
H l =w
I L L I N 0 I S
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE

University of Illinois at
Urbana-Champaign Library

Large-scale Digitization Project, 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4826339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Technical Report No. 101

ISSUES IN SEMANTIC MEMORY:
A RESPONSE TO GLASS AND HOLYOAK

Edward J. Shoben
University of Illinois at Urbana-Champaign

Lance J. Rips
University of Chicago

Edward E. Smith
Stanford University

August 1978

Center for the Study of Reading

THE UCRARY OF THii-

OCT 71981

ATUP"e "'^- "AGN

The Nations
Institute (
Educatio
U.S. Department

Health. Education and Welfa
Washington. D.C. 202

UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN
51 Gerty Drive

Champaign, Illinois 61820

BOLT BERANEK AND NEWMAN INC.
50 Moulton Street

Cambridge, Massachusetts 02138

,~2

T
E
C
H
N
I
C
A
L

R
E
P
0
R
T
S





CENTER FOR THE STUDY OF READING

Technical Report No. 101

ISSUES IN SEMANTIC MEMORY:
A RESPONSE TO GLASS AND HOLYOAK

Edward J. Shoben
University of Illinois at Urbana-Champaign

Lance J. Rips
University of Chicago

Edward E. Smith
Stanford University

August 1978

University of Illinois
at Urbana-Champaign

51 Gerty Drive
Champaign, Illinois 61820

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

The research reported in this paper was supported by U.S. Public
Health Service Grant MH-19705 and a grant from the Spencer Foundation,
and in part by the National Institute of Education under Contract No.
US-NIE-C-400-76-0116. We thank John Anderson and Lynne Reder for
making their data available to us.





Issues in Semantic Memory

1

Abstract

Glass and Holyoak (1975) have raised two issues related to the distinction

between set-theoretic and network theories of semantic memory. They contend

that: (a) their version of a network theory, the Marker Search model, is

conceptually and empirically superior to our version of a set-theoretic theory,

the Feature Comparison model; and (b) the contrast between set-theoretic and

network theories parallels distinctions in formal semantics that are concerned

with analyticity and binary truth values. We take issue with both of these

claims. We first argue that the set-theoretic vs. network distinction is

orthogonal to issues like analyticity and binary truth. Then we take up the

Marker Search and Feature Comparison models in detail. We raise objections

to some of the theoretical mechanisms postulated in the Marker Search model,

and then deal with Glass and Holyoak's criticisms of the Feature Comparison

model. Lastly, we present new experimental results that undermine the critical

empirical base for the Marker Search model.
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Issues in Semantic Memory:

A Response to Glass and Holyoak

In their paper on "Alternative Conceptions of Semantic Memory," Glass

and Holyoak (1975) raise a number of important issues concerning the psycho-

2
logical representation of meaning. Many of these issues revolve around a

distinction between set-theoretic and network models (Rips, Shoben & Smith,

1973), where the former class of models treats concepts as sets of semantic

elements, while the latter class represents concepts as nodes within a

network of labeled relations. With regard to this distinction, the major

points of Glass and Holyoak seem to be: (1) Network models may be superior

to set-theoretic ones, as suggested by a comparison of a specific set-

theoretic formulation, namely the Feature Comparison model (Smith, Shoben &

Rips, 1974), with a specific network proposal, the Marker Search model

(Glass and Holyoak); (2) This alleged superiority of network models has

definite implications for a number of well-known issues in the study of

formal semantics--such as whether the distinction between analytic and

synthetic truths is viable--because the set-theoretic vs. network dichotomy

is intimately related to these distinctions.

We wish to challenge both of these conclusions. In the next section of

this paper, we will argue that the "set-net" distinction is basically orthog-

onal to issues in formal semantics like the distinction between analytic and

synthetic truth. We will then go on to propose a different sort of taxonomy

of semantic memory models. In the third section, we will examine in detail
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Glass and Holyoak's contention that the Marker Search model is superior to

the Feature Comparison model. We will first offer some criticisms of the

general characteristics of the Marker-Search model, and then address our-

selves to some of the criticisms that Glass and Holyoak have made of the

Feature Comparison model. In the fourth section, we will consider the

experiments of Holyoak and Glass that, on the face of it, provide critical

disconfirmations of the Feature Comparison model. Here we will present some

new experimental findings that seriously qualify the Holyoak and Glass

results and lessen some of the major empirical problems of the Feature

Comparison model. A final section provides a summary and discussion of

future directions.

The Set-Net Distinction Reconsidered

What the Distinction is Not About

Representational differences. In surveying the semantic memory litera-

ture in 1973 (Rips et al.), we found that a single representational distinc-

tion seemed to capture many of the fundamental differences among contem-

porary models. Thus the models proposed by Schaeffer and Wallace (1970)

and Meyer (1970) had a set-theoretic structure, while the theories of Collins

and Quillian (1969) and Rumelhart, Lindsay, and Norman (1972) used a network

of labeled relations to represent meaning. Updating this list, one would

add the Feature Comparison model as another example of a set model, and HAM

(Anderson & Bower, 1973) and the Marker Search model as new instances of

network models. But while this distinction served an organizational purpose,

it soon became clear that the contrast between sets and nets might be a
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relatively superficial indicator of more important underlying differences.

This point was demonstrated by Hollan (1975) who simply noted that set models

can be recast as networks by connecting each element of the set to a common

node standing for the set itself.

What then can be said about our original partition of models? As we

have argued elsewhere (Rips, Smith & Shoben, 1975;), we still believe this

partition is useful since the set-net distinction correlated with some

important substantive differences among models. The task now becomes one

of specifying these differences. Glass and Holyoak, who accept our distinc-

tion, have proposed two possibilities. One is that set models have considered

rather simple representations and have not specified any relations among the

meaning components within a concept; in contrast, network theories are capable

of positing representations that stipulate entailment relations among a

concept's components. We do not wish to deal at length with this proposal,

but two points merit comment. Set models do not necessarily have to assume

simple semantic representations, and indeed we have introduced some additional

structure into set-theoretic representations (Smith, Rips & Shoben, 1974).

Similarly, while network models are capable of stipulating entailment rela-

tions among meaning components, not all network models inevitably do so, as

witnessed by aspects of Anderson and Bower's HAM model. Thus we think this

distinction is of limited value in capturing the substantive differences

between set and network theories.

Analyticity and formal vs. psychological semantics. Of greater concern

to the present paper is the second distinction proposed by Glass and Holyoak.
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This is their claim that set models are consistent with the view that cate-

gory membership and sentence truth value are continuous or graded, while

network models view category membership and truth as dichotomous. Given

this assumption, Glass and Holyoak proceed to align set models with both

Lakoff's (1972) advocacy of fuzzy semantics and Quine's (1953) skepticism

regarding the distinction between analytic and synthetic truth; net models,

in contrast, are seen as consistent with Katz's .(1972) defense of analyticity

and of two-valued truth. We disagree. As we see it, these important dis-

tinctions from formal semantics--analytic vs. synthetic truth and binary vs.

graded truth--may be orthogonal to those substantive psychological dif-

ferences that exist between the theories we have classified as set and net-

work models.

The distinction between analytic and synthetic statements comes from

philosophical semantics, and it is based on the relations among meaning

entities. A statement may be classified as analytic if the meaning asso-

ciated with the predicate is contained in that of the sentence subject, as

in A bachelor is unmarried. Otherwise, the statement must be classified as

synthetic. The analytic/synthetic distinction, then, rests on the nature of

meanings and their interrelations, and not in any direct way on psychological

representations. To make this point clearer, consider Frege's (1892) dis-

tinctions among the sense, reference, and idea of a word. While the sense of

a word is some abstract meaning entity, its reference is the set of real-

world entities denoted by the word, and its idea is roughly the psychological

representation of the word. Clearly the referent and psychological represen-

tation of a word are distinct, since psychological representations are by
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nature internal. Similarly, psychological representations cannot be equated

with senses either, at least on Frege's account. To use Frege's own analogy,

the sense of, say, moon is independent of anyone's representation of the moon

in the same way that the optical image of the moon in a telescope is indepen-

dent of observers' retinal images. By nature, then, theories of psychological

semantics must deal primarily with individuals' representations of meanings,

and not with the referents or senses themselves (Smith, Rips & Shoben, 1974).

This triptych of reference, sense, and representation has implications

for a number of the arguments made by Glass and Holyoak. First, we can

reject their claim that our Feature Comparison model, as presently stated,

is concerned with referential meaning. This point has no force at all since

our model is clearly about representations,not referents. (Indeed it is

difficult to imagine how any psychological model could be solely concerned

with reference.) Second, we can question their assertion that the Marker

Search model, unlike the Feature Comparison model, "...is directly concerned

only with sense relations" (p. 335). While psychologists may try to construct

representations that capture only sense relations, current semantic-memory

models, including the Marker Search model, have not done this. For example,

Glass and Holyoak have used their model to explain the confirmation of sen-

tences like Some women are writers, and such sentences clearly cannot be

verified by a consideration only of sense relations, on anyone's account of

sense. That is, the truth of our sample sentence is surely an empirical

matter, for there is nothing about the abstract meanings of women and writers

that prohibits the sentence from being false, and it is easy to imagine a

set of circumstances that would make this very sentence a false one. Third,
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our distinction among reference, sense, and representation allows us to make

some general points about analyticity and dichotomous truth in formal vs.

psychological semantics. For example, work in formal semantics indicates

that the truth value of a sentence can be determined by means of relations

between expressions of a language and their referents without mention of

psychological representations (Tarski, 1956); it is therefore possible to

adopt a binary truth-value system without implying that the psychological

representations of these truth-values are also necessarily binary. In prin-

ciple, then, one can endorse binary truth values in formal semantics, and

continuous truth in psychological semantics. In a similar way, since the

notion of analyticity can be defined in terms of the relations between the

senses of expressions in a sentence, without mention of psychological factors,

one can accept the analytic/synthetic distinction without implying that such

a distinction need be psychologically represented. In short, the questions

of whether truth values are binary and whether the analytic/synthetic dis-

tinction is tenable may be ontological questions, not psychological ones.

A more psychological approach to analyticity. While the tenability of

the analytic/synthetic distinction may not be a psychological question, there

is at least one aspect of this distinction that is psychological and of in-

interest to semantic memory. Granting that formal semantics provides a basis

for classifying sentences as analytic or synthetic, we may ask whether there

is a mental procedure that reliably picks out all those sentences and only

those sentences that have been classified as analytically true. This would

constitute a psychological distinction between analytic and synthetic state-

ments. But even given that such a procedure exists, the question arises of
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whether it is a critical difference between set and network models. That is,

only if all net models maintain a psychological distinction between analytic

and synthetic statements and all set models blur this distinction would there

then be support for the Glass and Holyoak proposal that the set-net distinc-

tion is chiefly about analyticity. However, an examination of existent models

indicates that the set-net distinction is not correlated with this

psychological-analyticity issue.

