

University of Warwick institutional repository

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): C. R. RAHN, G. D. BENDING, R. D. LILLYWHITE & M. K. TURNER Article Title: Co-incorporation of biodegradable wastes with crop residues to reduce nitrate pollution of groundwater and decrease waste disposal to landfill

Year of publication: 2009 Link to published version: http://dx.doi.org/10.1111/j.1475-2743.2009.00201.x Publisher statement: The definitive version is available at www3.interscience.wiley.com

1	Co-incorporation of biodegradable wastes with crop residues to reduce
2	nitrate pollution of groundwater and decrease waste streams to landfill
3	
4	C.R. Rahn*, G.D. Bending, R.D. Lillywhite & M.K. Turner
5	Warwick HRI, University of Warwick, Wellesbourne Warwick CV35 9EF UK
6	*Corresponding author .Fax +44 (0) 24 7657 4500 clive.rahn@warwick.ac.uk
7	
8 9 10	Keywords: Crop residues, nitrogen, leaching, denitrification, waste, landfill, grain yield, cellulose, recycling
11	Running head: Co-incorporation of waste and crop residues

3 Abstract. Return of high nitrogen (N) content crop residues to soil, particularly in 4 autumn, can result in considerable environmental pollution resulting from gaseous and 5 leaching losses of N. The EU Landfill Directive will require significant reductions in the 6 amounts of biodegradable materials going to landfill. A field experiment was set up to 7 examine the potential of using biodegradable waste materials to manipulate losses of N 8 from high N crop residues in the soil. Leafy residues of sugar beet were co-incorporated 9 into soil with materials of varying C:N ratios, including paper waste, cereal straw, green 10 waste compost and molasses. The amendment materials were incorporated to provide approximately 3.7 t C ha⁻¹. The most effective material for reducing N_2O production and 11 leaching loss of NO_3^- was compactor waste, which is the final product from the recycling 12 13 of cardboard. Adding molasses increased N₂O and NO₃⁻ leaching losses. Six months following incorporation of residues, the double rate application of compactor waste 14 decreased soil mineral-N by 36 kg N ha⁻¹, and the molasses increased soil mineral N by 15 16 47 kg N ha⁻¹. Compactor waste reduced spring barley grain yield by 73 % in the first of 17 years following incorporation, with smaller losses at the second harvest. At the first 18 harvest, molasses and paperwaste increased yields of spring barley by 20 and 10 % 19 compared with sugar beet residues alone, and the enhanced yield persisted to the second 20 harvest. The amounts of soil mineral-N in the spring and subsequent yields of a first 21 cereal crop were significantly correlated to the lignin and cellulose contents of the amendment materials. Yield was reduced by 0.3 to 0.4 t ha^{-1} for every 100 mg g⁻¹ increase 22 23 in cellulose or lignin content. In a second year, cereal yield was still reduced and related 24 to the cellulose content of the amendment materials but with one quarter of the effect. 25 Additional fertiliser applied to this second crop did not mitigate this effect. Whilst amendment materials were promising as tools to reduce N losses, further work will need
 to be carried out to reduce the negative effects on subsequent crops which was not
 mitigated by applying 60 kg ha ⁻¹ of fertiliser N.

1 Introduction

2 The return of high nitrogen (N) content crop residues to soil, particularly in the autumn, 3 can result in considerable environmental pollution. This can arise both from NO_3^{-1} 4 leaching to water courses, and from the production of nitrous oxide, which has been 5 implicated in global warming (Neeteson & Carton 2001). Crop residues containing high 6 amounts of N are produced by a range of crops, including sugar beet and potatoes, and 7 typically contain between 100 and 200 N kg ha⁻¹ (Sylvester-Bradley 1993); the residues of some vegetable brassicas, e.g. Brussels sprouts, can occasionally exceed 300 N kg ha⁻¹ 8 9 (Rahn et al. 1992). On this basis it is estimated that sugar beet, potato and vegetable 10 brassica residues, produced on 375,000 ha of land (DEFRA 2002) in the UK, contain 11 45,000 t N. It is important that this valuable resource is retained and re-cycled into 12 subsequent crops to prevent N losses to the environment. In organic production, there is 13 an even greater need to retain and manage N from crop residues in the soil crop system 14 (Watson et al. 2002). There is evidence that even when soils are cool, decomposition of crop residues can still occur rapidly and that mineral-N can be lost from the soil (Rahn et 15 16 al. 2002). Further, where cover crops are planted late, their ability to take up N and 17 reduce leaching can be small (Weinert et al. 2002).

Field studies have suggested that short-term rates of N mineralisation and subsequent NO₃⁻ leaching can be minimised by the co-incorporation of paper waste with crop residues (Vinten *et al.* 1998). Their results demonstrated that there is scope to develop novel strategies for crop residue management based on the addition of substrates to directly influence the activities of the decomposer organisms. Such strategies could be used to either inhibit or stimulate short or long term mineralisation of N and to

synchronise N release to the needs of following crops, depending on the nature and
 quantity of amendment material added.

The addition of readily utilised sources of C to soil has been shown to stimulate denitrification (Weier *et al.* 1993). Adding amendments which reduce mineralisation of N might therefore reduce the potential for loss by leaching, at the expense of increased production of N₂O. Incubation studies (Rahn *et al.* 2003; Motavalli & Diambra, 1997) suggested that materials with a high cellulose or lignin content had the greatest potential to reduce mineralisation of N from sugar beet residues without increasing nitrous oxide production.

10 The EU Landfill directive 1999/31/EC seeks to reduce the amounts of biodegradable 11 materials being disposed of to landfill to 50 % of the 1995 values by 2013 which suggest 12 that the UK will need to identify a different disposal route for between 6 million tonnes 13 (Mt), by 2010, and 10 Mt by 2013 (The Composting Association 2003); one option is that 14 the material should be spread on agricultural land. However there are constraints on application of such materials to agricultural land, (Directive 75/442/EEC amended by 15 16 91/156/EEC). It must be shown that they are spread on land without endangering human 17 health and that they provide an agricultural benefit to the soil. The application of some of 18 these biodegradable wastes to agricultural land may not only have the potential to reduce 19 NO_3^- leaching to comply with the EU Nitrate directive (91/676/EC) but may also assist in 20 helping to reduce the quantities of biodegradable wastes going to landfill. The effects of 21 such materials need to be understood in designing appropriate Action Programmes in 22 Nitrate Vulnerable Zones in fulfilment of this directive.

The objective of this research was to investigate the potential benefits of usingbiodegradable materials, including materials that might be diverted from landfill such as

paperwaste, as amendment materials to reduce N losses from high N content crop
 residues incorporated into agricultural soils.

