)$ into $L^{\infty}(\nu)$. If there is a constant $\delta > 0$ such that $|u(y)| \ge \delta \nu$ -a.e. on supp u, then uC_{φ} has closed range.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence in $L^{\infty}(\mu)$ and g be a function in $L^{\infty}(\nu)$ with $\|uC_{\varphi}f_n - g\|_{L^{\infty}(\nu)} \to 0$ as $n \to \infty$. Then there is a set $F \in \Gamma$ for which $\nu(Y \setminus F) = 0$ and $uC_{\varphi}f_n$ converges to g uniformly on F. Put $S := \operatorname{supp} u$ and $\psi := \varphi|_S$. Consider the composition operator $C_{\psi} : L^{\infty}(\mu) \to L^{\infty}(\nu_S)$ defined by $C_{\psi}f = f \circ \psi$ for $f \in L^{\infty}(\mu)$. Since

$$\left|C_{\psi}f_n - \frac{g}{u}\right|_{S} = \left|\frac{1}{u}\right| |uC_{\psi}f_n - g| \le \frac{1}{\delta} |uC_{\varphi}f_n - g| \quad \text{on } S$$

and $\nu(S \setminus (F \cap S)) = 0$, it follows that $||C_{\psi}f_n - (g/u)|_S||_{L^{\infty}(\nu_S)} \to 0$ as $n \to \infty$, i.e. the sequence $\{C_{\psi}f_n\}_{n \in \mathbb{N}}$ converges to $(g/u)|_S \ (\in L^{\infty}(\nu_S))$ uniformly on $F \cap S$. We claim that $C_{\psi}(L^{\infty}(\mu))$ is closed. To prove this, let $T: L^{\infty}(\mu)/\ker C_{\psi} \to L^{\infty}(\nu_S)$ be defined as

$$T(f + \ker C_{\psi}) = C_{\psi}f,$$

with $f \in L^{\infty}(\mu)$ and $L^{\infty}(\mu)/\ker C_{\psi}$ being a Banach space equipped with the quotient norm given by

$$||f + \ker C_{\psi}|| := \inf\{||f + h||_{L^{\infty}(\mu)} : h \in \ker C_{\psi}\}.$$

The map T is well-defined and linear. Fix any $f \in L^{\infty}(\mu)$. For every $h \in \ker C_{\psi}$,

$$||f + h||_{L^{\infty}(\mu)} \ge ||C_{\psi}(f + h)||_{L^{\infty}(\nu_{S})} = ||T(f + \ker C_{\psi})||_{L^{\infty}(\nu_{S})}.$$

Thus,

$$||f + \ker C_{\psi}|| \ge ||T(f + \ker C_{\psi})||_{L^{\infty}(\nu_S)}.$$
 (4.1)

If we let

$$s := -\sum_{i \in I} f(A_i) \chi_{A_i},$$

where

$$I := \{ i \in \mathbb{N} : \nu \psi^{-1}(A_i) = 0 \}$$

then $s \in \ker C_{\psi}$ and

$$||C_{\psi}f||_{L^{\infty}(\nu_{S})} = ||f+s||_{L^{\infty}(\mu)} (= \sup_{i \notin I} |f(A_{i})|).$$

Hence

$$\|T(f + \ker C_{\psi})\|_{L^{\infty}(\nu_{S})} = \|C_{\psi}f\|_{L^{\infty}(\nu_{S})}$$

= $\|f + s\|_{L^{\infty}(\mu)}$
 $\geq \|f + \ker C_{\psi}\|.$ (4.2)

From (4.1) and (4.2), T is indeed an isometry. Therefore, the range of C_{ψ} is closed.

In view of the claim, we obtain a function f in $L^{\infty}(\mu)$ such that $C_{\psi}f = (g/u)|_S$ ν -a.e. on S. With g = 0 ν -a.e. on $Y \setminus S$, we conclude that $uC_{\varphi}f = g$ ν -a.e. on Y. This completes the proof.

We digress momentarily to consider invertible weighted composition operators from $L^{p}(\mu)$ onto $L^{p}(\nu)$. When $1 \leq p < \infty$ and (X, Σ, μ) is nonatomic, characterizations for this class of operators were obtained by the authors in [8, Theorem 1.2]. We now completely characterize these maps for $p = \infty$, without assuming the nonatomicity of (X, Σ, μ) .

Theorem 4.2. Let uC_{φ} be a weighted composition operator from $L^{\infty}(\mu)$ into $L^{\infty}(\nu)$. Then it is invertible if and only if the following conditions are all satisfied:

- (i) There exists a constant $\delta > 0$ such that $|u| \ge \delta \nu$ -a.e. on Y.
- (ii) μ is absolutely continuous with respect to $\nu \varphi^{-1}$.
- (iii) For each set $F \in \Gamma$, there is a set $E \in \Sigma$ such that $\varphi^{-1}(E) = F$.

