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Numerous links have been reported between immune response and DNA damage repair 
pathways in both plants and animals but the precise nature of the relationship between 
these fundamental processes is not entirely clear. Here, we report that XAP5 CIRCADIAN 
TIMEKEEPER (XCT), a protein highly conserved across eukaryotes, acts as a negative 
regulator of immunity in Arabidopsis thaliana and plays a positive role in responses to 
DNA damaging radiation. We find xct mutants have enhanced resistance to infection by 
a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000, and are hyper-
responsive to the defense-activating hormone salicylic acid (SA) when compared to wild-
type. Unlike most mutants with constitutive effector-triggered immunity (ETI), xct plants 
do not have increased levels of SA and retain enhanced immunity at elevated temperatures. 
Genetic analysis indicates XCT acts independently of NONEXPRESSOR OF PATHOGENESIS 
RELATED GENES1 (NPR1), which encodes a known SA receptor. Since DNA damage 
has been reported to potentiate immune responses, we next investigated the DNA damage 
response in our mutants. We found xct seedlings to be hypersensitive to UV-C and γ 
radiation and deficient in phosphorylation of the histone variant H2A.X, one of the earliest 
known responses to DNA damage. These data demonstrate that loss of XCT causes a 
defect in an early step of the DNA damage response pathway. Together, our data suggest 
that alterations in DNA damage response pathways may underlie the enhanced immunity 
seen in xct mutants.
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INTRODUCTION

The genome sequencing of a wide range of organisms has enabled the identification of genes 
that are widely conserved and yet generally maintained in a single copy per genome. Such 
genes are likely under stringent selection for retention and strong dosage constraint, and are 
more likely to perform essential functions than genes present in multiple copies per genome 
(Waterhouse et  al., 2011). One such gene is XAP5 CIRCADIAN TIMEKEEPER (XCT), which 
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we originally identified on the basis of the short-period circadian 
phenotype of Arabidopsis thaliana plants mutant for this gene 
(Martin-Tryon and Harmer, 2008). Highly conserved XCT 
homologs are present in most eukaryotes and have been shown 
to be  nuclear localized in Arabidopsis, fission yeast, and 
Chlamydomonas (Matsuyama et  al., 2006; Martin-Tryon and 
Harmer, 2008; Li et al., 2018). In most organisms, these homologs 
are termed XAP5 genes, named for the highly conserved domain 
of unknown function found in the C-termini of the 
encoded proteins.

XAP5 CIRCADIAN TIMEKEEPER homologs have been 
reported to act in distinct biological processes in different 
organisms. In Arabidopsis, XCT plays roles in regulation of 
the circadian clock, light responses, gene expression, ethylene 
signal transduction, and biogenesis of small RNAs (Martin-
Tryon and Harmer, 2008; Ellison et al., 2011; Fang et al., 2015; 
Xu et  al., 2017). In the ciliate Chlamydomonas reinhardtii, the 
XCT homolog XAP5 has been reported to act as a transcription 
factor to control flagellar assembly (Li et  al., 2018). In the 
nematode Caenorhabditis elegans, downregulation of the XCT 
homolog causes embryo lethality (Piano et  al., 2002). Finally, 
we  have previously shown that deletion of the xap5 locus in 
the fission yeast Schizosaccharomyces pombe negatively affects 
growth and that this phenotype is rescued by Arabidopsis XCT 
(Anver et al., 2014). Subsequent genetic and biochemical analyses 
in this yeast revealed that Xap5 is a chromatin-associated 
protein affecting chromatin regulation in a manner similar to 
the variant histone H2A.Z.

Chromatin dynamics are key to a wide range of nuclear 
processes, including regulation of gene expression, silencing 
of heterochromatin, and repair of DNA damage (Vergara and 
Gutierrez, 2017). For example, in plants as well as in animals, 
chromatin remodeling complexes and histone variants play 
important roles in the maintenance of genome stability after 
diverse types of DNA damage (Talbert and Henikoff, 2014; 
Han et  al., 2015; Gursoy-Yuzugullu et  al., 2016). Modification 
of chromatin structure is especially important in the repair 
of DNA double-strand breaks, a very cytotoxic form of DNA 
damage (Kinner et al., 2008). A conserved eukaryotic response 
to stresses that cause double-strand breaks is the activation 
of two related kinases, ATAXIA TELANGIECTASIA MUTATED 
(ATM) and ATM AND RAD3-RELATED (ATR), followed by 
their rapid phosphorylation of thousands of molecules of the 
variant histone H2A.X near the sites of DNA damage to generate 
a modified form termed γ-H2A.X (Rogakou et  al., 1999). 
γ-H2A.X then acts as a platform for the recruitment and 
retention of DNA damage repair factors (Van and Santos, 
2018). In plants, activation of ATM also leads to the 
phosphorylation and activation of SUPPRESSOR OF GAMMA 
RESPONSE 1 (SOG1; Yoshiyama et  al., 2013, 2017), a 
transcription factor that induces expression of genes involved 
in DNA repair (Yoshiyama et  al., 2009).

There is evidence that damaged DNA can induce pathogen 
defense pathways. In animals, pathogen-derived DNA and 
damaged host DNA can both induce immune signaling (Motwani 
et al., 2019). The role of DNA damage in plant defense signaling 
is less clear (Camborde et  al., 2019). Plants use two main 

types of immune receptors to defend against pathogens. Basal 
defense pathways are activated upon the sensing of microbial 
features by extracellular receptors, inducing pattern-triggered 
immunity (PTI). However, successful pathogens deliver effector 
molecules into plant cells to inhibit defense, enable nutrient 
acquisition, and reprogram their hosts. In response, plants have 
evolved intracellular immune receptors that directly or indirectly 
recognize these effectors (Jones et  al., 2016). Direct or indirect 
recognition of pathogen effectors triggers local effector-triggered 
immunity (ETI), which can induce systemic acquired immunity 
to afford disease resistance throughout the organism.

Activation of both PTI and ETI are associated with the 
synthesis of the defense hormone salicylic acid (SA; Liu et  al., 
2020). An SA receptor, NONEXPRESSOR OF PATHOGENESIS 
RELATED GENES1 (NPR1), is an important mediator of long-
lasting, broad-spectrum defense responses (Wu et  al., 2012; 
Manohar et  al., 2014; Ding et  al., 2018). Many mutants with 
enhanced basal pathogen resistance have alterations in ETI 
signaling components. This enhanced basal immunity is usually 
both characterized by elevated levels of SA (Durner et  al., 
1997; Petersen et  al., 2000; Li et  al., 2001; Huang et  al., 2010; 
Zhang et  al., 2010) and suppressed at higher temperatures 
(Yang and Hua, 2004; Wang et  al., 2009; Kim et  al., 2010; 
Zhu et  al., 2010; Alcazar and Parker, 2011).