3

4 Materials and methods

5 *Experimental site and soil properties*

6 A field experiment was set up to test the effects of the most promising treatments from an 7 earlier laboratory incubation experiment (Rahn et al. 2003) which investigated the effect 8 of a broader range of materials on potential N losses from sugar beet leaf residues 9 incorporated into soil. The experiment was carried out at Wellesbourne, Warwickshire, 10 England on a sandy loam soil of Dunnington Heath series (Whitfield 1974), chromic 11 luvisol (FAO 1998). The soil had a pH of 6.4 with exchangeable P and K concentrations of 83 and 160 mg l^{-1} , respectively, as determined using standard analytical methods 12 13 (MAFF 1986). The experimental area had been cropped with winter barley and winter 14 wheat in 1997/8 and 1998/9 respectively. The site was fertilised with compound fertiliser supplying 60 kg/ha P₂0₅ in autumn of each year and 60 K₂0 in 98 and 90 in 99 and 75 in 15 16 2000.

17

18 Experimental design

19 The experiment was set up to investigate the effect of co-incorporation of sugar beet20 leaves with 6 organic amendments. The treatments were as follows:

- 21 1. No residues or amendment material
- 22 2. Sugar beet residues only (control)
- 23 3. Molasses (a by-product from sugar beet refining)
- 24 4. Compactor waste (a recalcitrant waste product of waste paper recycling)

1	5. Double rate compactor waste (7.5 t $ha^{-1}C$)
2	6. Compost (composted local authority green waste)
3	7. Paper waste (from the paper recycling industry).
4	8. Wheat straw (grown at Warwick WHRI)
5	Treatments 3-8 also received the same amount of sugar beet residues as treatment 2.
6	Amendments were incorporated on the 7th October 1999 with all treatments and on
7	14 January 2000 where treatments 1, 2 3 and 5 were applied to different plots
8	For the first season treatments were arranged in four randomised blocks and each plot
9	was 8 * 3.6m . In the second season, 2001 two of the experimental blocks received
10	fertiliser and two blocks remained unfertilised.
11	Statistical analysis was carried out using Genstat (Payne et al 2007) In the first
12	season the analysis was based on 11 treatments and 4 replicates providing 33 df for the
13	estimation of error. In the second season where N was applied to the blocks a spit plot
14	analysis was used where the number of degrees of freedom for fertiliser applied was 2,
15	and for the amendment treatments was 22.
16	
17	Amendment materials
18	The amendment materials were selected for their differences in biochemical quality
19	and their potential N immobilising ability (Table 1). Materials with a wide C:N ratio were
20	selected to immobilise N and those of a narrow C:N to stimulate net mineralisation.
21	Materials were also chosen because of ready availability. Two types of paperwaste were
22	selected for their potential N immobilising capacity; these were 'compactor' waste and
23	'paper' waste, which were obtained from the cardboard and paper recycling industry
24	respectively. Wheat straw was collected from a recently harvested field at WHRI

Wellesbourne. For narrow C:N materials, compost was obtained from Worcestershire
 County Council and liquid molasses from the sugar beet refining industry. Although also
 sold as an animal feed, molasses was chosen for its high carbohydrate content and
 potential to stimulate rapid microbial growth and decomposition.

5

The amendment materials were applied at amounts intended to supply 3.7 t C ha⁻¹, 6 although the actual rate varied between 3.2 and 3.8 t C ha⁻¹ (Table 1). It was assumed that 7 only one third of the carbon would be biochemically active and that the soil microbial 8 9 biomass had a C:N ratio of 7:1, similar to that used for unamended soils (Joergensen & Raubach, 2003; Ocio & Brooks 1990, Jenkinson 1988), so it was calculated that 181 kg of 10 11 N would be immobilised by adding the amendment materials. Dry amendment materials 12 were spread by hand while the molasses was diluted with water and sprayed on to ensure even coverage. The amendment materials were co-incorporated with 42 t ha⁻¹ of fresh 13 sugar beet leaves (containing 117 kg ha⁻¹ N) in October 1999. Treatments 1, 2, 3 and 5, 14 were repeated in January 2000 with 41 t ha⁻¹ as fresh sugar beet leaves (containing 191 kg 15 ha⁻¹ N). The leaves of sugar beet were obtained from a commercial crop grown on a 16 17 neighbouring farm. The chemical composition of the two batches of leaves did not differ 18 significantly. The quality characteristics of the sugar beet used in October 1999 is shown 19 in Table 1. Materials were co-incorporated to a depth of 20 cm using a mechanical 20 spading machine. Treatments were arranged in four randomised blocks and each plot was 21 8 x 3.6 m.

The characteristics of each material were determined by measuring carbohydrates, cellulose and lignin content using a proximate analysis based on H_2SO_4 hydrolysis, as described by Rahn *et al.* (1999). Water-soluble phenolics and total C:N ratio were determined as described in Bending *et al.* (1998). The analyses were carried out on triplicate samples. The characteristics of materials used for the October and January incorporation dates were similar. Data from material used for the October incorporation date is shown in Table 2.

8

9 Soil sampling and analysis

Levels of mineral-N to 90 cm were measured on all plots on 4th October, 21st October, 7th December in 1999, 10th January, 14th April, 1st and 15th November in 2000, 14th of March and 20th of August 2001. Two soil cores were taken from three layers (0-30, 30-60 and 60-90 cm) per plot. Nitrate and ammonium concentrations were determined using continuous flow analysis (MAFF 1986) after extraction with 0.5 M K₂SO₄.

Following the October incorporation, overwinter leaching was estimated using porous cups (three per plot) on treatments 1-4 which allowed the NO_3^- concentration of water draining below 60 cm to be determined during the winters of 1999/2000, 2000/2001 and 2001/2002. Cups were sampled after every 25 mm rainfall after the onset of field capacity and drainage volume was assumed to equal rainfall after field capacity had been reached. The results were interpreted using methods described in Lord *et al.* (1993).

Losses of N_2O were assessed following the October and January incorporation dates using four automated closed chambers provided by Scottish Agricultural College with single chambers being used on treatments, 1, 2, 3 and 5 following the incorporation of

residues and amendments in October and January. The procedures for operation of these units and analysis of samples were as described by Scott *et al.* (1999).

3

2

4 Crop growth and uptake of N following reside and amendment incorporation

The mineral-N remaining after two consecutive winters was assessed by drilling spring
barley on 4th of May 2000 (cv. chariot) and 19th April 2001 (cv. Pearl), respectively. No N
fertiliser was applied in 2000, but in 2001, 60 kg ha⁻¹ N as NH₄NO₃ was applied to two of
the four experimental blocks on 27th April 2001.