First, all semantic memory models, to our knowledge, have been applied

to both analytic and synthetic statements. As we have already noted, net

models, like the Marker Search theory, are intended as explanations of the

way we verify statements like Some women are writers, which are purely syn-

thetic, as well as analytically true statements like Some bachelors are un-

married. This is also true of the set theories proposed by Meyer (1970) and

Smith, Shoben, and Rips (1974). This aspect of semantic-memory models is a re-

flection of the fact that the distinction between analytic and synthetic state-

ments is not equivalent to one between propositions considered part of semantic

memory and those thought to be a part of episodic memory (Smith, Rips & Shoben,

1974). Second, one may go on to ask whether an analytic/synthetic distinction

can be formulated within the framework of set or net models. This can cer-

tainly be done, and it seems to be no more difficult for one class of models

than for the other. In the case of network models, analytic statements might

Se r ovorable by restricting the relations in the network to those which are

true solely by virtue of the meaning of the concepts they connect. Similarly,

for set models, analytic statements are those that can be confirmed by means

of the semantic elements of features that are definitionally true of the
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associated terms. Exactly the same arguments can be applied to the relation

between binary truth values and the two classes of models we are considering.

Hence, neither analyticity nor binary truth can be used to distinguish between

set and network models, as Glass and Holyoak have proposed. As a consequence,

neither type of model can be construed as evidence pro or con particular

linguistic theories of semantics (e.g., Lakoff, 1972; Katz & Bever, 1975) that

take sides on issues concerning truth-value systems. These issues in

philosophy and linguistics, while important in their own right, are not at

this time helpful in distinguishing among rival psychological theories.

What the Set-Net Distinction is About

Computation vs. pre-storage models. What then are the critical dif-

ferences that divide set and network models? To get a grip on this problem,

let us take a look at two simple semantic memory models. Figure 1 presents

the Attribute theory, a set model described by Meyer (1970), along with

Collins and Quillian's (1969) Hierarchical theory, a typical network model.

Both were intended to account for the data obtained in a verification task.

In such a task, subjects must decide on the truth or falsity of simple state-

ments of the form An S is a P (where S designates a subject noun and P a

predicate noun), and the data of interest are the reaction times and error

rates. The Attribute model confirms a statement like A robin is a bird by

comparing the features of the predicate category to those of the subject cate-

gory, while in the Hierarchical model one verifies this statement by finding

an acceptable path that links subject and predicate categories.
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Insert Figure 1 about here

Note that in addition to their obvious representational differences,

the two models differ in a rather striking respect. In the network model

the proposition that a robin is a bird is represented directly in memory,

and confirmation of the sample statement involves finding the corresponding

proposition in memory. That is, the subset relation between robin and bird

is not represented directly, and consequently it must be computed during the

verification process. Since the differences just noted appear to hold for

all set and network models, it seems that a critical difference between the

two classes of theories is this: Network models posit that verification of

subset relations can occur by searching for pre-sorted propositions, while

set models assume that verification requires the computation of that relation.

We now need to specify a couple of boundary conditions on this Computa-

tion/Pre-storage dichotomy. First, no current network model of semantic

memory assumes that all verifiable statements are confirmed by finding the

corresponding proposition stored in memory. For such a position would imply

that if someone can verify that Julius Caesar was a living thing, he must

have at some time stored that exact proposition in memory. To avoid this

claim, network modelers allow some room for computations. They posit infer-

~nce routines that, when given stored propositions like Julius Caesar was a

person and A person is alive, use the transitivity of subset relations to

infer that Julius Caesar was a'living thing. Thus in the network model in

Figure 1, while the statements A robin is a bird or A bird is an animal would
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be confirmed by searching for the pre-stored propositions, confirmation of

A robin is an animal would involve an additional inference. Hence, all

semantic memory models involve some computations. But we will continue to

hold to our Computation/Pre-storage distinction since all network models

assume that at least some subset statements are stored as single units in

memory.

A second boundary condition concerns Computation models. In such models,

not all relations are computable, for some meaning components must be pre-

stored if the model is to compute anything. As an example, in the Attribute

model, the features are pre-stored with their respective categories; these

features can then be used to compute other relations, like the subset one.

Related distinctions. There are other distinctions that are correlated

with our Computation/Pre-storage dichotomy. From our description of the models

in Figure 1, it seems that the notion of a computation procedure leads to two

consequences. First, since one cannot operate on the terms robin and bird

directly, one must initially expand these terms into components that can be

operated on (Rips, Smith & Shoben, 1975). In the Attribute model, the terms

are expanded into sets of semantic features before any subsequent processing is

done. The computation models of Schaeffer and Wallace (1970) and Smith, Shoben,

and Rips (1974) also assume an initial expansion into semantic features, while

some of the Computation models considered by Meyer (1970) assume that subject

and predicate terms are first expanded into a list of exemplars of these terms,

or else into the names of other items that share exemplars with the subject

and predicate terms. In any event, all Computation theories assume some sort
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of semantic expansion of the terms presented, and this is in contrast to most

Pre-storage models.

The second consequence of positing a Computation procedure is that com-

parison processes are given a major role in verification (Rips, Smith & Shoben,

1975). In the Attribute model, once the subject and predicate terms have

been expanded into sets of semantic features, these two sets must be compared

to confirm that a subset relation holds between the two concepts. The notion

of comparison processes is central to all Computation theories, and most of

them further assume that variations in comparison processes are responsible

for many of the empirical effects obtained in experiments on verification.

While Pre-storage models also require comparison processes (so that the

relations in the retrieved proposition can be checked against those in the

test sentence), such processes play little role in the explanation of most

empirical findings. Rather, variations in search processes are thought to

underlie most findings of interest.

A third factor that correlates with the Computation/Pre-storage dichotomy

has arisen as simple semantic-memory models, like those of Figure 1, have been

revised to incorporate recent experimental results. For example, Rosch (1973)

and Smith, Shoben, and Rips (1974) have found that the speed with which true

sentences can be confirmed depends on how typical the subject category is

of the predicate category. Thus, if apple is judged a more typical fruit

than strawberry, An apple is a fruit should take less time to verify than

A strawberry is a fruit. To cope with these results, network models have been

broadened to allow pathways to be differentially accessible, where accessi-

bility is determined by the co-occurrence frequency of the connected terms
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(Collins & Loftus, 1975; Glass & Holyoak). Set models have also been revised

by allowing the semantic features of a term to include those which charac-

terize the concept as well as those that strictly define it (Smith, Shoben &

Rips, 1974). Typicality effects are then explained on the basis of shared

characteristic features between subject and predicate concepts. Thus, in

explaining these typicality effects, a Computation model emphasizes a struc-

tural aspect, featural similarity, while a Pre-storage model stresses a func-

tional aspect, co-occurrence frequency. Although it may be possible for Pre-

storage models to incorporate a more structural account (see, e.g., Norman &

Rumelhart, 1975), most of these models attribute typicality effects to co-

occurrence frequency (Anderson & Bower, 1973; and the Marker Search model

of Glass and Holyoak).

In summary, we have proposed four distinctions. For two of these--the

Computation/Pre-storage contrast and the distinction based on semantic expan-

sion--we know of little relevant data. As for the relative emphasis on com-

parison vs. search processes, this is a difficult issue to address directly,

but it is related to Glass and Holyoak's recent experiments on disconfirming

false statements. We will consider the relevant data in the section entitled

"Experimental Studies of Disconfirmations" below. Lastly, we raised the issue

of featural similarity vs. co-occurrence frequency as a means of explaining

typicality effects. Here there are clearly pertinent data, and they will be

discussed in "Criticisms of the Marker Search and Feature Comparison Models"

below.
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Characterizations of the feature comparison and marker search models.

We now want to describe the Feature Comparison and Marker Search models in

detail and show how they may be characterized by the above distinctions. Let

us start with the Feature Comparison model. Its representational assumptions

are quite simple. Each lexical term carries with it a set of semantic

features. These vary continuously in the degree to which they confer category

membership, with features at one extreme being essential for defining the

concept, and features at the other extreme being only characteristic of the

concept. Thus the term bird would include as defining features the notions

that it is animate and feathered, and as characteristic features the notions

that birds are of a particular size and have certain predatory relations to

other animals (Rips et al., 1973; Smith, Shoben & Rips, 1974). More relevant

to our proposed distinctions are the processing assumptions of the model. It

is assumed that performance in a verification task is based upon a two-stage

process. The first stage compares all of the features of the subject and

predicate nouns in the test sentence, and assesses the degree of featural

similarity between the two terms. In this stage, no consideration is given

to whether the similar features are defining or only characteristic. It is

next assumed that if the featural similarity is either very high (as in robin

and bird) or very low (as in pencil and bird), then one can decide immed- ;

iately whether a subset relation exists between the two nouns. That is,

subject-predicate noun pairs with sufficiently high or low degrees of featural

similarity will be classified as true or false, respectively, without going

on to a second stage of processing. However, a second stage will be necessary

for subject-predicate pairs that have an intermediate level of similarity
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(as in penguin and bird, or bat and bird). The second stage considers only

the more defining features, and determines whether all of the defining

features of the predicate term match those of the subject term. This stage

is thus identical to the simple Attribute model.

Clearly this model is a Computational one. The model essentially pro-

poses that people have two ways of computing subset relations, where these

two ways correspond to the two stages. Decisions based on only the first

stage involve a heuristic computation, for such computations are rapid but

may sometimes be in error (i.e., when many of the similar features are charac-

teristic rather than defining). Decisions based on the second stage involve

an algorithmic computation, for such computations are slow but consider only

logically sufficient conditions. Both types of computation--heuristic and

algorithmic--are alike, however, in that they require expansion of the lexical

terms into underlying semantic features, and subsequent comparisons of these

feature sets. The two types of computation differ in that the heuristic

computation deals with characteristic as well as defining features. And it

is these characteristic features that allow the model to explain typicality

effects. That is, given that robin is judged to be a typical bird and

chicken an atypical one, robin will presumably share more of the character-

istic features of bird than will chicken. This will permit one to confirm

A robin is a bird by means of only the heuristic process whereas the confir-

mation of A chicken is a bird will also require the time-consuming algorithmic

computation. In sum, with regard to our distinctions, the Feature Comparison

model has all the aspects of a Computation model, and these distinctions

serve to elucidate certain of its key aspects.
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As for the Marker Search model, its representational assumptions are

more complex than any we have considered thus far. In the present model,

each lexical term is represented by markers, a notion borrowed from Katz's

(1972) theory of semantics. While Glass and Holyoak suggest that markers

can be thought of as properties, in their own examples common words are

directly associated with only a single marker. Thus the terms bird, chicken,

and robin, are represented by the defining markers <avian>, <chicken>, and

<robin>, respectively, where, for example, the marker <robin> would be

characterized as "possessing the essential properties of a robin." A second

representational assumption is that markers are interrelated so that one

marker dominates or implies a set of other markers. As an example, <robin>

implies <avian> which in turn implies <animate>, where the latter is the

marker for animal. This implicational structure, which is intended to capture

Katz's (1972) idea of redundancy rules, is ullustrated in Figure 2. There it

Insert Figure 2 about here

can be seen that the upshot of these assumptions is a semantic network similar

to that of the Hierarchical model. However, further assumptions serve to

distinguish the present theory from the Hierarchical one. The third repre-

sentational assumption of the Marker Search model is that the hierarchical

connections may sometimes be shortcut by direct pathways between nonadjacent

markers. This is exemplified in Figure 2 by the shortcut path between

<chicken> and <animate>. The final representational assumption is that

information about contradictions is represented directly in the semantic



Issues in Semantic Memory

17

network. Specifically, a contradiction arises whenever two paths with the

same label meet at the same marker, e.g., in Figure 2 <chicken> and <robin>

contradict at <avian>.

