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 37 

ABSTRACT 38 

 The 2015 massive forest fires across Central Kalimantan have left large areas of burned 39 
peatlands that need to be restored, demanding substantial resources. To understand natural 40 
regeneration on burned peatland and how planting might accelerate its recovery process, we 41 
measured regrowth on burned peatlands with different fire frequency. Three transects were 42 

established each consisting of five 20 x 20 m2 plots developed at 30 m intervals. All woody species 43 
were recorded, and classified into three classifications as new regrowth, regrowth, and remnant 44 
trees that survive from the last fire. In addition, additional data from fifteen 2x2 m permanent 45 

natural regeneration plots and evaluation on survival rate of 2017 planting were also analyzed. Our 46 
findings suggest that the absence of remnant trees due to frequent or severe fires does not always 47 
impede the emergence of new recruitments, although diversity of forest regrowth is likely to be 48 
affected by its proximity to forest remnants. The floristic composition also showed a domination of 49 

pioneer species, giving evidence that forest recovery is initiated. Our study indicates that the 50 

combination of fire frequency, fire intensity, and proximity to remnant forest will produce different 51 
degrees of forest recovery, and the result will be unique for each site We conclude that to support 52 
the recovery process through planting activity, the successional stage of the designated sites should 53 
be determined first. The common planting method on large areas with mixed climax-high valuable 54 

trees is not beneficial unless the restoration sites have reached the later stages of succession. 55 

 56 
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 58 

INTRODUCTION 59 

Indonesian peatlands account for 14.91 million ha and contribute to more than 35% of the 60 

world’s peatlands (Osaki et al. 2016). However, although peatlands store a substantial amount of 61 

carbon compared to other land uses and provide important hydrological services to the surrounding 62 

areas, their presence is threatened by human disturbance, especially due to the need to clear 63 

vegetation for agricultural lands (Page et al. 2009). Osaki et al. (2016) stated that the agricultural 64 

activity on peatlands in Indonesia has a long and complex historical substance, with fires playing an 65 

important role in this story, although fire would not naturally occurred on peat swamp forest 66 

ecosystem. Fires have been commonly used to clear peatland forests, and this such burning become 67 

massive in areas whenever a long drought occurs, such as in commonplace during El Nino climatic 68 

phases (Page et al. 2009; Shiodera et al. 2016).  69 

From 1990 to 2015, about 61% of Indonesia’s peatland forests were lost or damaged, with 70 

only 6% of virgin peatland forest remaining by 2015 (Graham et al. 2017). The last massive forest 71 
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fire in Indonesia was in 2015, which burned 2.6 millions ha of lands, where 33% of them were 72 

peatlands (Glauber & Gunawan 2015). Noxious haze and tonnes of greenhouse gases (GHGs) were 73 

released, catching national and international attention as well as raising awareness.  74 

This disaster spurred the needs for better efforts in peatland restoration and fire prevention. 75 

Unfortunately, planting on such a remote and wide landscape requires a substantial amount of 76 

capital, ranging from 500 to 3500 USD per hectare (Giesen & Sari 2018). On the other hand, 77 

relying on natural regeneration unlikely to be enough as it may result in low diversity (Blackham et 78 

al. 2014). Moreover, unlike numerous studies on dryland or tropical forests, studies on the recovery 79 

process of peatland after fire are less common or still at their early stage (Graham et al. 2017; Page 80 

et al. 2009; Shiodera et al. 2016). This results in considerable uncertainties around the effectiveness 81 

of current peatland restoration practice.  82 

Our hypothesis was that the result of forest recovery over times will vary depending on the 83 

fire frequency, fire intensity, and proximity to remnant forest. To assess the vegetation recovery 84 

process and succession on recently burned peatland  we measured their natural regeneration on sites 85 

which have different fire history and proximity to the nearest remnant forest. Species composition 86 

and diversity after fires were compared, and the effects of the current practice of tree planting on 87 

peatland restoration was investigated. Specifically, we aimed to investigate whether the common 88 

practices on peat forest revegetation were parallel with natural process of forest succession. 89 