The precise nature of the relationship between DNA damage 
response pathways and plant immunity is currently unclear 
(Yan et al., 2013; Song and Bent, 2014; Rodriguez et al., 2018). 
Some have reported that DNA damage promotes plant immunity 
by activating pathways that function in parallel to the ETI 
pathway described above via SA-independent mechanisms (Li 
et  al., 1999; Durrant et  al., 2007; Wang et  al., 2010; Song 
et  al., 2011; Yan et  al., 2013; Ogita et  al., 2018). Consistent 
with this view, the SOG1 transcription factor directly controls 
expression of genes involved in plant defense signaling in 
addition to promoting expression of genes involved in the 
DNA damage response (Yoshiyama et  al., 2013; Ogita et  al., 
2018). Others have suggested that the DNA damage observed 
during pathogen infection is simply a consequence of the 
programmed cell death that occurs during ETI (Rodriguez 
et  al., 2018). It has been proposed that these conflicting views 
could be  reconciled if DNA damage and the activation of 
repair pathways play multiple roles during plant immune 
responses (Camborde et  al., 2019). Clearly, further work is 
needed to resolve the nature of the links between plant immune 
signaling and DNA damage response pathways.

In this study, we demonstrate that Arabidopsis XCT negatively 
regulates defense pathways independently of the SA receptor 
NPR1. Unlike typical mutants with constitutive ETI, disease 
resistance is not temperature sensitive, SA levels are not elevated, 
and no spontaneous lesions are observed in xct mutants. 
Transcriptome analysis of xct mutants reveals significant overlap 
of genes upregulated in these plants and those induced in 
response to SA and to DNA-damaging treatments. Consistent 
with a role for XCT in DNA damage response pathways, 
we  demonstrate that xct mutants are hypersensitive to DNA 
damaging agents. This putative role for XCT in DNA damage 
response signaling may be  fairly direct, as xct mutants have 
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very severe defects in phosphorylation of H2A.X after treatment 
with ionizing radiation. Thus our data demonstrate that XCT 
is a negative regulator of plant immunity and suggest this 
may be  related to its role in DNA damage response pathways.

MATERIALS AND METHODS

Plant Materials
The xct-1, xct-2, xct-2 XCT::XCT-YFP-HA, xct-5, npr1-1, arp6-1, 
and sog1-1 genotypes have been previously described (Cao 
et  al., 1994; Preuss and Britt, 2003 #1297; Deal et  al., 2005; 
Martin-Tryon and Harmer, 2008; Xu et  al., 2017).

Growth Conditions
Seedlings were germinated and grown on plates for the circadian, 
hypocotyl, chlorophyll content, genotoxic agent, and gene 
expression assays. Seeds were plated on media containing 1x 
Murashige and Skoog (Research Products International Corp.), 
0.7% agar (EMD Chemicals Inc.), and sucrose [Fisher Chemical; 
3% sucrose for circadian, hypocotyl, and chlorophyll content 
assays; 1.5% sucrose for RNA-seq and quantitative PCR (qPCR) 
analysis]. Unless otherwise specified, seedlings were grown in 
12 h light/12 h dark (12:12 L/D) cycles under 55 μmol m−2 s−1 
white light at constant 22°C.

RNA-Seq Analysis
Plant tissue for transcriptome analysis was obtained as follows. 
Seeds of the genotypes Col, xct-1, and xct-2 were sterilized, 
cold stratified, and sown onto 1X MS media containing 1.5% 
(w/v) sucrose. Following cold stratification, seed plates were 
transferred to 12 h light/12 h dark (12:12  L/D) cycles under 
55 μmol m−2 s−1 white light at constant 22°C. Plants were 
grown in this condition for 11 days and on the 12th day of 
growth at 3 h after dawn plant tissue from each genotype 
was harvested and flash frozen in liquid nitrogen. For RNA-seq 
library construction, total RNA was isolated from frozen 
plants using the TRIzol reagent and protocol (Invitrogen) 
according to manufacturer instructions. The Ribo-Zero rRNA 
Removal Kit-Plant Leaf (Epicentre) was used according to 
manufacturer instructions to remove rRNAs from the total 
RNA population. Around 100 ng of RNA from the rRNA-
depleted total RNA samples were then used to construct 
strand-specific libraries for RNA sequencing as previously 
described (Wang et  al., 2011).

Nine libraries (three each generated from Col, xct-1, and 
xct-2) were multiplexed and sequenced on two lanes of an 
Illumina HiSeq. About 100 cycle runs were used to generate 
single-end reads, which were quality filtered such that only 
those with a quality cut-off score of 20 or greater over 85% 
or more of the 100-nucleotide sequence were retained. Reads 
were separated by their barcodes and Illumina adapter 
contamination was removed, resulting in a total of 58.0, 53.3, 
and 48.7 million high-quality reads for the Col, xct-1, and 
xct-2, respectively. Reads were mapped to Arabidopsis TAIR10 
representative gene models with BWA (Li and Durbin, 2009) 

using the parameters –k 1 –l 25 –n 0.1 –e 12 –i 100. About 
80.1% of the Col, 80.1% of the xct-1, and 77.2% of the xct-2 
reads mapped to the TAIR10 gene models.

To identify genes differentially expressed in the mutants 
relative to the wild-type control samples, we  used the 
Bioconductor package edgeR (Robinson et  al., 2010; version 
3.22.3). This package uses an empirical Bayesian approach based 
upon the negative binomial distribution to model digital 
expression data. Before comparing gene expression between 
genotypes, we  first removed all genes encoded by the 
mitochondrial and chloroplast genomes to help control for 
the delayed chloroplast maturation phenotype of xct-2 (Martin-
Tryon and Harmer, 2008). We  imposed an expression value 
threshold, excluding genes that did not have at least one read 
per million reads in at least three libraries. Genes differentially 
expressed between genotypes were determined using the exact 
test for the negative binomial distribution using approach of 
Benjamini and Hochberg (1995) to control the false discovery 
rate (FDR) to below 5%. Differentially expressed genes were 
compared to those previously identified as regulated by the 
circadian clock (Hsu and Harmer, 2012) as described in the text.

Enrichment of differentially assessed genes with known 
molecular functions in the RNA-seq dataset was assessed using 
the clusterProfiler R package (v 3.8.1; Yu et  al., 2012) with 
FDR < 0.01 using BH correction. Overlap between genes 
differentially expressed in xct mutants and in previously published 
studies was visualized using the Vennerable R package (Swinton, 
2019) and significance assessed using Fisher’s exact test.

