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Abstract. The stereological inverse problem of unfolding the distribution of spheres radii from
measured planar sections radii, known as the Wicksell’s corpuscle problem, is considered. The
construction of uniform confidence bands based on the smoothed bootstrap in the Wicksell’s
problem is presented. Theoretical results on the consistency of the proposed bootstrap
procedure are given, where the consistency of the bands means that the coverage probability
converges to the nominal level. The finite-sample performance of the proposed method is
studied via Monte Carlo simulations and compared with the asymptotic (non-bootstrap)
solution described in literature.
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1. INTRODUCTION

This article concerns the construction of bootstrap simultaneous confidence intervals
(confidence bands) in a certain statistical problem, which, from mathematical point
of view, is an inverse problem, and was originally motivated by medical applications.

The Wicksell’s corpuscle problem ([28]) is an example of a classical problem of
stereology. We deal with it when we model an experiment in which objects in the
shape of balls of random radii are randomly placed in some three-dimensional opaque
medium and we want to know the distribution of the spheres radii. Assume that
the lengths of the radii are independent and have the same distribution. We cut the
medium with a random plane and measure the observed circles radii. The goal is
to unfold the distribution of spheres radii from the measured planar sections radii.
Examples of real life applications of Wicksell’s corpuscle problem are seen in, e.g.,
geology (where mineral grains in a rock are considered to be the spheres), metallurgy
(where we consider graphite grains as balls of varying radii), or medicine (where cancer
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cells in the tissue can be treated as spheres). Medicine is on this list also because of
historical reasons, as it was primary motivation of Wicksell’s work. In geology, and
similarly in metallurgy, we would like to know the size of the spheres because it affects
the properties of the material, like fragility. As for medicine the purpose is obvious.
The problem arises in numerous other contexts (biology, engineering, astronomy, etc.),
see, e.g., [7,8] and the references given there. In [7], the Wicksell’s problem formulation
using marked point processes formalism can be found.

Throughout this article, as in, e.g., [1, 17, 20], we consider squared radii of both
the unobserved spheres and the observed circular sections. It is more convenient
mathematically and sometimes it is also easier to measure the squared radius than
the radius itself (see [20]). It is clear, however, that the results obtained for squared
radii can be easily transformed back to the original problem.

Let f and g denote, respectively, the density of the squared spheres radii and the
density of the observable squared circles radii. The relation between them is given by
the equation (see, e.g., [18, Sec. 4.1] or [20])

g(z) = 1
2m

∞∫

z

(x − z)−1/2f(x) dx, z ≥ 0, (1.1)

where m = 2
∫∞

0 x2f(x2) dx is the mean sphere radius. The solution, when it exists,
is given by

f(x) = −2m

π

d

dx

∞∫

x

(z − x)−1/2g(z) dz, x ≥ 0. (1.2)

We assume that the density f , and hence also g, has a bounded support [0, 1]. In
standard L2-settings (with temporarily fixed m), the operator defined by equation
(1.2) is unbounded, which makes the Wicksell’s problem ill-posed in the Hadamard
sense, and some sort of regularization is required.

Using confidence bands is the most informative way of quantifying the accuracy of
estimators in problems of function estimation. In particular, they graphically illustrate
how the accuracy of the estimation varies with x. A lot of work has been devoted to
the construction of confidence bands in direct problems of function estimation, starting
with the pioneering work of Bickel and Rosenblatt in 1973 ([2]), who constructed
confidence bands for density estimated from an i.i.d. sample. For reviews of papers
on this topic, see, e.g., [16, Chapter 5.1.3], or [3, 4, 24]. To the best of our knowledge,
article [4] published in 2007 was the first work that formally studied confidence
bands in inverse problems. Since then, several related works have been published, see,
e.g., [3, 5, 6, 10, 12, 21–24, 30]. Despite their practical importance, confidence bands
in stereological inverse problems haven’t been constructed until only recently (see
[10, 30]). In particular, in [30] such bands were produced in the Wicksell’s problem,
considered in this paper, however, without bootstrapping.