Moreover, this study was part of an ongoing vegetation survey focuses on peat swamp forest 90 

succession after fire. Besides, we only examined vegetation or floristic component of peatland 91 

restoration, while restoration related to the hydrological function and other components of 92 

biodiversity are  not covered. 93 

 94 

MATERIALS AND METHODS 95 

Study Location 96 

The study was conducted along the big canal on the southern area of the ecosystem restoration 97 

concession of PT Rimba Makmur Utama, also known as the Katingan-Mentaya Project, Katingan 98 

District, Central Kalimantan (Figure 1, S 2°32’36.8" to S 3°01'43.6" and E 113°00'29.7" to E 99 

113°18'57.4"). It is a typical degraded peatland forest mostly damaged by logging activities in the 100 

late 1970s to early 2000s, and subsequent canal drainage mainly for agricultures and transportation 101 

network, as well as forest fires. Peat depth on the study location ranged from 300 cm to 450 cm, 102 

with annual precipitation of about 2820 mm (information was collected from the weather station at 103 

Haji Assan Sampit Airport by Rossita et al. (2018)).  104 
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In the late 1990s, the Public Works Agency (Dinas Pekerjaan Umum) constructed a 24 km 105 

long canal to connect Kotawaringin Timur and Katingan District. Nowadays, about 6 km of the 106 

canal cuts across the restoration concession and has become the main cause of the surrounding peat 107 

drainage. Before the concession was granted in 2013, fires occurred almost annually along the 108 

banks of the canal. Vegetation along the canal is dominated by ferns and shrubs, with a few clumps 109 

of pioneer species.  110 

 111 

Figure 1. Map of the study location on the ecosystem restoration concession. The map was 112 

displayed using Planet Lab satellite image year of 2017.  113 

 114 

 115 

 116 

Plot Observation and Data Analysis 117 

Natural Succession Plots  118 

Three transects within the natural succession observation site (Figure 1) were developed in 119 

April 2018 on the southeast part of the canal to observe natural regeneration of peatland forest after 120 

fires. The first transect (transect FB, frequently burned) was located on an area that was close to the 121 

canal (0.5 km distance). It was f burned three times in the period of 2010-2015 and was far from the 122 

forest edge (1.5 km distance). The second transect (transect FBF, frequently burned, close to forest 123 
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edge) was also burned three times in between those years but was located far from the canal (1km 124 

distance) and near to the forest edge on the west side of the transect. The last transect (NB, newly 125 

burned) has never been burned before 2014 and only caught fire once in 2015. This transect is also 126 

isolated from the nearest canal and forest edge. Before the attack of frequent fires, the land cover of 127 

the three transects was a secondary forest. Details regarding the fire history of the study location 128 

can be seen in Table 1. 129 

Table 1. Fire history on the three transects from 2010 to 2018. Fire and hotspot data were analyzed 130 

from Landsat 5, 7, 8 and Sentinel 2 satellite images. Each image on each year were 131 

displayed on composite mode using similar band combination of SWIR, NIR and Green, 132 

and hotspot historical data acquired from National Institute of Aeronautics and Space of 133 

Indonesia (LAPAN) website were overlaid.  134 

Years 
Fire History ( symbol means there was fire in the conspecific year) 

Transect FB  Transect FBF  Transect NB 

2010   - 

2011 - - - 

2012   - 

2013 - - - 

2014 - - - 

2015    
2016 - - - 

2017 - - - 

2018 - - - 

 135 
Five 20 m x 20 m plots were established on each transect ( 136 

Figure 2). Each plot was located 30 m away from each other. In total, 15 observation plots 137 

(0.6 ha) were measured in this study. Within each plot, all woody plants were counted and 138 

measured in terms of their bole diameter (if plant height is less than 1.3 m) or diameter at breast 139 

height (dbh, if plant height is 1.3 m or more). Local names were identified on the field by a well-140 

trained local botanist and their scientific names were identified using the guide book of PT Rimba 141 

Makmur Utama. During the observation, all transects were covered by shrubs and ferns with patchy 142 

pioneer tree species ( 143 

Figure 2). Both ferns and shrubs are typical species that emerge on peat ecosystem after fire 144 

such as Stenochlaena palustris and Cyperus rotundus with a height of more than 2 m. 145 