Phenotypic Assays
For bacterial growth assays, Arabidopsis seeds were sown on 
soil and stratified for 2 days in the dark at 4°C. For the 
experiments conducted at lower temperatures, Arabidopsis 
plants were grown in a controlled environment chamber at 
23°C, 70% relative humidity, light intensity of 100 μmol m−2 
s−1, and a 10/14 h light/dark photoperiod. For the higher 
temperature experiments, Arabidopsis plants were grown in 
a controlled environment chamber at 28°C, 70% relative 
humidity, light intensity of 120 μmol m−2 s−1, and an 11/13 h 
light/dark photoperiod. Pseudomonas syringae pv. tomato 
DC3000 was grown at 28°C on NYGA media supplemented 
with 100 mg ml−1 rifampicin and 25 mg ml−1 kanamycin. 
Bacterial growth assay was performed as described previously 
(Kim et  al., 2005). Bacterial cells at a concentration of 1 × 105 
colony forming units (CFU) ml−1 were infiltrated into leaves 
of 4-week-old Arabidopsis plants. Bacterial titers were measured 
0 and 3 days post inoculation. The experiments were repeated 
three times with similar results. For salicylic acid quantification, 
six plates of seedlings, grown for 9 days in light/dark cycles, 
were used for each treatment. From each plate, 100 mg of 
plants were collected and pooled separately, flash frozen in 
liquid nitrogen and pulverized. Hormones were extracted from 
frozen tissue as previously described (Casteel et  al., 2015). 
From each sample 10 μl was injected into A Zorbax Extend-
C18 column 3.0x150mm (Agilent) using a 6,420 triple quad 
liquid chromatography-tandem mass spectrometry machine 
(Agilent).
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The circadian period analysis was performed as previously 
described (Hsu et  al., 2013) with minor alterations. Seedlings 
were entrained in 12 h white light (50–60  μmol m−2 s−1; cool 
white fluorescent bulbs):12 h dark at 22°C for 6 days before 
being released to constant monochromatic red plus 
monochromatic blue light (35  μmol m−2 s−1 red light, 35  μmol 
m−2 s−1 blue light; XtremeLux, Santa Clara, CA, United States). 
Luciferase activity was monitored using a cooled CCD camera 
(DU434-BV, Andor Technology) and free-running period 
estimated by fast Fourier transformed nonlinear least squares 
(Plautz et  al., 1997).

UV-C treatments were performed as previously described 
(Rosa et  al., 2013) with minor alterations. About 4-day-old 
seedlings were treated with the indicated doses of UV-C 
irradiation using a Stratalinker, model 1800 (Stratagene). Plants 
were then returned to the growth chamber for an additional 
8 days and then visually assessed for emergence of true leaves. 
Gamma irradiations were performed as previously described 
(Johnson et  al., 2018) with minor alterations. Seedlings were 
grown on vertically oriented plates in 16 h light/8 h dark cycles 
under 80 μmol m−2 s−1 white light at constant 22°C. Starting 
on day 4 plates were scanned daily using an Epson Perfection 
V800 scanner. On day 5, seedlings were γ-irradiated with 
150 Gy at a dose rate of 1.8 Gy/min. Total root length was 
measured every day from the scanned images using ImageJ 
(ver. 1.43; Schneider et  al., 2012). Relative growth rate of 
primary roots was calculated using previously described methods 
(Hoffmann and Poorter, 2002). Statistical significance for response 
to genotoxic agents was assessed using the R language and 
environment and the lme4 and lmerTest R packages  
(Bates et al., 2015; Kuznetsova et al., 2017; R Core Team, 2018).

Quantitative Reverse-Transcriptase PCR
Seedlings were grown on plates and either sprayed with 0.3 mM 
salicylic acid (Van Leeuwen et  al., 2007) or mock treated 3 h 
after dawn on the 9th day after germination. Tissue was collected 
24 h post treatment. Total RNA extraction was carried out 
using Trizol reagent (Life Technologies). Total RNA was then 
DNase treated using the Qiagen RNase free DNase kit protocol 
(Qiagen). RNA was quantified using a Nanodrop and cDNA 
synthesis carried out using Super Script III Reverse Transcriptase 
as specified by the manufacturer’s protocol (ThermoFisher). 
Quantitative reverse-transcriptase PCR (qRT-PCR) was performed 
as previously described (Shalit-Kaneh et  al., 2018) using a 
BioRad CFX96 thermocycler (Bio-Rad). Primers for qRT-PCR 
are listed in Supplementary Table 3. Cq values and StdE were 
obtained from the BioRad CFX96 software package. Statistical 
significance was assessed by linear mixed-effect models with 
treatment and genotype as fixed effects and trial as a random 
effect using the lme4 and lmerTest R packages (Bates et al., 2015;  
Kuznetsova et  al., 2017; R Core Team, 2018).

γ-H2A.X Immunoblotting
Gamma irradiations were performed as previously described 
(Friesner et  al., 2005) with minor alterations. Seedlings were 
grown on plates in 12 h light/12 h dark cycles under 55 μmol 

m−2 s−1 white light at constant 22°C. On day 11, seedlings 
were irradiated with 50 Gy using a 137Cs source [Institute of 
Toxicology and Environmental Health, University of California, 
Davis; dose rate (R/min) = 537.6 for a total of 9.7 min]. At the 
indicated times after completion of irradiation, seedlings were 
snap frozen with liquid nitrogen. Histones were acid extracted 
as previously described (Friesner et  al., 2005) and extracts run 
on 15% polyacrylamide gels and then transferred to PVDF 
membranes (Immobilon, Millipore Sigma). γ-H2AX was detected 
with rabbit anti-γ-H2AX (Sigma, product # H5912) and an 
anti-rabbit-HRP secondary antibody (Invitrogen, product 
#A16096).

RESULTS

Transcriptional Profiling of xct Mutants 
Reveals Significant Effects on Circadian 
Phase of Gene Expression and 
Upregulation of Immune-Related Genes
XAP5 CIRCADIAN TIMEKEEPER was originally identified 
in a screen for Arabidopsis mutants with altered free-running 
circadian rhythms (Martin-Tryon et  al., 2007). xct-1 is a 
reduction-of-function allele predicted to produce a protein with 
an internal deletion of three amino acids, while xct-2 is a 
presumptive null allele with a T-DNA inserted within an exon 
(Martin-Tryon and Harmer, 2008). Both alleles have a shorter 
free-running circadian period than wild-type and exhibit altered 
responsiveness to light. While most plant clock genes are specific 
to the green lineage, XCT encodes a protein highly conserved 
across eukaryotes but with no identifiable functional domains 
(Martin-Tryon and Harmer, 2008).

To better understand the molecular function of XCT, 
we  carried out gene expression profiling on wild-type, xct-1, 
and xct-2 seedlings. The circadian clock has pervasive effects 
on gene expression, regulating the expression of a large fraction 
of the Arabidopsis transcriptome (Harmer et al., 2000; Covington 
et al., 2008). Consequently, hundreds of genes are differentially 
expressed even within a single genotype when samples harvested 
at different times of day (and thus at different circadian phases) 
are compared to each other (Hsu and Harmer, 2012). Since 
xct mutants have a shorter free-running circadian period than 
wild-type (Martin-Tryon and Harmer, 2008), mutant and wild-
type plants collected at the same time of day could potentially 
have differences in gene expression simply due to differences 
in circadian phase at the time of sample collection. To minimize 
this possibility, we grew plants in light/dark cycles and harvested 
them 3 h after lights were turned on. The dark to light transition 
is a powerful clock-resetting cue in Arabidopsis (Covington 
et  al., 2001), so we  anticipated the modest differences in 
circadian phase (ca. 30 min) between genotypes harvested at 
this time would have negligible effects on levels of gene 
expression. RNA-seq analysis was performed using three 
biological replicates, and differentially expressed genes were 
determined using the TAIR10 genome annotation and the 
Bioconductor package edgeR (Robinson et  al., 2010) with the 
FDR controlled to below 5%.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kumimoto et al. XCT Links DNA Damage, Immunity