In [30], similarly to [4], a Bickel-Rosenblatt type limit theorem was proven, and the
asymptotic confidence bands were constructed based on it. Moreover, to improve
the finite sample coverage properties of the confidence bands, the authors of [4] used
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Efron’s original bootstrap algorithm to construct percentile bootstrap confidence bands
for the density of interest. The fact that a bootstrap approach proved to be successful
in a similar density deconvolution problem was an additional motivation to apply this
methodology in the Wicksell’s problem.

From the theoretical point of view, it is possible to directly adapt the construction of
the bootstrap bands from [4] for the case of the Wicksell’s problem. However, extensive
numerical experiments, not reported here, showed that the standard bootstrap doesn’t
perform better than the asymptotic approach, at least in the considered cases. The
remedy to that was to use the so-called smoothed bootstrap, which is an extension of
standard bootstrap procedure, where instead of drawing samples with replacement
from the empirical distribution, they are drawn from a kernel density estimate of the
distribution. The authors of, e.g., [11,13,14,19,25] wrote about the potential advantage
of this version of the bootstrap over the standard version. A theoretical introduction
to the topic can be found in, e.g., [15]. The resulting smoothed bootstrap confidence
bands in the Wicksell’s problem are also asymptotically consistent, and the proof of
their consistency is presented in the next section.

The rest of the paper is organized as follows. Section 2 presents the main theoretical
results of this work, our methodology of constructing bootstrap confidence bands for
the density f . In Section 3, we present results of simulation studies conducted to
verify the finite sample performance of the proposed bootstrap confidence bands, in
particular to compare bootstrap and asymptotic (non-bootstrap) approaches.

2. CONFIDENCE BANDS BASED ON THE BOOTSTRAP

The centre of the confidence bands is determined by an appropriate version of
kernel-type estimator proposed in [27]. Let Z1, . . . , Zn denote the observed squared radii
of circular profiles, and let G denote a distribution function of Z1, . . . , Zn. Consider
a density estimator of f given by the formula

fn(x) = −2m

nh3/2π

n∑

i=1
K

(
x − Zi

h

)
, x ≥ 0, (2.1)

with

K(x) =
∞∫

0

y−1/2K ′
0(y + x) dy, x ∈ R, (2.2)

where K0 is a kernel function satisfying assumption 1 imposed later in this work,
and h is a bandwidth satisfying assumption 2. This is the form one gets by inserting
a standard kernel-type estimator of the density g into equation (1.2) describing the
relation between f and g (cf. also [30]). The estimator defined this way depends on
the unknown parameter m, which, in our theoretical results and simulations, will be
replaced with an appropriate estimator m̂.



728 Jakub Wojdyła

2.1. BOOTSTRAPPING

Our method builds on the smoothed bootstrap. Let Z∗
1 , . . . , Z∗

n denotes a random sam-
ple simulated from Ḡn,η, i.e. the kernel-smoothed version of the empirical distribution
function of Z1, . . . , Zn with density given by the kernel density estimator

ḡn,η(x) = 1
nη

n∑

i=1
K̄0

(
x − Zi

η

)
,

with a kernel function K̄0 and a bandwidth η. Let P ∗ denotes the conditional probabil-
ity, given Z1, . . . , Zn, and let f∗

n be the bootstrap version of the estimator fn defined
by (2.1):

f∗
n(x) = −2m

nh3/2π

n∑

i=1
K

(
x − Z∗

i

h

)
, x ≥ 0.

Moreover, define the process

Y ∗
n (t) = − n1/2hπ

2mg̃n(t)1/2 [f∗
n(t) − fn(t)] , t ∈ [a, b],

as the bootstrap approximation of the process

Yn(t) = − n1/2hπ

2mg(t)1/2 [fn(t) − E {fn(t)}] , t ∈ [a, b],

for which the limiting distribution of the supremum was investigated in [30]. Here, g̃n

is an appropriate estimator of the density g. It will be proven that the process Y ∗
n has

the same limiting distribution as the process Yn.

2.2. ASSUMPTIONS

The theory is developed under the following assumptions. Confidence bands will be
constructed on the interval [a, b] which is a compact subset of [0, 1], with a > 0, b < 1.
Denote by ∥·∥ the sup-norm on the interval [a, b]. Throughout this article, we define
the order of a kernel as the order of its first non-zero moment.