 146 
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 147 
 148 

Figure 2. Layout of observation plots within transects and view of land cover from transect FB (left), FBF 149 

(middle), and NB (right) observed with drone DJI Phantom pro 4 in April 2018 150 

 151 

Analysis was then conducted by dividing all woody plants into three classes: (1) new 152 

regrowth, which includes all woody plants with height  150 cm that were assumed to emerge later 153 

after fire, (2) regrowth, which includes all woody plants with height > 1.5 m and dbh < 10 cm that 154 

were assumed to emerge soon after the fire in 2015, (3) survivor, which includes the remaining trees 155 

that survived from the last fire with dbh  10 cm. Species composition, density, species richness 156 

(Shannon’s diversity index), and species evenness (Pielou’s evenness index) were analyzed to 157 

examine the structure and composition of the existing natural regeneration and stage of the 158 

succession process. Bray-Curtis dissimilarity index and NMDS ordination were also calculated to 159 

understand the pattern of species composition among transects and acquire the notable species 160 

within each study site. All analyses were performed using R version 3.4.0 with vegan package 2.4-3 161 

(Oksanen et al. 2017). 162 

Natural Regeneration Plots 163 

In total, fifteen 2 m x 2 m permanent plots were established within the ecosystem restoration 164 

concession area of PT Rimba Makmur Utama, which was distributed on the southern part of the 165 

canal (Figure 1, natural regeneration plots). Plots were located on degraded peatland that burned 166 

almost annually before 2015. The last fire incidence was in 2014. In 2015, these plots were 167 

established, and all seedlings less than 1.5 m in height were recorded every six months. The trend of 168 

natural regeneration composition from year to year was then analyzed to examine the typical 169 

species that appear after fires on peatland forest.  170 
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Tree Plantings on Degraded Peatland 171 

As an ecosystem restoration concession, the concession is responsible for planting activity 172 

on their areas, and the result is monitored periodically. In January 2017, in total, 19,670 seedlings of 173 

local tree species were planted. About 2.5% of seedlings were monitored and the survivor rate was 174 

calculated in 9 months and 17 months after planting. 175 

 176 

RESULTS AND DISCUSSION 177 

Species Composition on Different Sites 178 

Fires that attacked the study area resulted in the low density of remaining trees, as shown in 179 

Figure 3. Transect FB likely received a higher degree of fire incidence as only 5 trees/ha were left 180 

on this site, while transects FBF and NB have higher density and more diverse remnant tress 181 

(Figure 4). We suspected that proximity to main canal influences the intensity of fire, where fires 182 

normally start from the surrounding canal. Transect FBF has the highest density and more surviving 183 

tree species, possibly due to the lower severity of fire on this site, as well as its proximity to the 184 

forest edge. In addition, based on our observation, limited number of surviving trees indicates that 185 

those native climax-species are mostly not equipped with natural mechanism to survive under fires, 186 

as fire is not a natural phenomenon in tropical peat swamp environment unlike in dry sclerophyll 187 

forests where fires could occur naturally. The only protection is the wet and inundated peat 188 

environment that mostly absent when peat was drained. 189 

 190 

 191 
Figure 3. The average density of woody species on different locations (transect FB: frequently 192 

burned, close to canal, far from forest; transect FBF: frequently burned, far from canal, 193 

close to forest edge; NB: only burned once in 2015, far from forest and canal), divided by 194 
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three size classes: new regrowth, regrowth, and survivor. Error bars indicated standard 195 

error. 196 

 197 

 198 

 199 
 200 

Figure 4. Number of species on different locations (transect FB: frequently burned, close to canal, 201 

far from forest; transect FBF: frequently burned, far from canal, close to forest edge; NB: 202 

only burned once in 2015, far from forest and canal), segregated by three size classes: new 203 

regrowth, regrowth, and survivor 204 

 205 

It is likely that the availability of survivor trees does not guarantee the emergence of new 206 

recruitments, although Cleary and Priadjati (2005) stated that the presence of remnant trees might 207 

be important to accelerate the succession process. Three years after the last fire incidence in 2015, 208 

recruitments of woody species were abundant on the three transects. Even though only a small 209 

number of remaining trees were present on transect FB, recruitments on this site were very dense 210 