The processing assumptions of the model are based on the notion that

performance in a verification task is determined by a search of the semantic

network. When a statement of the form An S is a P is presented, the subject

accesses the defining markers of the two nouns and all other markers they

imply or are implied by. In essence, this specifies a target section of the

semantic network. This section is then searched, and the subject responds

True as soon as he finds an acceptable path between the markers of the subject

and predicate terms. Hence the time needed to confirm a true statement

depends on the time it takes to find an acceptable path. This is just as it

was in the Hierarchical model. However, unlike the Hierarchical model, if

the shortcut path between <chicken> and <animate> is searched before the path

between <chicken> and <avian>, the subject should be relatively quick in

confirming A chicken is an animal, but relatively slow in confirming

A chicken is a bird. Shortcut paths, then, provide a means of accounting for

typicality effects. In a similar fashion, the subject responds False as soon

as he finds a contradictory path between either (a) the defining markers of

the subject and predicate terms (as in A robin is a chicken--see Figure 2),

or (b) the defining marker of the predicate and a marker which implies the

defining marker of the subject (as in A bird is a robin, where <chicken> both

implies <avian> and contradicts <robin>--see Figure 2).

The above model is basically of the Pre-storage variety, as many

propositions are represented directly in the network. Little expansion of
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terms is needed for verification; rather, verification is a matter of

searching for direct or indirect connections, or of searching for two connec-

tions that contradict one another. In all of these cases the critical deter-

minants of verification times are the number of links in the pathways between

markers and the order in which these pathways are searched. Thus, typicality

and related effects can be explained in terms of the order in which certain

shortcut paths are searched. That is, the probability that a particular

shortcut exists, as well as ýts priority in the search order, increases with

the co-occurrence frequency of the terms involved. Hence this theory differs

from the Feature comparison model with respect to all of our proposed distinc-

tions. The two models, then, should lead to different empirical consequences,

and the next two sections of this paper are largely concerned with a com-

parison of the models with respect to certain empirical findings.

Criticisms of the Marker Search and Feature Comparison Models

The Glass and Holyoak paper contains (a) a detailed critique of the

Feature Comparison model, and (b) a presentation of their own Marker Search

model. In this section, we will first point out two potentially serious

problems with the Marker Search model, and then attempt to rebut some of the

criticisms of our own theory.

A Criticism of the Marker Search Model

In essence, the Marker Search model accounts for the existant data on

disconfirmations by its notion of a contradiction, and for the data on con-

firmations by its ideas about the role of co-occurrence frequency in
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determining short-cut paths and search order. We think both of these notions

have their difficulties, as detailed below.

Contradictions: The encoding of negative information. The most impor-

tant contribution of the Marker Search model is the way it handles false

sentences, traditionally a problem for Pre-storage theories (see, e.g., Collins

& Quillian, 1972; Anderson & Bower, 1973, chap. 12). As we have noted, the

Marker Search model disconfirms statements by searching for tags on pathways

that indicate two or more markers are contradictory. Although Glass and

Holyoak have been hesitant to say exactly when two markers are contradictory,

the only reasonable assumption seems to be that contradictory tags indicate

which subsets of a common superordinate are disjoint (see Collins & Loftus,

1975). For example, the identically labeled paths from <chicken> and <robin>

that intersect at <avian> in Figure 2 indicate that chickens and robins are

disjoint subsets of birds. To see how this contradiction mechanism works

in detail, it is convenient first to translate the language of Glass and

Holyoak into more standard terminology. Accordingly, there are two ways of

disconfirming statements in the model, one for sentences in which the subject

and predicate categories are disjoint (e.g., All robins are chickens), and

another for sentences where either the subject category is a superior of the

predicate (e.g., All birds are robins) or the subject category partially

overlaps the predicate one (e.g., All birds are pets). Disjoint statements

are disconfirmed by searching for identically labeled links to a superordinate

shared by the subject and predicate. For example, in disconfirming All robins

are chickens, the subject locates paths from <robin> to <avian> and from
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<chicken>to <avian> that have the same tag (see Figure 2). In contrast,

superset or overlap statements are disconfirmed by searching for a subset

category that is itself disjoint with the predicate category. For example,

in disconfirming All birds are robins, a person must locate a subset of

<bird> (e.g., <chicken>), and then determine that this subset is disjoint

with <robin>, just as in the previous example.

While such a Pre-storage model for false sentences is a clear advance on

earlier proposals, it is still possible to ask whether it is complete in the

sense of being able to disconfirm all those sentences that we know to be false

on semantic grounds. A consideration of some specific cases suggests it is

not, and the simplest such example is illustrated in Figure 3a. Here we have

four subsets (A, B, C, and D) of a single superordinate, S, such that A and B

partially overlap, as do C and D. We indicate these set relations in

Insert Figure 3 about here

Figure 3a by a Venn diagram superimposed on the network structure. Given

such a structure we can begin to label the paths, following the procedure

that mutually exclusive subordinates of the same superordinate have the same

labels. Since A and B partially overlap, they must have differently labeled

paths to their superordinates, for if the tags were identical we would have

evidence that A and B were disjoint. We indicate the overlapping status of

A and B by placing a on the A-S path and 13 on the B-S path. Now however, we

must decide how to label C-S and D-S. Using the rule that disjoint cate-

gories are indicated by the same tag, C-S must be labeled ac since A and C
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are disjoint by hypothesis. But if so, C-S and B-S will now have different

labels, which indicates that B and C are not disjoint, according to our

labeling procedure. This, however, contradicts our original assumption about

the set relation between categories.

Clearly something is wrong with the original labeling rule, and we

must consider other alternatives. One way out for the Marker Search model is

to define away such a situation. For example, the model might posit that,

for any overlapping categories (e.g., A and B), a new superordinate node,

S', is formed together with the connections A-S', B-S', and S'-S, and that

connections between A or B and S are disallowed. The resulting structure is

illustrated in Figure 3b, labeled in a way consistent with our procedure.

However, there are two major disadvantages to this modification. First, it

posits memory nodes for no other reason than to bail out the model. We would

need some evidence that such nodes actually represent concepts that play some

substantive role in semantic memory. Second, the proposed modification

prohibits the use of shortcut pathways in such situations. But we have seen

that these shortcuts are warranted on other grounds, and are in fact a major

structural assumption of the model.

However, there is a second possible way out of the present difficulties

that we can explore. Suppose we allow multiple labels on a single path, so

that C-S can be tagged by both a and $. If we assume that paths sharing at

least one tag indicate disjoint subsets, then the structure in Figure 3c

correctly reflects the relationships among A, B, and C. But we still have

the C-S path to consider. If we label it with a or B, in order to show that

D is disjoint with A or B, then D-S will also share labels with C-S. But
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this means that D and C are disjoint sets according to our rule, and this

contradicts the original hypothesis that C and D partially overlap. Our

second way out has therefore led to only deeper difficulties, and so we have

come up with no way in which the Marker Search model can provide an a priori

basis for deciding when two paths have the same label.

In the course of our preceding arguments, we noted that the Marker

Search model's provision for shortcut paths may, under certain assumptions,

conflict with the method used to store negative information. A second way

in which this conflict may arise is depicted in Figure 4, using an example

Insert Figure 4 about here

along the lines of Figure 2. In this diagram we have indicated the shortcut

pathways between the nodes <canary> and <animate> and between <chicken> and

<animate> by dotted lines. What is crucial here is the labeling of the paths

terminating at <animate>. To indicate that <chicken> and <canary> denote

disjoint subsets of animals, we have given both shortcut paths the label a.

It follows that the <avian>-<animate> path must possess a different label

(here, f3) since neither <avian> and <canary> nor <avian> and <chicken> are

disjoint subsets. But, then, what label should be used for the <mammalian>-

<animate> path? The problem is similar to that raised with respect to

Figure 3a. For if we use a in order to indicate that <mammalian> is disjoint

from <chicken> and <canary>, we can no longer represent the fact that <avian>

and <mammalian> are disjoint. Similarly, if we use 3, we lose the ability

to indicate that <canary> and <mammalian> and <chicken> and <mammalian> also
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represent disjoint sets. Finally, as we have seen in the previous paragraph,

using both ac and 1 for the <mammalian>-<animate> path leads directly to

further problems. It appears, therefore, that we must either prohibit

disconfirmations on the basis of shortcut paths, or restrict or eliminate

such paths entirely. Both possibilities violate the structural assumptions

of the Marker Search model.

The problems associated with the structures in Figures 3 and 4 should

not be taken to mean that it is impossible to store information about which

subsets intersect and which are disjoint. Rather our demonstrations show

only that the storage of negative information may not be as simple as markers

on paths, as Glass and Holyoak's formalisms seem to suggest. It remains to

be seen whether negative information can be incorporated into Pre-storage

models in a way that is both theoretically parsimonious and consistent with

experimental evidence. We note, by way of contrast, that such problems are

not encountered by Computation models, since here the storage of negative

information is unnecessary. Rather, negative decisions are made whenever

defining features of predicate concepts mismatch those of subject concepts,

as we have seen in terms of the Attribute and Feature Comparison models. We

count this theoretical parsimony as a virtue of Computation models in general.

The role of co-occurence frequency. As we have noted, co-occurence fre-

quency plays a central role in the Marker Search model, as in other Pre-

storage theories of semantic memory. Co-occurrence frequency determines

what shortcut paths are formed as well as the order in which paths are

searched, and these two factors, determine all of the empirical predictions

from the model. That is, given co-occurrence frequencies, one should be able
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to deduce the ordinal relations among reaction times for the verification of

any set of true or false sentences. However, no norms of co-occurrence

frequency have yet been published, and for this reason predictions from the

Marker Search model have been generated from other, more readily available

data. .In particular, Glass and Holyoak rely on the frequency with which

subjects produce a predicate noun when given a sentence frame containing the

subject noun. For example, raters may be asked to complete the frame All birds

are ? with a noun that will make the sentence true; the frequency with which

a group of raters produce a particular predicate noun (e.g., animals) is then

taken as an estimate of the co-occurrence frequency of the subject-predicate

pair (e.g., of the birds-animals pair).

In an earlier paper (Smith, Rips & Shoben, 1974) we argued that co-

occurrence frequency may not offer a satisfactory explanation of semantic

phenomena because co-occurrence is itself determined in part by semantic

factors. Thus, the words which appear in the present sentence co-occur

because of the meaning relations they bear to one another and not because of

the frequency with which they have been grouped. Frequency, therefore, may

have the status of an epiphenomenon.

This anti-frequency argument is strengthened by reaction time effects

with unfamiliar stimuli where co-occurrence frequency cannot be a factor.