We require the kernel K0 to belong to the class defined by assumptions 1(a), 1(b),
and the kernel K̄0 to satisfy assumption 1(c).
Assumption 1.
(a) For some integer k ≥ 1, K0 is a kernel of order at least k, supported and differen-

tiable on [−1, 1].
(b) The kernel K defined in (2.2) is differentiable, integrable, square integrable, and

satisfies
K(x)|x|1/2[log log |x|]1/2 → 0, when |x| → ∞.

Moreover, K ′ is square integrable and for some α > 0 satisfies
∫

|K ′(x)||x|1/2+α dx < ∞.
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(c) The kernel K̄0 is a density function such that
∫

xK̄0(x) dx = 0 and
∫

x2K̄0(x) dx < ∞.

The bandwidths h (used in the main part of the construction) and η (from the
bootstrap procedure) are assumed to tend to zero, as n → ∞, in such a way that
assumption 2 holds.
Assumption 2.

(a) n−1/2+δ log(1/h) = O(1),
(b) nδh log(1/h)1/2 = O(1) for some δ > 0,
(c) n1/2hk+1 log(1/h)1/2 → 0 for k from the assumption 1(a),
(d) nh2+θ/ log(1/h) → ∞ for some θ > 0,
(e) (n/ log log n)1/2η2 → 0.

Furthermore, when constructing the bands, one needs to estimate the unknown
density g of the observations and the unknown mean m. We assume that this is done
using estimators satisfying assumption 3.
Assumption 3.

(a) The estimator g̃n of the unknown density g of the observations satisfies

∥g̃n − g∥ = o (1/ log(1/h)) almost surely,

where h is the bandwidth chosen for the construction of the estimators fn and f∗
n

of f .
(b) The estimator m̂ of the unknown mean m is such that, for all ε > 0,

m̂ − m = Op(n−1/2+ε).

Finally, we make the following assumptions about the density of interest f and the
density g (related to f by equation (1.1)).
Assumption 4.

(a) The density g is bounded away from zero on [a, b] and g1/2 is differentiable with
bounded derivative on [0, 1].

(b) For k as in assumption 1(a), f is (k − 1)-times continuously differentiable in [0, 1]
and there exists bounded f (k) in (0, 1).

Assumption 1(a) coincides exactly with assumption (1a) from [30], while
1(b) with (1b). An example of a kernel function that satisfies assumptions 1(a)
and 1(b), with k = 2, is the biweight kernel

K0(x) = (15/16)(1 − x2)2I[−1,1](x).

Assumption 1(c) relates to the regularity of the kernel function used in the bootstrap
procedure and, together with assumptions 2(e) and 4(a), guarantees the appropriate
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convergence rate of Ḡn,η to the true distribution function G ([29]). Assumptions 2(a),
2(b), 2(c), about the convergence rate of the smoothing parameter h, are among the
assumptions from Corollary 1 in [30]. The assumption 2(d) is a slightly stronger version
of the corresponding assumption from Corollary 1 in [30]. Assumption 2(e) concerns
the convergence rate of the smoothing parameter used to generate the bootstrap
sample and, as it was mentioned before, guarantees the appropriate properties of the
bootstrap distribution function. Assumption 3(a) is a stronger version of the condition
(2.4) from [30] and is satisfied for, e.g., kernel density estimators with the smoothing
parameter h, if the kernel function is of bounded variation and has compact support,
and the estimated density g is differentiable (see [26]). An example of an estimator
with the property 3(b) is given in [30]:

m̂ = nπ

2

(
n∑

i=1
Z

−1/2
i

)−1

.

Assumptions 4(a) and 4(b) are exactly the same as assumptions (2a) and (2b) in [30].

2.3. MAIN RESULTS

In the following theorem we establish the bootstrap analogue of Theorem 1 in [30].
The idea of the proof of the consistency of the proposed bootstrap bands, based
on so-called strong approximation of the appropriate empirical process, was taken
from [4]. The reasoning from [4] required, however, technical modifications, mainly
due to a different form of the estimator in the Wicksell’s problem and due to the use
of the smoothed version of bootstrap (instead of the standard bootstrap, as in [4]).