(in total 800 recruitments/ha appeared after the 2015 fire) compared to transect FBF and transect 211 

NB. On the other hand, although higher recruitment density can be found on transect FB, the 212 

density itself is not parallel to the species diversity, which is relatively low at transect FB. The 800 213 

recruitments/ha on this transect were composed of 21 species only, while transects FBF and NB 214 

contained 28 and 24 species of recruitments, respectively.  215 

Table 2. Shannon’s diversity index (H’) and Pielou’s evenness (E’) on different locations (transect 216 

FB: frequently burned, close to canal, far from forest; transect FBF: frequently burned, 217 

far from canal, close to forest edge; NB: only burned once in 2015, far from forest and 218 

canal), segregated by three class of size: new regrowth, regrowth, and survivor 219 
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 Site New regrowth Regrowth Survivor 

H' FB 1.5 1.8 0.0 

 FBF 1.1 2.6 1.8 

 NB 1.2 2.1 1.4 

 All sites 1.5 2.5 2.1 

E' FB 0.8 0.7 0.0 

 FBF 0.7 0.8 0.9 

 NB 0.6 0.7 1.0 

 All sites 0.6 0.7 0.9 
 220 

This indicates that the density of the remnant trees after fire might not affect the emergence 221 

of new recruitments on peatland forest, as a source of seeds might come from various sources. 222 

Seedbanks were likely absent due to frequent fires, but sources of seeds were possibly supplied 223 

from the nearest sites by their dispersal agents. Therefore, proximity to the remnant forest is 224 

expected to play an important role to increase diversity of these recruitments. This is supported by 225 

higher Shannon’ diversity index (Table 2) on transect FBF compared to other transects. This is 226 

consistent with Chazdon (2008) who stated that the nature of forest recruitments after disturbance is 227 

often determined by features of its local landscape.  228 

Table 3. Bray Curtis dissimilarity index among the three transects 229 

Bray Curtis Dissimilarity Index FB FBF 

FBF 0.610  

NB 0.607 0.467 

 230 

Bray-Curtis dissimilarity index calculation among the three transects also indicated that 231 

transect FB was the least similar compared to the other two transects, while transects FBF and NB 232 

share more similarities (Table 3). The NMDS ordination displayed clearer segregation by showing 233 

that transect FB tends to segregate from the rest of the transects. This transect was characterized 234 

with more long-lived pioneer species, such as Melaleuca leucadendron, Melicope lunu-ankenda, 235 

Syzygium sp, and Macaranga pruinosa, while transects FBF and NB were also rich with other 236 

generalist and late successional species, such as Alstonia scholaris, Ficus spp., and Nephelium 237 

mangayi. Unlike other researchers who reported that burned peatland forests in Kalimantan were 238 

normally dominated by pioneer species especially Combretocarpus and Cratoxylum species 239 

(Blackham et al. 2014; Graham et al. 2017; Shiodera et al. 2016), we did not find any of these 240 

species on our study sites. However, we confirmed that our study sites were still at the early stage of 241 

forest succession as most species that were supposed to be present in undisturbed peat swamp 242 

forests as mentioned by Mirmanto (2010) were absent. Moreover, Mirmanto (2010) also reported 243 

that at least 2,000 trees/ha with more than 30 species could be found within 0,25 ha area of burned 244 

peatland. This indicated that the density of regrowth on our study site was still relatively low 245 

although the species richness (especially on FBF) demonstrated a valuable sign of recovery. 246 
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 247 

 248 
Figure 5. Non-metric multidimensional scaling (NMDS) ordination with stress value < 0.2, showing 249 

that this ordination displays a fair representation of species composition on each plot. 250 