9 Yield and total N uptake of the two cereal crops was determined in order to estimate the 10 recovery of N from the co-incorporated materials and soil samples were used to assess the 11 continuing potential of the amendment materials to immobilise N mineralised during the 12 spring and early summer of 2001.

Yield was determined by plot combine on 29/08/00 and 16/08/01, harvesting at least
11.2 m² per plot, from which area all grain straw and stubble was collected and weighed.
Sub-samples of at least 100 g were taken for drying at 80°C for 48 hours. The N content
of the dried material was determined by total combustion using a C/N autoanalyser (Leco
Corporation, Michigan, USA).

18

19 **Results**

20 Soil mineral-N

Prior to the incorporation of the amendment materials in October 1999, mineral-N in the 0-30 layer was 29.7 kg ha⁻¹ (Figure 1). Within a month of the incorporation of sugar beet residues, soil mineral-N levels had increased by over 6 kg ha⁻¹ in comparison to soils receiving no residue, and levels remained elevated until April 2000. Where molasses were 1 co-incorporated with the sugar beet residues, there was rapid mineralisation, with 2 mineral-N levels being 10 to 15 kg ha⁻¹ higher than the sugar beet alone treatment 3 between a month and 6 months following incorporation. Levels of mineral-N following 4 co-incorporation of compactor waste were 20 kg ha⁻¹ lower than the soil receiving sugar 5 beet residues alone by mid November 1999, although by April 2000 amounts of mineral-6 N at 0-30 cm depth had returned to levels found in the sugar beet alone treatment.

7 In April 2000, six months following incorporation, analysis of soil mineral-N at 0-90 8 cm depth showed that the addition of sugar beet residue had increased mineral-N levels by 16 kg ha⁻¹ (Table 2). In comparison to soil receiving sugar beet residues alone, co-9 amendment with straw and compactor waste reduced soil mineral-N by 25 and 15 kg ha⁻¹ 10 respectively, with the double compactor waste reducing mineral-N by 36 kg ha⁻¹. 11 12 Paperwaste had no net effect on mineral-N, while molasses and compost increased soil mineral-N by 46 and 11 kg ha⁻¹, respectively. The January incorporation of molasses and 13 14 compactor waste had similar effects on soil mineral-N as the October incorporation. Amounts of mineral-N in April following the October incorporation were significantly 15 16 correlated (p>0.05) with concentrations of lignin and cellulose in the amendment 17 materials (r=-0.91 and -0.86 respectively).

Following the October incorporation, soil mineral-N levels to 90 cm depth were around 60 kg ha⁻¹ N, in the November/March of 2000/01 and were not significantly affected by the amendment materials or sugar beet residues incorporated in the autumn of 1999. Similarly following harvest in August 2001 there were no significant effects of amendments, or fertiliser on the mineral-N level in the 0-90 cm soil layer, which remained around 60 kg ha⁻¹ N (data not shown).

24

1 Leaching losses

2 For the October incorporation, compared to soil which received no residues, incorporation 3 of sugar beet alone reduced amounts of N leached between Nov-Dec 1999, but increased 4 amounts leached between Jan-Feb 2000 (Table 3). Compared to the sugar beet alone 5 treatment, molasses increased, and compactor waste decreased, the N concentration of 6 leachate. The increased leaching following molasses incorporation was evident from the 7 first sampling date in November 1999 and continued until February 2000. For compactor 8 waste, leaching losses were higher than the sugar beet alone treatment until December 9 2000, and subsequently declined to between a half and a third of levels in the sugarbeet 10 alone treatment.

11 Overall, in the 1999/2000 season there was no significant difference in amounts of N leached in the no residue and sugarbeet alone treatments, with 56 and 60 kg N ha⁻¹ lost 12 13 respectively. However, leaching losses in the molasses and compacter treatments were significantly (P<0.001) different to the other treatments, at 72 and 38 kg N ha⁻¹. In the 14 following winter the total amounts of leaching ranged from 29 to 36 kg N ha⁻¹ with no 15 16 significant treatment differences in 299 mm of drainage. There were no significant 17 differences between treatments. In the 2001/02 the second winter after the amendments were applied the leaching amounts varied from 23 - 33 kg N ha⁻¹ and not significantly 18 different in 124 mm of drainage. The application of 60 kg N ha⁻¹ did not significantly 19 20 affect the amounts of N leached.

21 Gaseous losses of N

N₂O losses were monitored for both the October 1999 and January 2000 incorporation dates on selected treatments using un-replicated chambers. Treatment effects on N₂O losses were similar at the two sampling dates, and only data from January 2000 is shown

1 (Fig 2). Following January incorporation, there were peaks in evolution of N₂O from the soil alone treatment after 36 and 72 hours, with peaks of 300-400 μ g N₂O m² hr⁻¹. In the 2 sugar beet treatment, there were peaks in N₂O production evolution after 72 and 144 h, 3 with peaks of 700 and 350 μ g N₂O m² hr⁻¹ evolved. In the sugar beet plus compactor 4 treatment, there was a single peak 150 μ g N₂O m² hr⁻¹ after 72 h, with. In contrast, N₂O 5 losses in the molasses treatment were substantial, with a peak of over 1500 μ g N₂O m² hr⁻ 6 ¹ after 36 h, with levels remaining above 200 μ g N₂O m² hr⁻¹ until 120 h, when there was 7 a sharp increase to 2800 μ g N₂O m² hr⁻¹. Levels of N₂O returned to those seen in the other 8 treatments only after 218 h. The overall amounts of N lost as N_2O were at most 3 kg ha⁻¹ 9 over the entire period of monitoring where molasses had been co-incorporated. 10

11

12 Grain Yield

Following the October incorporation, sugar beet residues increased grain yield by 12 % 13 14 relative to unamended soil at the first season after incorporation, in 2000 (Table 4). Coincorporation of paperwaste and molasses with sugar beet increased yield by a further 11 15 16 and 20 %, respectively. Straw and compactor waste reduced grain yield by 47 and 21 %, 17 respectively, while the double compactor treatment reduced grain yields by 63 % compared to sugar beet residue alone. Following January incorporation, yield in the 18 absence of residues or amendments was only 1.6 compared with 2.1 t ha⁻¹ with October 19 20 cultivations. Yield was increased markedly by sugar beet incorporation. Compactor waste 21 reduced yield by 53 % and the application of molasses increased yield, but only by 8 % 22 compared with residues alone.