These effects must be attributed to structural aspects of the stimulus domain

itself. Evidence on this score comes from a series of experiments by Rosch,

Simpson, and Miller (1976), who used sets of dot patterns, stick figures, and

letter strings as stimuli. To illustrate the critical findings, consider the

case where letter strings were employed. Subjects first learned to classify
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12 individual strings into two disjoint categories, and then were given a

reaction time task in which they pressed one of two buttons depending on the

category of a presented item. Finally, the subjects were asked either to

rate the typicality of each of the instances, or to produce as many items as

possible from each category. The strings themselves had been generated by

varying the number of letters that a given string shared with other members

of its category, and this variable (number of shared letters) determined all

performance measures. Instances with more letters in common were learned in

fewer trials, were classified faster, and had higher typicality ratings and

production frequency than their counterparts. Similar results were obtained

even when the less typical items were presented more frequently during initial

learning. In this way, Rosch et al. reproduced the usual typicality effects

varying only the internal properties of the stimulus domain, and this suggests

that co-occurrence frequency may not be a necessary factor in determining

typicality effects even in semantic-memory studies.

Co-occurrence frequency may not be a sufficient cause of typicality

effects either, but to investigate this, we need a reliable index of co-

occurrence frequency. The problem with the usual indices--production fre-

quencies, as in Glass and Holyoak, or ratings of how often two terms seem to

occur together, as in Anderson and Reder (1974)--is that they may be deter-

mined by semantic factors, as we noted earlier. There is, however, one index

available that has the potential for providing an objective measure of co-

occurrence frequency, the Kucera and Francis (1967) corpus of written American

English (not to be confused with their simple word frequency counts). From

this corpus we can tabulate the number of times an instance and its appropriate
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category term appear together, which gives us a relatively direct measure of

the kind of frequency we are interested in. In what follows, we will refer

to this measure as the KF count.

The existence of the KF count allows us to assess certain claims about co-

occurrence frequency and typicality effects. Suppose that: (1) co-occurrence

frequency is indeed a sufficient cause of typicality effects, and (2) pro-

duction frequencies and co-occurrence ratings are good estimates of objective

co-occurrence frequency. Then it follows that: (3) the KF count should cor-

relate with typicality effects, and (4) the KF count should correlate with

production frequencies and co-occurrence ratings. Suppose instead that:

(1') co-occurrence frequency is not a determinant of typicality effects, and

(2') production frequencies and co-occurrence ratings primarily reflect

semantic factors. Then it follows that: (3') the KF count should not

correlate with typicality effects, and (4') the KF count should not correlate

with either production frequencies or co-occurrence ratings, though the latter

two indices should correlate with themselves as well as with typicality

ratings.

To test these contrasting sets of predictions we used the data previously

collected by Anderson and Reder (1974). These investigators collected re-

action times (RTs) in a task where subjects were presented word pairs (e.g.,

turnip-vegetable), and had to decide whether the first item was a subset of

tes-ecornd. In addition to the RT data, Anderson and Reder also collected co-

occurrence ratings ("how frequently do these two terms co-occur together?")

and typicality ratings ("how typical is the instance of the category?").

This list of factors gives us everything we need to test our contrasting
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predictions, except for production frequencies and KF counts. To obtain

production frequencies, we used the norms collected by Battig and Montague

(1969), who had subjects produce as many instances of given categories as they

could in a 30 sec interval. Thirty-six of the 40 category terms used by

Anderson and Reder correspond closely to categories in the Battig and Montague

4
norms, and we will confine our subsequent analysis to these common categories.

Finally, we obtained our KF counts by defining an instance-category co-

occurrence as the appearance of both terms within two lines of coded text

(70 characters per line).

To test the contrasting sets of predictions, we simply carried out

correlational analyses on the five factors mentioned: True RTs, typicality

ratings, co-occurrence ratings, production frequencies, and KF counts.

Consider our first set of predictions, where true co-occurrence (estimated by

the KF count) supposedly determines typicality effects, as well as co-

occurrence ratings and production frequencies. Contrary to predictions, the

KF count did not correlate at all with True RTs, r(70) = .00, and correlated

only marginally with co-occurrence ratings, r(70) = .23, and production

frequencies, r(70) = .22, .05 < p < .10 in both cases. Thus the results offer

little support for our first set of predictions, and are in far better agree-

ment with our second set. Recall that in the latter, the KF count was not

expected to correlate with RTs, co-occurrence ratings, or production fre-

quencies, while all subject-generated measures were expected to be inter-

correlated. In fact, all three subject-generated measures were substantially

intercorrelated. Co-occurrence ratings correlated highly with production

frequencies, r(70) = .66 p < .01, and with typicality ratings, r(70) = .70,
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p < .01, while production frequencies and typicality ratings were themselves

intercorrelated, r(70) = .63, p < .01.

The above findings, then, favor our second set of predictions and the

hypotheses that generated them: true co-occurrence frequency does not deter-

mine typicality, and subject-generated estimates of this factor reflect

semantic factors. But there is reason to be cautious in drawing these con-

clusions. For our KF counts may be limited by the relatively small number of

times our instance-category pairs actually appeared together in the Kucera

and Francis corpus. However, there is an additional result in the literature

suggesting that the KF count is not positively correlated with True RTs. This

is the finding of Rosch et al. (1976) that for a completely different set of

items, the KF count was negatively correlated with ratings of typicality;

given this, and the fact that highly typical items are responded to quickly,

it seems most unlikely that co-occurrence frequency is the cause of rapid

responding to typical items. But still, until more work is done with the KF

count, we shall have to settle for a cautious conclusion: There is no

evidence that typicality effects are caused by co-occurrence frequency when

this factor is measured by a relatively objective index. 5

Even this weak conclusion leaves the Marker Search model (and all other

Pre-storage models) without a theoretical explanation of the well-documented

relations between RTs on the one hand, and typicality ratings and production

frequencies on the other. This is in contrast to the Feature Comparison model,

model, where featural similarity is assumed to be responsible for the effects

of typicality ratings and production frequencies on True RTs. On this view,

all of the subject-generated measures we discussed above are based on featural

similarity, and that is why they are all correlated with True RTs, as well as
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with one another. Furthermore, there are two pieces of evidence that

directly link featural similarity to typicality ratings. First, Rips et al.

(1973) showed that the features derived from a multidimensional scaling of a

set of animal terms can predict typicality effects in semantic memory tasks

(see also Shoben's subsequent scaling work, discussed in Smith, Rips, and

Shoben, 1974). Second, there is the Rosch et al. (1976) study described

earlier, where explicit variation in featural similarity induced concomitant

variations in typicality ratings, as well as in production frequencies and

RTs.

Criticisms of the Feature Comparison Model

In their paper, Glass and Holyoak refer to several sources of difficulty

with the Feature Comparison model, apart from those problems associated with

the Holyoak and Glass data. Some of these criticisms are concerned mainly

with the evidence in support of the model presented in Smith, Shoben, and Rips,

(1974). However, other remarks are addressed to the more general question of

whether the Feature Comparison model is, in principle, able to account for

verification of sentences other than subset statements. Both problems are

obviously important ones, if they can be substantiated, and we deal with them

in the following.

Can the Feature Comparison model be extended? According to Glass and

Holyoak, the Feature Comparison model is inherently unable to encode relational

information such as the notion of possession expressed by have in Elephants

have ears. If so, the model could not explain how such statements are verified,

and in addition, would have difficulty in accounting for the meanings of words

that have relational components as part of their definition. But this supposed
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limitation to non-relational components has never been part of the Feature

Comparison model. Indeed, in an earlier paper (Smith, Rips & Shoben, 1974),

we discussed sentences like the above example in some detail, as well as other

sentence types commonly used in semantic memory (e.g., An ostrich is large).

To rehearse our proposal concerning has, a predicate like has ears can be

represented by an ordered pair, where the first member includes the semantic

features of the verb (perhaps a single feature, has-as-a-part), and the second

contains the feature list of the predicate noun. In verifying such a sentence,

one would compare the features of the subject category to the representation of

the predicate just described; if the subject category's features contain those

of the compound predicate then the sentences will be true, and otherwise false.

Thus, according to the model, sentences containing relational information can be

encoded and, further, relational components can be part of the analysis of indi-

vidual terms. In fact, in a new series of experiments, we have shown that the

mechanics of the Feature Comparison model can be used to predict reaction times

for the verification of sentences containing has (Rips, Shoben & Smith, 1975).

This, however, does not absolve the Feature Comparison model of all

theoretical difficulties. It is merely that the problems faced by the model

are not different in kind from those surrounding theories like the Marker Search

model. As Glass and Holyoak acknowledge, these difficulties concern the way

such models can be constrained so as to provide a principled account of

semantic phenomena. For Pre-storage models, this comes down to specifying

boundary conditions on permissible nodes and relations, as well as limits on

the types of search procedures that can be employed. For Computation models,

similar constraints must be established on the semantic components and
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comparison processes. Thus the problem is not one of the generality of these

models, but rather one of accounting for experimental data in other than an

ad hoc fashion.

The empirical status of the Feature Comparison model. After a review of

the relevant evidence, Glass and Holyoak conclude that there is little experi-

mental evidence to support the processing assumptions of the Feature Comparison

model. Their reasoning is as follows. The Feature comparison model identifies

two factors that should, theoretically, influence RT; these include ratings of

semantic relatedness, which should affect the first stage, and category size,

which should affect the second stage. Neither factor, according to Glass and

Holyoak, has been shown unambiguously to determine RTs, and therefore, no

unambiguous evidence for the Feature Comparison model exists.

These variables are important to the model, and a lack of evidence for

them would indeed undermine the theory. Let us first consider the evidence

for the effects of relatedness on semantic decisions. As Glass and Holyoak

acknowledge, a large number of studies can be construed as showing effects of

relatedness (e.g., Loftus, 1973; Meyer, 1970; Rips et al., 1973; Rips, Shoben

& Smith, 1975; Smith, Shoben & Rips, 1974; Wilkins, 1971). But Glass and

Holyoak argue that: (a) Ratings of semantic relatedness are sometimes less

accurate predictors of RT than are production frequences (Smith, Shoben &

Rips, 1974), suggesting that production frequency, not rated relatedness, is

the key factor; and (b) Certain findings are more plausibly explained on the

basis of search order than shared features (Glass, Holyoak & O'Dell, 1974;

Loftus, 1973), again suggesting the importance of production frequencies
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(supposedly measures of search order) over that of relatedness (supposedly a

measure of shared features).

We have already considered the issue of relatedness vs. production

frequency when we reanalyzed the results of Anderson and Reder (1974). There

we found that the correlation of RT with relatedness (typicality) was actually

slightly higher, though nonsignificantly so, than the correlation with pro-

duction frequency (see Footnote 5). Previously, however, we have found one

case where production frequency was a better predictor of RT than was semantic

relatedness (Smith, Shoben & Rips, 1974, Experiment 1). So we have something

of a discrepancy between these experiments with regard to whether a rating of

relatedness or production frequency is the better predictor of RTs. This

discrepancy may be due to any of a number of differences between the two

experiments. However, even if production frequency was consistently superior

to rated relatedness in predicting RTs, we believe that this would say little

about the underlying mechanisms (search order vs. shared features) responsible

for the RT effects. This is because production frequency norms are generally

collected with subjects under speed pressure, just as they are in standard RT

tasks. Consequently, extrinsic factors that affect all speeded tasks (e.g.,

factors that influence stimulus encoding) will increase the correlation be-

tween production frequency and RT. By contrast, subjects are usually not

timed as they make relatedness judgments and are therefore uninfluenced by

such extrinsic variables. For this reason, we might expect lower correlations

between RT and relatedness than between RT and production frequency even if

both ratings and frequencies were principally determined by shared semantic
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features. In view of such considerations, the relative size of the correla-

tions in question seems like an unimportant issue.