Plots 1-5 are plots on FB transect, while plots 6-10 and 11-15 are located on FBF and NB 251 

transects, respectively 252 

Moreover, our study indicates that frequency of fires is not the only determining factor on 253 

forest recruitment on this study site, although according to Shiodera et al. (2016), intense and 254 

repeated fires reduce the ability of forests to regenerate. The combination of fire frequency, fire 255 

intensity, and proximity to remnant forest will produce different degrees of forest recovery, and the 256 

result will be unique for each site (Graham et al. 2017). In our case, frequent fires might not impede 257 

new recruitments. However, proximity to the nearest forest edge might impact the diversity of 258 

regrowth. This is because proximity to forest remnant plays an important role in producing seeds to 259 

ensure the continuous emergence of recruitments. For example, despite receiving frequent fires in 260 

the last nine years, transect FBF recruits more diverse regrowth compared to transect NB which was 261 

burned just once in 2015. Another study on ex Mega Rice Project in Central Kalimantan also stated 262 

that natural regeneration on isolated degraded peatlands resulted in slow and patchy regrowth with 263 

low diversity (Blackham et al. 2014). 264 

Vegetation Recoveries Over Times and Impact on Peatland Restoration 265 
 266 

Based on Table 4, it can be seen that new recruitments after fires on the three transects were 267 

dominated by pioneer species, which seeds are mostly dispersed by wind or birds, or sourced from 268 

dormant seedbank within the peat layer. Only few resproutings were found and mostly appeared 269 

from Ficus spp. It is supported by Chazdon (2008) that initial succession is normally composed of 270 

long-lived pioneer species that change slowly over times. Moreover, Table 4 also displayed a 271 
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phenomenon that most recruitments are not conspecific to the remaining trees that survive after fire. 272 

For example, the presence of a few Dipterocarp trees on transect NB is not followed by the 273 

emergence of seedlings from these species. Once again, our study showed that abundant mother 274 

trees will not give a substantial advantage on recruitments unless they are able to regenerate. The 275 

presence of climax species such as Shorea spp., will not likely support initial forest recovery as 276 

these species are not able to produce continuous seeds for regeneration due to limited pollination 277 

(Ghazoul 2005), and if they are able, seedlings of climax species might find it hard to survive due to 278 

extreme heat and sun radiation on a typical open peatland.  279 

Table 4. The four most dominant species within each transect  280 

 

Transect FB Transect FBF Transect NB 

New Regrowth Alstonia scholaris Campnosperma coriaceum Alstonia scholaris 

 

Melicope lunu-ankenda Alstonia scholaris Campnosperma coriaceum 

 

Campnosperma coriaceum Ficus spp. Melicope lunu-ankenda 

 

Macaranga pruinosa Nephelium mangayi Syzygium spp. 2 

Regrowth Melicope lunu-ankenda Elaeocarpus acmocarpus Alstonia scholaris 

 

Melaleuca sp. Macaranga pruinosa Melicope lunu-ankenda 

 

Campnosperma coriaceum Campnosperma coriaceum Ficus spp. 

 

Alstonia scholaris Tetractomia obovata Syzygium spp. 2 

Survivor Campnosperma coriaceum Tetractomia obovata Myristica iners 

  

Alstonia scholaris Shorea teysmanianna 

  

Campnosperma coriaceum Shorea uliginosa 

  

Elaeocarpus acmocarpus Tetractomia obovata 

 281 

As the forest recovery process starts with colonization (Chazdon 2008), the key to peatland 282 

vegetation recovery after fires is to enable vegetation colonization as soon as possible, and this 283 

depends on the availability of regeneration sources (seeds or resproutings). Unfortunately, heavily 284 

degraded peatlands are commonly dominated by high and dense ferns and shrubs that impede other 285 

woody species to grow (Page et al. 2009). Given this condition, only pioneer species are able to 286 

grow and supply continuous seeds for further colonization (Hapsari et al. 2018; Shiodera et al. 287 

2016). Only when this condition is achieved, late successional species might then be able to emerge 288 

dispersed by birds or bats, and bring the recovery process to the next stage.  289 
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This finding is supported by our observation on 15 2x2 m permanent plots of natural 290 
regeneration ( 291 

Figure 6). These plots were burned almost at an annual basis, with the last fire incidence 292 

being in 2014. From this figure, several pioneer species (Melaleuca leucadendron, Melicope lunu-293 

ankenda, Syzygium sp.) dominated the whole study area. However, in the third year, late 294 

successional and generalist species (Campnosperma coriaceum, Alstonia scholaris, Ctenolophon 295 

parvifolius) started to appear, although pioneer species still dominated.  296 

 297 

 298 
 299 

 300 

Figure 6. Trend of recruitments on the smaller natural regeneration permanent plots, observed from 301 