Proof. Assume uC_{φ} is invertible. By (2.1), there exists a constant c > 0 with

 $\|uC_{\varphi}f\|_{L^{\infty}(\nu)} \ge c\|f\|_{L^{\infty}(\mu)} \quad \text{for all } f \in L^{\infty}(\mu).$

We claim that $|u| \ge c/2 \nu$ -a.e. on Y. Otherwise, there is a set $G \in \Gamma$ such that $\nu(G) > 0$ and |u| < c/2 on G. Let $g \in L^{\infty}(\mu)$ be the function with $uC_{\varphi}g = \chi_G$. Then

$$|g| \le ||g||_{L^{\infty}(\mu)} \le \frac{1}{c} ||uC_{\varphi}g||_{L^{\infty}(\nu)} = \frac{1}{c} ||\chi_G||_{L^{\infty}(\nu)} = \frac{1}{c} \quad \mu\text{-a.e. on } X.$$

It follows that

$$1 = |\chi_G| = |uC_{\varphi}g| = |u||g \circ \varphi| < \frac{c}{2} \cdot \frac{1}{c} = \frac{1}{2}$$
 ν -a.e. on G .

This absurdity justifies our claim. To prove (ii), suppose $\nu \varphi^{-1}(E) = 0$ for $E \in \Sigma$. Since $uC_{\varphi}\chi_E = 0$, the injectivity of uC_{φ} implies that $\chi_E = 0$, i.e. $\mu(E) = 0$.

It remains to prove (iii). Choose any set $F \in \Gamma$ with $\nu(F) < \infty$. Let $g \in L^{\infty}(\mu)$ be the function with $uC_{\varphi}g = \chi_F$, or $C_{\varphi}g = (1/u)\chi_F$. Let $\mathcal{E} := \{\varphi^{-1}(E) : E \in \Sigma\}$. Since $C_{\varphi}g$ is \mathcal{E} -measurable, so is $(1/u)\chi_F$. By writing $Y = \bigcup_{i=1}^{\infty} F_i$, where $\{F_i\}_{i=1}^{\infty}$ is an increasing sequence of Γ -measurable sets with finite ν -measures, we have $1/u = \lim_{i \to \infty} (1/u)\chi_{F_i}$ on Y. It follows that 1/u is \mathcal{E} -measurable. Hence χ_F is also \mathcal{E} -measurable for all $F \in \Gamma$ satisfying $\nu(F) < \infty$.

Conversely, assume all the three conditions hold. The equality $\varphi^{-1}(E) = F$ in (iii) may be expressed as $C_{\varphi}\chi_E = \chi_F$. In view of this and the fact that simple functions (not necessarily with supports of finite measures) are dense in $L^{\infty}(\mu)$ (or $L^{\infty}(\nu)$), it suffices to show that

$$\|C_{\varphi}f\|_{L^{\infty}(\nu)} = \|f\|_{L^{\infty}(\mu)} \tag{4.3}$$

for every simple function $f \in L^{\infty}(\mu)$. This will establish the injectivity of C_{φ} . Together with the inclusion $(1/u)L^{\infty}(\nu) \subset L^{\infty}(\nu)$, this shows that uC_{φ} is invertible as well. To verify (4.3), write $f = \sum_{i=1}^{n} c_i \chi_{E_i}$, where the E_i 's are pairwise disjoint and $\mu(E_i) > 0$ for all *i*. By (ii), we have $\nu \varphi^{-1}(E_i) > 0$ and so

$$\|C_{\varphi}f\|_{L^{\infty}(\nu)} = \left\|\sum_{i=1}^{n} c_{i}\chi_{\varphi^{-1}(E_{i})}\right\|_{L^{\infty}(\nu)} = \max_{i=1,2,\dots,n} |c_{i}| = \|f\|_{L^{\infty}(\mu)}.$$

The proof of the following result is analogous to that of Theorem 3.4 and is thus omitted.

Theorem 4.3. Let uC_{φ} be a weighted composition operator from $L^{\infty}(\mu)$ into $L^{q}(\nu)$, where $1 \leq q < \infty$. The following statements are equivalent.

- (i) The operator uC_{φ} has closed range.
- (ii) The operator uC_{φ} has finite rank.
- (iii) $\nu(\varphi^{-1}(B) \cap \operatorname{supp} u) = 0$ and the set $\{i \in \mathbb{N} : \nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0\}$ is finite.

Corollary 4.4. Suppose that $1 \le q and <math>(X, \Sigma, \mu)$ is nonatomic. If uC_{φ} is a weighted composition operator from $L^p(\mu)$ into $L^q(\nu)$ with closed range, then it is the zero operator.