The second question concerning the role of semantic relatedness is

whether this variable is sufficient to explain certain problematic findings.

One set of findings (by Glass et al., 1974; and by Holyoak and Glass) exhibit

cases in which reaction time decreases with relatedness for false sentences, a

result that is contrary to the Feature Comparison model's predictions. We

will discuss this evidence in the next section. The second kind of experi-

mental evidence that seems counter to the Feature Comparison model is Loftus'

(1973) demonstration of asymmetries between verifying that an instance is a

category member and verifying that a category is the superordinate of an

instance. For example, it is easier to verify that insect is a superordinate

of the previously presented instance butterfly than to decide that butterfly

is an instance of the previously presented superordinate insect. By contrast,

it is easier to decide that shrimp is an instance of seafood (seafood pre-

sented first) than that seafood is the superordinate of shrimp (shrimp pre-

sented first). If RT is determined by relatedness, and if relatedness is

itself a matter of shared features, why should such asymmetries arise?

There are, however, a number of ways to explain Loftus' result that are

fully in keeping with the Feature Comparison model. First, we note that

according to the original formulation of the model, the relatedness value

computed in the first stage is based not on the number of shared features

between instance and category, but on the proportion of the category's

features that are shared (see Smith, Shoben & Rips, 1974). While this account

was intended to apply to situations in which the instance and category were
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presented simultaneously, it seems reasonable to suppose that when the items

are presented in sequence, as in the Loftus experiment, relatedness should be

determined by the proportion of shared features of whichever term is presented

first. The two proportions need not be equal, of course, for they will depend

on the-total number of defining and characteristic features in the term pre-

sented first.

A second explanation of Loftus' result is to assume that when the super-

ordinate (e.g., insect) is presented first, subjects attempt to generate

possible instances in anticipation of the to-be-presented instance. Similarly,

when an instance (e.g., butterfly) is presented first, subjects generate

possible superordinates. Whether subjects are successful in anticipating the

correct item will depend on two factors: (a) the instance-superordinate

relatedness, and (b) the number of alternative items with higher relatedness

than the correct one. We can thus explain the asymmetry between butterfly-

insect and insect-butterfly by appealing to the (b) factor. That is, there

are more insect-instances with higher relatedness values than butterfly, than

there are butterfly-superordinates with higher relatedness than insect. For

the seafood-shrimp example, this ordering with respect to the (b) factor

reverses. Again, instance-category asymmetries are not inconsistent with the

Feature Comparison model.

The second factor questioned by Glass and Holyoak is category size.

Category size predictions arise from the Feature Comparison model's second

stage, where the defining features of the predicate are compared to those of

the subject noun. The total number of the predicate's defining features

should therefore determine second stage duration according to most serial and
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parallel mechanisms. If we further assume, with Meyer (1970) and Clark (1970),

that larger categories are likely to have fewer defining features than their

subordinates, it follows that the duration of the second stage should decrease

with increasing predicate size. For example, the time to complete the second

stage should be greater for A bee is an insect than for A bee is an animal.

It is difficult, however, to test this prediction directly for two reasons.

First, a simple change in the category size of the predicate is not sufficient,

since such a change is likely to alter the subject-predicate relatedness and

hence the probability that the second stage is even executed. Second, the

second-stage difference that we are interested in may not occur on every trial;

this is because some responses will always be made after only first-stage

processing for there is as yet no experimental technique that ensures second-

stage processing on every trial.

In view of these obstacles to a direct test of our category-size pre-

diction, we attempted to assess it indirectly. In one attempt (Smith, Shoben

& Rips, 1974, Experiment 1), we varied the size of the predicate categories

in a standard verification task. Here, we used an analysis of covariance to

eliminate any effects that category size might have had on relatedness.

Contrary to predictions, we found no significant residual effect of category

size when RTs were corrected in this way. In retrospect, this failure of the

category size hypothesis seems surprising. The mathematical model presupposed

by the analysis of covariance is not equivalent to that of the mathematical

version of the Feature Comparison model itself, and so there is no guarantee

that estimates of the category-size effects from the two mathematical pro-

8
cedures will coincide. In order to derive estimates of category-size effects



Issues in Semantic Memory

36

from the mathematical version of the Feature Comparason model, we performed a

second verification experiment and fit the model explicitly to the results

(Smith, Shoben & Rips, 1974, Experiment 2). In this case the duration of the

second stage for large categories (animal and plant) was calculated to be 161

msec, while the estimate for small categories (bird, insect, fruit, and vege-

table) was 280 msec. So, as predicted, larger predicate categories were

processed faster in the second stage. It should be noted that the model-

fitting procedure itself did not constrain the former value to be smaller than

the latter, so that these results constitute a confirmation of the underlying

theory.

The parameter values just described were obtained by using error rates to

help predict reaction times, following the procedure outlined by Atkinson and

Joula (1974). This procedure has been criticized by Glass and Holyoak who

claim that it trades on a general positive correlation between errors and RTs.

However, several points can be made in response to this. First, recent evi-

dence suggests that high positive correlations between errors and RTs are far

from universal (Pachella, 1974). Second, even if this correlation were a

truly general one, it is irrelevant in evaluating the crucial parameters of

the model. Clearly, high correlations between errors and RTs imply nothing

about the parameter values for the second stage that were discussed above.

Finally, Smith, Shoben, and Rips also used a second procedure to predict the

obtained data. In this procedure, error rates as well as RTs were predicted

only from relatedness ratings. Here, there is no way we could have traded on

a general positive correlation between errors and RTs, yet we still found that

the estimated duration of the second stage was less for larger predicate



Issues in Semantic Memory

37

categories (245 msec) than for smaller ones (311 msec). Thus, there is in

fact some evidence that the size of the predicate category affects semantic

decisions. Such evidence fits nicely with the Computation models that assume

semantic decisions are based on a comparison of features, with fewer features

resulting in shorter comparison times. In contrast, it is not at all clear

how Pre-storage theories like the Marker Search model would account for these

results.

Experimental Studies of Disconfirmations

It remains for us to account for the empirical results of Holyoak and

Glass on disconfirmation times, which, taken at face value, violate a major

prediction of the Feature Comparison model. There are actually two sets of

findings of interest, one concerning the disconfirmation of disjoint state-

ments, the other concerning the disconfirmation of superset and overlap

statements. We deal with each in turn.

Disconfirming Disjoint Statements

The Holyoak and Glass results. Using a standard verification paradigm,

Holyoak and Glass presented subjects with 39 disjoint sentences of the form

All S are P and 39 of the form Some S are P, in addition to other sentences

that are irrelevant to the present issue. The 78 false sentences were sub-

divided by Holyoak and Glass into three types: high-production frequency,

low-production frequency, and anomalous statements. These distinctions were

based on an earlier experiment in which subjects were asked to generate com-

pletions for the sentence frames All S are ? and Some S are ? such that

the resulting sentences were false. Holyoak and Glass then tabulated the

production frequencies for these false completions. According to a
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straightforward interpretation of the Marker Search theory, the frequency

with which a particular completion is produced should reflect the amount of

time necessary to disconfirm the corresponding sentence. For example, the

production frequerncyof men to the frames All women are ? should predict the

time needed to disconfirm All women are men, since completing frames involves

finding a contradiction that is also used to disconfirm the statement in the

verification task. Thus, high-frequency completions (produced by a mean of

35% of their 14 subjects) should be disconfirmed faster than low-frequency

completions (produced by 5%), and these in turn should be falsified faster

than anomalous completions (4%). Note, however, that the difference in

production frequency between low and anomalous sentences is slight.

Holyoak and Glass also obtained ratings of semantic relatedness for each

of the disjoint subject-predicate pairs, and this allows us to generate rival

predictions from the Feature Comparison model. These ratings show that the

high-frequency sentences were somewhat more closely related than low-

frequency sentences, and that low-frequency sentences were much more closely

related than anomalous ones; the means were 4.88, 4.47, and 1.76, on a 7-point

scale, for high, low, and anomalous sentences, respectively. Since the Feature

Comparison model predicts that disconfirmation times should increase with

relatedness, the high-frequency statements should take the longest to dis-

confirm, the low-frequency next longest, and the anomalous statements should

be the fastest. This, of course, is the exact opposite of the ordering pre-

dicted by the marker Search model.

The results of this experiment disconfirmed major predictions of both

models. First, contrary to the Feature Comparison model, low-frequency

sentences took longer to disconfirm than the high-frequency ones. And second,
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contrary to both theories, anomalous sentences took about the same amount

of time as high-frequency sentences. Before commenting on an interpretation

of these results, it seems important to inquire about their robustness.

Since these findings are surprising ones, we decided to replicate them.

Experiment 1: A partial replication of Holyoak and Glass. We attempted

to replicate the part of Holyoak and Glass's experiment that dealt with dis-

joint statements quantified by All, making only minor changes in procedure

and design. We used a total of 132 word-pairs. Two sets of 39 pairs were

selected from Holyoak and Glass. These sets comprised the disjoint state-

ments and their true counterparts that were quantified by All in Holyoak and

Glass. Our remaining 54 pairs were used as fillers to control for frequency

of nouns in true vs. false items, such that: (1) all subject nouns were

presented equally often in true and false items; and (2) approximately one-

third of the predicate nouns appeared in a true item only, one-third in a

false item only, and the remaining third once in both a true and false item.

Only the 78 pairs selected from Holyoak and Glass were analyzed.

The two members of a pair were typed in uppercase Gothic in a single

line (and were separated by a hyphen) on a 6" x 9" white index card. Subjects

were instructed that a pair was to be considered True if the left-hand member

was a subset of the right-hand one, and False otherwise. Twenty of the filler

pairs were selected as practice items while the remaining 112 pairs were

randomly ordered. The same order was used for all 20 subjects, who were

Stanford undergraduates. The pairs were presented in a Gerbrands two-field

tachistoscope at a viewing distance of 59 cm and each pair was preceded by

a 1.5 sec fixation point. Responses were made on two telegraph keys, which,



Issues in Semantic Memory

40

when depressed, terminated the display of the pair and a Standard Electric

Timer. The assignment of keys to response types (True and False) was balanced

over subjects.

In analyzing the results, RTs to the critical 78 pairs were analyzed

across both items and subjects (Clark, 1973), which separate analyses for True

and False responses. The 39 true pairs were categorized as high-, medium-,

and low-production frequency, following Holyoak and Glass's classification of

these same items. This production frequency factor was a within-subjects

variable, with stimulus pairs nested within frequency levels. In a similar

vein, false pairs were divided into high, low, and anomalous items, again

following Holyoak and Glass's classification.