Cellulose and lignin content of the amendment materials were significantly (P<0.05) correlated with grain yield (r= -0.85 and -0.83 respectively). Variations in yield were

significantly correlated (r=0.90, P<0.05) with soil mineral-N in April which were also related to lignin and cellulose contents. As the concentrations of cellulose and lignin in the amendment materials increased, yield decreased by 0.4 (\pm 0.1) and 0.3 (\pm 0.09) t ha⁻¹ respectively, for 100 mg g⁻¹ cellulose and lignin respectively, (Figure 3a, 3b).

5 In 2001, where no new N fertiliser had been applied there was a 21 % decrease in 6 barley yield where no sugar beet residues had been incorporated in 1999, relative to soil 7 that had received sugar beet residues (Table 4). Where the single rate of compactor and 8 straw were incorporated, grain yield was reduced by 20 %. However, where the double 9 rate of compactor was applied, yield was only reduced by 3 %. Incorporation of molasses, 10 compost and paper waste increased grain yield by 28, 41 and 38 %, respectively. Where 11 amendments and residues had been incorporated in January the patterns were different, 12 with yield being boosted by both molasses (+239 %) and compactor waste (+50 %).

Where 60 kg ha⁻¹ N fertiliser had been applied to the October 1999 treatments, the effects of the amendments on yield were smaller compared to where no N had been added, with the differences in grain yield compared with sugar beet residues alone -14, -13, -16, +6, +16, -1, -4 % for no residue, compactor waste, double rate compactor, molasses, paper waste compost and wheat straw, respectively. With January incorporation there were increases in yield of 4 and 27 % respectively where compactor and molasses had been applied.

Following October incorporation variations in yield in the second cereal crop in 2001 were again significantly (P<0.05) correlated with the cellulose content of the amendment materials (r= -0.90). Figure 5a shows the effect of increasing concentrations of cellulose in the amendment materials on yield, with and without fertiliser applied. The slope of the relationships was not affected by the application of fertiliser N. When both lines are taken 1 into account over 96% of the variance in yield is accounted for (df =9). For every 100 mg 2 g^{-1} increase in concentration of cellulose, yield was reduced by 0.11 (± 0.02) t ha⁻¹, 3 correspondingly increased lignin contents reduced yield by 0.12 (± 0.04) t ha⁻¹. This data 4 indicates that the amendment materials were still having an effect on yield in 2001, but 5 that it was up to four times less than seen in 2000.

- 6
- 7

8 N Uptake

9 At the first harvest of spring barley in 2000 the variation in plant N uptake was closely related to grain yield ($r^2=0.94$). Compared to application of sugarbeet alone, compost, 10 compactor, double compactor and straw reduced N uptake by 9, 25 63, and 48 % 11 12 respectively (Table 5). In contrast, molasses increased N uptake by almost 32 %. Paperwaste had no effect on N uptake. Where sugar beet had been incorporated in 13 14 January, N uptake was similar to that taken up following the October incorporation. Compactor waste reduced N uptake by 55 %, and molasses stimulated N uptake by 9% 15 Plant N uptake at the 2000 harvest was significantly (P<0.05) correlated with lignin and 16 17 cellulose (r=-0.88 and -0.83 respectively) N uptake was reduced by increasing concentrations of lignin or cellulose, falling by 9 (\pm 2) and 6 (\pm 2) kg ha⁻¹ for each 100 mg 18 g^{-1} change in concentration respectively. 19

At the second harvest in 2001, N uptake was reduced by 24% where no residue had been incorporated, compared to the control with sugar beet alone (Table 5). Incorporation of compactor and double compactor reduced N uptake by 13 and 15% respectively. Addition of paperwaste and compost increased N uptake by 31 %, and molasses by 21%. Where amendments and residues had been applied in January, compactor and molasses increased
 crop N uptake by 30 and 106 % respectively.

Where 60 kg ha⁻¹ N fertiliser had been applied, N uptake was significantly increased, and the effects of the amendment materials on N uptake were smaller relative to when no fertiliser had been applied. Where residues had been incorporated in October, molasses and paperwaste increased N uptake by 4 and 16 % respectively. Single and double compacter waste reduced N uptake by 14 and 18 % respectively. Where amendments were incorporated in January, compactor and molasses waste increased N uptake by 14 % and 33 % respectively.

10 N uptake at the 2001 harvest, like yield, was significantly correlated to cellulose content, 11 r= -0.93, P<0.01). Similarly the relationships were not affected by the addition of 12 fertiliser N, although the influence of the concentration of cellulose on N uptake at the 13 2001 harvest was lower than at 2000, with an change in N uptake of 2 (±0.4) kg N ha⁻¹ for 14 each 100 mg g⁻¹ change in cellulose concentration (Figure 4b).

15

16 N Balance during growing season

During 2000, straw, compactor waste and paperwaste had no effect on the net N balance between April and harvest (Table 6). However for the molasses and compost treatments there was a large negative N balance, which amounted to -33 and -27 kg N ha⁻¹ crespectively, indicating that large amounts of net immobilisation had occurred. Net N balance was significantly correlated with % N, cellulose and lignin content (r=-0.88, -0.82 and -0.88 respectively). More N was immobilised following incorporation of materials in January although there were no significant differences between treatments.

In the 2001 season, in the absence of fertiliser-N all treatments showed a positive net N balance. In the October treatments, in plots without N fertiliser, N balance for compost and compactor were 12 and 14 kg ha⁻¹ higher than for the sugarbeet alone treatment, but there was no significant difference with the other treatments. N balance was higher for the January incorporation, and both molasses and compactor waste resulted in an elevated n balance relative to the sugarbeet alone treatment.

Applying fertiliser-N led to largely negative N balances, suggesting N immobilisation, although netN was still mineralised where sugar beet or sugar beet and paperwaste had been incorporated. With October incorporation more N was immobilised where compactor waste had been incorporated or in the absence of residues. Similar results were seen for the January incorporation.

12

13 **Discussion**

The data clearly demonstrates that co-incorporation in the field of crop residue materials with a broad range of materials with different chemical properties can have a significant impact on soil N cycling processes, and in particular, that the size and direction of the impact is predictable and largely dependent on the lignin and cellulose content of the amendment material.

19 Several laboratory studies have investigated the effect of amendments of varying 20 composition and complexity on mineralization of N from crop residues. Vinten *et al.* 21 (2002), used incubation experiments in which residues were co-incorporated with pure 22 cellulose, glucose or straw as sources of C. In common with high C:N ratio materials in 23 our study, they noticed substantial initial immobilisation of mineral-N which was largest

from glucose followed by cellulose and straw. In contrast, lower C:N materials such as
 molasses showed no such immobilisation.