Frontiers in Plant Science | www.frontiersin.org 5 October 2021 | Volume 12 | Article 707923

Using these parameters, we  found hundreds of genes 
misregulated in the two xct mutants when compared to wild-
type (Supplementary Table  1). In both genotypes, many more 
of the differentially expressed genes are circadian-regulated 
than the ~30% expected by chance (Covington et  al., 2008; 
54% of genes differentially expressed in xct-2 and 71% of genes 
differentially expressed in xct-1 were previously defined as clock 
controlled (Hsu and Harmer, 2012); p values in both cases 
<2.2 e−16, Fisher’s exact test; Supplementary Figure S1A). This 
overrepresentation might be due either to preferential regulation 
of clock-controlled genes by XCT or to differences in circadian 
phase between the samples, with the short-period mutants 
being harvested at an earlier subjective time of day than the 
controls. In the latter case, we  would predict that day-phased 
genes would have higher levels and night-phased genes would 
have lower levels of expression in the mutants relative to wild-
type. This is exactly what we  saw in both mutants: most 
upregulated genes that are also clock-regulated have peak 
circadian phases 6–12 h after subjective dawn, while most 
downregulated genes that are also clock-regulated have peak 
circadian phases during the subjective night 
(Supplementary Figures S1B,C; Supplementary Table  1). In 
addition, the mean circadian rhythmic amplitudes of the genes 
differentially expressed in the mutants are significantly higher 
than mean rhythmic amplitude of all cycling genes (mean 
amplitudes for clock regulated gene differentially expressed in 
xct-2 = 0.394 and in xct-1 = 0.529; mean amplitude for all clock-
regulated genes = 0.255; p < 2.2 e−16, KS test). These data suggest 
that a considerable fraction of gene misregulation in these 
mutants is due to differences in subjective circadian phase 
between the genotypes at the time of harvesting.

Since it was not possible to determine whether changes in 
expression of clock-regulated genes in the xct mutants are due 
to the effect of XCT on clock pace or other possible roles for 
XCT, we  excluded all ~6,600 genes, we  previously defined as 
clock-regulated (Hsu and Harmer, 2012) from our subsequent 
analyses. After this filtering step, we  found many more genes 
misexpressed in xct-2 than in xct-1, with more transcripts 
upregulated than downregulated in both mutants (Figures 1A,B). 
Thus our data show the influence of XCT on gene expression 
extends beyond circadian regulation.

XAP5 CIRCADIAN TIMEKEEPER has previously been 
reported to promote the production of small RNAs via the 
regulation of transcription of the DICER-LIKE genes DCL1, 
DCL3, and DCL4, leading to upregulation of transcripts negatively 
regulated by small RNAs in xct mutants (Fang et  al., 2015). 
We  therefore investigated whether targets of small RNAs are 
enriched among genes upregulated in our xct transcriptomes 
by comparing genes differentially expressed in xct mutants 
and those previously reported to be  targets of siRNAs or 
miRNAs (Addo-Quaye et  al., 2008; German et  al., 2008). 
We  found no statistically significant overlap between genes 
differentially expressed in xct mutants and those regulated by 
small RNAs. Moreover, none of the small RNA-related genes 
previously reported to be  significantly up- or downregulated 
in xct mutants as determined by qRT-PCR (Fang et  al., 2015) 
are significantly differently expressed in xct mutants compared 

to wild-type in our RNA-seq analysis 
(Supplementary Figures S2A,B). Our inability to reproduce 
the findings reported by Fang et  al. (2015) may either be  due 
to different growth conditions between the labs or greater 
sensitivity of the qRT-PCR assay relative to our transcriptome 
analysis. But at any rate, these data suggest that the global 
gene expression phenotypes we  observe in xct mutants are 
largely independent of altered production of small RNAs.

To better understand the biological processes affected by 
XCT, we  examined the types of genes up- or downregulated 
in xct mutants. We  found that genes upregulated in xct-2 are 
significantly enriched for many Gene Ontology (GO) 
classifications related to plant defense responses (Figure  1C). 
In contrast, we  found no significant enrichment for any GO 
categories in genes downregulated in xct-2, nor for genes up- 
or downregulated in xct-1. Inspection of genes significantly 
upregulated in xct-2 and xct-1 revealed a number of pathogenesis-
related genes including EARLY ARABIDOPSIS ALUMINUM 
INDUCED 1 (EARLI1), EF-TU RECEPTOR (EFR), FLAGELLIN-
SENSITIVE 2 (FLS2), and MYB DOMAIN PROTEIN 95 (MYB95; 
Supplementary Figure S2C). Additional immune-related genes 
such as PHYTOALEXIN DEFICIENT3 (PAD3) and WRKY 
DNA-BINDING PROTEIN 70 (WRKY70) are upregulated in 
xct-2 but not xct-1 (Supplementary Figure S2C). All of these 
genes have previously been reported to be  upregulated in 
response to pathogens or other defense-related treatments such 
as SA (Zhou et  al., 1999; Eulgem et  al., 2004; Li et  al., 2004; 
Zipfel et  al., 2006; Ma and Bohnert, 2007).

We next performed a comparison between genes upregulated 
in xct mutants and those previously reported to be  regulated 
by SA (Pajerowska-Mukhtar et al., 2012). Confining our analysis 
to transcripts detectably expressed in both experiments, we found 
a highly statistically significant overlap between genes upregulated 
in xct-2 and those induced in response to SA (Figure  2A). 
This suggested that basal SA levels might be  constitutively 
increased in the xct mutant. However, we  found instead that 
SA levels in xct-2 seedlings are the same as those of wild-type 
controls (Figure 2B). These data suggest that immune signaling 
pathways in xct are activated independently of increased 
SA biosynthesis.

Enhanced Immune Responses in xct 
Mutants Are Temperature- and  
npr1-Independent
To further investigate immune-related phenotypes in xct mutants, 
we  next examined expression of pathogenesis-related genes 
before and after treatment with SA. We  used qRT-PCR to 
quantify expression of several genes previously reported to 
be  upregulated in response to pathogens: PATHOGENESIS-
RELATED1 (PR1), LATE UPREGULATED IN RESPONSE TO 
HYALOPERONOSPORA PARASITICA1 (LURP1), 
ACIREDUCTONE DIOXYGENASE 3 (ARD3), and PLANT 
NATRIURETIC PEPTIDE A (PNP-A; Eulgem et al., 2004; Huang 
et  al., 2005; Ascencio-Ibanez et  al., 2008; Knoth and Eulgem, 
2008; Ficarra et  al., 2018). Although mean basal levels of these 
genes trend higher in xct-2 than wild-type, the differences 
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between the genotypes did not reach statistical significance 
(Figure  3; Supplementary Figure S3). However, comparison 
of expression levels between SA-treated wild-type and xct-2 
plants revealed significantly higher SA-induced expression levels 
in the mutant than in Col (Figure 3). This result was confirmed 
with further statistical analysis using linear mixed-effect models 
that show a significant effect of the xct-2 genotype on 
responsiveness to SA for PR1, LURP1, and PNP-A 

(Supplementary Figure S3). Thus loss of XCT function 
potentiates plant transcriptional responses to SA.