Theorem 4.5. Let uC_{φ} be a weighted composition operator from $L^{p}(\mu)$ into $L^{\infty}(\nu)$, where $1 \leq p < \infty$. The following statements are equivalent.

- (i) The operator uC_{φ} has closed range.
- (ii) The operator uC_{φ} has finite rank.

(iii) The set $\{i \in \mathbb{N} : \nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0\}$ is finite.

Proof. (ii) \Rightarrow (i) Since $uC_{\varphi}(L^{p}(\mu))$ is finite-dimensional, it is also closed in $L^{\infty}(\nu)$.

(iii) \Rightarrow (ii) By the boundedness of uC_{φ} , we have $\nu(\varphi^{-1}(B) \cap \operatorname{supp} u) = 0$ [7, Theorem 4]. Put

$$I := \{ i \in \mathbb{N} : \nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0 \}.$$

If (iii) holds, then it follows that

$$uC_{\varphi}(L^p(\mu)) = \operatorname{span}_{i \in I} uC_{\varphi}\chi_{A_i}.$$

Thus, $\dim(uC_{\varphi}(L^p(\mu))) < \infty$ and (ii) follows.

(i) \Rightarrow (iii) We prove the result by contradiction. Suppose, on the contrary, the set $\{i \in \mathbb{N} : \nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0\}$ is infinite. Without losing generality, we may assume $\nu(\varphi^{-1}(A_i) \cap \operatorname{supp} u) > 0$ for all $i \in \mathbb{N}$. Let $S := \bigcup_{i \in \mathbb{N}} S_i$, where $S_i := \varphi^{-1}(A_i) \cap \operatorname{supp} u$, and put $A := \bigcup_{i \in \mathbb{N}} A_i$. Consider the weighted composition operator

$$wC_{\psi}: L^p(\mu_A) \to L^{\infty}(\nu_S)$$

induced by $\psi := \varphi|_S$ with the weight $w := u|_S$. Since wC_{ψ} is injective and has closed range, it follows from (2.1) that there exists some constant c > 0 with

$$||wC_{\psi}f||_{L^{\infty}(\nu_{S})} \ge c||f||_{L^{p}(\mu_{A})}$$

for every $f \in L^p(\mu_A)$.

For each $i \in \mathbb{N}$, we now let

$$||w||_{S_{i,\infty}} := \inf\{M > 0 : \nu(\{y \in S_i : |w(y)| > M\}) = 0\}.$$

Note that $0 < ||w||_{S_{i,\infty}} < \infty$. Let

$$\Theta := \sum_{i \in \mathbb{N}} \|w\|_{S_i, \infty} \chi_{A_i}$$

and define the operator M_{Θ} on $L^p(\mu_A)$ by

$$M_{\Theta}f = \Theta f$$
 for $f \in L^p(\mu_A)$.

According to [7, Theorem 4] again, M_{Θ} is a bounded operator from $L^p(\mu_A)$ into $L^{\infty}(\mu_A)$ with

$$||M_{\Theta}||^{p} = \sup_{i \in \mathbb{N}} ||w||_{S_{i,\infty}}^{p} / \mu(A_{i}) (> 0).$$

It is also plain that

$$\|M_{\Theta}f\|_{L^{\infty}(\mu_A)} = \alpha,$$

where

$$\alpha := \sup_{i \in \mathbb{N}} \|w\|_{S_i,\infty} |f(A_i)|.$$

We claim that $||wC_{\psi}f||_{L^{\infty}(\nu_S)} = \alpha$ as well.

If $y \in S_i$, then

$$|wC_{\psi}f(y)| = |w(y)f(\varphi(y))| \le ||w||_{S_i,\infty} |f(A_i)| \le \alpha$$

 ν -a.e. on S_i . Since this inequality holds for every $i \in \mathbb{N}$, we have $\|wC_{\psi}f\|_{L^{\infty}(\nu_S)} \leq \alpha$. With $\|w\|_{S_i,\infty}|f(A_i)| \leq \|wC_{\psi}f\|_{L^{\infty}(\nu_S)}$ for each $i \in \mathbb{N}$, we also have $\alpha \leq \|wC_{\psi}f\|_{L^{\infty}(\nu_S)}$. Our claim now follows.