Table 1 presentes mean True and False RTs from both the subjects and

items analysis. The RTs differ slightly for our two analyses because we have

Insert Table 1 about here

used unweighted means analysis. For the False items, both sets of means show

that RTs were fastest for anomalous pairs, next fastest for high-frequency

pairs, and slowest for low-frequency items. The overall difference among the

False means was significant at the .001 level (min F'(2,59) = 8.09), and

Newman-Keuls analyses showed all pairwise comparisons among these means to

be significant in both the analysis by items and that by subjects. This

finding contradicts that of Holyoak and Glass, who found no significant dif-

ferences between anomalous and high-frequency sentences. Evidence for dif-

ferences among the True means was more equivocal, as the min F' statistic
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showed no significant differences (min F'(2,59) = 1.86, p > .10). However,

the subjects analysis does indicate a difference among these means (see

Table 1), and a Newman-Keuls analysis over subjects found high-frequency

pairs to be faster than either medium- or low-frequency items. Further, a

test for the linear trend among the True means showed a marginally significant

effect (min F'(1,56) = 3.71, .05 < p < .10). The results for True RTs, then,

are in rough agreement with Holyoak and Glass, who found the same ordering of

means as we did.

The main discrepancy between Holyoak and Glass and our study concerns

the relation between anomalous and high-frequency statements. It is possible

that Holyoak and Glass failed to find a significant difference between these

statement types because they repeated subject-predicate pairs in an unbalanced

fashion. That is, considering both statements quantified by All and by Some

in Holyoak and Glass, 9 (out of 17) high-frequency items, 6 (of 20) low-

frequency items, and no anomalous items were repeated. If these repetitions

decreased RT, high-frequency statements may have been artifactually fast

relative to anomalous statements. In the present study, only statements

quantified by All were used, and for these statements, there were no

repetitions of subject-predicate pairs in the critical false statements.

Implications of Experiment 1. With respect to the two models of interest,

our results can be summarized as follows. In congruence with the Feature

Comaprison model, false items containing very unrelated nouns (the anomalous

pairs) were verified extremely rapidly. This finding is contrary to the

Marker Search model, which predicts relatively slow RTs to these pairs
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because of their low production frequencies. However, our experiment dupli-

cates Holyoak and Glass's important finding that low-frequency pairs are dis-

confirmed faster than high-frequency ones, despite the fact that high-

frequency items are also rated as more related in Holyoak and Glass's norms.

This finding is inconsistent with the Feature Comparison model, but in accord

with the assumptions of the Marker Search model. Hence the results contra-

dict some major predictions of both models. It seems that if we are to

salvage the Marker Search model we must explain away the data from anomalous

pairs. Alternatively, if we want to rescue the Feature Comparison model, we

must explain the relation between high- and low-frequency pairs.

Let us first consider some ways to salvage the Marker Search model.

Holyoak and Glass were aware of the problem that anomalous statements posed

for their model, since this problem manifested itself in their own data

(recall that they found anomalous statements were disconfirmed faster than

low-frequency ones even though both statement types had comparable production

frequencies). To reconcile these findings with their model, they proposed a

new "admittedly ad hoc" device to the theory, namely that "...certain abstract

types of information which differentiate between almost all words (such as the

distinction between 'living' and 'non-living') are uniformly accessed quickly"

(p. 237). Thus anomalous sentences should be disconfirmed quickly on the

basis of this abstract information. But this leaves us with a serious

question. If this abstract information is accessed rapidly, why do the

production frequencies collected by Holyoak and Glass show anomalous com-

pletions to be rare? If production frequency is truly an indicator of search

order, then anomalous completions should be fairly common, which is not the
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case. Holyoak and Glass's reply is that "...production frequency may not be

a valid measure of the association strength of such abstract properties"

(p. 237), since these abstract concepts maynot correspond to single lexical

items in English and may be very rare in written or spoken language.

This explanation is not just ad hoc; it is almost surely incorrect.

First, it is unclear why the supposed low frequency or lexical form of

abstract predicates should result in low-production frequencies, since sub-

jects contributing to these norms are not called upon to encode or produce

these abstract terms at all. In order to produce an anomalous completion--

chairs to the stimulus frame All birds are ? --the subject must determine

that the superordinate pathways from <avian> and <chair> intersect at the

appropriate abstract concept, like <thing>, with identically labeled paths;

this is the only role played by the abstract concept. How quickly this can

be done should depend on the order in which the abstract concept is searched,

and this search order should not depend on factors like word frequency or

number of words in the lexicalization of the concept. For if it did, the

abstract concept involved should not be available quickly in verification

tasks either, and this leaves Glass and Holyoak without any way of accounting

for the falsification of anomalous statements. Second, abstract concepts need

not be infrequent in English. Take, Holyoak and Glass' example of an anom-1

alous statement, All birds are chairs. As we have just noted, disconfirming

this sentence requires us to find a common superordinate where the pathways

from the subject and predicate meet. Such a superordinate might be thing or

object (not living thing, as Holyoak and Glass assume since living thing is

the superordinate of the subject term only). Both thing and object have the
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advantage of being single lexical items and fairly common, at least in written

English (thing appears 333 times per million and object 65 time per million in

the Kucera-Francis, 1967, norms). Note, in addition, that the abstract term

thing will serve to disconfirm any anomalous sentence that is false by virtue

of one concept being animate and the other inainimate, as in the above example.

Third, the purpose of using production frequency as a predictor of RT was,

according to Glass and Holyoak, to provide empirical constraints on their

model. The importance of doing so, as they note, is that the Marker Search

model lacks any structural constraints on search order. But Holyoak and

Glass's abandonment of production frequency for abstract concepts seems to

leave the model without empirical constraints of search order as well,

allowing it to "predict" any RT results whatsoever. Thus the modification

proposed by Glass and Holyoak to account for findings on anomalous statements

is fraught with problems.

Now let us see what we can do to salvage the Feature Comparison model.

Recall that its problem is that it cannot account for why high-frequency

statements are disconfirmed faster than low-frequency ones. To get some

leverage on this problem, let us consider in detail some of the Holyoak and

Glass items. Low-frequency items included the sentences Some (All) women are

babies, Some (All) valleys are lakes, Some (All) flowers are foods. In

contrast to these difficult items, the high-frequency counterparts were

Some (All) women are men, Some (All) valleys are mountains, and Some (All)

flowers are trees. The subject and predicate concepts in both the high- and

low-frequency sentences share a fairly large number of semantic dimensions.

Women, men, and babies, for example, share those dimensions common to humans.
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However, the subject-predicate pairs in high-frequency items (e.g., women-

men) seem to possess directly opposing values on at least one shared dimension

(sex, in our example). While it is possible to find such opposing values for

the subjects and predicates of low-frequency pairs, the relationship is not

as clear-cut. Thus, while women and babies may differ on the dimension of

age, this difference depends on interpreting women in its most specific sense

(woman as adult human female) rather than its more general one (woman as human

female). This is the kind of intuition that led Glass and Holyoak to formulate

the Marker Search model, and we concur that it is an important insight. The

task for us is to determine some way of accommodating this intuition into the

Feature Comparison model.

There are at least two ways of making this accommodation. The first is

to change the model by adding some new content to the second stage. Specif-

ically we may assume that this stage terminates as soon as any mismatching

feature is found, and that a mismatching feature will be found sooner with

high- than low-frequency statements. To use our previous example, the mis-

matching feature of sex may be found relatively quickly when comparing women

and men, while the mismatching feature of age may be found relatively slowly

when contrasting women and babies. Of course, added assumptions are of

limited value unless they lead to new predictions, but the present assumption

seems testable. It seems to predict faster confirmation times for the true

statements Women are female and Men are male, than for Women are adults and

Babies are nonadults. This seems like a reasonable prediction. But, alas,

there are other problems with this approach. In addition to our assumptions
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about self-termination, we must further assume that the faster second-stage

processing of high- than low-frequency statements more than compensates for

the greater likelihood of having to execute the second for high-frequency

items (recall they have higher related values). While the small difference

in relatedness between the high- and low-frequency completions argues for

the viability of this approach, it is not an altogether satisfactory one

without an explicit quantitative model.

Alternatively, we can accommodate the findings on high- and low-frequency

pairs by altering our conception of first-stage processing, particularly of

how one computes a relatedness value. We may assume that, in our Experiment 1,

for example, when a subject computed the relatedness value, he gave more weight

to dimensions with widely discrepant values than to dimensions with similar

values. In this way, pairs like women-men would have been computed as less

related than women-babies because of the extra weight given to the dimension

of sex which differentiates the first pair. This method of computing related-

ness may differ from that used by those subjects who contributed to the

ratings, and were asked to rate "how closely you feel that two words are

associated in meaning" (Holyoak and Glass's method, and our own). For in the

latter situation, subjects may be inclined to give equal weight to all shared

dimensions. This same ambiguity with respect to relatedness judgments has

been noted by Fillenbaum (1973) in connection with multidimensional scaling

techniques. To borrow Fillenbaum's example, the judged similarity of

antonymous pairs like hot and cold will depend heavily on whether subjects

attend more to the dimensions having similar values or to those having

different values.
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Again, we would like our proposed modification of the Feature Comparison

model to lead to some new prediction(s). One such prediction is the following.

If new rating instructions can be devised that induce subjects to emphasize

dimensions having widely discrepant values, then this set of ratings should

accurately predict the ordering of False RTs in Experiment 1. We attempted

to test this prediction in Experiment 2.

Experiment 2: An alternative procedure for measuring relatedness. We

asked 29 Stanford undergraduates to rate the relatedness of the subject-

predicate pairs used in Holyoak and Glass's disjoint statements, by deter-

mining "...how easy it would be for the subject term to become the predicate."

Our presumption was that such instructions would emphasize the importance of

shared dimensions with discrepant values. The 63 distinct subject-predicate

pairs were presented to the raters in a randomized list, and the raters were

asked to produce a rating on a 10-point scale for each pair, with low values

denoting more related items.

The results of this experiment may be summarized easily. The low-

frequency pairs were now judged to be the most related, the high-frequency

items next most related, and the anomalous statements least related of all.

These relatedness ratings, then, display the same ordering as the RTs of

Experiment 1, with relatedness being directly related to disconfirmation times

as predicted by the Feature Comparison model. This was the case for both

the set of items quantified by Some (used in the Holyoak and Glass study)

and for the set quantified by All (used by Holyoak and Glass and by us in

Experiment 1). For the former set, mean ratings were 4.20 for low-frequency
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items, 4.54 for high frequency, and 7.71 for anomalous pairs (remember--

low numbers mean high relatedness). For the latter set of items, means were

3.03 for low frequency, 4.43 for high frequency, and 7.11 for anomalous pairs.

Differences between these means were significant in both cases, with F'(2,53)

= 30.08, p < .01 for Some items, and F'(2,48) = 27.20, p < .01 for All items.

Newman-Keuls tests showed that each of the pairwise differences within the

two sets were significant, except for that between the high- and low-frequency

pairs for statements quantified by Some.