Theorem 2.1. Under assumptions 1(b), 2(d), and 4(a), for each x ∈ R,

P ∗
(

[2 log(1/h)]1/2
[
∥Y ∗

n ∥
/

C
1/2
K,1 − dn

]
< x

)
→ exp{−2 exp(−x)}

almost surely, where

dn = [2 log(1/h)]1/2 +
log{C

1/2
K,2
/

(2π)}
[2 log(1/h)]1/2 ,

and
CK,1 =

∫
K(x)2 dx, CK,2 = b − a

CK,1

∫
K ′(x)2 dx.

Proof. Let U∗
1 , U∗

2 , . . . be i.i.d. random variables uniformly distributed on [0, 1], and
let α∗

n(t) = n1/2 [Un(t) − t] be the corresponding empirical process, where Un is the
empirical distribution function based on U∗

1 , . . . , U∗
n. The Komlós–Major–Tusnády

approximation (see, e.g., Theorem 4.4.1 in [9]) gives the existence of a sequence of
Brownian bridges B∗

n such that

sup
t∈[0,1]

|α∗
n(t) − B∗

n(t)| = Op∗(n−1/2 log n), n → ∞, almost surely
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(for almost all sequences of the observations Z1, Z2, . . .). Assume that both the variables
U∗

i and the processes B∗
n are independent of the observations Zi. Furthermore, without

loss of generality, one can assume that Z∗
i = Ḡ−1

n,η(U∗
i ), i = 1, . . . , n. Let Ḡ∗

n,η be the
empirical distribution function based on Z∗

1 , . . . , Z∗
n and let

αḠn,η
n (t) = n1/2 [Ḡ∗

n,η(t) − Ḡn,η(t)
]

be the bootstrap empirical process. Then, by applying the argument from the proof of
Theorem 2 in [4], and the fact that the distribution function Ḡn,η has the so-called
Chung–Smirnov property, i.e.

sup
x∈R

|Ḡn,η(x) − G(x)| = O([n−1 log(log+ n)]1/2) almost surely

(see Theorem 3.2 in [29]), one can deduce that, with any 0 < β < 1/2,

sup
t∈R

|αḠn,η
n (t) − B∗

n{G(t)}| = Op∗(n−β/2 log n), n → ∞, almost surely. (2.3)

Let

Yn,0(t) = h−1/2

g(t)1/2

1∫

0

K

(
t − x

h

)
dBn{G(x)}, t ∈ [a, b],

be the process defined in the proof of Theorem 1 in [30] (where Bn is a Brownian
bridge), for which, for each x ∈ R,

P
(

[2 log(1/h)]1/2
[
∥Yn,0∥

/
C

1/2
K,1 − dn

]
≤ x

)
→ exp{−2 exp(−x)} (2.4)

(note that the assumptions of Theorem 1 in [30] are satisfied because of assumptions
1(b), 4(a) and assumption 2(d), which implies that nh/(log n)3 → ∞). We introduce
two processes that approximate Y ∗

n :

Y ∗
n,0(t) = h−3/2

g(t)1/2

1∫

0

K ′
(

t − x

h

)
B∗

n{G(x)} dx, t ∈ [a, b],

Y ∗
n,4(t) = − n1/2hπ

2mg(t)1/2 [f∗
n(t) − fn(t)], t ∈ [a, b],

which are the bootstrap analogues of the processes Yn,0 (see above) and Yn,4 appearing
in the construction of asymptotic confidence bands for f in [30].

Taking the difference of these processes, one has

∣∣Y ∗
n,0(t) − Y ∗

n,4(t)
∣∣ ≤ h−1/2

g(t)1/2 sup
x∈R

∣∣∣αḠn,η
n (x) − B∗

n{G(x)}
∣∣∣
∫

|K ′ (u) | du

almost surely, and, hence,

∥Y ∗
n,0 − Y ∗

n,4∥ = Op∗(n−β/2h−1/2 log n) = op∗{log(1/h)−1/2} almost surely, (2.5)
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by an application of assumption 4(a), equation (2.3), assumption 1(b), and assump-
tion 2(d).