3 The effects of the amendment materials on net N mineralization following incorporation of sugarbeet residues were similar to those in an earlier laboratory 4 5 incubation study (Rahn et al. 2003). Decreased net mineralization caused by several 6 materials, including compactor waste, was explained, at least in part, by increasing 7 immobilisation of N into the biomass. In the experiments of Vinten et al. (2002) the 8 immobilisation of all N could not be explained by bacterial biomass, but where cellulose 9 content was higher more fungal biomass appeared to have been responsible for the 10 immobilisation.

Our data confirm the results from earlier laboratory incubation experiments using the same materials (Rahn *et al.* 2003) and those of Motavalli & Diambra (1997), in which total N, lignin, cellulose, C:N and cellulose:N ratios were shown to be appropriate to estimate net mineralisation following co-incorporation of paperwaste and other waste materials with crop residues into soil. In addition our findings support those of Vinten *et al.* (1998) where the release of N was based on the decomposability of carbon compounds contained in paper mill sludge, and not simply on C:N ratio.

In common with our study, Vinten *et al.* (1998) also identified large reductions in N leaching with the addition of paper mill waste to soils in the first season after application. There is clearly some potential for longer term consequences of repeated application of such wastes, with the possibility that immobilised N could stimulate out of season mineralisation and increase NO_3^- leaching in the longer term. However our data showed no evidence that any of the materials stimulated additional leaching in the second winter.

1 In earlier laboratory incubation experiments with these amendment materials, Rahn et 2 al. (2003) showed that co-incorporation of molasses with sugarbeet residuess stimulated 3 N₂O formation for less than 24 h relative to soil receiving sugar beet residues, with 4 amounts of N₂O produced depending on soil type, with higher quantities in a sandy-loam 5 relative to a clay-loam. Similarly, Yang et al. (2002) found rapid increases in N₂O 6 emissions immediately following incorporation of composts and manures into soil. 7 Furthermore, in laboratory incubation studies Chaves et al. (2005) found that a variety of high C:N materials including sawdust and green compost compost reduced N2O 8 9 production during decomposition of celery residues, although a low C:N ratio paperwaste 10 material increased N₂O production. Increased emission of N₂O following co-11 incorporation of narrow C:N paperwastes with crop residues has been shown several times (Vinten et al. 1988; Baggs et al., 2002). Denitrification is dependent on various 12 parameters, including the availability of NO_3^- , labile organic compounds, and the 13 14 N_2O/NO_3^{-1} ratio (Weier *et al.* 1993). The stimulated production of N_2O by low C:N substrates, including molasses in the current study, clearly reflects the rapidly 15 16 decomposable nature of these materials. The reduced denitrification that can occur 17 following addition of high C:N ratio materials, including compactor waste (Rahn et al., 2003; Chaves et al. 2005) probably reflects immobilisation of NO₃⁻ within the microbial 18 19 biomass during decomposition (Beauchamp, 1997). Whilst the losses measured in our 20 study were agronomically small even where molasses was applied N_2O is a potent 21 greenhouse gas IPCC (2006)

In the study of Aitken *et al.* (1998) the application of 100 t ha⁻¹ of de-inked paper mill sludge (DPMS) with C:N of 86 reduced cereal yield one year after application. However, in the second year there were no significant effects on grain yield, and by the third season

1 more soil N was seen where DPMS had been applied suggesting some remineralisation of 2 N. Vagstad et al. (2001) showed that barley yields increased following the incorporation 3 of static piles of paper waste into soil in Norwegian field studies, although these materials 4 had a narrow C:N ratio (20:1). Where paperwaste materials had a wider C:N ratio (30:1), 5 grain yields of the following crop were reduced. These effects were only observed in the 6 first year after incorporation, and yield effects were small in following seasons. In our 7 experiments, where high C:N compactor waste had been applied there were still 8 reductions in yield at the second crop harvest even where fertiliser had been applied. 9 However, there was evidence for remineralisation and enhanced grain yield in soil 10 receiving materials of lower lignin content such as paperwaste, molasses and green 11 compost. Motavallii et al. (2000) also found that where wide C:N (1235) paperwastes had 12 been incorporated into field soils there were similar yield reductions, with an estimated fertiliser N application of over 250 kg ha⁻¹ needed to overcome the yield reduction. 13

In the second growing season the correlations between the quality of the organic matter in the amendments and net N mineralisation were less clear, which suggests the increasing effects of other factors on N dynamics. One of the factors is likely to be remineralisation of N. Eriksen (1999) did see increased amounts of remineralisation of N in his experiments where the highest rates of municipal solid waste had been applied to soils. Mitchell *et al.* (2000) also showed that seasonal effects on can have a large effect on N mineralisation with complex interactions between temperature and soil processes.

The amounts of carbon incorporated with crop residues needs to be adjusted for effective reduction of leaching and also to reduce any negative effects on yield and to control later remineralisation of N. De Neve *et al* (2004) found that the addition of molasses could be used to stimulate remineralisation of immobilised N in a laboratory

study but Chaves *et al.* (2007) demonstrated that it is not easy to stimulate remineralisation of immobilised materials in the field. Beauchamp (2002) indicated that there were other aspects of the chemical quality of paperwastes such as their content of fatty acids and PCBs which should be considered prior to application to land, although in their samples of deinked paper waste these components were not at a significant level and composting reduced the levels further.

- 7
- 8

9 Conclusions

Where low quality amendment materials were co-incorporated with sugar beet
 residues the concentration and amount of N leached in the first winter was
 significantly reduced.

Where NO₃⁻ leaching was reduced where low quality amendment materials had been
 co-incorporated, grain yield of the subsequent cereal crops was reduced.

The grain yields and nitrogen uptake in the first season were more closely related to
 the quality of the amendment materials as measured by the contents of cellulose and
 lignin rather than simple assessment of N or C:N ratio.

The cellulose and lignin content in the amendment materials also affected the yields
 and N uptake of a second cereal crop but the effects were about a third to a quarter
 those seen in the first season. The effect was not mitigated by the application of 60
 kg/ha fertiliser N.