So the Feature Comparison model is consistent with the pattern of means

obtained in Experiment 1 as long as we assume that the relatedness value

computed in the first stage mirrors the relatedness judgments provided by our

subjects in Experiment 2. The relatedness norms collected by Holyoak and

Glass fail to predict the results of Experiment 1 because their ratings

reflected only the overall proportion of shared dimensions. Ratings of this

kind have proved successful in earlier studies (e.g., Rips et al., 1973;

Smith, Shoben & Rips, 1974), possibly because the false items used in the earlier

studies did not discriminate between the two sorts of relatedness. These

conclusions, however, need further scrutiny. Introducing yet another measure

of the semantic relation between subject and predicate nouns may raise as

many problems as it solves. Many types of ratings have been found to

correlate with RTs for semantic memory judgments (e.g., co-occurrence ratings,

production frequencies, relatedness ratings), and all of these measures are

intercorrelated. So additional experiments and analyses are needed to tease

apart the critical differences between these measures, and additional thought

must be given to the factors responsible for the differences. Perhaps such
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studies will show us that different measures all tap different, but equally

important, semantic aspects, for there is surely no reason to think that

there is one best measure of semantic processing.

Disconfirming Superset and Overlap Statements

The Holyoak and Glass results. There is one last set of findings due

to Holyoak and Glass that we must still deal with. These findings involve

RTs to false superset statements, e.g., All women are mothers, and false

overlap statements, e.g., All women are writers, (what Holyoak and Glass call

Counterexample statements). As we noted earlier, the Marker Search model

assumes that these types of sentences are disconfirmed by a search for a

subset of the subject category that is disjoint with the predicate category,

as indicated by identically labeled pathways. The Feature Comparison model

would disconfirm these kinds of statements in the same way it falsifies dis-

joint statements, that is, by finding mismatching features. Again the two

models differ in the predictions they make about the disconfirmations of

interest. But to see this, we need to examine the Holyoak and Glass study

in detail.

In their study of how superset and overlap statements were disconfirmed,

Holyoak and Glass's experimental strategy again involved finding cases where

production frequency and relatedness ratings make discrepant predictions for

False RTs. But in this case, Holyoak and Glass's frequency measure of

interest is obtained by somewhat indirect means. Instead of using the fre-

quency of completions that make a sentence frame false (the procedure used for the

disjoint statements previously discussed), Holyoak and Glass use the frequency
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of completions that make the corresponding Some statement true. (Note that

a superset or overlap statement is true when quantified by Some; it is only

false when quantified by All). For example, to predict RTs for disconfir-

mations of sentences like All fruits are oranges, Holyoak and Glass used

completions of the frame Some fruits are ? that serve to make the sentence

true. In theory, the higher the frequency of the Some completion, the faster

one can disconfirm the corresponding false All statement. If, for example,

apples is a high frequency completion to Some fruits are ? , then apples is

readily accessible from fruits, and rejection of All fruits are oranges

should be fast. This follows from the Marker Search model's hypothesis that

such sentences are disconfirmed by a "back-up" search from the subject term

(fruits) that finds a category (apples) that is disjoint with the predicate

term (oranges).

The results showed significant effects on False RT of these true-

completion frequencies. However, the False RTs showed no significant effects

of production frequency of the false sentences themselves. For example,

reaction time to disconfirm a sentence like All fruits are oranges was

unaffected by the frequency with which subjects generate oranges to the

frame All fruits-are ? when asked to make the sentence false. This contrasts

with the finding obtained for disjoint statements. Also, according to the

norms collected by Holyoak and Glass, ratings of semantic relatedness co-

incided with the frequency of false completions, so they likewise failed to

predict the False RTs. Holyoak and Glass note, however, that a significant

residual effect of relatedness remains when the true-completion frequencies

are controlled.
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Holyoak and Glass conclude that these findings support the Marker Search

model, because the model correctly predicts that False RTs should decrease

with true-completion frequencies. They further conclude that the results

conflict with the Feature Comparison model, because the latter cannot account

for the effects of true-completion frequencies. We disagree, as we think the

findings pose difficulties for both models. Consider first the Marker Search

model. The problem here is how to explain the lack of effect of false-

completion frequency. Surely, according to this model, false completions to

All fruits are ? indicate the order in which pathways are searched from

fruit, as this search must locate not only a potential predicate, like orange,

but also another subset of fruit, like apple, that is disjoint with the

potential predicate. For if this last step were omitted, it would be

impossible to determine that the potential predicate actually made the

sentence false. Thus the search needed to produce a false superset or over-

lap completion mirrors the search necessary to disconfirm the completed

sentence. By the usual Marker Search logic, this should mean that these

completion frequencies will predict RTs for the corresponding full sentences,

and this is contrary to the obtained findings. Although Holyoak and Glass

seem to dismiss this implication from their model, we think it provides an

important disconfirmation of their theory.

Now consider the Feature Comparison model. The problem here is how to

account for the effect of true-completion frequency on False RTs, since

Holyoak and Glass were able to demonstrate that this effect was independent

of rated relatedness. We could proceed as we did before, and attempt to add
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some new assumptions to our theory so as to make it consistent with the

problematic effect. In this case, however, we think this approach is

unnecessary at this point in time. For we dispute the very claim that the

effect of true-completion frequency has been adequately demonstrated, because

there are two methodological problems with this study that undermine its

principal finding.

First, it appears that several of the items in the critical set were

simply misclassified by Holyoak and Glass. (All of the items are listed in

their Appendix.) For example, the sentence All fruits are citrus is listed

as one for which there was no high-frequency true-completion to Some fruits

are ? that was disjoint with citrus. However, apple, listed as a high-

frequency true-completion, seems to fill the role of such a disjoint predicate.

A similar problem applies to All birds are swimmers, which was also classified

as having no high-frequency true-completion associated with it; here robins

seems to be such a completion. Removing just these two items from the

critical sentences reduces the overall difference from 109 to 76 msec. This

reduced effect is not significant over either subjects (F(1,13) = 3.41,

p < .05) or items (F(1,20) = 2.51, p < .10). However, the effect is still in

the right direction, and it might prove significant in future experiments

that involve more subjects and more items. So while this problem is somewhat

serious, it may not be that severe.

The second methodological problem is more bothersome. Holyoak and Glass

did not control for the type of set relation within their critical sentences

(those where true-completion frequency and relatedness were unconfounded).
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That is, for the critical sentences, 8 of the 12 items with high true-

completion frequencies were superset statements while the remainder were

overlaps; in contrast, only 3 of 12 items with low true-completions were

superset statements while the rest were overlaps (see Holyoak & Glass, Foot-

note 4). Thus true-completion frequency was confounded with the prevalence of

superset statements. If we assume that superset statements can be confirmed

faster than their overlap counterparts, we have come up with an alternative

explanation of the problematic result. Experiment 3 provides support for

this assumption.

Experiment 3: Differences between superset and overlap statements.

Thirteen subjects (Stanford undergraduates) were given 150 statements to

verify, all of the form All S are P. Half the statements were true, and

half false. The false items contained 25 disjoint, 25 superset, and 25

overlap statements, and these three statement-types were equated for average

subject-predicate relatedness as determined by previously obtained ratings.

Also, the average relatedness of subject-predicate pairs in the false state-

ments (6.5 on a scale of 1-10, where high numbers indicate similar meanings)

was roughly equal to the average relatedness of subject-predicate pairs in

true statements (6.9). Each statement was presented only once, and there

were no repetitions of words across the 150 statements.

Each full statement was typed in uppercase Orator in a single line on

a 6" x 9" white index card. Subjects were simply instructed to decide

whether the statement was True or False. The same random ordering of the

150 statements was used with all subjects. The statements were presented
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in an Iconix three-field tachistoscope at a viewing distance of 68 cm, and

each item was preceded by a 1 sec fixation point. The response panel con-

tained three telegraph keys arranged horizontally. The middle key was used by

the subject to initiate each trial, while the left and right keys were used

to indi'cate True and False responses. All subjects used the key corresponding

to their dominant hand to indicate true decisions.

The False RTs are the only ones of interest, and they were analyzed

across both items and subjects. For the subjects analysis, disjoint statements

were disconfirmed fastest (1510 msec), superset statements next fastest (1575

msec), and overlap statements were slowest of all (1721 msec). The overall

effect of set relation was significant at p < .01, with F(2,48) = 9.67.

Furthermore, subsequent planned comparisons showed that overlap statements

were significantly slower than superset statements, F(1,48) = 14.49, p < .01,

while the superset and disjoint statement-types were not significantly dif-

ferent from one another, F(1,48) = 2.87, p < .1. For the items analysis,

the mean RTs for disjoint, superset, and overlap statements were 1506, 1580,

and 1680, respectively; the effect of set relation was marginally significant,

F(2,144) = 2.42, .05 < p < .10. While a planned comparison did not reveal

a significant difference between overlap and superset sentences, F = 2.34,

.10 < p < .20, the difference between them is of course in the expected

direction, and the magnitude of the difference (100 msec) is relatively

substantial for this kind of experiment. Lastly, the error rate on overlap

statements (24%) was far greater than that on superset statements (8%),

t(12) = 4.35, p < .001.



Issues in Semantic Memory

All things considered, these results indicate that overlap statements

are harder to process than their superset counterparts, and this provides an

alternative explanation of the Holyoak and Glass results. Thus there is no

clear-cut evidence in the Holyoak-Glass study for the effects of true-

completion frequency, or for what they have called "disconfirmation by

counterexample." As we see it, this reduces the credibility of their

theoretical claims.

How do the present results line up with the Feature Comparison model?

It seems that they remove one problem for the model--the need to explain the

effect of true-completion frequency on False RTs--and create a new one--the

need to explain the effects of set relation on False RTs. That is, there is

nothing in the Feature Comparison model that would lead us to expect that

False RT should increase from disjoint to superset to overlap statements,

when all three statement-types are equated for relatedness. Before trying

to add some new assumptions to our model to account for these new results,

it is helpful to localize the effects of set relation within the processes

of the model. Two aspects of Experiment 3 suggest that set relation affected

only the second stage of the model. First, all three statement-types were

equated for relatedness, and, in terms of the model, this means that all

false statements were equally likely to require second-stage processing.

Second, as previously noted, true and false statements had roughly the same

level of subject-predicate relatedness, and, according to the model, this

means that many of the True-False decisions must have been based on second-

stage processing (Smith, Shoben & Rips, 1974; Smith, Rips & Shoben, 1974).
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We also have additional evidence that argues for a second-stage locus of

the effect of set relation. To appreciate this evidence, consider the con-

sequences of changing the quantifier used in Experiment 3 from All to Some.

We have argued elsewhere that Some statements probably require a different

second stage than that used in verifying All statements (Smith, Rips &

Shoben, 1974). Essentially, this is due to the fact that the second stage

used will All statements establishes a subset relation, and Some statements

are true even when they manifest only a superset or overlap relation. Con-

sequently, if the set-relation effect is due to the second stage, then this

effect might not obtain if the quantifier is switched from All to Some.

Accordingly, we basically redid Experiment 3 using Some as the quantifier.

(To insure that True and False responses were still equally probable, we used

only 25 subset statements and increased the number of disjoint statements to

75.) The results were simple. There was no longer any effect at all of set

relation. If we restrict our attention to the 25 disjoint, superset, and

overlap statements that were previously used in Experiment 3, the new means

are as follows: for the subject analysis, disjoint = 1482 msec, superset =

1494 msec, and overlap = 1499msec, F(2,48) < 1; for the items analysis,

disjoint = 1502 msec, superset = 1522 msec, and overlap = 1517 msec, F(2,48)

< 1. These results, then, line up with the notion that the set-relation

effect of Experiment 3 was due to the second stage.