Because

L∗
(

[2 log(1/h)]1/2
[
∥Y ∗

n,0∥
/

C
1/2
K,1 − dn

])

= L
(

[2 log(1/h)]1/2
[
∥Yn,0∥

/
C

1/2
K,1 − dn

])
almost surely,

it follows from equation (2.4) that

P ∗
(

[2 log(1/h)]1/2
[
∥Y ∗

n,0∥
/

C
1/2
K,1 − dn

]
≤ x

)
→ exp{−2 exp(−x)}

almost surely. Consequently, equation (2.5) implies that

P ∗
(

[2 log(1/h)]1/2
[
∥Y ∗

n,4∥
/

C
1/2
K,1 − dn

]
≤ x

)
→ exp{−2 exp(−x)} (2.6)

almost surely.
Furthermore,

Y ∗
n (t) − Y ∗

n,4(t) = g(t) − g̃n(t)
g̃n(t)1/2[g(t)1/2 + g̃n(t)1/2]Y

∗
n,4(t)

and, hence,
∥Y ∗

n − Y ∗
n,4∥ = op∗{log(1/h)−1/2} almost surely (2.7)

because of assumption 3(a) and of ∥Y ∗
n,4∥ = Op∗{log(1/h)1/2} almost surely, which

follows from equation (2.6).
Theorem 2.1 now follows from equations (2.6) and (2.7).

The above result together with Corollary 1 from [30] show that, under appropriate
conditions, ∥Y ∗

n ∥ and ∥Yn,6∥ have the same limiting distribution, where

Yn,6(t) = − n1/2hπ

2m̂g̃n(t)1/2 [f̂n(t) − f(t)], t ∈ [a, b],

and f̂n denotes the estimator obtained from fn by replacing m in the definition
(2.1) with the estimator m̂. From this, one directly obtains the following bootstrap
confidence bands.

Corollary 2.2. Under assumptions 1-4,
{[

f̂n(t) − 2m̂g̃n(t)1/2q∗
1−α

n1/2hπ
, f̂n(t) +

2m̂g̃n(t)1/2q∗
1−α

n1/2hπ

]
, t ∈ [a, b]

}
(2.8)

is a consistent (1 − α) × 100% asymptotic bootstrap confidence band for f over [a, b],
where q∗

1−α denotes the (1 − α)-quantile of the bootstrap distribution of ∥Y ∗
n ∥.
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Proof. Let H(x) = exp{−2 exp(−x)} be the distribution function of the asymptotic
distribution from Theorem 2.1, and let Hn and H∗

n denote the distribution functions of

[2 log(1/h)]1/2[∥Yn,6∥
/

C
1/2
K,1 − dn] and [2 log(1/h)]1/2[∥Y ∗

n ∥
/

C
1/2
K,1 − dn],

respectively. Furthermore, denote with q and q∗
n the quantile functions corresponding

to, respectively, H and H∗
n. Then, for each x ∈ (0, 1),

q∗
n(x) → q(x) almost surely, (2.9)

since, for each x ∈ R, H∗
n(x) → H(x) almost surely, and

sup
x∈R

|Hn(x) − H(x)| → 0. (2.10)

From equations (2.9) and (2.10) one obtains, for each x ∈ (0, 1),

|Hn{q∗
n(x)} − H{q(x)}| ≤ |Hn{q∗

n(x)} − H{q∗
n(x)}| + |H{q∗

n(x)} − H{q(x)}|
≤ sup

x∈R
|Hn(x) − H(x)| + |H{q∗

n(x)} − H{q(x)}| → 0

almost surely, and equivalently, for each α ∈ (0, 1),

P
(

[2 log(1/h)]1/2
[
∥Yn,6∥

/
C

1/2
K,1 − dn

]
≤ q∗

n(1 − α)
)

→ 1 − α almost surely,

which means the consistency of the bootstrap confidence bands (2.8).