We next wanted to determine where XCT acts in SA signaling 
relative to NPR1, an important SA receptor (Wu et  al., 2012; 
Ding et  al., 2018; Wang et  al., 2020). As expected, we  found 
induction of pathogenesis-related genes in response to SA to 
be  strongly blunted in npr1-1 mutants, with no statistically 
significant difference in expression levels differences before and 

A

C

B

FIGURE 1 | Immune-related genes are upregulated in xct-2. (A,B) Genes significantly differentially (A) upregulated or (B) downregulated in xct-1 or xct-2 plants as 
determined by RNA-seq [false discovery rate (FDR) < 0.05 and a greater than 2-fold change relative to wild-type]. Genes previously defined as circadian regulated 
were omitted from this analysis. (C) The most significantly enriched Gene Ontology (GO) categories among genes upregulated in xct-2 as determined using the 
clusterProfiler R package (Yu et al., 2012). (FDR < 1 e-5; BH correction). No GO categories are significantly enriched among genes upregulated in xct-1 or 
downregulated in either mutant.
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after treatment (Figure  3). Intriguingly, induction of gene 
expression in response to SA is largely restored in npr1-1 xct-2 
mutants treated with SA (Figure  3; Supplementary Figure S3). 
These data suggest that XCT affects immune signaling 
independently of the key SA signaling component NPR1.

Increased expression of pathogenesis-related genes, for example 
in response to a previous infection or treatment with a defense 
elicitor, can increase disease resistance. We  therefore next 
investigated the susceptibility of xct mutants to the bacterial 
pathogen Pseudomonas syringae pv. tomato DC3000. Leaves 
were inoculated with this virulent pathogen and bacterial growth 
was assessed after 3 days. We found that xct-2 mutants maintained 
at 23°C are highly resistant, with bacterial titers 10-fold lower 
than seen in wild-type controls (Figure 4A). The xct-2 resistance 
phenotype is largely but not completely suppressed by 
introduction of XCT-YFP-HA expressed under the control of 
the endogenous XCT promoter (Figure  4A; 
Supplementary Figure S4A). Similar to the partial rescue seen 
for the pathogen resistance phenotype, this line also exhibits 
partial rescue of the xct-2 short-period circadian clock phenotype 
(Supplementary Figure S5).

Given that xct-2 restores SA responsiveness to npr1 mutants 
(Figure  3; Supplementary Figure S3), we  examined disease 
resistance in xct-2 npr1 mutants as well. As previously reported 
(Cao et  al., 1994; Glazebrook et  al., 1996), we  found npr1 
mutants are more susceptible to bacterial infection than controls, 
albeit with a relatively low statistical significance in our 
experiments (Figure  4A). Intriguingly, we  found that npr1 xct 
double mutants have an additive phenotype, showing similar 

bacterial titers 3 days after inoculation as wild-type controls 
(Figure  4A; Supplementary Figure S4A). Thus our genetic 
studies reveal that XCT is a negative regulator of plant immunity 
that acts in an NPR1-independent manner.

One possible cause for this increased disease resistance could 
be  constitutive activation of ETI signaling in xct mutants. This 
type of immunity is almost always associated with increased 
levels of SA and the formation of spontaneous lesions (Durner 
et  al., 1997; Balint-Kurti, 2019). However, we  did not observe 
visible lesions in xct-1 or xct-2 plants in any of our growth 
conditions, and trypan blue staining did not reveal spontaneous 
necrosis (Supplementary Figure S4C and data not shown). 
Constitutive ETI is also temperature sensitive, being most 
obvious at low temperature such as 16°C and suppressed at 
28°C (Yang and Hua, 2004; Wang et  al., 2009; Kim et  al., 
2010; Zhu et al., 2010; Alcazar and Parker, 2011). We therefore 
investigated the susceptibility of wild-type, xct-1, xct-2, and 
the recently reported allele xct-5 (Xu et al., 2017) to Pseudomonas 
syringae pv. tomato DC3000  in plants maintained at 28°C. 
We  found that all three xct alleles have a similar degree of 
resistance to this pathogen at 28°C as observed at 23°C 
(Figure 4B; Supplementary Figure S4A). As expected, bacterial 
growth was generally promoted at the higher temperature 
(Supplementary Figure S4B).

Another trait seen in mutants with constitutive activation 
of ETI is reduced growth relative to wild-type plants (Balint-
Kurti, 2019). We  therefore assessed rosette size and plant 
morphology in xct mutants. The rosette diameter of xct-2 plants 
is somewhat smaller than that of control plants, but xct-1 and 

A

B

FIGURE 2 | Increased basal expression of salicylic acid (SA)-induced genes in xct-2 is not due to elevated SA levels. (A) The overlap between genes induced in 
xct-2 relative to wild-type and genes upregulated in response to SA treatment (Pajerowska-Mukhtar et al., 2012) is highly statistically significant (Fisher’s exact test). 
Only genes expressed in both experiments and not classified as regulated by the circadian clock were considered. (B) Salicylic acid levels were determined using 
liquid chromatography-tandem mass spectrometry. ****p < 0.0001; one-way ANOVA with Šidák correction for multiple comparisons. Data are representative of three 
biological replicates and are shown as ± SEM (n = 6).
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Col-0 plants have very similar morphology and overall size 
(Figure  4C). xct-1 and xct-2 have similar enhanced resistance 
phenotypes (Figure 4B), indicating that the growth and immune 
phenotypes of xct-2 are separable. Overall, the absence of 
spontaneous lesions, lack of elevated SA levels, temperature 
independence of the pathogen resistance phenotype, and normal 
size of the pathogen-resistant xct-1 plants suggest that pathogen 
resistance in xct mutants is not caused by a classic constitutive 
activation of immunity phenotype.

XAP5 CIRCADIAN TIMEKEEPER has previously been 
reported to affect immune responses via positive regulation 
of the ectopic expression of the resistance gene RPW8.1 (Xu 
et  al., 2017), which is normally not expressed in the Col-0 
accession (Xiao et  al., 2001). However, Xu et  al. (2017) found 

that xct-5 mutants in Col-0 plants not expressing RPW8.1 
have the same susceptibility to a virulent bacterial pathogen 
as wild-type controls. In contrast, we  found in repeated 
experiments that xct-5 and other xct alleles are more resistant 
than wild-type (Figure  4B). The reason for this discrepancy 
is not clear. Even though we  found disease resistance in xct 
mutants to be  robust at different temperatures, it is possible 
that other environmental variables could affect this phenotype.