To explain why second-stage processing is faster for disjoint and

superset statements than for overlap ones, it seems we must assume this stage

is self-terminating. Disjoint statements would then be disconfirmed rapidly
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if we further assume that general features, like being animate or being alive,

are compared first since most of our disjoint pairs differed on these features.

(Note that this differs from the Holyoak and Glass assumption about general

features being accessed first, since we hold that such features only become

available after an extensive amount of processing--the first stage--has been

completed.) There is some support for our assumptions in Shoben (1974),

where disjoint noun-pairs were disconfirmed faster when they differed on

general features rather than just specific ones. Shoben, though, did not

establish that this effect was independent of relatedness, so our assumptions

should be considered speculative until further research is done.

It is somewhat more difficult to come up with an explanation of why

second-stage processing should be faster for superset than overlap noun-pairs,

as both types of noun pairs contained virtually no mismatches on general

features. There is, however, one notable difference between the sets of

defining features for superset and overlap pairs. In superset pairs the

predicate term should contain more features than the subject term (as the

predicate term is in fact a subset of the subject), while this imbalance

need not hold in overlap pairs. Detection of this imbalance would provide

sufficient grounds for disconfirming a statement, for obviously all the

features of the predicate cannot be found among those of the subject if there

are more features in the predicate to begin with. Thus it is possible that

superset statements were processed faster than overlap ones because the

subjects of Experiment 3 were sensitive to this imbalance, and terminated

their second-stage processing as soon as the imbalance was detected. This is
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a very ad hoc assumption, and again further research will be needed to

determine if it has any merit.

To summarize, Experiment 3 appears to undermine the results of Glass and

Holyoak on true-completion frequencies (Counterexamples, in their terminology);

it also leads to some new problems for the Feature Comparison model, problems

that call for further embellishments of the proposed second stage.

Summary and Future Directions

We began with an attempt to classify semantic-memory models, and after

considering various unsatisfactory classifications, we proposed a distinction

between Computation and Pre-storage models. Computation models, of which the

Feature Comparison model is a current exemplar, emphasize semantic expansion

of terms during sentence verification, and account for RT effects in verifi-

cation experiments by means of variations in the time needed for comparison

operations between these expanded concepts. Obtained effects of relatedness

or typicality are explained by similarities among the elements of the expanded

concepts. Pre-storage models, such as the Marker Search model, explain RT

effects in terms of variations in search procedures that operate on a data-

base of stored (usually interconnected) propositions. Typicality and kindred

phenomena are explained away by means of co-occurrence frequency.

What is the current status of these models, in light of the evidence

reviewed here? Much of this evidence related indirectly to the question of

whether RT effects are best ascribed to search or comparison processes. But

though we were able to offer a detailed contrast between a theory emphasizing

comparison processes (the Feature Comparison model) and one emphasizing search
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processes (the Marker Search model), we are not able to settle the comparison

vs. search issue in any final way. There is no decisive empirical result

that infirms either theory. This is not so much because semantic-memory

research has uncovered no interesting facts, but rather because the models

have been retrenched in an effort to account for the new facts. As a result,

one of the outstanding questions is whether the revised models are too general

to be testable, a problem that seems to be particularly acute for Pre-storage

models (Glass & Holyoak, and particularly Collins & Loftus, 1975). For these

models, there are no structural constraints at all on search order. Even

the empirical constraints proposed by Glass and Holyoak can be by-passed by

invoking extra mechanisms like those needed to account for disconfirming

anomalous sentences. For Computation models, one of the important remaining

problems is to specify the mechanics of the comparison process through

further discriminating experiments; hopefully the present Experiments 1-3

begin to do this.

With respect to an explanation for typicality effects, we seem to be

on firmer ground. There is no evidence whatsoever for the role of co-

occurrence frequency, at least when frequency is measured in an objective

way (as in our reanalysis of Anderson & Reder, 1974, or in Rosch et al., 1976).

Although dependence on co-occurrence frequency is a relatively peripheral

feature of Pre-storage models, the lack of evidence for co-occurrence

frequency leaves these models without a principled explanation for their own

structural organization. For example, the Marker Search model is left without

any theoretical underpinning for its short-cut pathways or search order,
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beyond the sheer need to account for the data. By contrast, those Compu-

tation models that take featural similarity as their starting point, have

little difficulty in coping with typicality effects and other related

phenomena. Instead, the problems faced by the latter models have to do with

specifying the status of the features themselves, and the boundary conditions

on feature combinations and feature comparisons.

Of course the issues contended by Computation and Pre-storage models do

not exhaust the range of questions concerning psychological semantics. Nor

do we need to resolve the former before pursuing the latter. For example,

little experimentation has been done on rules for combining propositions

semantically in complex sentences, and to our knowledge, no semantic-memory

model has even explicitly addressed this problem. While we have done some

preliminary work in this area (Rips, Shoben & Smith, 1975), there is no way

at present to evaluate semantic-memory models on this issue. Similarly, most

current models of semantic memory have been content to divide sentences into

property statements (e.g., Oranges are round) and class inclusion statements

(e.g., Oranges are fruit). But among the so-called property statements are

a wealth of distinct semantic types, including modals (Oranges can roll),

sentences with relative adjectives (Oranges are small), and sentences with

complex verbs (Oranges grow). We know from linguistic and philosophical

analyses that such sentences contain important semantic characteristics, yet

we have no evidence at all concerning psychological distinctions among them.

It seems to us that semantic memory has nothing to lose by dealing with a

broader range of phenomena.
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2
All further references to Glass and Holyoak are to this paper.

Similarly, references to Holyoak and Glass refer to Holyoak and Glass (1975).

3The problems that we have just discussed all stem from the procedure of

assigning mutually exclusive subsets the same marker. One could argue that,

rather than relying on this kind of procedure, we need instead to use our

intuitions to decide when two paths are contradictory. The difficulties with

this solution are obvious: it forgoes any a priori determination of contra-

dictory pairs, and it may not lead to many predictions if intuitions about

contradictions are not clear-cut. Both of these problems could eventuate in

a theoretical formulation that lacks testability.

4
It is possible to maintain that other measures of production frequency

would have been more appropriate. Our choice was dictated by the availability

of the Battig-Montague entries for the items used by Anderson and Reder (1974)

and by the role that these norms have played in previous studies of semantic

memory (e.g., Wilkins, 1971).

5There are some additional results from our correlational analysis that

deserve comment. First, both production frequency and typicality ratings

correlated with True RTs, r(70) = -.23, .05 < p < .10, and r(70) = -.25,

p < .05, respectively. Neither of these findings is the least bit novel (see

Smith, Shoben & Rips, 1974), though both correlations are surprisingly low in
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light of previous results. Second, there was also a marginal positive

correlation between typicality ratings and the KF count, r(70) = .21, .05 <

p < .10. This result conflicts with the negative correlation of Rosch et al.

(1976) that was just mentioned in the text. But the conflict may be more

apparent than real, since the instance-category pairs of Rosch et al. covered

a wider typicality range than did those of Anderson and Reder. So the Rosch

et al. results may be the more sensitive ones. Finally we should mention

that we performed a step-wise multiple regression of RT on the entire set of

independent variables discussed above, plus measures of simple word frequency

(determined by the standard Kucera and Francis norms). Typicality ratings

entered the regression equation first, and of the remaining variables only the

word frequency of the instance term showed even a marginally significant

correlation with RT, r(69) = -.21, .05 < p < .10. Thus, typicality ratings

taken together with instance word frequency seem to provide the best account

of the RT data, R = .32, F(2,69) = 3.96, p < .05.

Glass and Holyoak argue this in terms of Sternberg's (1969) Additive

Factors method. We feel that invoking the Additive Factors method here may

be something of a red herring. In the Feature Comparison model, the output

of the first stage (the semantic relatedness value) directly affects the

duration of the second stage; this means that if relatedness is manipulated

experimentally, its effect will interact with any factor (e.g., category size)

that influences the second stage. The Feature Comparison model, therefore,

cannot be faulted for lack of additive effects between relatedness and cate-

gory size since none are predicted. Of course, it may be possible to find
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some third variable that influences the duration of the first stage without

changing the relatedness value, and if so, this factor should produce

additive effects with second stage variables.

7We could equally well assume that relatedness depends on the propor-

tion of the second item's features that are shared. This in no way affects

the present argument.

8More specifically, the estimate of the category size effect derived

from the analysis of covariance is obtained by fitting an equation of the

following form to the reaction time data (ignoring error):

RT.. = t + t . + b(X.. - 7). (a)-- U -mean -size. - j -

RT.. is the reaction time to verify sentence j with predicate category size

i, and X.. is the relatedness rating for the same sentence. Here, t is
-- l -mean

the overall mean RT, X is the mean relatedness rating, and t . is the-- --size.

effect of category size. By contrast, the model proposed by Smith, Shoben,

and Rips (1974, Equations 3 and 6) is more complex, and predicts True reaction

times as:

RT.. = t + t .
-- L -mean -si ze.

bX. . - a, ) - _(c - -•Xij - - , )

1-(-- -a, (b)
1 - (c - bX.. - a )

where D represents the normal distribution function, and ba, b , o, and c_1

are parameters of the model. A similar equation obtains for False reaction

times. The relationship between reaction time, relatedness ratings, and the

estimate of the category size effect is clearly different in the two models,
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and consequently, there is no reason to suppose that the estimates of t .

will be equivalent.

9 At one point, Glass and Holyoak argue that the results for anomalous

statements are not critical to their model because they wish to restrict

their theory to explanations of high- and low-frequency statements. We are

not convinced that this restriction is a principled one, and so we will

consider the results for anomalous statements.

Interestingly, though these results fail to replicate the Holyoak and

Glass results for anomalous statements, they do replicate an earlier study

of Glass et al. (1974). These authors, using noun-property statements rather

than noun-pairs, found that anomalous statements were disconfirmed faster

than high-frequency statements, which in turn were faster than their low-

frequency counterparts.

To keep matters comparable to Holyoak and Glass, relatedness was

determined by ratings of "closeness in meaning"--the standard procedure. As

an afterthought, we also measured relatedness by the ratings used in

Experiment 2; these ratings also showed that the superset and overlap state-

ments were equal in relatedness.
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Table 1

Results from Analyses of Variance of True and False Responses

Treating Either Items (Items-analysis) or Subjects (Subjects-

analysis) as a Random Variable while Averaging Across the Other

Trues

Hi-PF Med-PF Lo-PF F df p

Subjects-analysis 986 1045 1089 8.14 2,38 <.005

Items-analysis 979 1050 1112 2.41 2,36 n.s.

min F'(2,59) = 1.86, p > .10

Falses

High Low Anomalous F df p

Subjects-analysis 1103 1248 998 38.58 2,38 <.001

Items-analysis 1136 1266 1001 10.24 2,36 <.001

min F' (2,59) = 8.09, p < .001
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Figure Captions

Figure 1. Two simple models of semantic memory--the Attribute and

Hierarchical models.

Figure 2. An illustration of the Marker Search model. Lower-case

letters designate the labels on relations.

Figure 3. Illustrative cases of labeling contradictions.

Figure 4. Illustration of labeling and short-cut paths.
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