The estimator f̂n determines the center of both bootstrap and asymptotic confidence
bands (cf. equation (2.8) and Corollary 1 in [30]). However, the two types of bands
differ in width. For the bootstrap confidence bands, factor

C
1/2
K,1

[
x

[2 log(1/h)]1/2 + dn

]

in the equation describing the half of the width of the asymptotic confidence bands is
replaced by the quantile q∗

1−α. The simulation studies described in the next section
show the advantage of the bootstrap method over the asymptotic method for small
data samples.
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3. SIMULATION RESULTS

In this section we present results of applying the method discussed above in a simulation
study. For comparison purposes we also include asymptotic confidence bands from [30].
The simulations were conducted in the R environment. All results are based on 1000
simulation runs. For the unknown probability density f , nine functions supported
on [0, 1] were considered (all taken from [30]):

Decreasing B(1, 3) f(x) = 3(1 − x)2,
Unimodal B(2, 4) f(x) ∼ x(1 − x)3,
Unimodal B(5, 3) f(x) ∼ x4(1 − x)2,
Bimodal BM1 0.55 · B(3, 7) + 0.45 · B(7, 3),
Bimodal BM2 0.45 · B(6, 13) + 0.55 · B(15, 8),
Constant Unif f(x) = 1,
Increasing B(2, 1) f(x) = 2x,
Triangular TR f(x) = 4xI[0,0.5] + 4(1 − x)I(0.5,1],
Step function SF f(x) = 0.6I[0,1/3] + 0.9I(1/3,0.75] + 1.7I(0.75,1],

where B(α, β) stands for the beta distribution. The first five functions satisfy the assum-
ptions formulated in Section 2.2. The last four densities do not satisfy the assumptions
and were included to check the performance of the confidence bands, when some of the
conditions are violated. An additional difficulty with SF is that it is not continuous.

Given a density function f of the squared spheres radii, artificial data samples from
the density g of the squared circles radii were generated with the algorithm described
in [30]. Smoothed bootstrap samples were generated using the kernel function

K̄0(x) = (15/16)(1 − x2)2I[−1,1](x).

The bootstrap quantile of ∥Y ∗
n ∥ was simulated each time on the basis of 1000 bootstrap

samples. Asymptotic confidence bands were constructed in the same way as in the
simulation studies in [30]. In particular, the kernel function

K0(x) = (15/16)(1 − x2)2I[−1,1](x)

was used, while the smoothing parameter h was selected according to the procedure
proposed in [30]. The same method was used to select h when constructing boot-
strap bands, according to Corollary 2.2. The smoothing parameter η was arbitrarily
determined as a fraction of the estimated parameter h (η = 0.7h or η = 0.9h, see
details later in this section). All confidence bands were constructed on the interval
[a, b] = [0.1, 0.9].

Tables 1 and 2 show the simulated coverage probabilities and mean confidence
band areas for asymptotic and bootstrap 90%-bands, for all considered probability
densities f , and for sample sizes n = 500, 1000, 3000, 5000. For each individual sample,
two bands were constructed: asymptotic and bootstrap. Each time, the smoothing
parameter h was selected based on the data, using the procedure proposed in [30],
while the parameter η was assumed to be equal to 0.7h.
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Table 1
Simulated coverage probabilities and mean band areas for asymptotic and bootstrap
90%-confidence bands, for densities that satisfy the assumptions and for various sample
sizes n. The smoothing parameter h was selected according to the method proposed in
[30], and η = 0.7h. The approximate standard error for the simulated coverage probability

equals 0.9%.