XCT Plays a Role in DNA Damage 
Response Pathways
Since our data suggest XCT plays an unconventional role in 
immune signaling, we  examined previously-published 

A B

C D

FIGURE 3 | Loss of XAP5 CIRCADIAN TIMEKEEPER (XCT) function restores salicylic acid responsiveness to npr1 mutants. (A–D) Expression of pathogenesis-
related genes in Col, xct-2, npr1-1, and npr1-1 xct-2 that were either mock-treated or sprayed with 0.3 mM salicylic acid as determined by quantitative reverse-
transcriptase PCR (qRT-PCR). Samples were collected 24 h after treatment. Expression levels of the indicated genes were determined by qRT-PCR and normalized 
to PP2C. Means of three technical replicates are plotted, ±SD. *p < 0.05; **p < 0.005; ***p < 0.001; and one way ANOVA with Šidák correction for multiple 
comparisons. Data are representative of three biological replicates.
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transcriptome data for further clues to its molecular function. 
We  previously found xct mutants are hypersensitive to light 
input to the circadian clock (Martin-Tryon and Harmer, 2008). 
Since activation of light signaling pathways potentiates plant 
defenses (Ballare, 2014), we  compared genes upregulated in 
xct mutants and those induced in response to light. Limiting 
our analysis to transcripts expressed in both our experiment 
and the previously-published datasets, we  found no significant 
enrichment of genes differentially expressed in xct-2 and those 
induced in response to either monochromatic (blue, red, far-red, 
UV-A, or UV-A/B) or white light (Peschke and Kretsch, 2011; 
Figures  5A,B; Supplementary Table  2). These transcriptome 
data suggest that photomorphogenetic signaling pathways are 
not constitutively activated in xct mutants.

In contrast, we did find highly statistically significant overlaps 
between genes upregulated in xct-2 and those induced in 
response to damaging levels of UV-B light (Kilian et  al., 2007; 
Figures  5C,D; Supplementary Table  2). The degree of overlap 
between genes upregulated in xct-2 and those induced by high 
levels of UV-B light is greater at later vs. earlier time points 
post irradiation. This, combined with the lack of enrichment 
between genes induced in response to photomorphogenetic        

light treatments, suggests the overlap may be  due to genes 
induced in response to cellular damage rather than due to 
activation of fast-acting light response pathways.

Damaged DNA has previously been reported to potentiate 
immune responses in animals and plants (Yan et  al., 2013; 
Gallucci and Maffei, 2017). We therefore investigated the degree 
of overlap between genes upregulated in xct-2 and those 
displaying a rapid and sustained increase in expression after 
γ irradiation (Bourbousse et  al., 2018). We  found a highly 
statistically significant overlap in genes differentially expressed 
in these two experiments (Figure  5E). Since we  previously 
found that Arabidopsis XCT and S. pombe xap5 are functional 
orthologs (Anver et al., 2014), we next examined whether there 
is a significant overlap between genes misregulated in S. pombe 
Δxap5 mutants and those induced in wild-type yeast subjected 
to γ irradiation (Watson et  al., 2004). We  found a highly 
statistically significant overlap between these two gene sets as 
well (Figure 5F). Together, these transcriptomic analyses suggest 
that XCT deficiency in plants or xap5 deficiency in fission 
yeast might cause alterations in cellular responses to DNA 
damaging agents, an intriguing possibility given previous reports 
of the involvement of DNA damage response signaling factors 

A
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FIGURE 4 | Enhanced immune responses in xct mutants are independent of temperature. The indicated genotypes were grown at either 23 (A) or 28°C (B) and 
inoculated with Pseudomonas syringae pv. tomato DC3000. Bacterial growth was measured at the indicated time points; titers are represented as log colony 
forming units per cm2 (log CFU/cm2) of leaf tissue. Data are from three (A) or two (B) independent experiments (n = 4–8 plants per replicate). The lines within the 
boxes are the medians and the upper and lower hinges represent the first and third quartiles. Statistical significance of mutant values relative to wild-type was 
determined using linear mixed regression models with genotype as fixed effect, trial as random effect (†p = 0.06; *p < 0.05; and ***p < 1e−4). (C) Plants of the indicated 
genotypes were grown at 22°C.
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in plant defense responses (Durrant et  al., 2007; Wang et  al., 
2010; Song et al., 2011; Yan et al., 2013; Bourbousse et al., 2018;  
Ogita et  al., 2018).

We therefore next investigated whether responses to DNA 
damaging treatments are in fact altered in xct. In Arabidopsis, 
genotoxic treatments cause DNA-damage-dependent G2 cell 
cycle arrest in stem cells, inhibiting leaf development and root 
elongation (Preuss and Britt, 2003; Johnson et al., 2018). We first 
examined whether loss of XCT affects plant susceptibility to 
UV-C irradiation in the shoots. We  found that xct-2 mutants 
are significantly more susceptible to UV irradiation than wild-
type, with considerable inhibition of true leaf production in 

xct-2 at UV-C doses that have little effect on controls (Figure 6A; 
Supplementary Figure S6A). Similar effects of UV-C on true 
leaf formation are seen in arp6 mutants, consistent with previous 
reports (Rosa et  al., 2013), while an XCT transgene rescues 
the xct-2 phenotype.

Next, we  assessed primary root elongation after treatment 
of seedlings with levels of ionizing radiation that cause cell 
cycle arrest and programmed cell death in the root apical 
meristem, halting root elongation until the meristem undergoes 
regeneration (Johnson et  al., 2018). These processes are largely 
dependent upon SOG1, a plant-specific gene encoding a 
transcription factor that is a central mediator of DNA damage 
response pathways (Preuss and Britt, 2003; Yoshiyama et  al., 
2009; Johnson et  al., 2018). As previously reported, root 
elongation in wild-type plants ceases by 3 days after irradiation 
with 150 Gy but recovers a few days later (Figure  6B). In 
contrast, while root growth in sog1-1 and xct-2 plants shows 
a similar acute response to the DNA damaging treatment, 
elongation of the primary root does not resume in either of 
these mutants by 9 days after irradiation (Figure  6B). Thus 
xct mutants and sog1 mutants show very similar susceptibility 
to DNA-damaging γ irradiation.

Although the DNA damage response is strongly perturbed 
in sog1 mutants, it is not entirely absent: a subset of genes 
induced in response to γ irradiation in wild-type are also induced 
in sog1 mutants, albeit with slower kinetics (Bourbousse et  al., 
2018). It has been posited that this slow and SOG1-independent 
upregulation is triggered by unrepaired DNA lesions. Since it 
has been suggested that damaged DNA potentiates immune 
responses (Yan et  al., 2013), we  next examined the overlap 
between these sog1-independent, γ irradiation-induced genes, 
and those upregulated either in response to the immune elicitor 
SA (Pajerowska-Mukhtar et  al., 2012) or in xct-2 mutants. 
We found that the majority of genes upregulated after γ irradiation 
in sog1 mutants are also induced in response to SA. In addition, 
more than a third of the genes upregulated in xct-2 are induced 
in response to SA and/or upregulated in γ irradiated sog1 mutants 
(Figure  6C). These similarities between the three transcriptome 
profiles further suggest functional links between XCT, immune 
signaling, and DNA damage response pathways.