Whilst the application of amendment materials have the potential to reduce losses of
 N, before its wider use experiments will need to be carried out testing the effects of

1	different rates and methods of mixing so that excess N can be immobilised but not in
2	competition with plant requirement.
3	
4	
5	
6	Acknowledgements
7	The UK Department of Food and Rural Affairs (DEFRA) provided funding for this
8	project. Thanks to A Vinten and Albert Scott (SAC) for providing the monitoring
9	apparatus, and advice on its use, and analysis of the samples for N_2O emissions.
10	
11	References
12	Aitken, M.N., Evans, B. & Lewis, J.G. 1998. Effect of applying paper mill sludge to
13	arable land on soil fertility and crop yields. Soil Use and Management 14, 215-222.
14 15	Anon 1987. Genstat 5 reference manual. Oxford Clarendon Press Oxford UK.
16	Beauchamp, E.G. 1997. nitrous oxide emission from agricultural soils. Canadian Journal
17	of Soil Science 77 113-123
18	Beauchamp, C. J., Charest, M.H. & Gosselin, A. 2002. Examination of environmental
19	quality of raw and composting de-inking paper sludge. Chemosphere 46, 887-895.
20	Bending, G.D., Turner, M.K. & Burns, I.G. 1998. Fate of nitrogen from crop residues as
21	affected by biochemical quality and the microbial biomass. Soil Biology and
22	Biochemistry 30, 2055-2065.
23	Chaves, B., De Neve, S., Cabrera, M.D.C., Boeckx, P., Van Cleemput, O. & Hofman, G.
24	2005. The effect of mixing organic biological waste materials and high-N crop

1	residues on the short-time N ₂ O emission from horticultural soil in model experiments
2	Biology and Fertility of Soils 41 , 411-418.
3	Chaves, B., De Neve, S., Piulats, L.M., Boeckk, P., Van Cleemput, O. & Hofman, G.
4	2007. Manipulating the N release from N-rich crop residues by using organic wastes
5	on soils with different textures. Soil Use and Management 23, 212-219
6	De Neve, S., Garona Saez, S., Chaves Daguilar, B., Sleutel, S. &Hofman, G. 2004.
7	Manipulating N mineralization from high N crop residues on- and off-farm organic
8	materials. Soil Biology and Biochemistry 36, 127-134.
9	Composting Association. 2003. The state of composting in the UK 2001/02. The
10	Composting Association, Wellingborough, England.
11	Eriksen, G.N., Coale, F.J. & Bollero, G.A. 1999. Soil nitrogen dynamics and maize
12	production in municipal solid waste amended soil. Agronomy Journal 91, 1009-1016.
13	DEFRA. 2002. Agriculture in the United Kingdom 2001. The Stationary office London.
14	UK.
15	IPCC. (2006). Guildelines for National Greenhouse Gas Inventories - Volume 4
16	Agriculture Forestry and other Land Use.
17 18	Published by the Institute for Global Environmental Strategies (IGES). Hayama, Japan
19	Jenkinson, D. 1988. Determination of microbial biomass carbon and nitrogen in soil.
20	Advances in Nitrogen Cycling in Agricultural Ecosystem. CAB International: 39-51.
21	Joergensen, R.G. & Raubuch, M. 2003. Adenylates in the soil microbial biomass at
22	different temperatures. Soil Biology and Biochemistry 35, 1063-1069.
23	Lord, E. & Shepherd, M. 1993. Developments in the use of porous ceramic cups for
24	measuring nitrate leaching. Journal of Soil Science 44, 435-449.

1	MAFF. 1986. The Analysis of Agricultural Materials, Ministry of Agriculture Fisheries
2	and Food, Reference Book 427. HMSO.
3	MAFF. 2000. Fertiliser recommendations for agricultural and horticultural crops,
4	Ministry of Agriculture Fisheries and Food, Reference Book 209. HMSO.
5	Motavalli, P. P. & Diambra, O.H. 1997. Management of nitrogen immobilization from
6	waste office paper applications to tropical Pacific Island soils. Compost Science and
7	<i>Utilisation</i> 5 , 71-80.
8	Motavalli, P.P. & Discekici, H. 2000. Utilization of waste office paper to reduce nitrate
9	leaching into the Northern Guam aquifer. Biology and Fertility of Soils 31, 478-483.
10	Mitchell, R.D.J., Harrisson, R., Russell, K.J. & Webb, J. 2000. The effect of crop residue
11	incorporation date on soil inorganic nitrogen, nitrate leaching and nitrogen
12	mineralization. Biology and Fertility of Soils 32, 294-301.
13	Neeteson, J.J. & Carton, O.T., 2001. The environmental impact of Nitrogen in Field
14	Vegetable Production. In Proc. of ISHS/ENVEG conference 1999. Acta Horticulturae
15	563 , 21-28
16	Ocio, J.A. & Brookes, P.C. 1990. An evaluation of methods for measuring the microbial
17	biomass in soils following recent additions of wheat straw and the characterization of
18	the biomass that develops. Soil Biology and Biochemistry 22, 685-694.
19	Payne, R.W., Harding, S.A., Murray, D.A., Soutar, D.M., Baird, D.B., Welham, S.J.,.
20	Kane, A.F,. Gilmour, A.R., Thompson, R., Webster R.& G. Tunnicliffe Wilson. The
21	Guide to GenStat [®] Release 10 by Published 2007 by VSN International,
22	Rahn, C., Vaidyanathan,, L., Paterson, C.D. 1992. "Nitrogen residues from brassica
23	crops." Aspects of Applied Biology 30, 263-270.

1	Rahn, C.R., Bending, G.D., Lillywhite, R.D. & Turner, M.K. 1999. Chemical
2	characterisation of vegetable and arable crop residue materials: a comparison of
3	methods. Journal of the Science of Food and Agriculture 79, 1715-1721.
4	Rahn, C., Mead, D.A., Draycott, A., Lillywhite, R. & Salo, T. 2001. A sensitivity analysis
5	of the prediction of the nitrogen fertilizer requirement of cauliflower crops using the
6	HRI WELL_N computer model. Journal of Agricultural Science 137, 55-69.
7	Rahn, C.R. & Lillywhite, R.D. 2002. A Study of the quality factors affecting the short-
8	term decomposition of field vegetable residues. Journal of the Science of Food and
9	<i>Agriculture</i> 82 , 19-26.
10	Rahn, C.R. Bending, G.D. Turner, M.K. & Lillywhite, R.D. 2003. Management of N
11	mineralization from crop residues of high N content using amendment materials of
12	varying quality. Soil Use and Management 19, 193-200.
13	Scott, A. Crichton, I. & Ball, B.C. 1999. Long-term monitoring of soil gas fluxes with
14	closed chambers using automated and manual systems. Journal of Environmental
15	<i>Quality</i> 28 , 1637-1643.
16	Sylvester-Bradley, R. 1993. Scope for more efficient use of fertilizer nitrogen. Soil Use
17	and Management 9, 112-117.
18	Vagstad, N., Broch-Due, A. & Lyngstad, L. 2001. Direct and residual effects of pulp and
19	paper mill sludge on crop yield and soil mineral N. Soil Use and Management 17, 173-
20	178.
21	Vinten, A.J.A., Davies, R., Castle, K. & Baggs, E.M. 1998. Control of nitrate leaching
22	from a nitrate vulnerable zone using paper mill waste. Soil Use and Management 14,
23	44-51.