Density n
Method

Asymptotic Bootstrap
Coverage Area Coverage Area

B(1, 3) 500 74.5 0.99 80.0 1.07
1000 81.0 0.74 86.5 0.79
3000 87.4 0.44 90.8 0.48
5000 88.6 0.34 91.2 0.38

B(2, 4) 500 69.5 1.14 83.3 1.39
1000 77.4 0.87 87.3 1.03
3000 84.7 0.54 90.0 0.62
5000 86.2 0.42 91.5 0.49

B(5, 3) 500 68.8 1.26 75.1 1.35
1000 76.3 1.00 79.5 1.10
3000 83.6 0.71 87.1 0.75
5000 86.3 0.58 89.8 0.64

BM1 500 82.3 1.31 82.8 1.33
1000 85.5 1.05 86.4 1.13
3000 86.8 0.68 87.5 0.67
5000 89.1 0.56 89.7 0.59

BM2 500 28.1 1.00 59.0 1.39
1000 65.3 1.02 81.1 1.18
3000 52.5 0.71 79.0 0.89
5000 48.5 0.62 75.5 0.78

For both asymptotic and bootstrap confidence bands, the results were almost
always better for a larger sample size. The exceptions were the cases of BM2 and SF,
which were discussed in this context in [30]. Moreover, when comparing the two types
of bands, one can see that, regardless of the sample size, bands constructed using
bootstrap methods for densities that satisfy the assumptions (results from Tab. 1)
have the actual probability of coverage closer to the nominal, but are almost always
wider.
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Table 2
Similar to Table 1, but for densities that do not satisfy the assumptions.

Density n
Method

Asymptotic Bootstrap
Coverage Area Coverage Area

Unif 500 82.6 1.33 82.3 1.31
1000 89.3 1.08 89.3 1.07
3000 92.4 0.69 92.3 0.68
5000 91.2 0.56 92.3 0.56

B(2, 1) 500 73.0 1.25 75.7 1.31
1000 84.9 1.06 82.6 1.04
3000 86.9 0.75 87.7 0.74
5000 91.2 0.61 91.4 0.61

TR 500 77.1 1.28 79.1 1.30
1000 78.8 1.00 81.0 0.99
3000 88.9 0.68 89.5 0.67
5000 88.0 0.55 90.1 0.56

SF 500 46.2 0.96 46.5 0.97
1000 78.7 1.16 78.8 1.16
3000 67.2 0.91 69.6 0.93
5000 60.0 0.83 58.7 0.83

The results for densities that do not satisfy the assumptions (Tab. 2) are comparable
for both types of bands. For small sample sizes, one can alternatively use larger values
for the smoothing parameter η, which will make the bands wider and the coverage
probability higher. This effect is illustrated by the results from Tables 3 and 4, where
η = 0.9h was taken for n = 500, 1000.
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Table 3
Simulated coverage probabilities and mean band areas for asymptotic and bootstrap
90%-confidence bands, for densities that satisfy the assumptions and for smaller sample sizes
n = 500 and n = 1000. The smoothing parameter h was selected according to the method
proposed in [30], and η = 0.9h. The approximate standard error for the simulated coverage

probability equals 0.9%.

Density n
Method

Asymptotic Bootstrap
Coverage Area Coverage Area

B(1, 3) 500 73.5 0.97 86.3 1.15
1000 82.5 0.74 91.1 0.87

B(2, 4) 500 71.8 1.12 91.2 1.48
1000 79.0 0.89 92.0 1.18

B(5, 3) 500 69.4 1.26 78.8 1.32
1000 76.0 1.00 86.0 1.05

BM1 500 81.4 1.32 87.2 1.40
1000 84.8 1.06 88.2 1.11

BM2 500 29.0 1.01 80.0 1.67
1000 62.8 1.02 89.6 1.38

Table 4
Similar to Table 3, but for densities that do not satisfy the assumptions.

Density n
Method

Asymptotic Bootstrap
Coverage Area Coverage Area

Unif 500 82.4 1.33 86.2 1.36
1000 88.2 1.08 91.2 1.11

B(2, 1) 500 74.0 1.29 79.0 1.32
1000 83.4 1.01 85.2 1.03

TR 500 76.8 1.28 85.4 1.36
1000 80.0 1.01 86.7 1.05

SF 500 45.8 0.96 64.1 1.11
1000 77.6 1.16 81.6 1.18

Figure 1 presents some typical examples of bootstrap and asymptotic confidence
bands (in each case constructed on the basis of the same sample), which reflect the
results presented in Tables 1–4. The parameter η = 0.9h was selected for n = 1000
(as in the case of Tables 3 and 4), while n = 5000 corresponds to η = 0.7h (as for the
results from Tables 1 and 2).
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Fig. 1. Estimate f̂n along with associated 90% nominal coverage probability bootstrap
confidence bands (——) and 90% nominal coverage probability asymptotic confidence bands
(– – –), both types of bands constructed from the same data, for the densities B(5, 3) and
BM2, and for two sample sizes n = 1000, n = 5000. The thick solid line represents the true

function.
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