SUPPRESSOR OF GAMMA RESPONSE 1 activity is 
dependent upon phosphorylation by ATM kinase (Yoshiyama 
et  al., 2013, 2017), which along with the related kinase ATR 
is rapidly activated after DNA damaging treatments. Another 
important substrate of these kinases is the histone variant 
H2A.X, which when phosphorylated on serine 139 acts as a 
scaffold to assemble DNA damage response factors at sites of 
DNA damage (Ciccia and Elledge, 2010). In Arabidopsis, both 
ATM and ATR mediate rapid phosphorylation of H2A.X after 
DNA damaging treatments (Friesner et  al., 2005). Detection 
of this phosphorylated form of H2A.X, termed γ-H2A.X, is 
frequently used as a proxy to detect activation of DNA damage 
response signaling pathways in response to double strand breaks.

To assess early DNA damage response signaling processes 
in xct, we examined overall levels of γ-H2A.X in extracts made 
from plants before and after γ irradiation. Consistent with 
previous reports (Friesner et  al., 2005), we  did not detect 
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FIGURE 5 | Significant overlaps between genes upregulated in xct-2 and 
those induced in response to DNA damaging treatments in Arabidopsis and 
fission yeast. (A–E) Overlaps between genes induced 2-fold or more in xct-2 
relative to wild-type and genes upregulated 2-fold or more in plants exposed 
to (A) 10 μmol m−2 s−1 red light for 4 h, (B) 7 W m−2 UV-A/B light for 4 h, (C,D) 
treated with 1.2 W m−2 UV-B light and harvested either 3 or 24 h later, or 
(E) treated with 100 Gy of γ radiation. Light-induced genes in (A,B) were 
reported by Peschke and Kretsch (2011), UV-B induced genes (C,D) were 
reported by Kilian et al. (2007), and γ radiation-induced genes (E) correspond 
to those assigned to paths W1–W4 by Bourbousse et al. (2018). Only genes 
not classified as regulated by the circadian clock (Hsu and Harmer, 2012) and 
expressed both in our RNA-seq experiment and the previously published 
transcriptome experiments were considered. (F) Significant overlap between 
genes upregulated in S. pombe Δxap5 mutants relative to wild-type (Anver 
et al., 2014) and those induced in response to γ ionizing radiation (Watson 
et al., 2004). Statistical significance of overlapping genes was determined 
using Fisher’s exact test.
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γ-H2A.X in extracts made from unirradiated plants. However, 
treatment of wild-type plants with 50 Gy of ionizing radiation 
resulted in the appearance of an anti-γ-H2A.X reactive band. 
This band was strongest in samples harvested 60 min after the 
end of irradiation but was evident at earlier and later time 
points as well (Figure 6D). In xct-2 mutants, in contrast, almost 
no γ-H2A.X signal could be detected after irradiation (Figure 6D; 
Supplementary Figure S6B). This loss of reactivity was rescued 
by an XCT transgene, demonstrating that mutation at the XCT 
locus is responsible for this phenotype.

This profound loss of H2A.X phosphorylation after irradiation 
is stronger than the decrease reported for single atm or atr 
mutants but similar to that reported for atm atr double mutants 

(Friesner et al., 2005). These data demonstrate that xct mutants 
are deficient in either the detection of or early response to 
DNA damaging ionizing radiation. In addition, these results 
suggest that the greater susceptibility of xct to genotoxic 
treatments is due to a specific defect in DNA damage response 
pathways rather than a general effect on plant health.

DISCUSSION

XAP5 CIRCADIAN TIMEKEEPER was first identified in a 
screen for plants with alterations in circadian clock function 
(Martin-Tryon and Harmer, 2008). Here, we  used a 
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FIGURE 6 | xct-2 mutants are deficient in response to DNA damaging agents. (A,B) Growth of Arabidopsis seedlings was assessed after UV-C or γ irradiation. 
(A) Formation of true leaves was determined for plants of the specified genotypes 7 days after exposure to the indicated fluences of UV-C irradiation. Using a linear 
mixed effect model with genotype and irradiance as fixed effects and trial as random effect, the genotype by irradiance interaction was found to be significant for 
xct-2 (p = 1.2 e-5) and for arp6-1 (p = 1.0 e-6) but not for xct-2 XCT (p = 0.74). (B) Relative growth rate (Hoffmann and Poorter, 2002) of primary roots was 
determined for control seedlings and seedlings treated with 150 Gy of γ irradiation. Asterisks indicate statistically significant differences from wild-type (Col); *p < 0.05; 
**p < 0.01; and ***p < 0.001 (Student’s t-test), n = 13–29. (C) Statistically significant overlap between genes induced 2-fold or more in xct-2 relative to wild-type, genes 
upregulated 2-fold or more in wild-type plants treated with SA (Pajerowska-Mukhtar et al., 2012), and sog1 mutants treated with 100 Gy of γ radiation (Bourbousse 
et al., 2018). Only genes expressed in all three experiments and not classified as regulated by the circadian clock were considered. All three two-way comparisons 
are highly significant (p < 2.2 e−16, Fisher’s exact test). (D) Levels of histone H2A.X phosphorylation in seedlings after treatment with 50 Gy of γ radiation were 
assessed by blotting nuclear extracts with a γH2A.X-specific antibody. Plants were harvested at the indicated times after irradiation. “M” indicates molecular weight 
marker. The data are representative of three biological replicates.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kumimoto et al. XCT Links DNA Damage, Immunity

Frontiers in Plant Science | www.frontiersin.org 12 October 2021 | Volume 12 | Article 707923

transcriptomic approach to gain further insight into XCT 
function in Arabidopsis, collecting tissue samples from wild-
type and mutant plants at a single time point. Since 
perturbation of many signaling pathways can affect the 
period and amplitude of circadian clock-regulated gene 
expression (Sanchez and Kay, 2016), additional discussion 
of our experience with transcriptional profiling of xct mutants 
may be  useful to those working in a variety of fields. In 
Arabidopsis, the circadian clock is set by imbibition and 
considerable synchrony is maintained across individuals and 
even populations after weeks in constant environmental 
conditions (Salome et  al., 2008; Wenden et  al., 2012; 
Greenwood et  al., 2019). Therefore, harvesting single tissue 
samples from plants grown in constant environmental 
conditions, even for extended periods of time, does not 
ensure arrhythmicity and possible circadian differences 
between genotypes must still be  considered. Instead of this 
approach, we maintained all genotypes in entraining conditions 
and harvested them all soon after lights on. We  reasoned 
that the small differences in internal circadian phase between 
the genotypes at the time of harvest would have only modest 
effects on gene expression levels. We  were surprised to find, 
however, that the majority of differentially expressed genes 
in both xct mutants showed circadian phase and amplitude 
characteristics (Supplementary Figure S1) similar to genes, 
we  previously found to be  differentially expressed between 
samples of wild-type plants harvested at different times of 
day (Hsu and Harmer, 2012). We  conclude that a more 
effective method to minimize effects of different rhythmic 
amplitudes or free-running periods on gene expression 
analysis would be  to harvest samples from the genotypes 
of interest at multiple times during the subjective day and 
night and then pool different time points before analysis, 
and we  recommend this approach to others.