 amended sandy soils. <i>Biology and Fertility of Soils</i> 36, 190-199. Watson, C.A., Bengtsson, H., Ebbesvik, M., Løes, A.K., Myrbeck, A., Salomon, E., Schroder, J. & Stockdale, E.A. 2002. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. <i>Soil Use and Management</i> 1 264-273. Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. 	1	Vinten, A. J.A., Whitmore, A.P., Bloem, J., Howard, R. & Wright, F. 2002. Factors
 Watson, C.A., Bengtsson, H., Ebbesvik, M., Løes, A.K., Myrbeck, A., Salomon, E., Schroder, J. & Stockdale, E.A. 2002. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. <i>Soil Use and Management</i> 1 264-273. Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potator rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	2	affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-
 E., Schroder, J. & Stockdale, E.A. 2002. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. <i>Soil Use and Management</i> 1 264-273. Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	3	amended sandy soils. Biology and Fertility of Soils 36, 190-199.
 organic farms as a tool for management of soil fertility. <i>Soil Use and Management</i> 1 264-273. Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	4	Watson, C.A., Bengtsson, H., Ebbesvik, M., Løes, A.K., Myrbeck, A., Salomon,
 7 264-273. Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the 9 dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate 10 Soil Science Society of America Journal 57, 66-72. 11 Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. 12 Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato 13 rotations. Agronomy Journal 94, 365-372. 14 Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati 15 Wellesbourne, 24th Annual Report 1973: 21–30 16 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & 17 Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	5	E., Schroder, J. & Stockdale, E.A. 2002. A review of farm-scale nutrient budgets for
 Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	6	organic farms as a tool for management of soil fertility. Soil Use and Management 18,
 dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	7	264-273.
 <i>Soil Science Society of America Journal</i> 57, 66-72. Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	8	Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. 1993. Denitrification and the
 Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potator rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	9	dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate
 Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	10	Soil Science Society of America Journal 57 , 66-72.
 rotations. <i>Agronomy Journal</i> 94, 365-372. Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	11	Weinert, T.L., Pan, W.L., Moneymaker, M. R., Santo, G.S. & Stevens, R.G. 2002.
 Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Stati Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	12	Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato
 Wellesbourne, 24th Annual Report 1973: 21–30 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	13	rotations. Agronomy Journal 94, 365-372.
 Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S. Zhang, T.Q. & Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO₂ and N₂O 	14	Whitfield, W.A.D. 1974. The soils of the National Vegetable Research Station.
17 Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO_2 and N_2O	15	Wellesbourne, 24 th Annual Report 1973: 21–30
	17	Fleming, R.J. 2002. Influence of composts and liquid pig manure on CO_2 and N_2O

Table 1. Chemical characteristics of leaf and amendment materials based on dry weight, and the fresh weight, and amount of C and N applied in the

amendment materials

	% DM	C:N	% N	%C	WS carb ^a (mg g ⁻¹)	WS phen ^b (mg g ⁻¹)	Cellulos e (mg g ⁻¹)	Lignin (mg g ⁻¹)	Fresh weight applied t ha ⁻¹	C applied kg ha ⁻¹	N applied kg ha ⁻¹
Leaf Materia Sugar beet	l 14.1	8.6	1.96	38.0	106	12	126	153			
Amendments Molasses	78.9	16.0	2.30	37.1	910.0	14	2	3	12.2	3629	221
Compactor	31.3	350	0.14	48.2	14.0	2.6	492	291	23.6	3556	10
Paperwaste	51.4	71.0	0.32	22.5	3.7	1.4	93	179	28.1	3248	46
Compost	71.6	14.0	1.07	14.5	3.2	2.1	50	161	35.3	3666	271
Wheat straw	70.3	82.0	0.54	44.0	5.2	11	344	428	12.2	3776	46

^a Water soluble carbohydrate ^b Water soluble phenolics

	April 2000	Harvest (August
	Soil mineral N (kg ha ⁻¹)	2000) Sail minanal N
	(kg ha)	Soil mineral N (kg ha ⁻¹)
Ostahan in same anatia		(kg lia)
October incorporatio		161
No residue	83.5	46.1
S Beet alone	99.4	46.0
+ Molasses	146.0	52.8
+ Compactor	84.2	48.6
+ Double Compactor	63.8	49.9
+ Paperwaste	100.3	48.8
+ Compost	111.1	44.0
+ Wheat straw	74.5	56.1
January incorporatio	n	
Control	96.1	46.9
S Beet only	109	44.2
+ Molasses	126.3	52.1
+ Compactor	75.3	42.4
ANOVA		
p =	p(SED)	p(SED)
Amendment	< 0.001(9.47)	0.166(4.62)

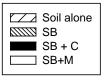
Table 2 Soil mineral nitrogen at 0 - 90 cm depth (kg ha⁻¹) 3

Table 3 Nitrate leached in the first winter following October incorporation of amendment and residue expressed as concentration (mg NO₃ L⁻¹). Overwinter drainage = 150 mm, 3 4 df=28.

Year		1999			2000	
	25 Nov	10 Dec	23 Dec	5 Jan	8 Feb	28 Feb
No Residue	154	177	161	195	172	160
S Beet alone	98	141	148	216	226	233
+ Molasses	162	187	167	222	266	265
+ Compactor	155	186	127	120	71	83
ANOVA						
р	0.05	0.17	0.02	0.002	0.001	0.001
S.E.D.	24.0	22.6	13.0	26.7	36.1	34.9

Table 4 Grain Yields of Barley (t ha⁻¹) at 85% DM. Statistical analysis based on 33 df for 2000, and 2, 11 and 11 df for testing nitrogen, amendment and their interactions in 2001.