2015 to 2018. The last fire attack was in 2014, and before that year, all plots were almost 302 

annually burned. 303 

The evidence that only pioneer species are able to secure the stand initiation process asks a 304 

question to the common technique of vegetation restoration on degraded peatland forest in 305 

Indonesia. Common practice normally involves line or blanket planting on a large area with a mix 306 

of pioneer and climax species regardless of their ability to produce continuous seed sources and 307 

resprouting ability for rapid colonization. Planting also normally prioritizes high economic value 308 

species or rare species which are beneficial only when they are purposed for enrichment planting 309 

after the first stage of the successional phase (stand initiation) is achieved. A paleocological study 310 

by Hapsari et al. (2018) stated that floristic composition in degraded peat-swamp forest in Sumatra 311 

can passively recover, and this is marked by initial domination of rapidly generating trees such as 312 
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Gnetum, Calophyllum, Sapotaceae, and Ficus to assure tree colonization and finally enable other 313 

late successional species to naturally establish either dispersed by bats or birds.  314 

 315 

 316 
 317 

Figure 7. Survival rate of tree seedlings calculated in 9 months after planting (P+9m) and 17 months 318 

after planting (P+17m) 319 

Our examination in 9 and 17 months after planting various mixed species, showed that 320 

pioneer species had a much higher survival rate and so dominated the revegetation (including 321 

species such as Alstonia, Combretocarpus, and Syzygium), and only a few late successional-high 322 

valuable tree species (such as Dyera, Diospyros, and Shorea) were found (Figure 7). Moreover, our 323 

findings showed higher overall survival rates compared to another trial planting experiment by Tata 324 

(2017), and slightly lower rates compared to a study by Lampela et al. (2017). 325 

We suggest that planting late successional as well as high valuable tree species, without 326 

examining first which the successional stage the site is in, is unnecessary. Although some species 327 

with high commercial value are able to grow on the initial phase of forest recovery, however, as 328 

previously mentioned, it will not give any beneficial value if those species are not able to produce 329 

continuous regeneration for stand initiation process. However, late successional or climax species 330 

could still be incorporated in the initial planting but with smaller number compared to the pioneer 331 

species. Again, these climax species are beneficial for enrichment planting only, where the planting 332 

purpose is to increase species diversity on a site that has passed the first phase of the successional 333 

process. Therefore, to increase the effectiveness of the forest recovery process on recently burned 334 

peatland, planting rapidly regenerating or pioneer species to ensure stand colonization is highly 335 

recommended.  336 

 337 
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CONCLUSION 338 

Although this study only showed initial results of the ongoing survey on peat forest 339 

sucession, we found that the interaction of fire frequency, fire intensity, and proximity to remnant 340 

forest produce different degrees and patterns of forest recovery on degraded peatlands. Frequent or 341 

severe fire attacks might reduce the presence of survivor or mature trees that could supply new 342 

regrowth; however, our study suggests that the lack of remnant trees does not always impede the 343 

emergence of new forest regrowth. Moreover, the diversity of forest regrowth is likely affected by 344 

proximity to the nearest forest remnant. As species composition during the initial stage of forest 345 

recovery in all transects and permanent natural regeneration plots were dominated by pioneer 346 

species (such as Melaleuca leucadendron, Melicope lunu-ankenda, Syzygium sp, Macaranga 347 

pruinose and Alstonia scholaris), the colonization process on our study site is likely ongoing.  348 

We conclude that to ensure the forest recovery process, forest colonization with species that 349 

can produce continuous species accumulation, either by sprouting or producing seed sources, needs 350 

to be addressed first. The common method of restoration practice using expensive species that 351 

cannot guarantee continuous self-regeneration is unbeneficial unless the restoration sites have 352 

reached the later stage of succession. The successional stage of the designated area should be 353 

determined first, as planting should focus on species that meet the needs of the successional stage 354 

on the designated sites. Thus, restoration activity is always site-specific. Besides, to ensure forest 355 

recovery, vegetation restoration on peatland should be parallel with hydrological restoration and fire 356 

prevention. 357 

 358 
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