Exclusion of clock-regulated transcripts from our 
differential expression analysis allowed us to identify 
alterations in responses to DNA damaging treatments 
(Figure  6; Supplementary Figure S6) and SA (Figure  3; 
Supplementary Figure S3) and increased pathogen resistance 
in xct mutants (Figure 4; Supplementary Figure S4). Increased 
pathogen resistance is frequently found in mutants with 
constitutive activation of ETI, either due directly to loss-
of-function of negative regulators of this process or to loss 
of a target of pathogen secreted virulence factor “guarded” 
by immune signaling components (Chakraborty et al., 2018). 
Indeed, the elevated basal levels of some defense genes in 
xct-2 suggest this might be  the case (Figure  1; 
Supplementary Figure S2). However, other lines of evidence 
suggest the resistance phenotypes in xct mutants are not 
due to constitutive ETI. Mutants with constitutive ETI 
typically display spontaneous lesions, elevated levels of SA, 
and temperature-dependent pathogen resistance (Durrant 
et  al., 2007; Van Wersch et  al., 2016; Chakraborty et  al., 
2018), phenotypes that we  do not observe in xct (Figures  2, 
4; Supplementary Figure S4). Moreover, while constitutive 
ETI is commonly associated with strong inhibition of plant 
growth (Balint-Kurti, 2019), we  find that xct-1 mutants are 

very similar in size to wild-type controls, while xct-2 mutants 
are only moderately smaller (Figure  4; 
Supplementary Figure S4). Finally, mutants with constitutive 
ETI display elevated basal levels of γ-H2A.X (Rodriguez 
et  al., 2018), not the almost complete loss of γ-H2A.X after 
DNA damage that we  observe in xct mutants (Figure  6; 
Supplementary Figure S6). Together, these data strongly 
suggest that the enhanced immunity observed in xct alleles 
is not due to classic constitutive ETI.

The increased susceptibility to DNA damaging treatments 
and highly reduced induction of γ-H2A.X after irradiation 
of xct mutants (Figure 6; Supplementary Figure S6) indicate 
that the DNA damage response pathway is compromised 
in these plants. DNA damage response signaling has long 
been linked to immunity in both plants and animals (Camborde 
et  al., 2019; Nastasi et  al., 2020). However, the relationship 
between DNA damage and plant immunity is complex and 
not fully resolved. Some report that treatment with the 
defense elicitor SA can cause damaged DNA (Yan et  al., 
2013; Hadwiger and Tanaka, 2017), while others have not 
found this to be  the case (Song and Bent, 2014). Activation 
of ETI in the absence of pathogens causes the accumulation 
of damaged DNA, suggesting DNA damage during infection 
may be  entirely a consequence of programmed host cell 
death (Rodriguez et  al., 2018). However, the appearance of 
the DNA damage marker γ-H2A.X as soon as 2 h after 
pathogen infection (much earlier than the first observable 
signs of plant cell death; Zhang et  al., 2004; Song et  al., 
2015) suggest DNA damage may not just be  an indirect 
product of the plant hypersensitive response. Indeed, damaged 
DNA (both foreign and host) has been reported to potentiate 
immune responses (Wen et  al., 2009; Yakushiji et  al., 2009; 
Gallucci and Maffei, 2017; Toum et  al., 2020). Finally, the 
ability of DNA damaging treatments to promote innate 
immunity (Kunz et  al., 2008; Yan et  al., 2013) also suggests 
DNA damage and its consequent response pathways may 
activate immune signaling in plants.

DNA damage causes rapid activation of the ATM and 
ATR kinases; in plants, both kinases then phosphorylate 
H2A.X and other mediators of the DNA damage response 
pathway (Friesner et  al., 2005; Ciccia and Elledge, 2010). 
The strong reduction in γ-H2A.X signal in irradiated xct 
mutants relative to wild-type (Figure  6; 
Supplementary Figure S6) suggests that the function of 
the ATM and ATR kinases may be perturbed in the absence 
of XCT. Given the requirement of ATM phosphorylation 
of SOG1 for DNA binding by this master regulator of DNA 
damage responses (Yoshiyama et al., 2013; Yoshiyama, 2016), 
this suggests that SOG1 function might also be  perturbed 
in xct mutants. Intriguingly, gene expression in both plants 
overexpressing SOG1 and in sog1 null mutants is hyper-
responsive to SA (Ogita et al., 2018; Yoshiyama et al., 2020), 
indicating that both increased and decreased SOG1 function 
increase plant responsiveness to this immune elicitor. Given 
the cross-regulation of defense-related and DNA damage 
response genes by SOG1, the DNA damage response 
phenotypes seen in xct mutants, and the overlaps between 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kumimoto et al. XCT Links DNA Damage, Immunity

Frontiers in Plant Science | www.frontiersin.org 13 October 2021 | Volume 12 | Article 707923

genes misexpressed in xct-2 and those induced by SA and 
γ irradiation, it is tempting to speculate that the enhanced 
pathogen resistance in xct mutants may be  secondary to a 
role for XCT in DNA damage response pathways. In support 
of this possibility, a recent study has found that XCT is 
rapidly phosphorylated in response to γ irradiation 
(Waterworth et  al., 2019).

Although we originally isolated XCT based on the circadian 
phenotype of plants mutant for this gene, its high degree of 
conservation across eukaryotes suggest its primary function 
lies outside the circadian system (Martin-Tryon and Harmer, 
2008; Hsu and Harmer, 2014). We  previously reported that 
the S. pombe XCT homolog Xap5 has genetic interaction profiles 
similar to components of chromatin remodeling complexes and 
that Xap5 helps suppress expression of aberrant transcripts 
(Anver et  al., 2014). This, along with the obvious effects of 
loss of XCT on DNA damage responses, leads us to suggest 
XCT proteins may play an important role in regulation of 
chromatin dynamics. This possibility awaits further, likely 
biochemical, studies.

Accession Numbers
Arabidopsis thaliana genes referenced in this paper have the 
following accession numbers:

AGO1, AT1G48410.
ARD3, AT2G26400.
ARF3, AT2G33860.
DCL1, AT1G01040.
DCL3, AT3G43920.
DCL4, AT5G20320.
EARLI1, AT4G12480.
EFR, AT5G20480.
FLS2, AT5G46330.
LURP1, AT2G14560.
MYB65, AT3G11440.
MYB95, AT1G74430.
NPR1, AT1G64280.
PAD3, AT3G26830.
PNP-A, AT2G18660.
PR1, AT2G14610.
SNI1, AT4G18470.
SOG1, AT1G25580.
SPL3, AT2G33810.
TCP4, AT3G15030.
XCT, AT2G21150.
WRKY70, AT3G56400.
Short-read sequences are deposited in Gene Expression 

Omnibus (GEO) with accession number GSE67813.
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