	2000	20	01
	Grain Yield		Yield
	$(t ha^{-1})$	(t h	a ⁻¹)
Fertiliser (kg ha ⁻¹)	0	0	60
October incorporatio	n		
No residue	2.10	0.73	2.07
S Beet alone	2.36	0.92	2.42
+ Molasses	2.83	1.18	2.56
+ Compactor	1.86	0.74	2.11
+ Double Compactor	0.87	0.89	2.03
+ Paperwaste	2.59	1.27	2.82
+ Compost	2.32	1.30	2.40
+ Wheat straw	1.25	0.77	2.32
January incorporatio	n		
Control	1.58	0.58	1.82
S Beet only	2.73	0.66	2.28
+ Molasses	2.96	1.58	2.90
+ Compactor	1.29	0.99	2.36
ANOVA			
p =	p (SED)	p(S)	ED)
Nitrogen	nd	1 (0.133)
Amendment	< 0.001(0.352)	< 0.001	(0.186)
Interaction	nd	Ns(0	.285)


- Table 5 Nitrogen uptake in Barley crops (straw grain and stubble) measured at harvest (kg ha⁻¹). Statistical analysis based on 33 df for 2000, and 2, 11 and 11 df for testing nitrogen, amendment and their interactions in 2001. 3 4

	2000 Uptake		ake
1	(kg ha^{-1})		ha ⁻¹)
Fertiliser (kg ha ⁻¹)	0	0	60
October incorporatio	n		
No residue	39.9	14.5	42.0
S Beet alone	46.1	19.0	51.5
- Molasses	60.7	23.0	53.5
- Compactor	34.6	16.5	44.5
- Double Compactor	17.2	18.0	42.0
- Paperwaste	47.1	25.0	59.5
- Compost	40.6	25.0	51.5
- Wheat straw	24.3	18.0	51.0
lanuary incorporatio	n		
Control	30.7	13.5	38.5
S Beet only	51.9	15.0	47.5
- Molasses	56.6	31.0	63.0
- Compactor	23.4	19.5	54.0
ANOVA			
) =	p(SED)	p(S)	ED)
Nitrogen	nd	0.004	(1.80)
Amendment	< 0.001(7.02)	< 0.001	1(3.50)
nteraction	nd	Ns(4	1.94)

Table 6 N Balance between April and harvest in 2000 and March and harvest in 2001. (Starting values in spring based on mineral N 0-90cm, values in harvest on soil mineral N 0-90 cm and N uptake of cereal) Statistical analysis based on 33 df for 2000, and 2, 11 and 11 df for testing nitrogen, amendment and their interactions in 2001.

	2000	20	001
	N Balance	N Balance $(kg ha^{-1})$	
	(kg ha^{-1})		
Fertiliser (kg ha ⁻¹)	(Kg Int)	0	60
	0	0	
October incorporatio	n		
No residue	2.5	14.0	-19.1
S Beet alone	-7.3	16.0	10.0
+ Molasses	-32.6	16.0	-0.5
+ Compactor	-1.0	28.0	-13.7
+ Double Compactor	3.4	22.0	-12.6
+ Paperwaste	-4.5	23.6	10.4
+ Compost	-26.6	30.0	-4.7
+ Wheat straw	5.9	16.3	-9.7
January incorporatio	n		
Control	-18.5	38.5	-15.5
S Beet only	-12.8	47.5	-15.4
+ Molasses	-17.5	63.0	5.4
+ Compactor	-9.5	54.0	-19.7
ANOVA			
p =	p(SED)	p(SED)	
Nitrogen	nd	0.003(1.5)	
Amendment	< 0.001(8.77)	ns (7.3)	
Interaction	nd	ns(10.0)	

1	Figure legends
2 3	Figure 1. Effect of sugar beet residue and amendments on soil mineral-N (0-30 cm depth)
4	following incorporation in October 1999. Errors are SED.
5	
6	Figure 2 Nitrous oxide emission (N ₂ O) following incorporation of sugar beet residue and
7	amendments in January 2000. Data reflects single replicates for each treatment
8	
9	Figure 3 Relationships between Grain Yield 1 st harvest and properties of the amendment
10	materials, a) acid cellulose, b) Lignin. Trendline shown for October incorporated
11	amendments (closed symbols) where regression significant (p >0.05). Open symbols
12	January Incorporated Amendments
13	
14	Figure 4 Relationship between cellulose content of amendment materials with grain yield
15	of spring barley (4a) and nitrogen uptake (4b) at 2nd harvest. Closed and open symbols
16	data from October incorporation and January incorporation respectively. Square symbols
17	with fertiliser, Circles without. Dotted line represents trendline for October incorporated
18	treatments only with 60kg/ha fertiliser applied in the spring. Solid line – no spring
19	fertiliser

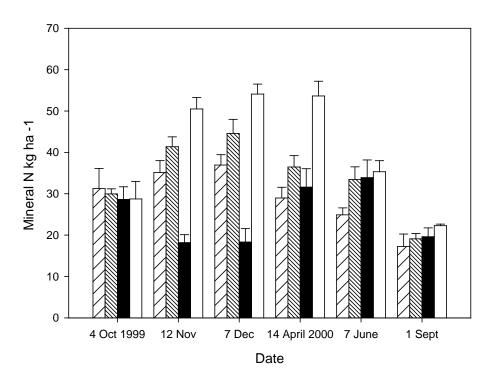
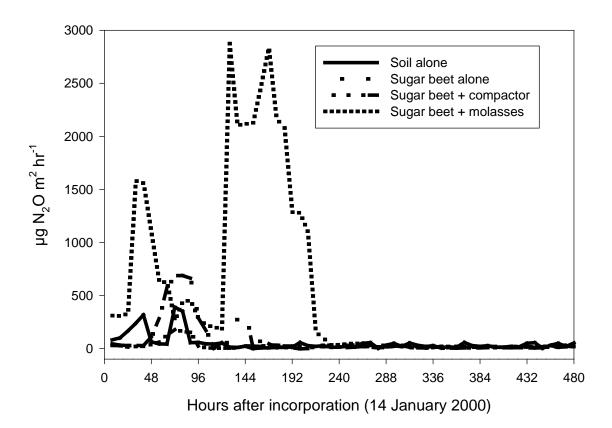
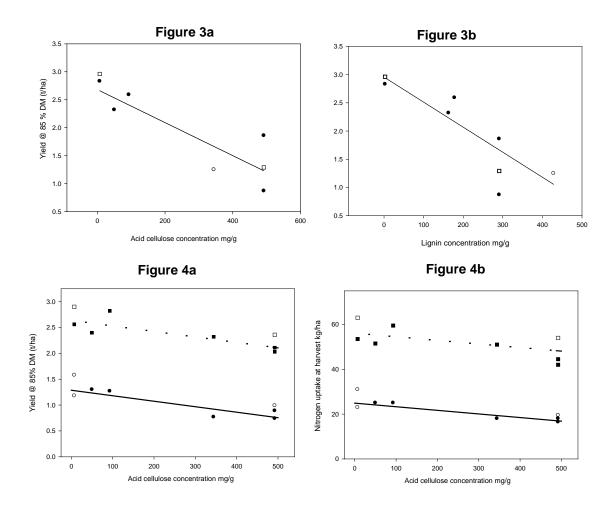




Figure 1

Figure 2