From the preceding paragraphs, we have $||M_{\Theta}f||_{L^{\infty}(\mu_A)} \geq c||f||_{L^{p}(\mu_A)}$ for $f \in L^{p}(\mu_A)$. Let

$$f_n := \sum_{i=1}^n \|w\|_{S_i,\infty}^{-1} \chi_{A_i} \quad \text{for } n \in \mathbb{N}.$$

Then,

$$||f_n||_{L^p(\mu_A)}^p = \sum_{i=1}^n \mu(A_i) / ||w||_{S_i,\infty}^p \text{ and } ||M_{\Theta}f_n||_{L^{\infty}(\mu_A)} = 1.$$

Hence

$$\sum_{i=1}^{n} \frac{\mu(A_i)}{\|w\|_{S_i,\infty}^p} \le \frac{1}{c^p} \quad \text{for all } n \in \mathbb{N}.$$

Letting $n \to \infty$ yields $\sum_{i=1}^{\infty} \mu(A_i) / \|w\|_{S_{i,\infty}}^p \leq 1/c^p < \infty$. On the other hand, with $\|w\|_{S_{i,\infty}}^p / \mu(A_i) \leq \|M_{\Theta}\|^p$ for each $i \in \mathbb{N}$, we have $\sum_{i=1}^{\infty} \mu(A_i) / \|w\|_{S_{i,\infty}}^p = \infty$. This is a contradiction.

From Example 3.6, not every composition operator from l^p into l^q , $p \neq q$, has closed range. Actually every uC_{φ} such that the image of $\sup u$ under φ is infinite does not have closed range.

Corollary 4.6. Let uC_{φ} be a weighted composition operator from $l^{p}(w)$ into $l^{q}(w)$, where $1 \leq p, q \leq \infty$ and $p \neq q$. Then uC_{φ} has closed range if and only if $\varphi(\text{supp } u)$ is finite.

Let uC_{φ} be a weighted composition map from $L^p(\mu)$ to $L^q(\nu)$, where $1 \leq p, q \leq \infty$ and $p \neq q$. An immediate consequence of Theorems 3.4, 3.5, 4.3 and 4.5 is that if uC_{φ} has closed range, then uC_{φ} is compact. The converse, however, is *not* necessarily true. For example, let $T: l^p \to l^q$, $1 \leq p < q \leq \infty$, be defined by

$$T(x_1, x_2, x_3, \ldots) = \left(x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots\right) \text{ for every } \{x_n\}_{n \in \mathbb{N}} \in l^p.$$

The operator T does not have closed range, yet it is compact by [9, Theorems 3.3 and 3.7].

REFERENCES

- J.T. Campbell, J.E. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32 (1990), 87–94.
- [2] J.B. Conway, A Course in Functional Analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990.
- [3] T. Hoover, A. Lambert, J. Quinn, The Markov process determined by a weighted composition operator, Studia Math. 72 (1982), 225–235.
- [4] M.R. Jabbarzadeh, Weighted composition operators between L^p-spaces, Bull. Korean Math. Soc. 42 (2005), 369–378.
- M.R. Jabbarzadeh, E. Pourreza, A note on weighted composition operators on L^p-spaces, Bull. Iranian Math. Soc. 29 (2003), 47–54.
- [6] R. Kumar, Weighted composition operators between two L^p-spaces, Mat. Vesnik 61 (2009), 111–118.
- [7] C.O. Lo, Compact-type weighted composition operators between L^p-spaces, Banach J. Math. Anal. 14 (2020), 1421–1442.
- [8] C.O. Lo, A.W.K. Loh, Fredholm weighted composition operators, Oper. Matrices 13 (2019), 169–186.
- C.O. Lo, A.W.K. Loh, Compact weighted composition operators between L^p-spaces, Bull. Aust. Math. Soc. 102 (2020), 151–161.
- [10] R.K. Singh, N.S. Dharmadhikari, Compact and Fredholm composite multiplication operators, Acta Sci. Math. (Szeged) 52 (1988), 437–441.
- [11] R.K. Singh, A. Kumar, Multiplication operators and composition operators with closed ranges, Bull. Aust. Math. Soc. 16 (1977), 247–252.
- [12] H. Takagi, Compact weighted composition operators on L^p, Proc. Amer. Math. Soc. 116 (1992), 505–511.
- [13] H. Takagi, K. Yokouchi, Composition operators between L^p-spaces, The structure of spaces of analytic and harmonic functions and the theory of operators on them, Kyoto Univ. Res. Inst. Math. Sci. Kokyuroku 946 (1996), 18–24 [in Japanese].
- [14] H. Takagi, K. Yokouchi, Multiplication and composition operators between two L^p-spaces, Function spaces (Edwardsville, IL, 1998), Contemp. Math., 232, Amer. Math. Soc., Providence, RI, 1999, 321–338.

Ching-on Lo (corresponding author) co.lo@cpce-polyu.edu.hk bttps://orcid.org/0000-0003-2735-8726

Division of Science, Engineering and Health Studies College of Professional and Continuing Education The Hong Kong Polytechnic University Anthony Wai-keung Loh anthony.wk.loh@cpce-polyu.edu.hk https://orcid.org/0000-0002-2759-3198

Division of Science, Engineering and Health Studies College of Professional and Continuing Education The Hong Kong Polytechnic University

Received: July 29, 2021. Accepted: August 10, 2021.